
Architecture Reference Guide

V2500 Server

 First Edition

A5074-96004

V2500 Server

Customer Order Number: A5074-90004

June, 1999

Printed in: USA



Revision History
Edition: First

Document Number: A3725-96004
Remarks: Initial release June, 1999.

Notice

 Copyright Hewlett-Packard Company 1999. All Rights Reserved. 
Reproduction, adaptation, or translation without prior written 
permission is prohibited, except as allowed under the copyright laws.

The information contained in this document is subject to change without 
notice.

Hewlett-Packard makes no warranty of any kind with regard to this 
material, including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose. Hewlett-Packard 
shall not be liable for errors contained herein or for incidental or 
consequential damages in connection with the furnishing, performance 
or use of this material.



Table of Contents iii

Contents

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

The PA-8500 processor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
The node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Control and status registers (CSRs)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Description of functional blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Processor agent controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Routing attachment controller—Hyperplane crossbar . . . . . . . . . . . .6
Memory access controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
CUB and core logic bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Shared memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Multiple nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Coherent toroidal interconnect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Globally shared memory (GSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

GSM subsystem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Memory interleave  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

GSM and memory latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
GSM and cache coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

2 Physical address space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Physical addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Node addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Node Identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Coherent memory space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Coherent memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Addressing a byte of memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Memory interleaving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Memory interleave generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Force node ID function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Memory board, bus and bank index selection . . . . . . . . . . . . . . . . . .32
Memory board interleave pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Memory bus interleave pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Memory bank interleave pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Memory board, bus bank interleave pattern . . . . . . . . . . . . . . . . . . .37

CTI cache layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Nonexistent memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42



iv  Table of Contents

Core logic space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Local I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Non-I/O CSR space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Accelerated CSR access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CSR access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Runway-local access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
PAC-local access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Node-local accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Remote access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Access to nonexistent CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
System Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PAC Configuration register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
PAC Processor Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . 57
PAC Memory Board Configuration register  . . . . . . . . . . . . . . . . . . . . 58
MAC Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
MAC Memory Region register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Unprotected Memory register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Normal CTI Cache Memory Region register  . . . . . . . . . . . . . . . . . . 62
Unprotected CTI Cache Memory Region register  . . . . . . . . . . . . . . 62
Memory region access checking summary . . . . . . . . . . . . . . . . . . . . 62
Memory Region Access Checking Summary  . . . . . . . . . . . . . . . . . . 64

TAC Configuration register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Cache Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Cache concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PA-8500 caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CTI cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Cacheability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Address aliasing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Cache operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PA-8500 cache operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
CTI cache operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

CTI cache global flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
CTI cache flush entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
CTI cache prefetch for read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
CTI cache prefetch for write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Cache operation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cache operation interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
PA-8500 cache interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
CTI cache interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
CTI cache AIL routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Instruction method of issuing cache management operations . . . . . . 76

CTI cache flush global  instruction . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Table of Contents v

CTI cache prefetch read  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
CTI cache prefetch write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

CSR method of issuing cache management operations . . . . . . . . . . . .83
Operation CSRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Instruction sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83

Cache management CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Cache management operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

PAC Operation Context register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Context State Save/Restore  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
PAC Operation Address registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Cache Management Operation addresses . . . . . . . . . . . . . . . . . . . . .90

4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Coherent semaphore instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
Noncoherent semaphore operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

AIL routines for non-coherent semaphores. . . . . . . . . . . . . . . . . . . . . .93
First method of issuing non-coherent semaphore operations. . . . . .94
Second method of issuing non-coherent semaphore operations . . . .95

Barrier synchronization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Issuing the coherent_inc64 operation . . . . . . . . . . . . . . . . . . . . . . . . . .98

coherent_inc64 instruction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
CSR method of issuing coherent_inc64. . . . . . . . . . . . . . . . . . . . . . . .100

PAC semaphore addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
PAC Fetch Operation addresses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
PAC Noncoherent Read and Write Operation addresses . . . . . . . . . .101
PAC Coherent Increment addresses . . . . . . . . . . . . . . . . . . . . . . . . . .102

PA-8500 TLB Entry U-bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

5 Interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Processor interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107

Five-bit processor identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Utilities board interrupts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

PAC interrupt logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
PAC Interrupt Delivery registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

PUC interrupt logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
PUC Interrupt Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
PUC Interrupt Force register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

6 I/O subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Logical I/O channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Channel initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120



vi  Table of Contents

Channel context and shared memory SRAM  . . . . . . . . . . . . . . . . . . 120
Channel context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Shared memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Host-to-PCI address translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
PCI configuration space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
PCI I/O and memory space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
I/O space-to-PCI map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

PCI-to-host memory address translation . . . . . . . . . . . . . . . . . . . . . . . 126
Physical address translation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Logical address translation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

I/O TLB entry format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
PCI memory read transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Channel prefetch space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Device prefetch space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Channel prefetch/refetch modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Device consumption-based prefetch. . . . . . . . . . . . . . . . . . . . . . . . . . 132
Stall prefetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

PCI memory write transfers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Write purge partial disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Write_Purge_Partial enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

I/O subsystem CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
SAGA CSR address decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
SAGA CSR definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

SAGA Chip Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . 137
PCI Master Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . 137
PCI Master Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SAGA Channel Builder register . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
SAGA Interrupt Configuration register . . . . . . . . . . . . . . . . . . . . . 144
SAGA Interrupt Source register . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
SAGA Interrupt Enable register. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
PCI Slot Configuration register  . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
PCI Slot Status register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
PCI Slot Interrupt Configuration register . . . . . . . . . . . . . . . . . . . 148
PCI Slot Synchronization register  . . . . . . . . . . . . . . . . . . . . . . . . . 149

Byte swapping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Performance monitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Performance factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Performance monitor hardware  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Interval timer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Per processor latency counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Latency counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Event counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



Table of Contents vii

Per PAC CTI cache hit rate counters  . . . . . . . . . . . . . . . . . . . . . . . . .155
Time-of-Century clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
TIME_TOC synchronization pulse generation and distribution  . .157
TIME_TOC synchronization pulse checker . . . . . . . . . . . . . . . . . . .157
Pre-Scale/Synchronizer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
PAC Time-of-Century Counter register . . . . . . . . . . . . . . . . . . . . . .159
PAC Time-of-Century Configuration register . . . . . . . . . . . . . . . . .159
TAC Time-of-Century Configuration register . . . . . . . . . . . . . . . . .161
TIME_TOC reset and initialization . . . . . . . . . . . . . . . . . . . . . . . . .162

8 System utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Utilities board  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
Core logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Nonvolatile static RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
SRAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
Console ethernet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
LEDs and LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
COP interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

PUC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
PUC Processor Agent Exist register . . . . . . . . . . . . . . . . . . . . . . . . . .168
PUC Revision register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

MUC and Power-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
Environmental monitoring functions  . . . . . . . . . . . . . . . . . . . . . . . . .169

Environmental conditions detected by power-on function . . . . . . .170
Environmental conditions detected by MUC. . . . . . . . . . . . . . . . . .171
Environmental LED display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Monitored environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . .173
CUB 3.3-volt error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
ASIC installation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
DC OK error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
48-volt error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
48-volt yo-yo error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Clock failure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
FPGA configuration and status . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Board over-temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Fan sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Power failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
MIB power failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
48-volt maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Ambient air sensors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175



viii  Table of Contents

Environmental control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Power-on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Voltage margining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

MUC CSRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Processor Report register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Processor Semaphore register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
RAC Data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
RAC Configuration Control register . . . . . . . . . . . . . . . . . . . . . . . . 177
MUC Reset register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
General semaphore register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

JTAG interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Teststation interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
AC test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Clock margining  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

9 Booting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Booting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Hardware reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Power-On Self Test routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Basic processor initialization and selftest  . . . . . . . . . . . . . . . . . . . 185
Core logic initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Checksum verification of the core logic NVRAM . . . . . . . . . . . . . . 185
System configuration determination  . . . . . . . . . . . . . . . . . . . . . . . 185
System ASIC initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
System main memory initialization . . . . . . . . . . . . . . . . . . . . . . . . 186
Multinode initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
System clean up and OBP boot process  . . . . . . . . . . . . . . . . . . . . . 187

HP-UX bootup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Normal booting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Install booting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10 Error handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Soft errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Advisory errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Hard errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Error responses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Hard error logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Error handling CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Processor error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
PAC error detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
RAC error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
MAC error detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



Table of Contents ix

TAC error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

Appendix  A: CSR map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



x  Table of Contents



List of Figures xi

Figures

 Figure 1 Functional block diagram of a V2500 system  . . . . . . . . . . . . . . . . . . . . . . . . . . .4
 Figure 2 RAC interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
 Figure 3 Four-node interconnection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
 Figure 4 Hardware processing of a load or store instruction. . . . . . . . . . . . . . . . . . . . . .16
 Figure 5 Physical address space partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
 Figure 6 Physical memory addressing and storage units  . . . . . . . . . . . . . . . . . . . . . . . .22
 Figure 7 Node identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
 Figure 8 Coherent memory space address formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
 Figure 9 Conceptual layout of physical memory of a fully populated system. . . . . . . . .26
 Figure 10 Example Coherent Memory Space Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
 Figure 11 40-bit coherent memory address generation . . . . . . . . . . . . . . . . . . . . . . . . . . .30
 Figure 12 Example memory line interleave pattern  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
 Figure 13 CTI cache bits within the 40-bit coherent memory address format . . . . . . . . .39
 Figure 14 Coherent memory space layout with CTI cache  . . . . . . . . . . . . . . . . . . . . . . . .41
 Figure 15 40-bit core logic space format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
 Figure 16 40-bit local I/O space format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
 Figure 17 Non-I/O CSR space format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
 Figure 18 System Configuration register definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
 Figure 19 PAC Configuration register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
 Figure 20 PAC Processor Configuration register definition  . . . . . . . . . . . . . . . . . . . . . . .57
 Figure 21 PAC Memory Board Configuration register definition . . . . . . . . . . . . . . . . . . .58
 Figure 22 MAC Configuration register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
 Figure 23 Memory region register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
 Figure 24 MAC Memory Row Configuration register definition . . . . . . . . . . . . . . . . . . . .65
 Figure 25 TAC Configuration register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
 Figure 26 PAC Operation Context register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
 Figure 27 PAC Operation Address register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
 Figure 28 PA-8500 External Interrupt Request register definition  . . . . . . . . . . . . . . . .107
 Figure 29 Five-bit processor identifier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
 Figure 30 Core logic interrupt system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
 Figure 31 PAC interrupt delivery information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
 Figure 32 PAC Interrupt Delivery register definition . . . . . . . . . . . . . . . . . . . . . . . . . . .112
 Figure 33 PUC Interrupt Status register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
 Figure 34 PUC Interrupt Force register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
 Figure 35 I/O system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
 Figure 36 Logical I/O channel model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
 Figure 37 PCI bus command and address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
 Figure 38 CCSRAM Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
 Figure 39 I/O address space format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
 Figure 40 PCI I/O configuration space format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123



