
California Language Laboratroy

11000 Wolfe Road

Cupertino, California 95014

Last Printing: October 8, 1997

Enabling Optimizations to
Achieve Higher

Performance on the HP PA-
RISC Architecture

Version 1.0

Page 2◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997

(c) Copyright 1997 HEWLETT-PACKARD COMPANY.

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.
Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

October 8, 1997 Introduction

Page 3◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

1.0 Introduction

The HP PA-RISC architecture is designed to deliver industry-leading performance on today’s
commercial and technical applications. Users can enhance the performance of their applications
on the PA-RISC architecture by adopting strategies that go beyond merely compiling with the–O
default optimization option. In this regard, it is important to understand the advanced performance
enhancing features of HP compilers to achieve the highest possible performance. This document
discusses factors that have traditionally limited application performance and motivates the use of
advanced HP compiler functionality to address those limitations. Some guidelines on coding strat-
egies to facilitate compiler optimizations are also presented.

Many of the performance-enhancing compiler features that will be discussed in this document are
already available in HP’s compilers for the PA-RISC architecture. Users are encouraged to use
these features on current PA-RISC systems not only to achieve higher performance on PA-RISC
systems, but also to be better positioned to exploit the full performance potential afforded by the
next generation HP/Intel Enhanced Mode architecture (which will be referred to as the EM archi-
tecture in this document). The EM architecture is an advanced computer architecture that provides
a number of unique features for achieving significantly higher performance. HP is developing
advanced compiler optimization technology for hardware implementations of this architecture.

This document is organized into sections that discuss the following topics:

❍ The factors that affect application performance and the impact of compiler optimizations
on performance.

❍ The optimization levels supported by HP’s compilers and a brief description of the func-
tionality provided at each optimization level.

❍ The factors that can limit the degree of optimization effectiveness and suggestions on how
to improve optimization effectiveness.

❍ A summary of the recommendations on enabling compiler optimizations to maximize
application performance on the PA-RISC architecture.

Much of the discussion in the current version of this document is focused on enabling optimiza-
tions to improve the performance of CPU-intensiveinteger applications.

Page 4◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Performance Factors and Compiler Optimizations

2.0 Performance Factors and Compiler Optimizations

The execution time of any application can be characterized by the following equation:

Since performance is inversely proportional to execution time, higher performance is achieved by
executing fewer instructions, spending fewer machines cycles to execute each instruction on aver-
age, and/or by increasing the clock frequency.

It is well known that algorithmic improvements are a primary means of enhancing application
performance since they can often significantly reduce the number of instructions executed. In this
document we’ll assume that applicable algorithmic improvements have already been made.
Instead, we will focus on further means to boost performance on a PA-RISC architecture system
at any given clock frequency. In particular, we’ll examine how compiler optimizations can help
reduce both the number of machine instructions executed as well as the average number of cycles
required per instruction to deliver higher performance.

In the past, optimizing compilers tended to focus principally on reducing the number of instruc-
tions executed by an application. However, for most current processors, and for the PA-RISC
architecture in particular, the compiler plays a significant role in reducing the average number of
cycles per instruction, orCPI for short. HP’s compilers for the PA-RISC architecture implement a
number of optimizations to reduce the overall CPI. It is important to understand the factors that
determine the CPI and how compiler optimizations help improve this important performance met-
ric.

2.1 Instruction-level Parallelism

The more instructions that are executed in parallel in each clock cycle on average, the lower the
CPI. PA-RISC architecture systems support a very high degree of instruction-level parallelism.
However, the compiler must determine the optimal machine instruction sequence to fully exploit
the instruction-level parallelism provided by the hardware. Specifically, the hardware can execute
multiple instructions in the same clock cycle only if there are no operand dependencies between
them. It is the compiler’s responsibility to identify and group independent instructions so that they
may be executed concurrently and thus lower the overall CPI.

