Modularity and Interfaces in

Micro-Kernel Design and Implementation:
A Case Study of Chorus on the HP PA-RISC*

Jonathan Walpole, Jon Inouye, and Ravindranath Konuru
Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

(walpole, jinouye,konuru@cse.ogi.edu)

ABSTRACT

The key concept that distinguishes micro-kernel operating systems from their macro-
kernel counterparts is modularity. Micro-kernels implement operating system function-
ality in well-defined modules with clearly identified interfaces between them. Proponents
of this modular approach to operating system design claim that it offers advantages in
the areas of portability, correctness, protection, extensibility, and reconfigurability for
distributed architectures. If micro-kernels are to gain wider acceptance however, it is
important to ensure that these benefits of modularity can be attained without incurring
significant performance degradation when compared to macro-kernels.

In this paper we explore the relationship between modularity and performance by ex-
amining an implementation of the Chorus micro-kernel operating system on the Hewlett-
Packard PA-RISC workstation. We outline the key interfaces in Chorus and study the
architectural assumptions implicit in these interfaces.

1 Introduction

The key characteristic that distinguishes micro-kernel operating systems from their
macro-kernel counter parts is modularity. Micro-kernel operating systems are structured as
a collection of cooperating servers running above a minimal kernel. Structuring operating
systems in this manner offers a number of potential benefits including ease of distribution,
reconfigurability, extensibility, portability, protection and correctness [4, 5].

It has been argued that ease of distribution and reconfigurability result from the
separation of system components and the use of message passing as the communication
mechanism among them. Similarly, this separation of system components is claimed to
improve extensibility by allowing new operating system functionality to be added, in the
form of new system servers, without altering existing components or the micro-kernel itself.
Arguments about improved correctness are based on the principle that it is easier to avoid
design and programming errors if a system is composed from several small modules rather
than a single large module. Modular systems also allow protection to be enforced at the
boundaries between modules. Finally, it is claimed that micro-kernel operating systems
improve portability by localizing machine-dependent code within the micro-kernel.

*This research is supported by the Hewlett-Packard Company, Chorus Systémes, and the Oregon Ad-
vanced Computing Institute (OACIS).



A central research issue in the construction of real-world micro-kernel operating sys-
tems is the design of interfaces that allow the above benefits to be attained while achieving
performance comparable to less modular, macro-kernel operating systems. This is a major
challenge for micro-kernel designers because macro-kernels implement very low-overhead in-
vocation across their internal interfaces by using local procedure calls. In order to achieve all
the proposed benefits of modularity, micro-kernels must support a variety of interfaces and
invocation mechanisms, many of which are considerably more complex and heavy weight
than a local procedure call.

The challenge for micro-kernel designers is to (a) define interfaces that are expressive
enough to allow the above benefits to be attained, and (b) to provide implementations of
those interfaces that offer acceptable performance. Unfortunately, in making these imple-
mentation choices operating system designers are often forced to trade the sought after
benefits of modularity for performance. The degree to which this occurs depends on two
main factors. First, the anticipated requirements of the target application domain deter-
mine the relative importance of modularity and performance. For example, some target
application domains may consider runtime protection and dynamic reconfiguration to be
critical, and worth sacrificing performance for, whereas others may consider performance
to be of paramount importance.

Second, the characteristics of the architecture, or class of architectures, on which the
operating system is expected to execute may determine the efficiency with which particular
functionality can be supported. Making such implementation decisions based on key ar-
chitectural assumptions is already common practice in operating system design. However,
the success of this approach depends heavily on the accuracy of these assumptions. Conse-
quently, operating system designers must be aware of the trends in computer architecture
(and vice versa). This issue is important both for the implementation of efficient interfaces
for system structuring, and for defining an appropriate separation between portable and
non-portable code.

We believe that the definition of appropriate interfaces, and the implementation de-
cisions that determine the balance between performance and modularity will be critical
to the eventual success or failure of micro-kernel operating systems. In this paper we ex-

plore this design space by studying our implementation of the Chorus micro-kernel on the
Hewlett-Packard Precision Architecture RISC (PA-RISC) 9000/834 workstation.