xii List of Figures 

 Figure 41 I/O space to PCI space mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
 Figure 42 Physical mode address translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
 Figure 43 Logical mode address translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
 Figure 44 I/O TLB entry format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
 Figure 45 SAGA CSR 40-bit address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
 Figure 46 SAGA Chip Configuration register definition  . . . . . . . . . . . . . . . . . . . . . . . . 137
 Figure 47 PCI Master Configuration register definition  . . . . . . . . . . . . . . . . . . . . . . . . 138
 Figure 48 PCI Memory space setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
 Figure 49 PCI Master Status register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
 Figure 50 SAGA Channel Builder register definition. . . . . . . . . . . . . . . . . . . . . . . . . . . 142
 Figure 51 SAGA Interrupt Configuration register definition  . . . . . . . . . . . . . . . . . . . . 144
 Figure 52 SAGA Interrupt Source register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . 145
 Figure 53 SAGA Interrupt Enable register definition . . . . . . . . . . . . . . . . . . . . . . . . . . 145
 Figure 54 PCI Slot Configuration register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
 Figure 55 PCI Slot Status register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
 Figure 56 PCI Slot Interrupt Configuration register definition. . . . . . . . . . . . . . . . . . . 148
 Figure 57 PCI Slot Synchronization register definition . . . . . . . . . . . . . . . . . . . . . . . . . 149
 Figure 58 PAC Performance Monitor Latency register definition . . . . . . . . . . . . . . . . . 154
 Figure 59 PAC Performance Monitor Memory Access Count Pn register definition  . . 154
 Figure 60 PAC CTI Cache Hit Rate register definition  . . . . . . . . . . . . . . . . . . . . . . . . . 155
 Figure 61 Time-of-century clock hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
 Figure 62 Time-of-Century  Clock register definition. . . . . . . . . . . . . . . . . . . . . . . . . . . 159
 Figure 63 PAC Time-of-Century  Configuration register definition  . . . . . . . . . . . . . . . 160
 Figure 64 TAC Time-of-Century Configuration register definition . . . . . . . . . . . . . . . . 161
 Figure 65 Utilities board  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
 Figure 66 PUC Processor Agent Exist register definition  . . . . . . . . . . . . . . . . . . . . . . . 168
 Figure 67 PUC Revision register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
 Figure 68 Processor Report register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
 Figure 69 Processor Semaphore register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
 Figure 70 RAC Data register definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
 Figure 71 RAC Configuration Control register definition  . . . . . . . . . . . . . . . . . . . . . . . 178
 Figure 72 MUC Reset register definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
 Figure 73 General semaphore register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
 Figure 74 POST program flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
 Figure 75 POST multinode initialization flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
 Figure 76 Determining error types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
 Figure 77 SADD_LOG after error response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
 Figure 78 PAC error response information when received from either crossbar input  197
 Figure 79 Processor SADD_LOG register definition after directed error due to hard 

error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



List of Tables xiii

Tables

Table 1  Force node ID programmable ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 2  Force node ID memory coherence check settings  . . . . . . . . . . . . . . . . . . . . . .31
Table 3  Memory interleave base selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 4  Memory interleave index selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 5  Memory board interleave pattern for one board pair  . . . . . . . . . . . . . . . . . . .34
Table 6  Memory board interleave pattern for two board pairs  . . . . . . . . . . . . . . . . . .34
Table 7  Memory board interleave pattern for four board pairs . . . . . . . . . . . . . . . . . .34
Table 8  Memory bus interleave pattern for four buses . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 9  Memory bus interleave pattern for eight buses . . . . . . . . . . . . . . . . . . . . . . . .35
Table 10  Memory bank interleave pattern for two banks  . . . . . . . . . . . . . . . . . . . . . . .36
Table 11  Memory bank interleave pattern for four banks . . . . . . . . . . . . . . . . . . . . . . .36
Table 12  CTI cache size options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 13  Allowed nonmatched multinode configurations . . . . . . . . . . . . . . . . . . . . . . . .40
Table 14  Core logic space partitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 15  Chip Field Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 16  Accelerated vs. Non-Accelerated Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 17  Runway-local access addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 18  Field values for PAC-local access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 19  Field specifications for system access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 20  Field specifications for remote access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 21  Memory Bus Interleave Span bit positions  . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 22  Memory Bank Interleave Span bit positions . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 23  VI Mask field valuess  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 24  Memory board interleave Span field values  . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 25  Force Node Id Region Size field values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 26  Memory Region Access Checking Summary  . . . . . . . . . . . . . . . . . . . . . . . . . .64
Table 27  Row Size field values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
Table 28  Cache operation summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Table 29  CTI cache flush global hint field values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Table 30  CTI cache prefetch read hint field values  . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Table 31  CTI cache prefetch write hint field values . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Table 32  U-bit Fetch Armed field values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Table 33  PAC Operation Context register transitions when Operation address 

accessed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Table 34  PAC Operation Context register transitions when TLB invalidate issued  . .88
Table 35  Semaphore operation instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
Table 36  Core logic interrupt sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
Table 37  Core logic interrupt delivery registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
Table 38  PUC Interrupt register field definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Table 39  Time-of-Century synchronization check range  . . . . . . . . . . . . . . . . . . . . . . .157



xiv List of Tables 

Table 40  Time-of-Century synchronization check range  . . . . . . . . . . . . . . . . . . . . . . 158
Table 41  Time-of-Century resolutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 42  Time-of-Century synchronization pulse source  . . . . . . . . . . . . . . . . . . . . . . 161
Table 43  Environmental conditions monitored by the MUC and power-on circuit . . 170
Table 44  Environmental LED display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 45  Reset register read codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 46  Reset register write codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 47  SADD_LOG error source field definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Table 48  V2500 server CSR map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



Preface xv

Preface

The document describes the architecture of the Hewlett-Packard V2500 
on the PA-8500, the latest in a line of high performance Precision 
Architecture—Reduced Instruction Set Computer (PA-RISC) processors 
from Hewlett-Packard Company.



xvi Preface 

Preface
Notational conventions

Notational conventions
This section describes notational conventions used in this book.

bold monospace In command examples, bold monospace 
identifies input that must be typed exactly as 
shown.

monospace In paragraph text, monospace identifies 
command names, system calls, and data 
structures and types. 
In command examples, monospace identifies 
command output, including error messages.

italic In paragraph text, italic identifies titles of 
documents and provides emphasis on key 
words.
In command syntax diagrams, italic identifies 
variables that you must provide.
The following command example uses 
brackets to indicate that the variable 
output_file is optional:
command input_file [output_file] 

Brackets ( [ ] ) In command examples, square brackets 
designate optional entries.

Curly brackets ({}),
Pipe (|)

In command syntax diagrams, text 
surrounded by curly brackets indicates a 
choice. The choices available are shown inside 
the curly brackets and separated by the pipe 
sign (|).
The following command example indicates 
that you can enter either a or b:
command {a | b}



Preface xvii

Preface
Notational conventions

NOTE A note highlights important supplemental information.

Horizontal ellipses 
(...)

In command examples, horizontal ellipses 
show repetition of the preceding items. 

Vertical ellipses Vertical ellipses show that lines of code have 
been left out of an example.

Keycap Keycap indicates the keyboard keys you must 
press to execute the command example.



xviii Preface 

Preface
Notational conventions



Chapter 1 1

1 Introduction

The V2500 server provides multipurpose, scalable computing resources 
through shared memory and I/O designed to provide high throughput 
and quick time to solution.

V2500 server uses the PA-8500, the latest in a line of high performance 
Precision Architecture-Reduced Instruction Set Computer (PA-RISC) 
processors from Hewlett-Packard Company.

V2500 Systems can be configured to consist of one to four cabinets. A 
cabinet is often referred to as a node. Each node may have eight to 32, 
440-Mhz PA-8500 processors. The processors and memory of each node 
are tightly coupled as a cache-coherent Non-Uniform Memory 
Architecture (ccNUMA) system. Each node in a V2500 system is tightly 
intergrated with memory and processors in all other nodes.



2 Chapter 1 

Introduction
The PA-8500 processor

The PA-8500 processor
The V2500 server uses the Hewlett-Packard PA-8500 processor designed 
according to Hewlett-Packard’s PA-RISC Architecture version 2.0 
specifications. 

NOTE The PA-RISC architecture is presented in the PA-RISC 2.0 Architecture 
reference manual. Please refer to that document for detailed information 
about the features of the PA-8500. This document does not attempt to 
duplicate information in that manual. Instead, it presents only V2500 
server-specific information. 

The processors of the system are supported by several Application-
Specific Integrated Circuit (ASIC) hardware controllers, an enhanced 
memory system, and a high-bandwidth I/O subsystem. Special hardware 
and software allow these processors to perform both as conventional 
single processors or together in parallel to solve more complex problems.



Chapter 1 3

Introduction
The node

The node
The V2500 Server can contain eight to 32 processors. The processors and 
the associated hardware comprise what is commonly called a node. The 
terms node and system are used interchangeably in this book. The node 
uses a symmetric multiprocessor (SMP) design that can exploit fine-
grain parallelism.

A conceptual block diagram of the system is shown in Figure 1. Centrally 
located in the diagram is the Hyperplane crossbar which is comprised of 
four Routing Attachment controllers (RAC). The Hyperplane crossbar 
allows all of the processors to access all available memory. Processors are 
installed on  Processor Agent controllers (PACs). A PAC allows the 
processor and the I/O subsystem (the PCI-bus Interface controller or 
SAGA) access to the Hyperplane crossbar. Also connected to the 
Hyperplane crossbar are the Memory Access controllers (MAC). Up to 
four processors are located on each PAC. Memory is controlled by the 
MAC. Input and output devices connect to the system through SAGA 
which is connected to the processor agents. 

The Core Utilities board (CUB—commonly called the Utilities board) in 
the node contains a section of hardware called the core logic. It provides 
interrupts to all of the processors in the system through the core logic 
bus which connects to each PAC. The CUB attaches to the Midplane 
Interconnect Board (MIB) centrally located in the node. 



4 Chapter 1 

Introduction
The node

 Figure 1 Functional block diagram of a V2500 system

Proc.
Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Proc

Memory
agent access

Memory

Toroid
I/F

Memory

Memory

Memory

Memory

Memory

Memory

Memory

X-RingY-Ring

Core Logic Bus

control(PAC)

Proc.
agent
(PAC)

Proc.
agent
(PAC)

Proc.
agent
(PAC)

Proc.
agent
(PAC)

Proc.
agent
(PAC)

Proc.
agent
(PAC)

Proc.
agent
(PAC)

(MAC)

Memory
access
control
(MAC)

Memory
access
control
(MAC)

Memory
access
control
(MAC)

Memory
access
control
(MAC)

Memory
access
control
(MAC)

Memory
access
control
(MAC)

Memory
access
control
(MAC)

(TAC)

Toroid
I/F

(TAC)

Toroid
I/F

(TAC)

Toroid
I/F

(TAC)

Toroid
I/F

(TAC)

Toroid
I/F

(TAC)

Toroid
I/F

(TAC)

Toroid
I/F

(TAC)

CUB

Hyper-

bar
(RAC)

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Cross-

Plane



Chapter 1 5

Introduction
The node

Control and status registers (CSRs)
V2500 systems use CSRs located in the processors and controllers to 
provide control, status, or both to the processors and other hardware in 
the system. Each CSR is memory mapped and is available to all 
processors in the system. Many of the registers are described in detail by 
functional groups, such as system configuration, messaging and data 
copy, I/O, and so on. These descriptions appear throughout this book.