2.2 Pipeline stalls

Modern processors typically execute instructions in multiple pipelined stages. Each instruction’s
execution proceeds from one pipeline stage to the next at every clock cycle. Multiple instructions
may be executing concurrently in different pipeline stages. However, if an instruction is unable to
proceed from one pipeline stage to the next, instructions in earlier pipeline stages are also pre-
vented from proceeding, resulting in apipeline stall. Pipeline stalls typically occur if the machine

Execution Time = (Number of Machine Instructions Executed)×
(Average Number of Clock Cycles Required to

Execute a Machine Instruction) ×
(Clock Cycle Time)

October 8, 1997 Performance Factors and Compiler Optimizations

Page 5◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

resources or data values required by an instruction are not yet available. For instance, if instruc-
tion B uses the result computed by instruction A, and if instruction A has not yet finished comput-
ing its result, instruction B will be unable to start computing its result and hence cause a pipeline
stall.

Pipeline stalls increase the average number of cycles required to execute each instruction. The
more often the processor pipeline is stalled due to data dependencies, the higher the CPI. For
example, loading a data value into a register typically takes two cycles to execute; therefore, if an
instruction that reads the contents of the loaded register immediately follows the load instruction,
the processor is stalled for one cycle, resulting in a loss of performance. However, the compiler
can try to place other instructions between the load operation and the instruction that uses the
loaded value to avoid the pipeline stall.

2.3 Branch prediction

Source-code if-statements typically get translated into branch instructions. A branch instruction
may alter the flow of control and cause a disruption in pipelined instruction processing. When a
branch instruction enters the processor pipeline, the processor would ordinarily have to wait until
the branch instruction progresses to a later pipeline stage, when the outcome of the branch is
known, before it can determine which instructions to fetch into the pipeline next. Clearly, with
this simplistic strategy, portions of the processor pipeline would remain idle during the execution
of branch instructions. Moreover, the performance impact can be quite significant, since branch
instructions tend to occur rather frequently in typical applications.

To accelerate branch execution, modern processors use special mechanisms to predict the out-
comes of branches in advance. This allows instructions to be fetched and executed from the pre-
dicted branch destinationspeculatively. The predicted branch outcome is later compared against
the actual outcome once it is known. If the prediction is correct, then the pipeline disruption is
effectively avoided. Otherwise, the speculatively executed instructions have to be removed from
the pipeline and execution is restarted at the correct branch destination.

Accurate branch prediction is becoming an increasingly important factor for high performance
since mispredicted branches can significantly increase the CPI. Two types of branches account for
most of the branch misprediction penalties:

❑ Conditional branch — because the result of the branch condition is not known until later,
as discussed above.

❑ Indirect branch — because the target of the indirect branch may not be known until later.
Primary sources of indirect branches are procedure returns, virtual function calls in C++,
indirect calls using function pointers, and switch statements.

Page 6◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Performance Factors and Compiler Optimizations

PA-RISC hardware systems incorporate sophisticated branch prediction mechanisms to enhance
branch prediction accuracy. In addition, compilers for PA-RISC systems can significantly improve
the percentage of branches that are correctly predicted through the following techniques:

❑ Giving hints to the hardware about the most likely outcome of a conditional branch using
architected branch hinting mechanisms.

❑ Giving hints to the hardware about the likely target of an indirect branch instruction.

❑ Reducing the number of branches executed by eliminating branches. For example, compil-
ers can eliminate branches resulting from procedure calls and returns throughprocedure
inlining.

2.4 Instruction and data cache miss rate

Most modern computer systems use instruction and data caches to bridge the gap between proces-
sor and memory speeds. If a needed instruction or data item is available in the cache, the proces-
sor does not have to wait for it to be retrieved from main memory. However, if the next instruction
is not in the instruction cache (i-cache) or if the data accessed by a currently executing instruction
is not in the data cache (d-cache), the processor pipeline stalls until the required instruction or
data item can be transferred from main memory to the cache. For high speed processors, this
transfer can take many clock cycles. Therefore, the higher the i-cache and d-cache miss rates, the
higher the CPI, and hence, the lower the performance.