The remainder of the paper is organized as follows. Section 2 outlines the Chorus ap-
proach to modularity and discusses the interfaces defined by Chorus. The trade-off between
performance and modularity in the implementation of those interfaces, and the architectural
assumptions implicit in the implementation choices, are also discussed. Section 3 outlines
the key characteristics of the PA-RISC, discusses the salient features of our implementation
of Chorus, and revisits the architectural assumptions implicit in Chorus. Section 4 sum-
marizes the strengths and weaknesses of the Chorus approach, and section 5 concludes the

paper.

2 Modularity and Interfaces in Chorus

A Chorus-based operating system is structured as a set of cooperating subsystem
servers executing above a Chorus nucleus (henceforth called the micro-kernel) [2]. There
are a number of key interfaces in this operating system structure (see figure 1). A high-



Subsystem Application

Subsystem Interface
User
Address Subsystem Subsystem
Space

Actor Actor
Micro-kernel Interface
System Micro-kernel Subsystem
Address Portable Interface Actor
Space
M achine-dependent

Figure 1: A typical Chorus Operating System Structure

level operating system interface, such as the UNIX system call interface, is presented by
the subsystem servers to application programs. We will refer to this as the subsystem in-
terface. A lower-level interface, called the micro-kernel interface defines the interaction
between the micro-kernel and the subsystem servers. The micro-kernel interface exports a
number of basic abstractions including IPC which is used to build higher-level interfaces
between subsystem servers. An additional interface, defined within the micro-kernel, sep-
arates machine-dependent code from portable code. We will refer to this as the portable
interface. The portable interface is intended to be architecture-independent, and is sup-
ported by a new implementation of the micro-kernel’s machine-dependent layer for each
new architecture on which it executes.

Some of the basic abstractions exported by the micro-kernel interface are ports, mes-
sages, threads and actors!. Chorus defines two types of actor (user and supervisor) based on
their privilege level and allowed operations [10]. User actors are placed in separate address
spaces and system actors share the system address space. In addition to defining operations
for the creation and manipulation of the basic micro-kernel abstractions, the micro-kernel
interface allows subsystem servers to attach handlers to traps, interrupts, and exceptions.

User and supervisor actors see the same specification of the micro-kernel interface,
but use distinct implementations of the interface. These implementations take the form of
separate libraries above the interface, and separate vectors of routines below the interface.
The use of a common interface specification allows the decision of whether to load an actor
into system or user space to be delayed until link time.

!An actor is the unit of resource allocation in Chorus, similar to a task in Mach [1].



During a micro-kernel interface call, stubs in the library for user actors load the call
number into a temporary register and use an architecture-specific instruction to cause a
change in privilege level?. In contrast, the stubs in the library for supervisor actors take
advantage of the fact that supervisor actors are in the same address space as the micro-
kernel by using a global data structure, called the ROOT structure, to locate the appropriate
vector of routines in the micro-kernel. The call stub for a supervisor actor thus reduces to
little more than a procedure call to the required micro-kernel routine.

The supervisor actor concept offers several important advantages. First, it allows
heavily used IPC paths between subsystem servers to be streamlined by using IPC calls
in the optimized implementation of the micro-kernel interface. Second, it allows trap-
based subsystem interfaces to be implemented efficiently by directly calling subsystem call
handlers rather than passing control back up to an emulation library in the application’s
address space.

For example, the Chorus MiX subsystem?® presents a UNIX compatible subsystem
interface by using a supervisor actor (called the process manager (PM)) to attach system
call handlers to UNIX-specific trap numbers. When an application makes a MiX system call
a trap is generated and the micro-kernel calls the handler attached by the PM. Since the PM
is a supervisor actor and runs in the system address space it can access the call parameters
directly in the application’s address space. Once the system call has been identified, it
is either executed directly within the PM, or passed via IPC to another subsystem actor
(such as the object manager? (OM)). Other MiX subsystem actors also attach handlers to
hardware events. For example, the OM connects handlers to disk interrupts, i.e., the disk
driver is part of the OM.

2.1 Architectural Assumptions in Chorus

In all of its interfaces, Chorus is fairly successful in achieving the benefits of modularity
without sacrificing too much performance. This is largely a result of good design decisions
relating to the separation of specification from implementation in its interfaces. However,
there are several key assumptions implicit in the design decisions that led to the current
interface definitions. These assumptions are aimed at optimizing performance for some
“common class” of architectures.