Description of functional blocks
Each block in Figure 1 is described in the following sections.

Processor agent controller
The PAC can connect to zero or one to four PA-8500 processors. It can 
also connect to zero or one I/O controller (SAGA). With no processors, the 
PAC serves as an I/O-only interface. The PAC has the following buses:

• Runway bus (0, 1)—Two each, 64-bit, bidirectional buses for processor 
0 and processor 1, respectively. These buses have a raw bandwidth of 
960 MBytes per second.

• Hyperplane crossbar port bus (0, 1)—Four 32-bit, unidirectional 
buses connected to two Hyperplane crossbar RACs, two in each 
direction. These buses have a total raw bandwidth of 1.9 GBytes per 
second.

• I/O port—Two 16-bit or 32-bit, unidirectional interfaces to an I/O 
device, one for reading data and one for writing data. The width of the 
bus depends on the width of the I/O device connected. Each bus has a 
bandwidth of 120 Mbytes per second or 240 Mbytes per second, 
depending on the width of the interface.

• Core Logic Bus interface—A single bidirectional bus that supports 
boot and support services.

The PAC sends and receives transactions from the RACs using four 
unidirectional data paths. There are four RACs in the Hyperplane 
crossbar. Each processor agent, however, communicates with only two of 
the four RACs.



6 Chapter 1 

Introduction
The node

Routing attachment controller—Hyperplane crossbar
The Hyperplane crossbar is comprised of four RACs that provide an 
interconnect for each processor and I/O device to memory.

Each of the four RACs has the following buses:

• PAC Port (A, B, C, D)—Eight 32-bit, unidirectional interfaces to four 
PAC ports, four in each direction. Each port has simultaneous (input 
and output) bandwidth of 960 MBytes per second.

• MAC Port (A, B, C, D)—Eight 32-bit, unidirectional interfaces to four 
MAC ports, four in each direction. Each port has simultaneous (input 
and output) bandwidth of 960 MBytes per second.

Figure 2 shows how the RACs connect to each PAC and MAC.

 Figure 2 RAC interconnection

PAC PAC PAC PAC PAC PAC PAC PAC

MAC MAC MAC MAC MAC MAC MAC MAC

RAC RAC RAC RAC



Chapter 1 7

Introduction
The node

Memory access controller 
The MAC controls all accesses to memory. Each MAC controls 32 banks 
of memory, allowing up to 256 banks in an eight-MAC system. Memory 
banks consist of Dual In-line Memory Modules (DIMMs) of Synchronous 
Dynamic Random Access Memory (SDRAM).



8 Chapter 1 

Introduction
The node

The MAC has the following buses:

• RAC Port (A, B)—Four 32-bit, unidirectional interfaces, two in each 
direction. This interface supports a total simultaneous read-write 
bandwidth of 1.9 GBytes per second.

• Even Memory—A single 88-bit, bidirectional interface to the even 
memory banks associated with the MAC.

• Odd Memory—A single 88-bit, bidirectional interface to the odd 
memory banks associated with the MAC.

A processor accesses memory by sending a request, in the form of 
packets, to a RAC. The request is then forwarded to one of the MACs. 
The MAC routes requests into even and odd pending queues. Some 
packets not destined for memory are routed from processor to processor 
through the MAC. These packets are routed directly to the output ports.

The MAC accesses one of 32 available memory banks, checking the Error 
Correction Code (ECC). The data accessed from memory is returned to 
the processor by sending a response back to the RAC, which forwards the 
response to the PAC.

CUB and core logic bus
The CUB, or Utilities board, connects to the core logic bus and contains 
two field-programmable gate arrays (FPGAs): the  Processor Utilities 
controller (PUC) and the  Monitoring Utilities controller (MUC). The 
PUC allows processors access to the system core logic and booting 
firmware, and the MUC processes the environmental state of the system 
and interrupts the processors when appropriate. V2500 Servers use the 
core logic bus primarily to boot the system and to issue environmental 
interrupts.

The core logic bus is a low-bandwidth, multidrop bus that connects each 
processor to the control and interface logic (both RS232 and ethernet). A 
processor can write to control and status registers (CSRs) accessed using 
the core logic bus to initialize and configure the RAC chips and Utilities 
board logic.



Chapter 1 9

Introduction
Shared memory

Shared memory
V2500 servers use a shared-memory architecture to provide high-
performance. This allows the developer, compilers, and applications to 
view the system as processors sharing a large physical memory and high-
bandwidth I/O ports. 

Compilers use shared memory to provide automatic, efficient 
parallelization, while viewing memory as a single contiguous virtual 
address space. 

The Hyperplane crossbar provides high-bandwidth, low-latency 
nonblocking access from processors and I/O channels to the system 
memory. It prevents the performance drop-off associated with systems 
that employ a system-wide bus for processor and I/O memory traffic.

Sequential memory references (linearly ascending physical address) to 
shared memory are interleaved across up to eight memory boards on a 
32-byte basis. See the chapter  “Physical address space,”  for more 
information.

With all processor references to memory, copies of the accessed data are 
encached into either the instruction or data caches of each processor. If 
the processor making the memory reference modifies the data and if 
another processor references that same data while a copy is still in the 
first processor cache, a condition exists whereby the data has become 
stale. The V2500 hardware continually works to ensure that the second 
processor does not use an outdated copy of the data from memory. The 
state that is achieved when both processors’ caches always have the 
latest value for the data is called cache coherence.



10 Chapter 1 

Introduction
Shared memory

To maintain updated coherent copies, V2500 servers operate under the 
following rules:

• Any number of read encachements of a cache line can be made at a 
single time. The cache line can be read-shared in multiple caches.

• To write (store) data into a cache line, the cache line must be “owned” 
exclusively by the processor. This implies that any other copies must 
be invalidated.

• Modified cache lines must be written back to memory from the cache 
before being overwritten.



Chapter 1 11

Introduction
Multiple nodes

Multiple nodes
Up to 128 processors in four nodes can be connected together in the 
V2500 multinode system. Nodes are tightly coupled by globally shared 
memory and CTI rings to provide minimum latency in global memory 
accesses. Figure 3 depicts how four nodes might be connected. The two Y 
rings and two X rings provide a low-latency interconnect that allows 
processors to access memory anywhere in the system and communicate 
with processors in other nodes. Each ring in the figure represents 
multiple interconnects. One inherent advantage to this interconnect 
scheme is built-in redundancy afforded by multiple CTI rings.



12 Chapter 1 

Introduction
Multiple nodes

 Figure 3 Four-node interconnection

Coherent toroidal interconnect
Multiple nodes are interconnected with one or more low-latency 
interconnections. The CTI refers to a collection of rings used by V2500 
server nodes to access remote memory. 

The CTI supports access to global or remote memory on a cache line 
basis. A 32-byte cache line is the amount of data moved over the CTI by 
hardware in response to load, store, or flush operations.

Node 0 Node 1

Node 2 Node 3

Y-ring CTIY-ring CTI

X-ring CTI

X-ring CTI



Chapter 1 13

Introduction
Multiple nodes

V2500 servers have eight physical CTI rings per dimension between 
nodes. Eight rings provide higher interconnection bandwidth than a 
single ring and provide redundancy in case of ring failure.

Sequential memory references to global memory (by linearly ascending 
physical address) are interleaved across the eight rings. The eight CTI 
rings are interleaved on a 32-byte basis (CTI cache line size is also 32 
bytes). Ring interleaving tends to balance the traffic across all eight 
rings (global memory references from a processor to the memory on the 
same node do not use the node CTI).

The CTI implementation is a pair of 34-bit, differential CMOS, 
unidirectional links, clocked at 120 MHz. Each link provides 32 bits of 
data along with a clock and a framing delimiter flag for a total of 34 
signals. Data is sampled on the rising edge of the clock for a peak raw 
rate of 480 Mbytes per second. 

V2500 servers use a coherency protocol that is overlaid on a base protocol 
that supports forward progress, delivery, fairness, and basic error 
detection and recovery. The coherency protocol is based on a write-back 
and invalidate scheme.



14 Chapter 1 

Introduction
Globally shared memory (GSM)

Globally shared memory (GSM)
All of the processors in the V2500 servers share memory both within a 
node (local memory) and across the entire array of nodes (remote 
memory), in the case of multiple node V2500 servers. Shared memory 
makes the system easy to program. 

The shared-memory programming model is that of a tightly coupled, 
shared-memory machine; it allows the developer, compilers, and 
applications to view the system as a number of processors sharing a 
large physical memory and a number of high bandwidth I/O ports. 

Compilers for the V2500 servers use GSM to provide automatic, efficient 
parallelization while viewing memory as a single contiguous virtual 
address space. 

GSM subsystem
GSM supports a two-level hierarchial memory subsystem; each level is 
optimized for a particular class of data sharing. The first level consists of 
the Hyperplane crossbar that connects memory, processors, and I/O in a 
single node. The second level consists of the interconnection between 
nodes through the CTI rings. 

The Hyperplane crossbar provides high-bandwidth, low-latency 
nonblocking access from processors and I/O channels to the node-local 
memory. The Hyperplane crossbar prevents the performance drop-off 
associated with systems that employ a system-wide bus for processor and 
I/O memory traffic.

Memory interleave
Sequential memory references (linearly ascending physical address) to 
GSM are interleaved across up to eight rings. The memory and CTI 
interconnects are interleaved on a 32-byte basis. Interleaving tends to 
balance traffic across the eight CTI rings. See Chapter 2, “Physical 
address space” for information regarding memory interleaving. 

References from a processor to GSM on the same node use the 
Hyperplane crossbar, and references from a processor to memory in 
another node use the Hyperplane crossbar and CTI.



Chapter 1 15

Introduction
Globally shared memory (GSM)

GSM and memory latency
Processor references to local memory have a minimum amount of 
latency. In V2500 servers, references to memory located in other nodes 
experience some additional latency because of the additional hardware 
required to transfer data from the remote-node memory. Processors use 
instruction and data caches to reduce the number of memory accesses, 
thereby reducing traffic on the Hyperplane crossbar and CTI. 

V2500 servers use internal hardware that determines the access 
methods for each memory reference. The specific latency varies 
depending on the proximity of the referenced data. 

Figure 4 illustrates the various stages that are required for memory 
reference instructions. It depicts processing of either a load or store 
instruction. The processor decodes the instruction and generates the 
appropriate address. For a load instruction, if the address produces a hit 
in the processor cache, the data is transferred from the cache to the 
processor register and the instruction is completed. 

For a store instruction, the data is moved from the processor register to 
the cache. Otherwise, if the load or store address is not in cache (a cache 
miss), the processor must access either local or remote memory. In the 
case of V2500 server remote memory access, the CTI cache is used in 
addition to the processor caches. 

GSM allows for different memory allocation, sharing, and latency, 
without requiring different physical memories in a node. The system 
hardware automatically copies cache lines between nodes without 
software intervention. This translates to lower overhead for programs 
using GSM.

The chart in Figure 4 on page 16 illustrates how each type of memory 
reference experiences different latency, depending on the type.