Compilers can help improve the effectiveness of the caches on PA-RISC systems through the fol-
lowing techniques:

❑ Arrange instructions so that the most frequently used instructions are next to one another
for more efficient use of the i-cache.

❑ Insert instructions into the code stream toprefetch instructions and data from memory to
the caches well before they are needed and thus overlap the memory-to-cache transfer
with other useful computations.

❑ Reorganize data intensive loop constructs to minimize cache misses.

2.5 TLB miss rate

Modern processors and operating systems support avirtual memory model, which allows each
process to access memory independently. Each process accesses memory by specifying avirtual
address that needs to be converted into aphysical memory address before the memory transfer is
initiated. Processors use a structure known as aTranslation Look-aside Buffer, or TLB for short,
to cache frequently used virtual-to-physical memory address translations. The virtual-to-physical
address translations are maintained on aper-page basis where pages are typically 4k bytes in size.
The TLB is a fixed size table and therefore all mappings of virtual-to-physical addresses can not
be kept in the TLB at the same time. A TLB miss occurs when the virtual-to-physical address
mapping for a required instruction or data item is not in the TLB. When a TLB miss occurs, the
relevant address translation is retrieved from the d-cache or main memory, which may take tens to
hundreds of clock cycles. TLB misses are thus quite expensive and the higher the number of TLB
misses, the higher the CPI, and hence, the lower the performance.

October 8, 1997 Optimization Levels Provided by HP Compilers

Page 7◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

Compilers can help reduce TLB misses, particularly instruction TLB misses. For many applica-
tions a significant amount of time is spent executing a small portion of the total code stream. If the
compiler is able to identify which sections of the code are executed the most often, it can arrange
to re-position those code fragments contiguously so that they fit into a smaller number of pages.
This can reduce the number of TLB entries required during the execution of the program and
potentially reduce the number of TLB misses.

3.0 Optimization Levels Provided by HP Compilers

The PA-RISC compilers provide the optimization levels listed below:

Optimization Level 1 — enabled by the +O1 compiler option.

This is the lowest optimization level, where a limited set of optimizations are performed. The
optimizations performed at this level include common sub-expression elimination, redundant load
elimination, and peephole optimizations which are each limited in scope to small sections of pro-
cedures.

Optimization Level 2 — enabled by the +O2 compiler option.

This is the optimization level that is selected by default when you specify the–O compiler option.
Users should typically see a significant performance improvement compared to level 1 or no opti-
mization. Most of the discussion in this document, however, is focused on how to achieve perfor-
mance beyond what is attained at this level.

At optimization level 2, the compiler performs a number of transformations over the entire scope
of individual procedures, such as common sub-expression elimination, loop invariant code
motion, peephole optimizations, and elimination of unnecessary loads and stores, to reduce the
number of instructions executed by the program. Additionally, the compiler performs instruction
scheduling to reduce the CPI.

Optimization Level 3 — enabled by the +O3 compiler option.

At this level, the compiler performs procedure inlining. Only those procedures within the same
source file are subject to procedure inlining at this optimization level.1 Procedure inlining reduces
the number of instructions by eliminating the overhead of procedure calls and also helps reduce
the CPI by eliminating branches and increasing the scope of instruction scheduling. Procedure
inlining is particularly effective for applications that have many small routines which are fre-
quently executed.

Interprocedural alias analysis is also performed for file static variables at optimization level 3. In
addition, the compiler also restructures certain types of data intensive loops to improve the effec-
tiveness of the d-cache at this level.

1. Note that for C++ programs, the compiler tries to inline procedures identified as inlining candidates in
the source code even at lower optimization levels.

Page 8◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Limiters to Effective Optimizations and Solutions

Optimization Level 4 — enabled by the +O4 compiler option.

At this level, the compiler performs procedure inlining across all files compiled at+O4. Since
most applications have multiple source files, it is important to use+O4 to increase the effective-
ness of procedure inlining. Level 4 optimization is most effective when used in conjunction with
Profile Based Optimization (PBO), which is discussed later.

Interprocedural alias analysis is also performed for global variables when the
+Owhole_program_mode option is specified at optimization level 4.