First, the decision to load supervisor actors into the system address space is based,
in part, on the assumption that invocation between user-level entities is considerably more
expensive than invocation between entities residing in the system address space. Second,
because some supervisor actors need to perform privileged instructions, to access hardware
for example, Chorus places them in the system address space. The basic assumption here
is that an actor can be privileged only if it runs in the system address space.

The placement of supervisor actors in the system address space in order to support
the attachment of handlers to traps and interrupts involves similar assumptions, i.e., that
efficient handler invocation requires the handler to reside in the system address space. This
kind of assumption is related to the relative cost of cross-address space and intra-address

20n most architectures this is a trap-based instruction.

SMiX is a UNIX System V compatible subsystem that runs above the Chorus micro-kernel. We had
access to Chorus MiX 3.2.

*The object manager implements file service and acts as a default mapper.



space communication and is implicit in the decision to include the disk driver in the MiX
3.2 object manager.

Finally, the portable interface specification involves a number of architectural assump-
tions. Of specific interest in our experiments with Chorus is the extensive use of memory
mapping in and above the portable interface. This assumes that memory mapping is inex-
pensive, as is the case on architectures with physically addressed caches.

The design and implementation decisions discussed above are not unusual. In fact,
they are based on “common knowledge” about traditional computer architecture. In the
following sections we argue that the characteristics of current-generation architectures have
begun to change, and that operating system designers may need to re-evaluate some of
these basic architectural assumptions.

3 Supporting the Chorus Interfaces on the PA-RISC

The PA-RISC is the framework for HP’s 3000/900, 9000/800, and 9000/700 series com-
puter systems. During 1991 we ported the Chorus v3.3 micro-kernel to the Hewlett-Packard
9000/834 workstation, and studied the interaction between Chorus and the PA-RISC ar-
chitecture. This section discusses the issues involved in implementing the Chorus interfaces
on the PA-RISC and revisits the architectural assumptions implicit in those interfaces.

The PA-RISC provides a 64-bit global address space that is shared between all pro-
cesses and the operating system. Virtual memory is partitioned into segments, called address
spaces, each containing 232 bytes. Our implementation of Chorus uses the first of these 32-
bit address spaces for the system address space which is further divided into partitions for
the micro-kernel, supervisor actors, and the ROOT structure. Virtual addresses consist of
two components: a space identifier and a space offset. In short pointer (32-bit) addressing
mode the space identifier is held in a space register which is identified using the two most
significant bits of the 32-bit offset. In long pointer (64-bit) addressing mode both parts
of the address are specified explicitly. The PA-RISC also provides specific instructions for
intra-space and inter-space branching.

Protection between processes sharing the global virtual address space is supported
using protection identifiers, access identifiers, and access rights. Protection identifiers are
associated with processes, whereas access identifiers and access rights are associated with
virtual memory pages. Access rights specify the types of access that are allowed at different
privilege levels, and access identifiers are used in combination with protection identifiers
to implement capability-style protection. During execution, four protection registers are
available to store some of the protection identifiers associated with a process. In order to
make a successful access, the requested operation and privilege level must pass the access
rights check, and one of the four protection registers must contain a protection identifier
that matches the page’s access identifier?.

In our Chorus implementation we use a special access identifier (0) for the code and
data pages of the micro-kernel and supervisor actors. This has special significance on the PA-
RISC, in that it matches all protection identifiers. Access rights are used to prevent accesses
by code running at user privilege level. However, since the micro-kernel and supervisor

5Tt is possible to associate more than four protection identifiers with a process if a handler is provided to
manage the protection fault generated during a match failure at access time.



actors all run at the highest privilege level this does not prevent them from accessing each
others’ pages.

In common with other architectures, promotion of privilege level can be triggered
during a trap or hardware exception. However, the PA-RISC also provides more efficient
support for privilege promotion and reduction. Privilege promotion can occur, without
causing a trap, by executing a gate instruction on a specially protected page, called the
gateway page which is mapped, execute-only, into a pre-defined location in the system
address space. In our implementation, the access rights on the gateway page are set such
that the execution of a gate instruction will cause promotion to the highest privilege level.

Efficient privilege reduction is supported using a two-level instruction address queue
which supports delayed branching. The two least significant bits of the instruction address
are not needed since instructions lie on 4-byte boundaries. These bits are used instead to
keep track of the current execution privilege, and can be set during a branch instruction
in order to reduce the current privilege level. This feature is used during the return from a
system call.