16 Chapter 1 

Introduction
Globally shared memory (GSM)

 Figure 4 Hardware processing of a load or store instruction

decode instruction
and generate address

finish
instruction

finish
instruction

finish
instruction

finish
instruction

local
memory
returns

data

local
memory
returns

data

transmit
physical
address
over CTI

access
block on
remote
node

transmit
data block
over CTI

encache
data in

requesting
node

page
fault

processor
cache hit?

(a)

(b)

(c)

(c)

(c)

(c)

(a) 32-byte block

(b) 32-bytes to interconnect data cache with the
processor cache

(c) For loads: data is delivered from cache to 
the designated processor register

For stores: data is written into processor
cache from the designated processor register

Yes

local
access?

No

Yes No

remote
access?

Yes

No

CTI
cache hit?

Yes No



Chapter 1 17

Introduction
Globally shared memory (GSM)

GSM and cache coherence
With all processor references to memory (local and remote), copies of the 
accessed data are encached into either the instruction or data caches of 
each processor. If the data is from the remote memory of another node in 
the case of the V2500 servers, it is also copied into a CTI cache.

If the processor making the memory reference modifies the data and if 
another processor references that same data while a copy is still in the 
first processor cache, a condition exists whereby the data has become 
stale. The hardware continually works to ensure that the second 
processor does not use an outdated copy of the data from memory. The 
state that is achieved when both processors’ caches always have the 
latest value for the data is called cache coherence.

To maintain updated coherent copies, V2500 servers operate under the 
following rules:

• Any number of read encachements of a cache line can be made at a 
single time. The cache line can be read-shared in multiple caches.

• The cache line must be “owned” exclusively by the processor in order 
to write data (store) into a cache line. This implies that any other 
copies must be invalidated.

• Modified cache lines must be written back to memory from the cache 
before being overwritten.

Cache coherence protocols are different within a node than across the 
CTI. Cache coherence can result in additional memory latency, because 
memory control logic may have to force write-backs of modified data 
before allowing a cache line to be copied into a processor or CTI cache. 
Providing cache coherence in hardware, however, also provides benefits:

• It avoids the requirement for the programmer to explicitly flush the 
caches.

• It avoids unnecessary synchronizations.



18 Chapter 1 

Introduction
Globally shared memory (GSM)



Chapter 2 19

2 Physical address space

This chapter describes the V2500 server physical address space, 
including coherent memory, core logic, and CSR address regions.



20 Chapter 2 

Physical address space
Physical addresses

Physical addresses
The PA-8500 processor is an implementation of the 64-bit PA-RISC 2.0 
architecture. The processor translates all 32- and 64-bit, virtual and 
absolute addresses to 64-bit physical addresses. External to the PA-8500 
chip, however, only 40 bits of the 64-bit physical address are 
implemented.

The I/O system uses controllers that have fewer than 40 address bits. 
The mapping of I/O addresses to the corresponding 40-bit physical 
address space occurs in the SAGA I/O subsystem.

Processors have four addressable physical address regions. These are:

• Coherent memory space—Memory used for programs and data and 
available to every processor. This is the bulk of the memory space.

• Core logic space—The space occupied by a group of hardware 
registers that comprises the system core logic function and is 
accessible to all processors within the system.

• Local I/O space—The space occupied by the PCI buses and prefetch 
and context RAM CSRs associated with input and output devices 
within the system.

• Non-I/O CSR space—The space occupied by the group of all other 
CSRs within the system.

 Figure 5 shows how the address space is partitioned. 



Chapter 2 21

Physical address space
Physical addresses

 Figure 5 Physical address space partitioning

9/30/97
IOEXS110

0xFFFFFFFC

0xFFFFFFF8

0xEF FFFFFFFF

Local I/O space

Accelerated/nonaccelerated

Core logic space

Coherent memory space

Non-I/O CSR space

accesses

Unmapped space

Unmapped space

address space map
64-bit physical

address space map
40-bit physical

000 00000000x

0000000 00 Fx 0

10 Fx 000 000 00

8xF0 000 000 00

C0 Fx 000 000 00

FxF0 FFFFFFF F

0F0x FFFFFFFF

000 000 00

000 000 00

000 000 00

000 000 00

000 000 00

000 000 00

FFFFFF FF0x FFF FFF FF

FFF0x F1FFF

010000F 0x0

0x0 F0 000 00

0x0 00 000 0F

0x0 00 000 00 000 00 000



22 Chapter 2 

Physical address space
Physical addresses

The left side shows the PA-8500 64-bit address map, and the right shows 
the 40-bit external address map used by the system. The two regions 
labeled unmapped space exist in the 64-bit physical address space but do 
not exist for the 40-bit physical address space.

Node addressing
The physical memory within the node is byte-addressable and is accessed 
by either 32-bit or 64-bit absolute pointers. An absolute pointer is an 
unsigned integer whose value is the address of the most significant byte 
of the operand it designates. 

Addressable units (shown in Figure 6) are bytes, halfwords (two bytes), 
words (four bytes), and double-words (eight bytes). Bytes in memory and 
bits within larger units are always numbered from zero, starting with 
the most significant byte or bit, respectively.

All addressable units must be stored on their naturally aligned 
boundaries. A byte can be at any address, halfwords at any even address, 
words at any address that is a multiple of four, and double-words at any 
address that is a multiple of eight. If an unaligned virtual address 
accesses memory, an unaligned reference trap occurs.

 Figure 6 Physical memory addressing and storage units

Bytes

Halfwords

Words

Doublewords

0 1 2 3 4 5 6 7

0 2 4 6

0 4

630

310 6332

150 3116 4732 6348

70 158 2316 3124 3932 4740 5548 6356



Chapter 2 23

Physical address space
Physical addresses

Node CSR space is referenced using bytes, halfwords, words, and double 
words with a strong preference for double-word accesses. Internode CSR 
accesses are double-word in size. 

Node Identifiers
Each node of a multinode V2500 system has a unique node identifier 
(Node ID) of four bits. Figure 7 shows the Node ID format.

 Figure 7 Node identifier

The X, and Y subfields of the Node ID correspond to the two dimensions 
used for configuring multi-node topologies.

A multinode V2500 system may be configured in different ways to 
optimize the system for its particular use. The configurations allow 
nodes to be placed on the vertices of a 4x4 mesh.

X Y

0-1 2-3



24 Chapter 2 

Physical address space
Coherent memory space

Coherent memory space
As shown in Figure 5, coherent memory occupies the largest amount of 
physical address space. Figure 8 shows both the 64-bit and 40-bit 
physical address formats.

 Figure 8 Coherent memory space address formats

The field definitions are as follows:

• Node ID—Indicates the number of the node within the V2500 system.

• Upper Page—Selects a 1K block of pages (one of four) in a row.

• Row—Selects one of four rows of memory.

• Interleave Base—Specifies the first line of a span of interleaved 
memory lines

• Lower Page—Selects the page of memory. This field and the Upper 
Page field together select one of 8K pages.

• Page offset—Locates a line of memory within the selected page.

• Line offset—Locates the byte of memory within the selected line.

Node

0

0x000000

0

Node

5 35

Line

7
Lower

9 39

64-Bit Address Format

40-Bit Address Format

ID

ID
Upper
Page Page Offset

17

29 59

Line

31

Lower

33 63

Page Offset

41

Interleave
Base

Interleave
Base

R
o
w

R
o
w

Upper
Page

28

Page
Offset

52

Page
Offset

24

Unprotected Access - this bit must always be set to 0

Unprotected Access - this bit must always be set to 0



Chapter 2 25

Physical address space
Coherent memory space

Coherent memory layout
Memory physically resides on memory boards, with each board having a 
memory controller (MAC). Each board has eight memory buses with up 
to two memory DIMMs per bus. Each memory DIMM has up to two rows 
of SDRAM memory chips. Each memory board is associated with a pair 
of CTI rings (X and Y) for remote memory accesses. Coherent memory is 
further divided into memory lines 32-bytes in size. Memory lines are 
accessed using interleaving to minimize access latency to memory. 
Memory interleave spans from one to four even-and-odd memory board 
pairs. Memory interleave spans from one to four even-and-odd memory 
board pairs.

Memory boards are populated with memory DIMMs, up to 16 DIMMs 
per board. Each DIMM can have one or two rows of SDRAM chips, with 
each DIMM constructed with 16-Mbit, 64-Mbit or 128-Mbit. 

Multinode systems are only allowed to use certain combinations of 
memory boards, buses and banks. Each node must contain the same 
number of memory boards, and each board in the system must use the 
same interleave values for each row of memory.

Addressing a byte of memory
Figure 9 represents a fully populated system with 32 Gbytes of physical 
memory. It also shows how a byte of memory is addressed.

NOTE Figure 9 represents only the concept of how memory is configured in the 
system. It does not depict the physical implementation.

The eight memory boards (MB) are at the top of the drawing. Each board 
has 16 DIMMS and each DIMM is loaded with memory chips on both 
sides. 

Each memory board has eight buses comprised of two DIMMs in the 
vertical direction. Also, each bus has four rows that span buses in the 
horizontal direction. The top and bottom of each DIMM in the horizontal 
direction are part of two separate and adjacent rows. For example, Row 0 
consists of the memory mounted on the bottom of each of the four DIMMs 
located on the bottom of the memory board in the horizontal direction. If 
the memory chips were 64-Mbit SDRAMs, each board would contain two 
Gbytes of memory. 



26 Chapter 2 

Physical address space
Coherent memory space

A ring is associated with each memory board for a total of eight rings in 
both dimensions (X and Y).

 Figure 9 Conceptual layout of physical memory of a fully populated 
system

As shown in the physical address in Figure 8 and the conceptual memory 
layout in Figure 9, a byte of memory is accessed as follows:

1. The Interleave Base field specifies the board, bus and bank at which 
the first line of a span of interleaved memory lines resides. 
Subsequent memory lines are interleaved across the configured 
memory banks on a board first, then bus, and finally SDRAM bank 
basis..

2. The Row field specifies which of the four rows of SDRAMs the 
selected bank resides. The selected row spans all buses which the 
interleave covers.

3. The Upper Page and Lower Page fields select one of the 8K pages 
within a row.

Board 7
Board 6

Board 5
Board 4

Board 3
Board 2

Board 1
Board 0

2

Bus 0

4

6 X Ring 0
Y Ring 0

7

5

3

Rows 0/1

Rows 2/3

Rows 0/1

Rows 2/3
MAC

TAC

To Cross Bar

Bus 1



Chapter 2 27

Physical address space
Coherent memory space

4. The Page Offset field selects one of 128 memory lines in the page.

5. The Line Offset field selects the appropriate byte in the line.

Each row contains four Gbytes with 64-Mbit SDRAMs. Within a row, 256 
subpartitions exist, one for each memory board-bank combination (eight 
memory boards with 32 banks per board). Each subpartition is 64 
Mbytes in size.

Memory interleaving
Three bus interleave options exist. These are buses zero through three, 
buses four through seven, and all buses (zero through seven). These 
options exist to allow increased flexibility of memory configurations. The 
options allow buses zero through three to be populated independently 
from buses four through seven. If all buses of a row are populated 
identically, then the interleave can span all eight buses, otherwise the 
interleave will span the lower four buses independently from the upper 
four buses.