In general, to achieve the best possible performance on the PA-RISC architecture, applications
should be compiled at the highest acceptable level of optimization. While maximum performance
is typically achieved at optimization level 4, the time taken to compile large applications at this
level can be significantly greater than at lower optimization levels. Nevertheless, users can be bet-
ter positioned to exploit the full performance potential of the HP PA-RISC architecture by evalu-
ating the effectiveness of optimization level 4 for their applications and adopting it in production
builds and testing processes as appropriate.

4.0 Limiters to Effective Optimizations and Solutions

When compilers perform the kinds of optimizations discussed above, they typically face a number
of challenges. These challenges and limiters are discussed next, along with strategies that HP
compiler users can adopt to enhance optimization effectiveness and thus achieve significantly
higher performance on their applications.

4.1 Knowledge of program execution profile

When a compiler compiles a source program it does not have precise knowledge of theprogram
execution profile. The program execution profile encompasses information about the typical out-
comes of conditional branches, how often each procedure is called, what portions of a program
are executed the most often, etc. In the absence of such knowledge, the compiler is forced to make
educated guesses about the execution profile usingheuristics. These heuristics in some cases do a
reasonable job of predicting the actual execution profile, while in other cases they are not very
reliable or even applicable. Here are some specific examples where the lack of execution profile
information can limit optimization effectiveness in HP compilers:

1. When the compiler performs procedure inlining within a file at+O3 or across files at
+O4, it uses heuristics to guide which routines should be inlined and where inlining
should be performed. However, the compiler may perform more inlining than needed and
in some cases even hurt performance due to the increased code size.

If the compiler has a better idea of which routines are executed most frequently and how
often a particular routine is called from a given call site, it can be more judicious in per-
forming procedure inlining and the resulting code is likely to perform much better. For
large applications (more than 100k lines),+O4 and procedure inlining are likely to be the
most effective when the compiler has information about the program execution profile.

October 8, 1997 Limiters to Effective Optimizations and Solutions

Page 9◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

2. The compiler uses heuristics to decide which data values should be kept in registers to
effectively use the available hardware registers. These heuristics work well in general.
However, registers can be allocated more efficiently if the compiler knows which sections
of a routine are executed most frequently. Knowledge of the execution profile can ensure
that the most important variables are kept in registers and the minimum number of regis-
ters are used. Reducing the number of registers in use is quite important since it can help
avoid the overhead of saving and restoring registers when the number of registers required
exceeds the number registers actually available.

3. In most integer applications, typically four to ten instructions are executed before a branch
instruction is encountered. This does not leave enough room for the compiler to schedule
instructions to avoid pipeline stalls. The compiler needs to move instructions from the
most likely destination of each branch and schedule them with instructions in the block of
code preceding the branch. Without knowing the actual execution frequencies for each tar-
get of a conditional branch, the compiler has to use heuristics to predict the most likely
branch destination. The compiler’s branch prediction heuristics are not always accurate
and can sometimes diminish the effectiveness of instruction scheduling.

4. The compiler tries to reorder the code so that the most frequently executed routines are
placed together. This optimization is important for reducing instruction TLB misses as
discussed earlier. However, without knowing which routines executed most frequently, it
is very difficult for the compiler to lay out the code optimally.

5. The compiler tries to provide hints to the hardware for branches to reduce branch mispre-
diction penalties. Such hints are useful only if the compiler itself can accurately predict
the most likely target of a given branch.

6. When performing loop optimizations such as loop invariant code motion or loop unrolling,
compilers typically assume that the loop body is executed many times. While this assump-
tion is usually true, some loops are executed only one or two times. Loop optimizations
can hurt performance if the transformed loops are not frequently executed. Armed with
knowledge of how often loops are executed, the compiler can be more judicious in per-
forming loop optimizations.

In summary, knowledge of the program execution profile would allow HP compilers to:

❑ Replace heuristics with more precise information to significantly improve the effective-
ness of optimizations, particularly - procedure inlining, instruction scheduling, register
allocation, and loop optimizations.