3.1 The Micro-Kernel Interface

The implementation of the micro-kernel interface for user actors makes use of the
above features in the following manner:

o A thread in a user actor makes a micro-kernel interface call by executing a stub in
the micro-kernel interface library for user actors (chorusLib.a).

e The call stub loads a subsystem number and a call number into temporary registers.
This allows the micro-kernel to marshal calls intended for a subsystem interface rather
than the micro-kernel interface. In order to distinguish micro-kernel interface calls,
the micro-kernel is assigned a special subsystem number.

e The call stub then executes an inter-space branch instruction to the gateway page in
the system address space.

e A gate instruction is executed in the gateway page, which causes privilege promotion,
and an intra-space branch instruction is executed into the appropriate entry point in
the system address space.

e The micro-kernel switches to the system stack and saves the necessary registers. If the
subsystem number indicates a micro-kernel interface call the micro-kernel copies the
parameters from the user stack and calls the appropriate routine in the call vector for
user actors. Otherwise, a handler attached by a specified subsystem actor is called.
The subsystem actor is then responsible for copying parameters from the user stack
and performing the subsystem-specific call.

o After the call has been serviced by the micro-kernel, or by a subsystem actor, the
micro-kernel completes the call by switching stacks and using the delayed branch
instruction to return to user space and re-establish the original privilege level. Note
that no trap was necessary to handle the system call.

The implementation of the micro-kernel interface for supervisor actors differs from
that for user actors in the following way:



e A thread in a supervisor actor makes a micro-kernel interface call by executing a stub
in the micro-kernel interface library for supervisor actors (chorusSvLib.a).

e The call stub loads the address of the micro-kernel’s call vector for supervisor actors
from the ROOT structure®. The stub uses the call number to calculate the address of
the appropriate routine in the call vector for supervisor actors and uses it to call the
routine. This does not require a change of stacks because supervisor threads always
execute on a system stack.

Note that this implementation of the micro-kernel interface is only an optimization
rather than a change in the interface specification. Supervisor actors may still use the user
actor micro-kernel interface library without a loss in functionality.

3.2 The Portable Interface

In addition to affecting the implementation of the micro-kernel interface, the PA-
RISC’s architectural features also had a significant impact on the implementation of the
portable interface. In fact, the majority of the work involved in our port of Chorus to
the PA-RISC was associated with building a new implementation of the portable interface.
There were a number of interesting aspects to this work, particularly in the area of cache
management. The PA-RISC uses a virtually addressed cache to improve performance by
allowing TLB look-up and cache access to be performed in parallel [9]. As with other archi-
tectures that use virtually addressed caches (such as the IBM RS-6000 and the MIPS 4000)
the PA-RISC relies on the operating system to maintain address translation consistency. In
other words, address aliases falling in different cache sets must be resolved by the operating
system. Such aliases are generally created by mapping multiple virtual addresses to the
same physical address. However, since the PA-RISC also uses the cache when executing in
physical addressing mode, aliases can arise when the cache index generated by a physical
address differs from the index produced when accessing the same data using a currently
mapped virtual address. In either case, the operating system must prevent any loss of
consistency due to the concurrent placement of the same data item in different cache lines.

Unfortunately, the Chorus portable interface contains several functions that can gen-
erate aliases, and the portable layers of Chorus assume that such aliases are inexpensive
(both to set up and maintain). In order to support aliasing at the portable interface, the
machine-dependent layers must maintain address translation consistency. In our imple-
mentation we achieved this by using a technique called pseudo-aliasing. Pseudo-aliasing
guarantees that for any physical page, only one mapping can exist in the cache and TLB
at a time. When an access is attempted via a virtual address that is logically valid, but
for which the mapping has been removed from the cache and TLB, a pseudo page fault
occurs. During pseudo page fault handling any existing mapping to the physical page is
invalidated, the cache lines and TLB entry associated with it are flushed, and a new map-
ping is established. This approach presents a semantically correct implementation of the
portable interface. However, it significantly changes the relative costs of certain primitive
virtual memory operations. In particular, maintaining multiple mappings to the same page,
and unmapping a page, become expensive (see [7] for more details).

6This is set up during kernel initialization.