Figure 10 shows an example configuration where 16-Mbit DIMMs are 
populated in row zero, buses zero through three, and 64-Mbit DIMMs are 
populated in row zero, buses four through seven. With this configuration, 
there are two separate interleave spans. SDRAM types can not be mixed 
within an interleave span.



28 Chapter 2 

Physical address space
Coherent memory space

 Figure 10 Example Coherent Memory Space Layout

The most significant bit of the Interleaved Base field specifies whether 
an access is to buses zero through three or buses four through seven 
when a four bus interleave span is being referenced. The example in 
Figure 10 illustrates this by using Interleave Base field values of 0x80 
through 0xFF for the 64-Mbit SDRAM row spanning buses four through 
seven.

Memory interleaving distributes consecutive lines of memory across as 
many banks as possible. The V2500 server supports the following 
memory interleave options:

• One, two or four memory board pairs

• Four or eight buses 

• Two or four SDRAM banks

Node 0, 0x00 00000000

0x00 1FFFFFFF
Row with
16 Mbit SDRAMs

Upper Page 0,
Row 0,
Interleave Base 0x00 - 0x3F
(8 boards * 4 buses/board * 2 banks/bus)

Node 0, 0x00 40000000

0x00 7FFFFFFF

Upper Page 0,
Row 0,
Interleave Base 0x80 - 0xFF
(8 boards * 4 buses/board * 4 banks/bus)

Node 0, 0x02 40000000

0x02 7FFFFFFF

Row with
64 Mbit SDRAMs

Upper Page 1,
Row 0,
Interleave Base 0x80 - 0xFF
(8 boards * 4 buses/board * 4 banks/bus)

0x07 FFFFFFFF



Chapter 2 29

Physical address space
Coherent memory space

Memory interleave generation
Coherent memory (and thus CTI ring) interleaving is performed on all 
memory references. A memory board, MAC, and CTI rings (X and Y) are 
physically associated. To optimize memory bandwidth, memory boards 
must be installed on the MACs in pairs, even and odd. There is a 
maximum of four even-odd pairs of memory boards in a node.

A memory board has either four or eight memory buses with DIMMs 
installed. The four memory bus configuration is a reduced bandwidth 
configuration.

Figure 11 shows the mechanism for interleave. The 40-bit physical 
address provides the basis from which the memory blocks and memory 
bank are selected. 

The System Configuration CSR (see the section “System Configuration 
register” on page 52) specifies the number of boards the interleave is to 
span (Memory Board Interleave Span field), whether four or eight bus 
interleaving is to be used on a per row basis (Memory Bus Interleave 
Span field), and whether two or four SDRAM bank interleave is to be 
used on a per DIMM basis (Memory Bank Interleave Span field).

The Memory Row Configuration CSR verifies that all memory references 
are to memory which physically exists.

The MAC online field of the System Configuration register checks that a 
valid physical memory board value is generated for a memory address. 
An invalid memory board value results in an HPMC.



30 Chapter 2 

Physical address space
Coherent memory space

 Figure 11 40-bit coherent memory address generation

Force node ID function
In multinode systems, the Force Node ID function allows node memory 
to be programmed in ranges as shown in Table 1. The default value is 
128 Mbytes.

88

Memory
Board

Interleave

Memory

3

3 3

Upper

11

Lower

5

Line

Direct from address

4

Node ID

2

SDRAM 

Node LineLower
ID

Upper
Page Page Offset

Memory
Board
Map

Force
Node ID
Function

Memory
Row
Maps

Memory
Bus

Interleave

Memory
Bank

Interleave

Board
Memory

2

Bank
Memory

3

Bus Page Page Offset

0 5 357 9 3917

Interleave
Base

Interleave
IndexInterleave Base

R
o
w

Row

Page
Offset

28

7

Page
Offset



Chapter 2 31

Physical address space
Coherent memory space

Table 1 Force node ID programmable ranges

It allows the operating system to be loaded into each node without 
having to specify the Node ID.

The PAC verifies that the processor has issued a request within the 
previously specified address range and forces the local node ID into the 
address. When a processor performs coherency operations in this address 
range, the PAC forces a node ID of zero into the address prior to issuing 
the operation to one of the four processors.

The PAC generates the node ID portion of an address by selecting from 
either the Node ID field of the 40-bit PA-8500 physical address or the 
Node ID field of the System Configuration CSR register. The System 
Configuration register Node ID field is selected when the System 
Configuration register Force Node ID Region Size field is non-zero and 
the Upper Page, Row, and four, five or six most significant bits of 
Interleave Base field are zero.

The original node ID is checked to be the value zero prior to forcing it to 
the value of the local node. The check ensures cache coherency is 
maintained. The memory blocks checked depend on the Force ID setting 
as shown in Table 2.

Table 2 Force node ID memory coherence check settings

If a processor accesses these memory blocks and the original node ID is 
not zero, a high-priority machine check trap occurs.

Memory range Memory size

0 - 0x1FFFFF 32 Mbyte

0 - 0x3FFFFF 64 Mbyte

0 - 0x7FFFFF 128 Mbyte

Memory size Memory blocks checked

32 Mbyes 0, 1

64 Mbytes 0 - 3

128 Mbytes 0 - 7



32 Chapter 2 

Physical address space
Coherent memory space

Memory board, bus and bank index selection
The Interleave Base field specifies the starting memory line bank within 
an interleaved span of memory banks. Increasing memory lines rotate 
through the span of memory banks on a memory board first, then a bus, 
and finally an SDRAM bank basis. Therefore, once the Interleave Base 
field has defined the starting memory bank, the Page Offset field bits 
specifies where in the rotation of spanning banks each memory line 
resides.

The method used to select the board, bus, and SDRAM bank base values 
from the Interleave Base field minimizes the number of holes in memory 
by using the physically contiguous least significant bits of the field. This 
results in the location of the memory board, bus, and bank index base 
values within the Interleave Base field being dependent on the 
configuration of the row being accessed. Table 3 defines the location of 
the base values for the various memory row configurations. The 
abbreviation IB is used to indicate the Interleave Base field of the 
physical address. The bits of the Interleave Base field which are not 
selected must be checked to have the value zero.

Table 3 Memory interleave base selection

Interleave Configuration Base Selection

Memory Board 
Even/Odd Pairs

Memory 
Buses

Memory 
Banks Bank Base Bus Base Board Base

1 4 2
4

IB<4>
IB<3:4>

IB<0, 5:6> IB<7>

8 2
4

IB<3>
IB<2:3>

IB<4:6>

2 4 2
4

IB<3>
IB<2:3>

IB<0, 4:5> IB<6:7>

8 2
4

IB<2>
IB<1:2>

IB<3:5>

4 4 2
4

IB<2>
IB<1:2>

IB<0, 3:4> IB<5:7>

8 2
4

IB<1>
IB<0:1>

IB<2:4>



Chapter 2 33

Physical address space
Coherent memory space

The board, bus, and SDRAM bank indexes are obtained from the Page 
Offset field and least significant bit of the Lower Page field. The indexes 
are selected in a similar manner as the interleave base values. The index 
values are selected from the least significant bits of the field in order to 
maximize interleave span for a region of memory. Table 4 defines the 
location of the index values for the various memory configurations. The 
abbreviation PO is used to indicate the Page Offset field of the physical 
address, and LP is used to indicate the Lower Page field

Table 4 Memory interleave index selection

Memory board interleave pattern
The memory board generated for interleave cases of one, two, and four 
board pairs are given in Table 5, Table 6, and Table 7, respectively. The 
tables show the memory board number with respect to the board base 
and board index values

Interleave Configuration Base Selection

Memory Board 
Even/Odd Pairs

Memory 
Buses

Memory 
Banks Bank Base Bus Base Board Base

1 4 2
4

PO<3>
PO<2:3>

PO<4:5> PO<6>

8 2
4

PO<2>
PO<1:2>

PO<3:5>

2 4 2
4

PO<2>
PO<1:2>

PO<3:4> PO<5:6>

8 2
4

PO<1>
PO<0:1>

PO<2:4>

4 4 2
4

PO<1>
PO<0:1>

PO<2:3> PO<4:6>

8 2
4

PO<0>
LP<10>,PO<0>

PO<1:3>



34 Chapter 2 

Physical address space
Coherent memory space

Table 5 Memory board interleave pattern for one board pair

Table 6 Memory board interleave pattern for two board pairs

Table 7 Memory board interleave pattern for four board pairs

Board base
Board Index

0 1

0 0 1

1 1 0

Board base
Board Index

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Board Base
Board Index

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6



Chapter 2 35

Physical address space
Coherent memory space

Memory bus interleave pattern
The memory bus generated for interleave cases of four and eight buses 
are given in Table 8 and Table 9, respectively. The tables show the 
interleaved memory bus for each bus base and bus index value. When 
interleaving across four buses, Bus Base values of 0 to 3 interleave on 
the lower buses and Bus Base values of 4 to 7 interleave on the upper 
buses.

Table 8 Memory bus interleave pattern for four buses

Table 9 Memory bus interleave pattern for eight buses

Bus 
Base

Bus Index

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

4 4 5 6 7

5 5 6 7 4

6 6 7 4 5

7 7 4 5 6

Bus Base
Bus Index

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3



36 Chapter 2 

Physical address space
Coherent memory space

Memory bank interleave pattern
Memory configurations allow for either two or four memory banks per 
SDRAM. Sixteen-Mbit SDRAMs have two internal banks, all other 
supported SDRAM sizes have at least four internal memory banks.

The memory bank generated for interleave cases of two and four banks is 
given in Table 10 and Table 11, respectively. The tables show the 
interleave memory bank generated for each bank base and index value.

Table 10 Memory bank interleave pattern for two banks

Table 11 Memory bank interleave pattern for four banks

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

Bus Base
Bus Index

0 1 2 3 4 5 6 7

Bank Base
Bank Index

0 1

0 0 1

1 1 0

Bank Base
Bank Index

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2



Chapter 2 37

Physical address space
Coherent memory space

Memory board, bus bank interleave pattern
Memory lines are interleaved across the largest power-of-two memory 
banks that exist in each memory row. An V2500 system has up to eight 
memory boards, up to eight buses per memory board, and up to four 
SDRAM banks per bus, resulting in a maximum of 256-way memory line 
interleaving. The minimally configured system has two memory boards 
and uses only four memory buses per board and two SDRAM banks per 
bus for 16-way interleaving. Figure 12 shows the interleave pattern for a 
system with the minimum memory interleave.