❑ Perform certain optimizations that can significantly improve the CPI. These optimizations
include the generation of branch hints and code layout.

4.1.1 Profile Based Optimization (PBO)

HP’s compilers for the PA-RISC architecture provide a framework calledPBO to automatically
gather and feed back information about the program execution profile to the compiler. Significant
performance improvement has been achieved using PBO on PA-RISC systems.2 PBO will be even
more important for achieving the highest possible performance on the next generation HP/Intel
EM architecture.

Page 10◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Limiters to Effective Optimizations and Solutions

4.1.2 PBO Usage

The PBO functionality provided by HP’s PA-RISC production compilers is described here. The
compilers for the next generation HP/Intel EM architecture will provide an improved framework
but the basic principles are likely to remain the same.

PBO can be used with any level of optimization. In other words, if profile information is available,
it is used by optimizations performed at each level. A three-step procedure is used to optimize
applications with PBO.

1. In the first step, the program is instrumented to collect an execution profile. In PA-RISC
compilers, the +I option causes the code to be instrumented. (It is likely that this step will
be optional for the HP/Intel EM architecture.)

2. The second step is to identify common input data sets for your application and to run the
instrumented executable with the selected representative input data sets. A profile database
is automatically generated when the program terminates and is updated for each subse-
quent application run.

3. The final step is to re-compile the program using the profile database as input with the
appropriate level of optimization (preferably+O4). This is done on PA-RISC systems by
specifying the+P compiler option. The resulting binary is highly optimized to achieve
increased application performance for the representative input data sets.

PBO improves the effectiveness of many optimizations performed at+O2 and+O3 and is highly
recommended for+O4 optimization. PBO also enables certain profile-dependent optimizations in
the compiler that are performed only when the application is compiled with the+P option.

While PBO is very effective and safe to use, users may face the following challenges in using
PBO:

❑ PBO generally involves some changes to the build process andMakefiles. However, these
changes only need to be made once and the performance benefits can be reaped for years
to come.

❑ PBO requires representative input data sets for gathering the profile information. Identifi-
cation of representative data sets may not be easy for some applications. However, in prac-
tice, even PBO performed with input data sets that are not the most representative, still
tends to be more effective than optimizations performed without any profile information.

It is highly recommended that users start using the PBO framework on PA-RISC machines. They
will not only get higher performance on PA-RISC systems but will also be better positioned to
exploit the full performance potential on HP/Intel EM architecture systems.

For a more detailed description of how to use PBO on PA-RISC systems, please refer to the man
pages and the on-line documentation provided with the language products.

2. Recently, the performance of a large commercial CAD application on a PA-8000 based system was
improved by almost 35% by using PBO and selective inlining performed at optimization level 4.

October 8, 1997 Limiters to Effective Optimizations and Solutions

Page 11◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

4.2 Aliasing

Aliasing significantly hinders the compiler’s ability to extract maximum performance. Aliasing
occurs when there are multiple ways to reference the same data location. The most common
example of aliasing involves pointer dereferences.

In general, two different pointer variables can point to the same data location. The HP C compiler
can keep track of local pointer variables that are assigned the addresses of discrete objects, but
determining the actual addresses pointed to by a global pointer variable, a formal pointer parame-
ter, or a pointer returned by a function call is almost impossible. For such pointers, the compiler
makes very conservative assumptions and assumes that these pointers can point to all globals and
that every pair of such pointers can potentially point to the same memory. Due to these conserva-
tive pointer aliasing assumptions, the compiler is very constrained when dealing with such inscru-
table pointer dereferences.

Pointer aliasing hinders compiler optimizations in two ways:

❑ The compiler does not generate code to maintain aliased objects in registers and instead
generates more instructions to access such objects from memory.

❑ The compiler is not free to move the use of an object ahead of a definition of an aliased
object, thus curtailing the effectiveness of instruction scheduling.