3.3 Revisiting the Architectural Assumptions in Chorus

Our initial implementation of Chorus did not take full advantage of many of the more
interesting features of the PA-RISC such as the global address space, protection, and privi-
lege manipulation facilities. This was largely due to caution: we wanted to avoid making any
radical departures from the standard Chorus approach in our first implementation. Con-
sequently, we implemented Chorus as if the architectural assumptions discussed in section
2 held for the PA-RISC. This section revisits those assumptions and discusses alternative
approaches to implementing Chorus on the PA-RISC (see [11, 6, 8, 12] for a more detailed
discussion of our implementation and possible alternative approaches).

First, Chorus tends not to distinguish between issues of address space, protection
domain and privilege level. Actors either run as supervisor actors at the same privilege
level, and in the same address space and protection domain as the micro-kernel, or they run
as user actors at the lowest privilege level, and in their own address space and protection
domain. On the PA-RISC the concepts of address space, protection domain and privilege
level are orthogonal. Therefore, it is feasible to use arbitrary combinations of these features
in the implementation of different types of actors. This approach leads to a range of possible
invocation costs depending on the specific boundaries between actors.

In order to gain a better understanding of these costs we profiled our Chorus imple-
mentation. Table 1 illustrates costs for a cross address space call at the same privilege level
and protection domain, and null system calls using both the user and supervisor implemen-
tations of the micro-kernel interface”.

For comparison, the cost of a null procedure call is also presented. Contrary to Chorus’
assumptions, these figures show that the cost of an inter-space, intra-protection domain call
(3.4 p seconds) is not dramatically higher than the cost of an intra-space, intra-protection
domain call (0.9 p seconds). This suggests that, on the PA-RISC, groups of actors which
communicate heavily do not necessarily have to be placed in the same address space in
order to exhibit good performance.

Table 1: Basic invocation costs

H Call-type ‘ Time (in p sec) H
null procedure call 0.9
supervisor system call 2.2
user-mode system call 12.3
cross address space 3.4

Chorus also places supervisor actors in the system address space to optimize the
performance of invocations across the micro-kernel interface. Chorus assumes that micro-
kernel entry and exit costs from user space are high relative to the cost of the supervisor
implementation of the micro-kernel interface. Our figures for the PA-RISC show that micro-
kernel calls from supervisor actors are about one fifth the cost of micro-kernel calls from
user actors.

"The 9000/834 provides a timer with a resolution of 1/15 of a u second.



Table 2: A breakdown of user-mode system call costs

H Stage ‘ Time (in p sec) H
kernel entry 1.6 ‘
kernel processing 10.5
kernel exit 0.2

A further breakdown of the component costs involved in a user-mode system call is
presented in table 2. The cost of promoting privilege level via the gateway page, followed
by a branch into the system address space is illustrated in the kernel entry figure (1.6
seconds). The kernel exit figure (0.2 p seconds) illustrates the cost of privilege reduction
using the delayed branch instruction. The remaining time (10.5 ;& seconds) is taken in kernel
processing which includes saving and restoring registers®, switching stacks, and making the
system call.

The difference in cost between a user-mode system call and a cross address space call
is due to the cost of changing privilege level and protection domain [3]. Since the cost of
changing privilege level using the gateway page is known to be around 1.6 y seconds, we
can deduce that the remainder of the cost is associated with the protection domain transfer.
Further investigation of this costs shows the dominant cost in protection domain transfer to
be associated with switching execution stacks. Consequently, the difference in cost between
supervisor and user calls across the micro-kernel interface is due mainly to the use of a
protected call rather than the use of different privilege levels or address spaces.

Chorus also assumes that the execution of privileged instructions requires a super-
visor actor to be in the system address space. Since address space and privilege level are
orthogonal issues on the PA-RISC, it is possible to place supervisor actors outside the sys-
tem address space and still allow them to execute privileged instructions. Such actors need
not execute continually in privileged mode since the gateway mechanism allows changes in
privilege level that are considerably more efficient than trap-based mechanisms. On the
PA-RISC the cost of increasing privilege level via the gateway page is around twice the cost
of a null procedure call (i.e., 1.6 y seconds) and the cost of lowering privilege is only around
0.2 u seconds.

A related assumption is that an actor must be in the system address space to handle
hardware events efficiently. This is based on the principle that the identification of a virtual
address for a handler in another address space requires significant overhead for memory
context set-up. The PA-RISC’s global address space ensures that every virtual address can
be uniquely identified. Furthermore, the cost of an inter-space call (3.4 p seconds) is not
dramatically higher than the cost of a null procedure call (0.9 x seconds). Thus, supervisor
actors need not reside in any specific 32-bit address space in order to handle hardware
events.