38 Chapter 2 

Physical address space
Coherent memory space

 Figure 12 Example memory line interleave pattern

0

IB0
L0

IB8
L0

IB0
L2

IB10
L0

IB14
L0

IB12
L0

IB0
L1

IB9
L0

IB11
L0

IB15
L0

IB13
L0

Memory
Board
Bus
Bank

IB8
L1

IB1
L0

IB11
L1

IB8
L2

IB2
L0

IB3
L1

IB4
L0

IB6
L0

IB3
L0

IB5
L0

IB7
L0

IB9
L1

IB1
L1

IB13
L1

IB5
L1

IB15
L1

IB7
L1

IB10
L1

IB2
L1

IB12
L1

IB4
L1

IB14
L1

IB6
L1

IB15
L2

IB9
L2

IB13
L2

IB11
L2

IB7
L2

IB1
L2

IB3
L2

IB5
L2

IB12
L2

IB10
L2

IB2
L2

IB4
L2

IB14
L2

IB6
L2

IB0
L3

IB15
L3

IB7
L3

IB9
L3

IB1
L3

IB11
L3

IB3
L3

IB13
L3

IB5
L3

IB14
L3

IB6
L3

IB12
L3

IB4
L3

IB10
L3

IB2
L3

IB8
L3

IB0
L4

IB8
L4

IB0
L6

IB10
L4

IB11
L5

IB8
L6

IB2
L4

IB3
L5

IB9
L5

IB1
L5

IB14
L6

IB6
L6

IB15
L7

IB7
L7

IB9
L7

IB1
L7

IB14
L4

IB12
L4

IB4
L4

IB6
L4

IB13
L5

IB5
L5

IB15
L5

IB7
L5

IB12
L6

IB10
L6

IB2
L6

IB4
L6

IB11
L7

IB3
L7

IB13
L7

IB5
L7

IB15
L4

IB13
L4

IB5
L4

IB7
L4

IB12
L5

IB4
L5

IB14
L5

IB6
L5

IB13
L6

IB11
L6

IB3
L6

IB5
L6

IB12
L7

IB4
L7

IB10
L7

IB2
L7

IB0
L5

IB9
L4

IB11
L4

IB8
L5

IB1
L4

IB3
L4

IB10
L5

IB2
L5

IB15
L6

IB9
L6

IB7
L6

IB1
L6

IB0
L7

IB14
L7

IB6
L7

IB8
L7

IB0
L8

IB8
L8

IB9
L9

IB1
L9

IB14
L10

IB6
L10

IB15
L11

IB7
L11

IB12
L12

IB4
L12

IB13
L13

IB5
L13

IB10
L14

IB2
L14

IB11
L15

IB3
L15

IB0
L10

IB10
L8

IB11
L9

IB8
L10

IB2
L8

IB3
L9

IB9
L11

IB1
L11

IB14
L12

IB6
L12

IB15
L13

IB7
L13

IB12
L14

IB4
L14

IB13
L15

IB5
L15

IB12
L8

IB4
L8

IB13
L9

IB5
L9

IB10
L10

IB2
L10

IB11
L11

IB3
L11

IB0
L12

IB8
L12

IB9
L13

IB1
L13

IB14
L14

IB6
L14

IB15
L15

IB7
L15

IB14
L8

IB6
L8

IB15
L9

IB7
L9

IB12
L10

IB4
L10

IB13
L11

IB5
L11

IB0
L14

IB10
L12

IB11
L13

IB8
L14

IB2
L12

IB3
L13

IB9
L15

IB1
L15

IB0
L9

IB9
L8

IB8
L9

IB1
L8

IB15
L10

IB7
L10

IB14
L11

IB6
L11

IB13
L12

IB5
L12

IB12
L13

IB4
L13

IB11
L14

IB3
L14

IB10
L15

IB2
L15

IB11
L8

IB3
L8

IB10
L9

IB2
L9

IB9
L10

IB1
L10

IB0
L11

IB8
L11

IB15
L12

IB7
L12

IB14
L13

IB6
L13

IB13
L14

IB5
L14

IB12
L15

IB4
L15

IB15
L8

IB7
L8

IB14
L9

IB6
L9

IB13
L10

IB5
L10

IB12
L11

IB4
L11

IB11
L12

IB3
L12

IB10
L13

IB2
L13

IB9
L14

IB1
L14

IB0
L15

IB8
L15

IB13
L8

IB5
L8

IB12
L9

IB4
L9

IB11
L10

IB3
L10

IB10
L11

IB2
L11

IB0
L13

IB9
L12

IB8
L13

IB1
L12

IB15
L14

IB7
L14

IB14
L15

IB6
L15

0 1 2 3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 2 3
1

IB0
L16

IB8
L16

IB10
L16

IB14
L16

IB12
L16

IB9
L16

IB11
L16

IB15
L16

IB13
L16

IB1
L16

IB2
L16

IB4
L16

IB6
L16

IB3
L16

IB5
L16

IB7
L16

IB10
L126

IB2
L126

IB11
L127

IB3
L127

IB12
L126

IB4
L126

IB13
L127

IB5
L127

IB14
L126

IB6
L126

IB15
L127

IB7
L127

IB0
L126

IB8
L126

IB9
L127

IB1
L127

IB11
L126

IB3
L126

IB10
L127

IB2
L127

IB13
L126

IB5
L126

IB12
L127

IB4
L127

IB9
L126

IB1
L126

IB0
L127

IB8
L127

IB15
L126

IB7
L126

IB14
L127

IB6
L127

Ascending
Memory
Lines



Chapter 2 39

Physical address space
Coherent memory space

Notice the pattern shown is for 4096-byte page of memory (128 memory 
lines per page). The memory configuration is two memory boards, four 
buses, and two SDRAM banks

CTI cache layout
In multinode systems, each node has a CTI cache to decrease the access 
latency of frequently accessed remote-node coherent memory lines. The 
size of the CTI cache is configurable from two Mbytes to 16 Gbytes. For 
single node systems, the CTI cache may be disabled. The architecture 
allows different sizes of CTI cache to be used on different nodes.

The ten bits shown in Figure 13 can be forced individually to configure 
the size and location of the CTI cache. The size of the CTI cache is 
determined by the number of bits forced to a value. The location of the 
CTI cache is determined by the specific value which the bits are forced. 
Table 12 shows the number of bits which must be forced for each CTI 
cache size. Note that bits of the Upper Page field must be forced to zero 
when the row(s) of memory in which the CTI cache resides are installed 
with SDRAMS that do not require those bits.

 Figure 13 CTI cache bits within the 40-bit coherent memory address 
format

Bits forced for CTI cache
access

0

Node

5 35

Line

7

Lower

9 39

ID
Upper
Page Page Offset

17

Interleave
Base

R
o
w

6-bits

28

Page
Offset

4-bits



40 Chapter 2 

Physical address space
Coherent memory space

Table 12 CTI cache size options

All nodes in a multinode complex must have identical memory board, bus 
and bank sizes. Failing this, all nodes must be in one of the 
configurations listed in Table 13.

Table 13 Allowed nonmatched multinode configurations

Number of 
bits forced

Size of CTI Cache (in Mbytes)

Banks Cache is Interleaved across

16 
Banks

32 
Banks

64 
Banks

128 
Banks

256 
Banks

1 1024 2048 4096 8192 16384

2 512 1024 2048 4096 8192

3 256 512 1024 2048 4096

4 128 256 512 1024 2048

5 64 128 256 512 1024

6 32 64 128 256 512

7 16 32 64 128 256

8 8 16 32 64 128

9 4 8 16 32 64

10 2 4 8 16 32

Boards Buses Banks

8 8 4

8 8 2

8 4 4

8 4 2

4 8 4



Chapter 2 41

Physical address space
Coherent memory space

NOTE The CTI cache must be programmed to reside in a row (or rows) that 
have all eight buses filled. The interleave does not have to span the eight 
buses, but there must be memory present on all eight buses for the rows 
where the CTI cache resides.

Figure 14 illustrates the layout for a CTI cache with the Force Mask set 
to 0x3FF and the Force Value set to 0x27F. That is, the Upper Page field 
forced to 0x2, the Row field forced to 0x1, and the most significant 6-bits 
of the Lower Page field forced to 0x3F. Notice that the configuration for 
this example assumes memory row one contains the maximum 
configurable number of banks (256).

 Figure 14 Coherent memory space layout with CTI cache

4 8 2

4 4 4

2 8 4

Boards Buses Banks

Upper Page = 0x2
Coherent Memory

CTI Cache

0x04 80000000 - 0x04 807DFFFF

0x04 807E0000 - 0x04 807FFFFF
Upper Page = 0x2

Coherent Memory

CTI Cache

0x04 80800000 - 0x04 80FDFFFF

0x04 80FE0000 - 0x04 80FFFFFF

Row = 0x1
Interleave Base = 0x0

Row = 0x1
Interleave Base = 0x1

Upper Page = 0x2
Coherent Memory

CTI Cache

0x04 FF800000 - 0x04 FFFDFFFF

0x04 FFFE0000 - 0x04 FFFFFFFF

Row = 0x1
Interleave Base = 0xFF



42 Chapter 2 

Physical address space
Coherent memory space

As shown in Figure 14, the CTI cache occupies the upper 128 Kbytes of 
memory of each memory bank across which it is interleaved. In the 
example, the interleaving is 256-way so that the aggregate CTI cache 
size is 32 Mbytes (256-way, 128 Kbytes per bank). All other rows of 
memory would be available for coherent memory access.

Nonexistent memory
All coherent memory accesses are checked to verify that the address of 
the request points to existing physical memory. Accesses to nonexistent 
memory or to the address space where a CTI cache exists will result in 
an error response. The only exception is accesses to the CTI cache by a 
cache flush entry operation or a diagnostic memory operation.

The specific checks made are:

• The appropriate MAC online bit is set in the source PAC System 
Configuration register.

• The Exist bit is set for the appropriate DIMM row in the MAC 
Memory Row Configuration register.

• The request is to the appropriate region of memory.



Chapter 2 43

Physical address space
Core logic space

Core logic space
Core logic space is used to access core logic hardware (EEPROM, SRAM, 
and core logic CSRs) and is only accessible within the system. The 
processor has a fixed decode for this space. Bits 8 through 15 of the 40-bit 
physical address are ignored for address decoding.

 Figure 15 40-bit core logic space format

Core logic space is further partitioned for EEPROM, SRAM, and CSR 
Space. Table 14 shows the address ranges for each of these partitions.

Table 14 Core logic space partitions

Processor-dependent code (PDC) space is accessed using the core logic 
bus attached to each processor. A PDC space access is not routed through 
the Hyperplane crossbar.

0

F0

16

Offset (24-bits, 16 Mbyte)

8 39

XX

Partition Core logic space offset range

EEPROM 0x000000 - 0x7FFFFF

SRAM 0x800000 - 0xBFFFFF

CSR 0xC00000 - 0xFFFFFF



44 Chapter 2 

Physical address space
Local I/O space

Local I/O space
A processor can directly access all I/O space in the system using the I/O 
controllers.

Figure 16 shows the format for both accelerated and non-accelerated 
Local I/O Space accesses. Non-accelerated accesses prevent future write 
access from being issued until the current one has completed (i.e. one 
write access outstanding at a time). Accelerated accesses do not prohibit 
write access overlap, resulting in pipelined write accesses.

 Figure 16 40-bit local I/O space format

The bits of the local I/O space address are as follows:

• DXbr field (bits 6:9)—Specifies to which of the eight Hyperplane 
crossbar ports (connected to the PAC chip) the request is to be routed.

• Offset field (bits 33:39)—Specifies the offset into I/O space. In this 
space, all PCI configuration, I/O CSRs and I/O memory space must be 
allocated. See the section “Host-to-PCI address translation” on 
page 122 for more information.

The PAC of the source processor checks the value of the DXbr field 
against the appropriate bit of the Processor Agent online field in the 
System Configuration register of the source processor to verify that the 
destination processor agent is online. The PAC of the destination 
processor checks to see if the SAGA online bit in its Chip Configuration 
register is set. If either of the online bits are not set, the request will fail 
with a high-priority machine check trap. See Figure 16.