In general, the compiler can not use the declared type of pointer variables to infer that pointers to
two different types can not point to the same memory location. In the C language, for instance, it
is possible to assign a pointer of one type to a pointer of another type. Pointer aliasing can be a
significant performance inhibitor when optimizing C and C++ programs.

The PA-RISC architecture provides advanced features that allow native compilers to mitigate the
performance impact of pointer aliasing. Nevertheless, the techniques mentioned below should be
considered to improve application performance in the presence of pointer aliasing.

4.2.1 Using Compiler Options for improved aliasing information

Compiling programs with the+O3 or +O4 options improves the compiler’s ability to analyze
pointer variables for potential aliases. In particular, the compiler has better knowledge of global
variables at optimization levels 3 and 4. At optimization level 3, the compiler can identify file
static variables whose addresses are never taken and exclude them as potential aliases of pointer
dereferences. When the+Owhole_program_mode option is used at optimization level 4, the
compiler can identify globals whose addresses are never taken and exclude them as potential
aliases of pointer deferences. Additionally, at optimization level 4, the compiler can analyze the
potential side effects of procedure calls and can use this information to maintain global variables
in registers across call sites.

4.2.2 Source Changes to Eliminate Aliasing

Sometimes it is possible to clearly expose the lack of pointer aliasing to the compiler through
source code changes. The source code changes suggested below can be quite effective in facilitat-
ing compiler optimizations for performance-critical routines.

Page 12◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Limiters to Effective Optimizations and Solutions

Example 1.

If a routine makes heavy use of the value of a global variable or a value loaded through pointer
dereferencing, it is better to copy the value into a local variable at an infrequently executed loca-
tion and then replace all of the original references with references to the local variable. This can
be done safely only if one is certain that the global variable or the memory location pointed to by
the dereferenced pointer variable is not modified by called functions or through some other
pointer variable.

With this source change, the compiler can keep the value of the local variable in a register and
avoid additional instructions that would otherwise be needed to access the value from its home
memory location.

In the following source example, global variableg_var and the value,*q, are accessed inside the
loop. The loop also contains an indirect store through another pointer variable,p. The compiler
has to conservatively assume thatp can point tog_var, or thatp can point to the global pointerq,
or thatp andq can point to the same memory location. Hence, it has to load the values ofg_var,
p, andq from memory in each loop iteration.

int g_var;
int *q;
slow() {

int i;
int *p = foo();

for (i = 0; i < 10; i++) {
*p++ = g_var + *q + i;

}
}

However, assume that the code is modified as below where the values ofg_var and*q are copied
into local variables which are then used inside the loop. Now the values assigned to the local vari-
ables will be kept in registers and the three loads inside the loop will be eliminated, thus speeding
up the execution of the loop body. This is because the compiler is assured that the local variables
val, andq_val can not be aliased to*p since their addresses have not beencaptured.

October 8, 1997 Limiters to Effective Optimizations and Solutions

Page 13◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

fast() {
int i;
int *p = foo();

/* assign to local variables */
int q_val = *q;
int val = g_var;

for (i = 0; i < 10; i++) {
*p++ = val + q_val + i;

}
}

In summary, better code is generated if references to global variables and pointer dereferences can
be replaced by references to local variables. Also, global pointers should be avoided because they
cause additional overhead: both the pointer variable and the object pointed to by the pointer vari-
able are assumed to alias with all other pointers.

Example 2.

It is common to have multiple levels of pointer indirection in C programs. The following construct

p->x_ptr->y_ptr->z_ptr

is an example of an expression involving multiple levels of pointer indirection. When the same
complex pointer expression involving one or more levels of pointer indirection is repeatedly exe-
cuted, it is better to copy the pointer expression into a local pointer and then use the local pointer
for subsequent references, as illustrated below.

For example, instead of writing,

p->x_ptr->y_ptr->z_ptr = g_p;
p->x_ptr->y_ptr->d1 = 10;

considerably less code would be generated if the code is modified as follows:

q = p->x_ptr->y_ptr;
q->z_ptr = g_p;
q->d1 = 10;

whereq is a local pointer. While this should be safe to do most of the time, one should make sure
that no other pointer assignments can modify any of the pointers in the expressionp->x_ptr-
>y_ptr.

