
Linux on PA–RISC
One Martini Too Many

Matthew Wilcox
matthew@wil.cx

Abstract

Hewlett-Packard’s PA–RISC processor is one of the
few remaining mainstream processors without Linux
support. This talk outlines the progress of the port
to date, including a brief rundown of the available
hardware, as well as a description of the basic ar-
chitecture.

We will detail kernel changes required for the PA–
RISC CPU, particularly those required for SMP
support and PCI cards. Linux/PA–RISC includes
an HP–UX emulation layer, which we will also dis-
cuss. Most of the work involved in porting to a
new architecture involves supporting all the devices
available. PA–RISC is no exception. Even though
drivers were available for many of the chips used,
work was still required to get them to function prop-
erly.

The pre-existing HP–UX support in GCC and binu-
tils was suited for the 32 bit SOM format. The
changes to the toolchain, which were required to
support ELF, will be covered. The GNU C Library
also had to be ported to the PA–RISC processor.

1 Introduction

I first got involved in the PA–RISC project in May
1999 at Linux Expo in Raleigh, North Carolina. I
found an HP Apollo 715/33 being used as a monitor
stand at work and wondered if I could put it to use.
I found the Mach port, but the 715/33 was the only
workstation in its class that was unsupported. I
heard about the port being organised by The Puffin
Group shortly before the Expo and agreed to help.
I wrote a SOM executable loader for Linux and
adapted the HIL keyboard driver originally writ-
ten for the m68k port to work with PA–RISC. I ac-
cepted a job offer from The Puffin Group in August

and started working on the PA–RISC port almost
full-time in December.

2 PA–RISC Hardware

2.1 Processors

The PA–RISC processor is an HP-designed CPU.
Even though both HP–UX and MPE/iX run in big-
endian mode, some CPU models are switchable. It
is slightly unusual in that the ABI defines the stack
to grow upwards instead of downwards (though this
is not intrinsic to the processor design). As with
most RISC processors, it has a direct implementa-
tion of the instruction set (no microcode), 32 bit
instructions, a small number of addressing modes
and a load-store architecture. Almost all models
have an integrated high-performance floating point
unit.

The PA–RISC line has evolved over the past 15
years and produced the following models:

• PCX, the first CPU, implements the PA 1.0 ar-
chitecture. It has a number of restrictions that
make it a very hostile architecture on which to
run Linux. Further, it was only available in
some early servers, which have almost all been
scrapped by now, so we have no plans to sup-
port it.

• PCX–S, PCX–T and PCX–T’, which are older
implementations of the PA 1.1 architecture.
They are 32 bit processors and run at 48 to
120MHz.

• PCX–L and PCX–L2, which are newer imple-
mentations of the PA 1.1 architecture. They
are also 32 bit processors and were an effort to



produce a low–priced design by integrating the
GSC bus interface into the processor — this
reduced chip count on the motherboard. Their
clock speeds range from 60 to 180MHz.

• PCX–U, PCX–U+, PCX–W and PCX–W+,
which implement the PA 2.0 architecture. They
are 64 bit processors (which still support the
full 32 bit instruction set) and run at 120 to
550MHz. All new HP machines use PCX–W or
PCX–W+ processors.

2.2 Devices

Fortunately, HP have mainly used commodity com-
ponents in the machines that interest us most. The
Ethernet chip used is either an Intel 82596 for
10Mbit ethernet, a DEC Tulip for 100Mbit Ethernet
or an Alteon for Gigabit Ethernet. For SCSI, HP
have always used NCR–series chips (even though
the chip design has been owned at various times by
Emulex, NCR, Symbios and now LSI Logic). The
serial ports are mainly 16450–compatible, with one
exception mentioned below. HP continued using the
HIL keyboard & mouse that was used with the series
300/400 m68k based workstations. Starting with
the 712, the PS/2 keyboard & mouse were used
instead, in order to reduce costs. This continued
to be used in first generation B/C/J class worksta-
tions. The latest generation of B/C/J class worksta-
tions (eg C3000) have two USB ports for keyboard
& mouse.

All machines support at least one proprietary HP
bus, which has evolved from CIO through HP–PB
(AKA NIO), SGC and GSC into HSC. All recent
machines also support PCI and some older machines
support an EISA bus.

There are several bus adaptors for which drivers had
to be written. All the machines have a proprietary
bus from the CPU to a bus adapter which mediates
with the devices. On some machines, there is then
a second layer of bus adapters.