0

F

9

Offset (2 Gbyte)

6

DXbr

4

01

39

0

F

9

Offset (2 Gbyte)

6

DXbr

4

10

39

Accelerated Access

Non-accelerated Access



Chapter 2 45

Physical address space
Non-I/O CSR space

Non-I/O CSR space
Non-I/O CSRs reside within the processors, PACs, MACs, TACs, and 
SAGAs.

 Figure 17 Non-I/O CSR space format

The bits and fields of the CSR space address are as follows:

• Local node access bit (bit 6)—Indicates that the access is to the local 
node. When the Local Node Access bit is set, the Node ID field is 
ignored for purposes of intranode routing.

• Local PAC access bit (bit 14)—Indicates that the access is to the local 
PAC space within the associated PAC chip. When this bit is asserted, 
the Node ID, SXbr, and DXbr fields are ignored and specific bits of the 
Page field are forced to the particular processor issuing the request.

• SXbr field (bits 15:17)—Routes a packet to the appropriate port on the 
Hyperplane crossbar on the source node. This field is ignored for local node 
accesses, but is needed to allow systems that do not have full connectivity of all 
rings to send requests to remote nodes.

• DXbr field (bits 18:19)—Specifies which of the eight cross bar ports 
the request is to be routed on the destination node. 

• Chip field (bits 21:23)—Routes the packet to the appropriate chip at a 
crossbar port. Table 15 shows the values of the Chip field.

• Page field (bits 28:36)—Separates groups of CSRs into similar usage 
spaces.

0

F

24

Page

15

SXbr

4

11

7

Node ID

1=Local Node access (Ignore Node ID field)

1=Local PAC Access

28

Register

37

000

21

Chip

18

DXbr

391412

00



46 Chapter 2 

Physical address space
Non-I/O CSR space

Table 15 Chip Field Values

Chip Field Value Destination Chip for Packet

0 PAC

1 I/O ASIC

2 PCXW 0 (Runway Bus 0)

3 PCXW 1 (Runway Bus 1)

4 MAC

5 TAC

6 PCXW 2 (Runway Bus 0)

7 PCXW 3 (Runway Bus 1)



Chapter 2 47

Physical address space
Accelerated CSR access

Accelerated CSR access
Bits in the 40-bit physical address are used to determine whether a CSR 
write access should be issued as Non-Accelerated or Accelerated.

Non-accelerated accesses prevent future write accesses from being 
issued until the current one has completed (i.e. one write access 
outstanding at a time). Accelerated accesses do not prohibit write access 
overlap, resulting in pipelined write accesses. Table 16 shows the 40-bit 
physical address ranges that control the access method.

Table 16 Accelerated vs. Non-Accelerated Addresses

40-Bit Physical Address Local Node 
Access

Accelerated 
Access

0xFC xxxx xxxx
0xFD xxxx xxxx

No No

0xFE xxxx xxxx Yes Yes

0xFF xxxx xxxx Yes No



48 Chapter 2 

Physical address space
CSR access

CSR access
There are three packet routing methods used for accessing CSRs:

• Runway-local

• PAC-local

• Node-local

• Global

The 40-bit physical address determines which access method will be 
used.

Runway-local access
Runway-local accesses reference CSRs that reside in the processor 
issuing the request. These accesses are sent out and brought back into 
the requesting processor on its Runway bus. The PAC, which is also 
connected to the Runway bus, ignores the request. Table 17 identifies 
which addresses are used for runway-local accesses.

Table 17 Runway-local access addresses

NOTE The Runway On-line bits of the PAC are not checked for runway-local 
accesses.

Address Description

0xFFFFFA0xxx Directed processor CSR address
first processor on Runway Bus

0xFFFFFA6xxx Directed processor CSR address for second 
processor on Runway Bus

0xFFFFFCxxxx Broadcast processor CSR address

0xFFFFFDxxxx Broadcast processor CSR address

0xFFFFFExxxx Broadcast processor CSR address

0xFFFFFFxxxx Broadcast processor CSR address



Chapter 2 49

Physical address space
CSR access

PAC-local access
PAC-local accesses are accesses to CSRs that reside in the PAC 
physically connected to the processor that is issuing the request. These 
accesses are identified as PAC-local and are not sent to the Hyperplane 
crossbar. Table 19 shows which fields must be specified for PAC-local 
addressing.

Table 18 Field values for PAC-local access

This method accesses processor-specific CSRs that reside in an PAC. All 
processor-specific PAC CSRs are identified as having bit 2 of the Page 
field set. When the PAC detects a processor-specific page, it forces bits of 
the Page field as appropriate for the processor issuing the request.

NOTE The PAC online field of the System Configuration CSR is not checked for 
PAC-local accesses.

Field Value

Bits 0:5 0x3F

Local Node X

Node ID X

Local PAC 1

SXbr X

DXbr X

Chip X



50 Chapter 2 

Physical address space
CSR access

Node-local accesses
Node-local accesses are used to access CSRs that reside in the local node. 
These accesses are sent to the crossbar even if the access is to the local 
PAC.

If the access is to a MAC or TAC, the DXbr field routes the request to the 
proper MAC. The MAC On-line field of the source PAC System 
Configuration CSR is checked to ensure the destination MAC is on-line. 
A high-priority machine check trap will result if the destination MAC is 
not on-line.

If the access is to an PAC, SAGA, or processor, the request is first routed 
to the MAC specified by the Intermediate MAC field of the PAC 
Configuration CSR. The PAC Online field of the source PAC System 
Configuration CSR is checked to ensure the destination PAC is online. If 
the destination MAC is not online, an HPMC results.

Table 19 Field specifications for system access

Remote access
Remote accesses are accesses to CSRs that reside in any node of 
multinode systems. All local node CSRs and many remote node CSRs can 
be accessed with this method. These accesses are sent to the crossbar, 
even if the access is to the local PAC. The request is sent to the local node 
MAC specified by the SXbr field. The local node MAC checks if the Node 
ID is for the local node. 

Field Specification

Bits 0:5 0x3F

Local node 1

Node ID X

Local PAC 0

SXbr X

DXbr Destination Hyperplane crossbar port

Chip Destination chip



Chapter 2 51

Physical address space
CSR access

If the request is for the local node, the local node MAC uses the DXbr and 
Chip fields to determine the local node destination of the request. The 
original PAC checks that the destination PAC or MAC is online using the 
PAC Online and MAC Online fields of the System Configuration register. 
Only the MAC specified by the SXbr field is accessible using the remote 
access method.

If the Node ID of the access does not match the local node ID, the request 
is sent to the MAC of the remote node using a CTI ring. The remote node 
MAC routes the request using the DXbr and Chip fields to the 
appropriate remote node destination. The TAC of the remote node checks 
that the destination chip is to (1) an online PAC, (2) a processor on an 
online PAC, or (3) the MAC on the same CTI ring as the TAC.

If the access is to a MAC or TAC (on a local or remote node), the SXbr 
and DXbr fields must have the same value. Table 20 specifies the fields 
for remote addressing:

Table 20 Field specifications for remote access

Access to nonexistent CSRs
It is possible to send a request to a CSR in a controller that is not online. 
Online bits are implemented for processors, PACs, MACs, and SAGAs. 
Memory uses existence bits.

Accesses to nonexistent CSRs terminate in one of the following ways: 

Field Specification

Bits 0:5 0x3F

Local Node 0

Node ID Destination Node ID

Local PAC 0

SXbr CTI ring to be used for routing

DXbr Destination crossbar port

Chip Destination chip



52 Chapter 2 

Physical address space
CSR access

• Requests with a response to a CSR covered by an online bit result in 
an error response being returned to the processor. The processor 
issues a high-priority machine check interrupt.

• Requests without a response to a CSR covered by an online bit result 
in a time-out when the next synchronization operation is performed. 
The synchronization time-out results in a high-priority machine 
check interrupt.

• Requests with a response to a CSR not covered by an online bit result 
in a time-out. The request time-out results in a high-priority machine 
check interrupt.

• Requests without a response to a CSR not covered by an online bit 
result in a time-out when the next synchronization operation is 
performed. The synchronization time-out results in a high-priority 
machine check interrupt.

System Configuration register
The System Configuration register specifies system configuration 
parameters. The register is replicated on the PAC, MAC, and TAC, but 
only fields used by each controller type are implemented for a particular 
controller. Therefore, not all fields exist on a PAC, MAC, or TAC.

Figure 18 shows the generic format of the register. All fields are written 
to by a write access and read from by a read access. All fields are 
unaffected by reset unless specified.



Chapter 2 53

Physical address space
CSR access

 Figure 18 System Configuration register definition

The bits and fields of the System Configuration Register are defined as 
follows:

• PAC online field (bits 0:7)—Specifies which PACs are accessible. 
These bits are used to validate all I/O space and local CSR Space 
requests. The field is cleared by reset.

• MAC online field (bits 8:15)—Specifies which MAC ASICs are 
accessible. These bits are used to validate all Coherent Memory Space 
and CSR Space requests. The field is cleared by reset.

• MAC exist field (bits 16:23)—Indicates which MAC ASICs exist in the 
system. These bits are used by software to initialize the MAC online 
field. The field is initialized by reset. A CSR write is ignored.

• Memory Bus Interleave Span field (bits 24:27)—Indicates whether 
bus interleaving should span four or eight buses. An independent 
enable bit is provided for each of the four rows. Table 21 defines the 
association of enable bit versus memory row. A value of zero in the bit 
position specifies four bus interleave and a value one specifies eight.

0 61
Definition

58
Node

ID

Memory Board Interleave Span
Force Node ID Region Size

High Availability Enable

Memory Bank Interleave Span
Memory Bus Interleave Span

PAC
On-line

MAC
On-line

MAC
Exist

8 16 24
VI

Mask

28 35

Memory Board Routing
Column Oriented ECCN

Multi-node ECCN



54 Chapter 2 

Physical address space
CSR access

Table 21 Memory Bus Interleave Span bit positions

• Memory Bank Interleave Span field (bits 28:31)—Indicates whether 
bank interleaving should span two or four banks. An independent 
enable bit is provided per memory DIMM for the Upper and Lower 
buses. Table 22 defines the association of enable bit versus memory 
DIMM. A value of zero in the bit position specifies two bank 
interleave and a value one specifies four.

Table 22 Memory Bank Interleave Span bit positions

• VI mask field (bits 35:41)—Specifies the Virtual Index bits generated 
by the processor that are masked (forced to zero). 

Table 23 VI Mask field valuess

Bit position Row to which enable applies

24 Row 0

25 Row 1

26 Row 2

27 Row 3

Bit position DIMM to which enable applies

28 Rows 0 and 1, Lower Buses (0-3)

29 Rows 0 and 1, Upper Buses (4-7)

30 Rows 2 and 3, Lower Buses (0-3)

31 Rows 2 and 3, Upper Buses (4-7)

Field value PA-8500 Data Cache Size

0x00 32 K Byte

0x01 64 K Byte

0x03 128 K Byte

0x07 256 K Byte



Chapter 2 55

Physical address space
CSR access

• Memory board routing bit (bit 46)—Selects the coherent memory 
request to the memory board routing function. When the bit is zero, 
even coherent memory requests are routed to even memory boards 
and odd requests to odd boards. When the bit is one, even coherent 
memory requests are routed to odd memory boards and odd requests 
to even boards.