Page 14◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Limiters to Effective Optimizations and Solutions

4.3 Specialized Optimizations

There are certain optimizations that may not universally result in performance improvements and
therefore the compiler does not perform these specialized optimizations by default. The relevant
compiler options need to be explicitly specified to enable them. One important optimization that
falls in this category isexplicit data-cache prefetching. Explicit data cache prefetching is an
advanced compiler optimization that is performed by the HP compilers for PA-8000 based sys-
tems.

To prefetch data into the d-cache, the compiler needs to insert explicit prefetch instructions into
the code stream. If the prefetched data is already present in the d-cache, explicit cache prefetching
can actually hurt performance due to the overhead of extra instructions. Unfortunately, it is gener-
ally very difficult for a compiler to accurately predict whether the data accessed by a program will
be present in the d-cache.

Due to the unpredictable nature of d-cache usage, explicit data cache prefetching is performed by
the PA-8000 HP compilers only when a special compiler option is specified, namely the
+Odataprefetch command line option.

Explicit data cache prefetching can significantly improve the performance of loops with high d-
cache miss rates. When the+Odataprefetch option is specified, the compiler automatically
inserts instructions inside loops to prefetch data several loop iterations before they are needed.
The cache data transfer is thus overlapped with the execution of the intervening loop iterations.

Optimizations to reduce cache miss rates will continue to be very important for achieving high
performance. HP compilers for the next generation HP/Intel EM architecture are likely to provide
compiler options and pragmas to annotate memory references that are likely to incur d-cache
misses, as well as an improved PBO framework to guide the compiler’s cache prefetching deci-
sions and other cache-related optimizations. More details will be provided on compiler features
for improving cache performance in a later version of this document.

4.4 Conservative Assumptions

Compilers must make very safe conservative assumptions about program behavior to ensure that
applications continue to work with optimizations as expected. For example, when the compiler
encounters a call to the C library routine,strcpy(), it must assume that the program may have
defined its own version ofstrcpy() and therefore it can not replace thestrcpy() invocation with a
fast sequence of inline instructions.

In many cases, these assumptions are too conservative, and the compiler could have made more
aggressive assumptions without changing the behavior of the application. Therefore, HP compil-
ers provide a number of options which allow the compiler to make more aggressive assumptions
to improve the performance of the generated code. These options should be used with care and
after making sure that the aggressive optimization assumptions will not break the application.

The PA-RISC compiler provides the following useful options that should be seriously considered
by users interested in improving application performance. These options are supported by the

October 8, 1997 Limiters to Effective Optimizations and Solutions

Page 15◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

compilers for the PA-RISC architecture and will be supported for the next generation HP/Intel
EM architecture as well.

+Olibcalls

This option allows the compiler to assume that the program being compiled has not defined its
own versions of library routines such asstrcpy(), memset(), memcpy(), alloca(), and fabs().
With this assumption, the compiler can replace calls to these routines with very fast inline instruc-
tion sequences. This option can yield significant performance gains for applications that spend a
lot of their execution time in these library routines.

+ESlit

If your program does not modify literal strings, this option can direct the compiler to allocate
string literals in the code area. This option can usually provide a moderate performance improve-
ment.

+Onofltacc

This option is primarily intended to improve the performance of floating-point applications. By
default, the compiler has to assume that preserving a high degree of floating-point accuracy is
important and therefore it does not perform any optimizations that can affect the accuracy of float-
ing-point computation results. However, if an application can tolerate small variations in floating-
point results, this option allows the compiler to perform more aggressive optimizations and can
provide significant performance improvements. One such optimization is the replacement of float-
ing-point division operations occurring in loops with a less expensive floating-point reciprocal
multiplication operation, where the reciprocal value of the divisor is computed outside the loop.

4.5 Source changes can help improve performance

In general, there are many source code changes that can help improve performance. There is little
that the optimizer can do that compares with the implementation of a significantly better algo-
rithm. However, there are a few simple changes that should be considered to help improve perfor-
mance.