For example, in the C3000, the CPU sits on the
Runway bus. The System Bus Adapter (called As-
tro) interfaces the Runway bus to 8 Ropes busses.
The PCI bus is attached to the Ropes bus through
the Lower Bus Adapter (called Elroy). The extra
level of bus converters allows the Runway bus to
remain shorter and thus run at higher clock fre-
quencies. So, despite the additional IO latency, the

system bus can achieve higher throughput. The
Astro/Elroy combination supports up to 8 64 bit,
66MHz PCI busses in a single system.

2.3 PA–RISC workstations

The original workstation series were the 705, 710,
720, 730 and 750. These machines are not numer-
ous, and development tends to be neglected. They
use the PCX–S CPU.

They were replaced with the 715/Scorpio, 725, 735
and 755. All these machines use the HP SGC bus,
and have PCX–T series processors. They are mod-
erately popular and are worth supporting.

The 712 and 715/Mirage use the PCX–L proces-
sor and have a GSC bus. There are more 712–
series workstations than any other model of PA–
RISC workstation.

After this, new workstations were given B/C/J let-
ters. The C100, C110, J200 and J210 are PCX–T’
based and have a Runway bus that has Runway to
GSC bus converters on it. They also have GSC to
EISA bus adapters.

The B132L, B160L, B180L, C160L and C180L are
PCX–L2 based machines, which have the proces-
sor directly attached to the GSC bus instead of
bridged from Runway. They contain a PCI bus that
is bridged from the GSC bus via the Dino bus con-
verter.

The C160, C180, J280 and J282 were the first 64 bit
PA–RISC workstations. They have a PCX–U CPU
on a Runway bus, bridged to the GSC bus. Their
GSC bus has both an EISA and a PCI bridge on it.

They were superceded by the C200+, C240+ and
J2240 workstations based on the PCX–U+ chip.
These machines have both 32 and 64 bit PCI slots,
but no EISA slots. They use the Dino GSC to PCI
adapter for their 32 bit slots and the Cujo GSC
to PCI adapter for their 64 bit slots. The C360
workstation replaces the PCX–U+ processor with a
PCX–W, but is otherwise unchanged.

The B1000, B2000, C3000, J5000 and J7000 are
workstations based on the PCX–W processor and
have a Runway bus bridged to a PCI bus for ex-
pansion slots using Astro and Elroy (as discussed



above). The C3600, J5600 and J6000 are similar,
but use a PCX–W+ processor instead.

2.4 PA–RISC servers

The earliest PA–RISC machines were servers, and
they have HP proprietary devices attached to HP
proprietary bus architectures. It is unlikely that
documentation on these busses and devices will ever
become available, since so few people are interested
in spending any effort finding and releasing it. Ma-
chines in this category are the E, F, G, H and I
class machines (sometimes known as Nova) as well
as some earlier, unlettered servers.

The D, K and R class machines may well become
(at least) partially supported at some point in the
near future. Architecturally, they are reasonably
similar to the early C class machines. The T class
is unlikely to be supported, as there seems to be very
few accessible machines. The V class is HP’s top-
end machine, and has a very different architecture.
We’re looking at it longingly, but realistically, we
are at least a year away from being able to run on
that machine.

The A180 was the machine that HP first sent out to
developers. It has a PCX–L2 processor on a GSC
bus which is attached to a PCI bus by the Dino
GSC to PCI converter. It is remarkably similar to
the early B class systems.

The L class, N class, A400, A500 and A550 servers
are based on the PCX–W or PCX–W+ processor,
like the most recent B/C/J class workstations, but
they have to be run in 64 bit mode as their PDC
(the equivalent of the BIOS) does not support 32
bit operation. They also have a Runway bus and
Astro/Elroy PCI bridges.

3 PA–RISC Quirks

3.1 Virtual Memory

The PA–RISC processor has a virtually indexed,
physically tagged cache. Initially, we thought we
needed to implement page colouring in order to have
correct behaviour. Philipp Rumpf wrote a quick

page colouring implementation. It turned out we
were incorrect. In fact, the cache flushing macros
used in the VM system are sufficient to give correct
behaviour with the PA–RISC processor. The page
colouring was removed as it was no longer necessary.
The search for a good page colouring implementa-
tion for Linux continues, but that is the subject of
an entirely different talk.

3.2 SMP

One of the major shortcomings of the PA–RISC in-
struction set is a lack of generalised atomic oper-
ations. In contrast to the Intel x86, which pro-
vides many complicated atomic operations, or Al-
pha, MIPS & PowerPC, which provide Load Locked
/ Store Conditional instructions to build arbitrarily
complex atomic operations, the PA–RISC has only
Load-And-Zero.