Consequently, there are a number of feasible options for implementing supervisor
actors on the PA-RISC. For example, they could be given their own private 32-bit address

8Qur measurements of user system call cost do not include the cost of saving and restoring co-processor
context.



space, or they could reside in the system address space. If they reside in the system address
space they could be given distinct protection and access identifiers, or they could use the
same protection domain and privilege level as the kernel. Fach of these possible variants
would exhibit slightly different characteristics with respect to modularity and performance,
and each would require a slightly different implementation of the micro-kernel interface.

The specification of the Chorus portable interface also involves some assumptions
that are inappropriate for the PA-RISC. In particular, software maintenance of address
translation consistency causes the relative costs of certain primitive memory management
operations to alter significantly. For example, cache flushing during an unmapping oper-
ation for a 2 K-byte page can increase the cost of the operation by between 150% and
1000% depending on the state of the cache [7]. Changes in the cost of primitive operations
supported in the portable interface can, in turn, lead to inappropriate design decisions in
higher-level, portable code. A classic example is the use of memory mapping, rather than
copying, to implement IPC. On architectures with a physically addressed cache, mapping
is a clear win over byte-copying for page-sized, page-aligned data. However, the expense of
cache flushing on a virtually addressed cache architecture can decrease the performance of
IPC implementations based on mapping to the extent that, under certain circumstances,
byte copying implementations can be as fast as, or even faster than, mapping implemen-
tations (For an in-depth discussion of the effects of virtually addressed caches on virtual
memory design and performance, and for more details of the performance results discussed
here, see [7]).

A better long term solution would be to make use of the PA-RISC’s global address
space and long pointer addressing in order to avoid address aliasing problems. This would
require a major redesign of Chorus to remove the notions of private per-process address
spaces, and to share memory only via the global address space using unique 64-bit virtual
addresses rather than by mapping multiple virtual addresses to the same physical page.

4 Strengths and Weaknesses of the Chorus Approach

One of the major strengths of the Chorus approach is its separation of interface spec-
ification from implementation. The interfaces between operating system components are
specified in terms of IPC which is supported in the specification of the micro-kernel interface.
An interesting feature of Chorus is its use of two distinct implementations of the micro-kernel
interface: the supervisor actor interface and the user actor interface. Each implementation
makes a different trade-off between modularity and performance. The supervisor actor in-
terface is implemented in a manner that preserves dynamic reconfigurability, but trades
runtime protection for performance. User actors, on the other hand, maintain protection
at the expense of performance by using a more heavy weight invocation mechanism when
crossing the micro-kernel interface.

The provision of these two separate implementations of what is essentially the same
interface allows Chorus to support multiple different implementations of the same modular
operating system. The main problem, however, is that there are only two choices: a system
component must be either a supervisor actor, which uses an efficient but unprotected imple-
mentation of the micro-kernel interface, or a user actor which uses a protected but relatively
slow implementation of the interface. For some application domains neither of these choices
may be appropriate. Similarly, the loss of modularity in exchange for performance, which
is implicit in these choices, may be unnecessary for some architectures, particularly if the

10



architectural assumptions on which the choices are based are inappropriate.

It would be useful to generalize the approach taken in Chorus by allowing arbitrar-
ily many implementations of a single interface specification. This would allow operating
systems to be customized for different architectures and application domains. In order to
support this level of customization it must be possible to localize the code representing a
particular implementation of an interface. Above the interface this code is generally lo-
calized in a system call library. For example, Chorus provides two separate micro-kernel
interface libraries, one for linking with supervisor actors and the other for user actors. Below
the interface, the code associated with a particular implementation must also be localized if
customization is to be supported efficiently. In Chorus such code is localized in system call
vector modules: one for handling calls originating in the supervisor actor implementation
of the micro-kernel interface, and the other for user actor calls.

Another strength of Chorus is its separation of portable and machine-dependent code.
Chorus defines a portable interface, internal to the micro-kernel, that is implemented using
machine-dependent code. However, this interface is so close to the underlying hardware that
it is difficult to avoid building architectural assumptions into the interface specification. This
can have the unfortunate effect of fostering inappropriate assumptions in higher-level code
that uses the portable interface. Our experience with Chorus on the PA-RISC indicates that
even though we are able to support a semantically correct version of the portable interface,
the relative performance of some of the operations within it put into question various design
decisions made in the portable layers.