4.5.1 Data Types

Choices of data types can impact performance. Depending on the data types of variables, more or
less code can be generated by the compiler. The following examples can help guide better choices
for data types:

Example 1.

For computations involving different C integer data types (short, int, long, char), the compiler
generates extra instructions to convert a value of the shorter type into the longer type. In the ILP32
data model (the default mode for 32-bit applications), bothint and long data type objects are 32-
bits in length but in the LP64 data model (the default mode for 64-bit applications),int objects are
32-bits whilelong objects are 64 bits in length. Therefore, while mixingint andlong variables in

Page 16◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

October 8, 1997 Limiters to Effective Optimizations and Solutions

arithmetic expressions in the ILP32 data model does not result in extra instructions, it will result
in extra instructions under the LP64 data model. Thus, it is recommended that, when possible, one
should avoid mixing data types in computations.

Example 2.

In the LP64 data model, pointers are 64 bits in length. Therefore, whenever a 32-bit signed integer
is added to a pointer, the compiler needs to generate an extra instruction to sign-extend the 32-bit
integer value into a 64-bit value prior to the pointer addition. These extra instructions may be
avoided by using unsigned integer or long data types in address arithmetic.

In the following example,

int i, *p, *q, x[100], y[100];
unsigned int j;

main() {
* (p + i) = * (q + j);
x[i] = y [j];

}

more code will be generated for(p+i) compared to(q+j) under the LP64 data model becausei is a
signed int variable whilej is anunsigned int variable. Similarly, more code will be generated for
the store tox[i] compared to the load ofy[i].

4.5.2 Malloc Optimization

If the malloc() C library routine is high in the execution profile, it may be prudent to change the
memory allocation algorithm ofmalloc() by calling themallopt() C library routine in order to
improve performance. For example:

#include <malloc.h>
mallopt(M_MXFAST, 128)

This tells themalloc() library routine to use an alternative algorithm for all blocks smaller than
128 bytes in size. Although this algorithm may potentially waste more space, it is usually much
faster than the default algorithm. This can help improve performance of applications that allocate
and free small blocks of memory frequently.

October 8, 1997 Summary

Page 17◆Enabling Optimizations to Achieve Higher Performance on the HP PA-RISC Architecture

5.0 Summary

To achieve the best possible performance on HP PA-RISC architecture systems, users must go
beyond the mere use of the–O command-line option when compiling their applications. Users
should start using PBO and higher levels of optimizations (+O3 and+O4) on PA-RISC systems
today to better position themselves to exploit the full performance potential of the HP/Intel EM
architecture. In particular, PBO is a key enabler for achieving the best performance on the HP/
Intel EM architecture and users should consider early adoption of PBO in their production build
processes.

Various source changes suggested in this document may be considered for performance-critical
routines and should help improve application performance on PA-RISC systems as well.

Optimizations aimed at increasing cache efficiency will also be increasingly important for high
frequency HP/Intel EM hardware systems. Future versions of this document will provide more
information on how users can guide compilers in reducing the overhead of cache misses.

6.0 More Information

The following documentations will provide additional information on compiler optimization and
performance tuning with PA-RISC compilers:

❑ The HP PA-RISC Compiler Optimization Technology White Paper: On your 10.x system
at /opt/langtools/newconfig/white_papers/optimize.ps

❑ “Performance Tuning with PA-RISC Compilers”, Carl Burch, InterWorks’97, Tutorial
#58, April 12-17. 1997

❑ “Optimization for a Superscalar Out-of-Order machine”, Anne Holler, Proceedings of the
29th Annual International Symposium on Microarchitecture, 1996

❑ “Advanced Performance Features of the 64-bit PA-8000”, Doug Hunt, Proceedings of the
Spring 1995 COMPCON.

❑ “PA-8500: The Continuing Evolution of the PA-8000 Family”, Greg Lesarte and Doug
Hunt, Proceedings of the Spring 1997 COMPCON