This presents quite a challenge as, for example,
Linux uses a macro called xchg() which exchanges
two values atomically. In order to have this work
safely on SMP (and on a uniprocessor machine with
interrupts enabled), we actually need to spinlock in-
side the implementation of xchg().

We’ve considered multiple possible implementations
of this, including one particularly perverse one I de-
vised (which would be UP only) that checked in the
interrupt handler whether it had interrupted a crit-
ical section and jumped back to the start of it if it
had. In the end, we decided that saving one instruc-
tion here was not worth the additional complexity
in the interrupt handler.

There are several other atomic operations we can’t
do efficiently, such as atomic inc and test() and
test and set bit(). Again, we have to spinlock
within these implementations. This is a sizeable ob-
stacle, because the granularity of locks within the
kernel is being reduced to the point where driver
writers are encouraged to use these atomic oper-
ations instead of grabbing one lock. But on PA–
RISC, using this strategy results in the CPU spend-
ing a lot of time acquiring and releasing locks, and
disabling then reenabling interrupts with no benefit.

There is hope. Some machines appear to implement
a variety of atomic operations in the memory bus
adapter. We’re waiting for HP to provide documen-
tation on these.



3.3 Cache Coherency

On the Intel x86 architecture, the DMA controller
interacts with the CPU caches (called cache snoop-
ing) to ensure that the CPU and devices have a co-
herent view of the memory contents. They can do
this because the cache is physically indexed. PA–
RISC caches are virtually indexed in order to en-
able CPU cache coherency checks to start before
the physical address is looked up. The drawback
to this design is that the coherency checker can’t
“see” physical accesses by a DMA device to mem-
ory. The problem for drivers is the data the device
was supposed to read from memory may still be in
the processor cache, rather than in the memory lo-
cation that the DMA controller attempts to access.

Fortunately, Dave Miller of Linux/SPARC fame
proposed the Dynamic DMA Mapping interface
which solves this problem for PCI device drivers.
Many PCI device drivers that do DMA have now (as
of Linux 2.4.0-test1) been converted to use this in-
terface. This includes all the drivers we care about,
such as the Tulip ethernet driver and the Symbios
SCSI driver. A full description of this interface is
given in linux/Documentation/DMA-mapping.txt.

On machines that have an I/O MMU (PCX–T’ or
later), the Dynamic DMA Mapping interface is used
to tell the I/O MMU that an address range is about
to be used for DMA. The I/O MMU will provide
virtual address tags for that address range as if the
DMA device had used a virtual address. Thus, it
participates in the CPU cache coherency protocol
under software control.

The PCX–L and PCX–L2 based machines do not
have an I/O MMU, but they do support uncacheable
pages. This is a reasonable alternative for im-
plementing the Dynamic DMA Mapping interface.
When the memory is marked as uncacheable, the
processor does not cache reads or buffer writes,
meaning the main memory is always up to date.
This has a certain performance penalty, so it is not
as good as having an I/O MMU, but it does guar-
antee correctness.

The PCX–S and PCX–T based machines also do
not have an I/O MMU, but they do not support un-
cacheable memory, either. These machines cannot
implement the Dynamic DMA Mapping interface.
Fortunately, none of these machines support PCI,
so we don’t need to modify the PCI device drivers.

For these machines, the device driver has to explic-
itly flush the caches after writing to memory before
initiating DMA. It also has to purge the caches after
performing DMA, before reading from the memory.
Some device drivers are already written in this way
to support some Motorola 68000 designs that do not
support cache snooping either.

3.4 I/O Interrupts and IRQ Regions

Unlike the x86 architecture, there is no physical IRQ
line running to the processor. An I/O interrupt is
generated by a write transaction to the CPU mas-
tered by either a bus adapter (eg Dino) or I/O De-
vice (eg Bluefish, a GSC 53c720 based SCSI card).
Two problems make IRQ line emulation through a
simple table infeasible.

The first is scalability. The EIRR (External Inter-
rupt Request Register) in each processor stores the
value of the data written in the transaction. Each
bit in the EIRR represents the value of a pending
interrupt. The OS assigns particular bits to indi-
vidual devices/drivers. A 32 CPU machine would
have to allocate many more IRQ “lines” than a sin-
gle CPU machine and this would take up much more
memory.

The second problem is hierarchy. The PCI bus
adapter (ie Dino or Elroy) is just an agent for the
actual PCI device which uses an IRQ line. Thus, an-
other layer of software must provide service to the
bus adapter in order to translate IRQ “line” status
into a call to an Interrupt Service Routine (ISR).