5 Conclusion

This paper has discussed the relationship between modularity and interface design in
micro-kernel operating systems. Modularity is a major potential strength of micro-kernel
based systems. However, in order to gain wider acceptance, micro-kernels must exhibit per-
formance comparable to monolithic operating systems. An important principle in achieving
this goal is the separation of interface specification from implementation. Interface imple-
mentation decisions are then largely concerned with establishing an appropriate balance
between modularity and performance. Since this balance varies for different application
domains and computer architectures, the most promising approach for micro-kernel design-
ers is to offer customization by allowing multiple different implementations of the same
interface specification. Chorus has begun to apply this principle by offering two different
implementations of its micro-kernel interface. We believe that this approach should be
generalized.

This paper has also outlined some of the architectural assumptions that are implicit in
the design and implementation of operating system interfaces. Some of these assumptions,
particularly those relating to cache design, are becoming out-dated given recent trends in
computer architecture, and can lead to a relative decline in operating system performance.

6 Acknowledgements

Many people participated in the port of Chorus to the PA-RISC. We are particularly
grateful to Marion Hakanson of OGI; Bart Sears of Hewlett-Packard Laboratories; Pascal
Dietrich and Philippe Voisin of the University of Nancy; Vadim Abrossimov, Jean-Jacques
Germond, Frédéric Herrmann, Olivier Giffard, and Marc Rozier of Chorus Systemes.

11



References

[1]

[4]
[5]

[6]

[9]
[10]

[11]

[12]

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, and Michael Young. Mach: A New Kernel Foundation For UNIX Develop-
ment. In Proceedings of the 1986 Summer USENIX Conference, pages 93—-112, Atlanta,
Georgia, 1986.

Francois Armand, Michel Gien, Frédéric Herrmann, and Marc Rozier. Revolution
89 or “Distributing UNIX Brings it Back to its Original Virtues”. In Proceedings of
the Workshop on Ezxperiences with Building Distributed and Multiprocessor Systems,
October 5-6 1989.

Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
Lightweight Remote Procedure Call. In Proceedings of the 12th ACM Symposium on
Operating Systems Principles, pages 102-113, December 3-6 1989.

Michel Gien. Micro-Kernel Design. UNIX REVIEW, 8(11):58-63, November 1990.

David Golub, Randall Dean, Alessandro Forin, and Richard Rashid. Unix as an Ap-
plication Program. In Proceedings of the 1986 Summer USENIX Conference, pages
87-95, Anaheim, California, 1990.

Jon Inouye, Marion Hakanson, Ravindranath Konuru, and Jonathan Walpole. Porting
Chorus to the PA-RISC: Virtual Memory Manager. Technical Report CSE-92-005,
Oregon Graduate Institute, January 1992.

Jon Inouye, Ravindranath Konuru, Jonathan Walpole, and Bart Sears. The Effects
of Virtually Addressed Caches on Virtual Memory Design & Performance. Technical
Report CSE-92-010, Oregon Graduate Institute, March 1992.

Ravindranath Konuru, Marion Hakanson, Jon Inouye, and Jonathan Walpole. Porting
the Chorus Supervisor and Related Low-Level Functions to the PA-RISC. Technical
Report CSE-92-006, Oregon Graduate Institute, January 1992.

Ruby B. Lee. Precision Architecture. IFFE Computer, 22(1):78-91, January 1989.

Marc Rozier, Vadim Abrossimov, Fran¢ois Armand, Ivan Boule, Michel Gien, Marc
Guillemont, Frédéric Herrman, Claude Kaiser, Sylvain Langlois, Pierre Léonard, and
Will Neuhauser. Chorus Distributed Operating Systems. Computing Systems Journal,
1(4):305-370, December 1988.

Jonathan Walpole, Marion Hakanson, Jon Inouye, and Ravindranath Konuru. Porting
Chorus to the PA-RISC: Project Overview. Technical Report CSE-92-003, Oregon
Graduate Institute, January 1992.

Jonathan Walpole, Marion Hakanson, Jon Inouye, and Ravindranath Konuru. Porting
Chorus to the PA-RISC: Overall Evaluation. Technical Report CSE-92-008, Oregon
Graduate Institute, January 1992.

12