Philipp Rumpf and Grant Grundler hammered out
a design called IRQ Regions to handle the two main
problems above. This design provides services to as-
sociate bits (EIRR or IRQ “line” status bits) with
handlers (PA External Interrupt handler or PCI de-
vice ISR). It uses a virtual interrupt number for the
benefit of the rest of the system which expects an
interrupt to be represented by an integer. Layering
the interrupt handlers gives us the hierarchy we re-
quire; each layer in the calling stack uses a unique
IRQ Region. For example, the iosapic (Elroy) driver
registers an ISR with the CPU IRQ Region while
PCI devices below that Elroy must register with the
IRQ Region for that instance of the iosapic.

PCI device IRQ bits are associated with the appro-
priate IRQ Region during the “Bus Fixups” phase



of the PCI bus walk. This is after a PCI device
is discovered but before the struct pci device is
made visible to PCI drivers. GSC device drivers use
a different interface since those drivers program and
master their own interrupt transactions.

4 Userspace

With progress on the kernel well underway, some
people turned their attention to userspace. The ker-
nel can already run some HP–UX executables, in-
cluding HP–UX sh and many other basic utilities.
To make a Linux userspace, getting GNU libc work-
ing was the top priority. Before we could do this, it
was necessary to implement ELF support for PA–
RISC.

HP–UX uses their own SOM format for 32 bit bi-
naries, but uses ELF for 64 bit programs. We were
building the kernel as a SOM image and executing
HP–UX SOM binaries, but glibc requires a more so-
phisticated object format. The kernel is also more
dependent on ELF features these days, particularly
for exception handling, loadable modules and free-
ing initialisation memory.

HP had already employed Cygnus to supply a 64 bit
ELF toolchain for HP–UX. We were able to build on
that work to produce a (rather hackish, admittedly)
32 bit ELF toolchain, which was able first to compile
the kernel and then later compile glibc.

Around this time, we had to decide on a distribution
to port, as none of us were interested in starting
a new distribution (or doing the work involved in
keeping up to date with new releases of many pieces
of software). We considered several distributions
that were already multiplatform (so they had the
necessary infrastructure to support another port)
and those with which we had personal experience.
After a certain amount of passionate discussion, we
settled on Debian as our preferred distribution.

There are several good reasons for choosing Debian.
It is the most widely-ported distribution, and has
already solved endian and 64 bit issues. The pack-
age maintainers system has advantages for us, as
individual maintainers can take care of feeding any
PA–RISC–specific changes to the upstream version
of their package. As a non-commercial organisation,
Debian doesn’t have business goals that could po-

tentially conflict with those of HP.

5 Status

We’re keeping up with Linus’ changes to the 2.4-test
kernels; most of the 700-series workstations are now
almost fully supported by the kernel.

Work is still ongoing on the frame buffer device.
Similarly, the floppy drive is not yet supported (on
the few workstations that actually have one).

We have problems with the National Semiconductor
chip that implements the serial, USB and IDE ports
in the latest generation of B/C/J class workstations.
This may be difficult to resolve within the current
Linux PCI infrastructure.

A 64 bit toolchain is currently being prepared so
that we can build a 64 bit kernel. More toolchain
work is needed to support shared libraries and ker-
nel modules. The SMP support in Linux/PA–RISC
is still mostly theoretical. Much of the kernel is still
very inefficient in its use of caches; this will be ad-
dressed in the coming months after we have a work-
ing system, we can spend more time profiling and
optimising.

In userspace, we’re currently focussed on building
an installable Debian base system. We have a num-
ber of tarballs of useful basic programs available for
download, but we’re still some months from being
able to apt-get install the system.

6 Acknowledgements

This port is very much a collaborative effort. Many
people have contributed a lot of their time work-
ing on the project, including Paul Bame, Grant
Grundler, John Marvin & Matt Taggart of HP;
Alex deVries, Richard Hirst, Alan Modra & Martin
Peterson of Linuxcare, Thomas Bogendörfer, Helge
Deller & Philipp Rumpf. Other significant contribu-
tors include Alan Cox, Sam Creasey, Ulrich Drepper
and Jeff Law.



7 References

This paper is available at
ftp://puffin.external.hp.com/
pub/parisc/docs/ols2.tex

More information is available from
http://www.thepuffingroup.com/parisc/
http://www.debian.org/ports/parisc/
http://parisc.workstations.org/
http://docs.hp.com/hpux/systems/
http://devresource.hp.com/