• Column oriented ECCN, Multinode ECCN, Enable high availability 
checks bits (bits 48, 49, 50)—Control the high availability modes. 
These bits are currently not used in V2500 servers.

• Memory board interleave field (bits 54:55)—Specifies the number of 
even/odd memory board pairs which normal interleaving should span. 
Table 24 shows the possible values for the field.

Table 24 Memory board interleave Span field values

• Force Node ID Region Size field (bit 56:57)—Indicates whether a region of 
memory that can be accessed by specifying a node zero address is enabled. 
Table 25 shows the possible values for the field

0x0F 512 K Byte

0x1F 1 Mega Byte

0x3F 2 Mega Byte

0x7F 4 Mega Byte

Field value PA-8500 Data Cache Size

Field value Interleave span

0 One Memory Board Pair (two MACS)

1 Two Memory Board Pairs (four MACS)

2 Reserved

3 Four Memory Board Pairs (eight MACS)



56 Chapter 2 

Physical address space
CSR access

Table 25 Force Node Id Region Size field values

• Node ID field (bits 58:61)—Specifies the node identification number 
for the node.

PAC Configuration register
Each PAC has one Processor Agent Configuration register which 
specifies information about the PAC. Each PAC can be configured 
differently.

Figure 19 shows the format of the PAC Configuration register. All fields 
of the register are read by a read access. 

 Figure 19 PAC Configuration register definition

The bits and fields in the PAC Configuration register are defined as 
follows:

• PAC part number field (bits 0:15)—Specifies the part number for the 
PAC. A write is ignored and a read returns the hard-wired value.

Field value Region Size

0 Disabled

1 32 Mbytes

2 64 Mbytes

3 128 Mbytes

0 63

rsvd

61

PAC
ID

58

Inter.
MAC

48

PCI Interface ASIC On-line

PCI Interface ASIC Installed

PCI Interface ASIC Width

PAC
Version

16

PAC
Part Number

20

Subcomplex Mask

4032



Chapter 2 57

Physical address space
CSR access

• PAC version field (bits 16:19)—Specifies the version for the PAC. A 
write is ignored and a read returns the hard-wired value.

• Subcomplex Mask field (bits 32:39)—Specifies which PACs within the 
node belong to the same subcomplex as the PAC associated with the 
configuration register. Each bit in the mask when set specifies a PAC 
which should receive a broadcasted transaction. A PAC will propagate 
a received broadcasted transaction to each of its processors.

• PCI Interface ASIC online bit (bit 55)—Set by software to allow CSR 
accesses to the SAGA. The bit is cleared by reset.

• PCI Interface ASIC installed bit (bit 56)—Specifies whether an SAGA 
ASIC is connected to the PAC. A value of one indicates an SAGA is 
installed. This bit is read only.

• PCI Interface ASIC width bit (bit 57)—Specifies whether a 32-bit or 
16-bit interface exists between the SAGA and PACs. A value of one 
indicates a 32-bit interface, a value of zero indicates 16-bit. This bit is 
read only.

• Intermediate MAC field (bits 58:60)—Specifies the physical MAC 
used by the PAC when routing a packet to another PAC. Any MAC 
installed in the system can be specified and packet routing will 
function properly.

• PAC identification field (bits 61:63)—Specifies the identification 
number for the physical PAC. The value is obtained from pins on the 
PAC. A write to this field is ignored and a read access will return the 
value of the pins.

PAC Processor Configuration register
There are four CSRs of this format on each PAC that are used to specify 
information which may be different for each processor attached to the 
PAC.

 Figure 20 PAC Processor Configuration register definition

0 62-63
reserved

58
Proc
ID

Runway On-line

55
Imp
Dep

Processor Installed



58 Chapter 2 

Physical address space
CSR access

The bits and fields in the PAC Processor Configuration register are 
defined as follows:

• Implementation Dependent field (bits 55:57)—Used by low level 
implementation dependent software. The value in this field should 
not be modified during normal operation.

• Runway On-line bit (bit 58)—Indicates that the runway bus to which 
the processor attached is assessable. The PAC checks that this bit is 
set prior to issuing any CSR operation to the processor or allowing its 
requests to be issued to the rest of the system. Reset initializes the 
value to that of the Processor Installed bit. Notice that this bit is 
common for both processors attached to a runway bus. This implies 
that writing to either of the processor’s Processor Configuration 
register effects both registers.

• Processor Installed bit (bit 59)—Indicates that the processor is 
installed. The value of this bit comes directly from a pin on the PAC. 
Writing to this bit is ignored. A read access returns the value of the 
input pin.

• Processor Identification field (bits 62:63)—Specifies the identification 
number for the physical processor. A writing to this field is ignored.

PAC Memory Board Configuration register
Each PAC has a Memory Board Configuration register that specifies the 
memory block to memory board mapping. Figure 21 shows the format of 
the register. All fields are written by a write access and read by a read 
access. Reset has no effect. Writes to reserved bits are ignored and reads 
to reserved bits return the value zero.

 Figure 21 PAC Memory Board Configuration register definition

The three-bit memory board generated by the memory board interleave 
generation logic indexes into one of the eight memory board fields of the 
PAC Memory Board Configuration register.

0 6254463830226 14

1 2 3 4 5 6 70

Memory boards



Chapter 2 59

Physical address space
CSR access

The memory board fields specify the most significant two bits of the 
physical memory board. The least significant bit of the memory block 
index is the least significant bit of the physical memory board. This 
forces even memory blocks to be mapped to even memory boards and odd 
memory blocks to odd memory boards.



60 Chapter 2 

Physical address space
CSR access

MAC Configuration register
Each MAC has a Configuration register that contains specific 
information about the MAC on which it resides. Each MAC can be 
configured differently.

Figure 22 shows the format of the register. All fields of the register are 
read by a read access.

 Figure 22 MAC Configuration register definition

The bits and fields in the MAC Configuration register are defined as 
follows:

• MAC part number field (bits 0:15)—Specifies the part number for the 
MAC chip. A write is ignored and a read returns the hard wired 
value.

• MAC version field (bits 16:19)—Specifies the version for the MAC 
chip. A write is ignored and a read returns the hard wired value.

• Implementation dependent field (bits 39:58)—Used by low-level 
implementation dependent software. The value in this field should 
not be modified during normal operation.

• TAC On-line bit (bits 43:54)—Indicates that the TAC associated with 
this MAC is on-line. Reset clears this bit.

• TAC Installed bit (bit 60)—Specifies whether a TAC is connected to the MAC. 
A value of one indicates a TAC is installed.

• MAC identification field (bits 61:63)—Specifies the identification 
number for the physical MAC. The value is written by software.

0 636158

TAC On-line
TAC Installed

MAC
Part Number

16 39

Version
MAC reserved Imp Dep MAC ID



Chapter 2 61

Physical address space
CSR access

MAC Memory Region register
There are three registers of this format on each MAC that define regions 
of memory. The three regions of memory are Unprotected Memory, 
Protected CTI Cache, and Unprotected CTI Cache. Protected memory is 
all physical memory not covered by these three regions.

Systems without high availability only use the protected CTI cache 
region register. When high availability mode is disabled the entire 
system is treated as a single cache coherent node. As a single cache 
coherent node, all nodes can access protected memory of any node. In 
this mode unprotected memory is not accessible since the Unprotected 
Access bit of the physical address is not available.

 Figure 23 Memory region register definition

The bits and fields in the MAC Memory Row Configuration Register are 
defined as follows:

• Enable bit—Enables access to the memory region which the CSR 
register specifies. Reset clears the bit.

• Force Mask and Force Value fields—Specify a region of memory. The 
Mask field specifies which of the ten bits are set, and the Value field 
specifies the value to set. The ten bits of the physical address are the 
two-bit Upper Page field, the two-bit Row field, and the six most 
significant bits of the Lower Page field. The most significant two bits 
of the 10-bit Force fields apply to the Upper Page field, and the least 
significant six bits apply to the Lower Page field.

Unprotected Memory register
The fields of the Unprotected Memory Region register check that 
requests from other nodes have access permission to the address of the 
request. An access violation exists if a request that arrived on a CTI link 
attempts to access memory outside the region defined by the 
Unprotected Memory Region register.

0 6344
reserved

54
Force
Mask

Enable

Force
Value

43



62 Chapter 2 

Physical address space
CSR access

Normal CTI Cache Memory Region register
This memory region register has two purposes:

• It generates an address to access the normal CTI cache.

• It prohibits accessing the normal CTI cache memory region as local 
node memory.

When the physical address accesses a remote node and the Unprotected 
Access bit of the physical address is zero, the protected CTI cache is 
accessed by setting bits of the physical address as specified in the Force 
fields.

When the physical address references local memory, the address must be 
checked to ensure that it is not accessing the normal CTI cache memory 
region.

Unprotected CTI Cache Memory Region register
This memory region register has two purposes:

• It generates an address to access the unprotected CTI cache.

• It prohibits accessing the unprotected CTI cache memory region as 
local node memory.

When the physical address accesses a remote node and the Unprotected 
Access bit of the physical address is one, the unprotected CTI cache is 
accessed by setting bits of the physical address as specified in the Force 
fields.

When the physical address references local memory, the address must be 
checked to ensure that it is not attempting to access the unprotected CTI 
cache memory region.

Memory region access checking summary
Table 26 summarizes the memory region access violation checks 
performed by the MAC. The memory types are defined as follows:

• Protected Memory—All existing memory not covered by any of the 
three memory region registers.

• Unprotected Memory—Memory covered by the Unprotected Memory 
Region register.



Chapter 2 63

Physical address space
CSR access

• Protected CTI Cache—Memory covered by the Protected CTI Cache 
Memory Region register.

• Unprotected CTI Cache—Memory covered by the Unprotected CTI 
Cache Memory Region register.

• Nonexistent Memory—All coherent memory address space not 
covered by the installed bits of the Memory Row Configuration 
register.

The access types are defined as follows:

• Protected Access—All memory accesses with high availability 
functionality disabled are protected accesses (as if the entire system 
was one ECCN). Also, all memory accesses with the Unprotected 
Access bit of the physical address set to zero when high availability 
functionality is enabled.

• Unprotected Access—All memory accesses with the Unprotected 
Access bit of the physical address set to one when high availability 
functionality is enabled.

• Diagnostic Access—All memory accesses initiated by the MAC 
diagnostic access operations.

• CTI Cache Flush Entry—Processor issued CTI cache flush entry 
operations.

• Non-local ECCN Protected Access—All accesses made from a node 
that is not in the ECCN of the destination node which have the 
Unprotected Access bit of the physical address set to zero when high 
availability functionality is enabled.

• Non-local ECCN Unprotected Access—All accesses made from a node 
that is not in the ECCN of the destination node which have the 
Unprotected Access bit of the physical address set to one when high 
availability functionality is enabled.

• Non-local ECCN Unprotected Access—All accesses made from a node 
that is not in the ECCN of the destination node which have the 
Unprotected Access bit of the physical address set to one when high 
availability functionality is enabled.

The first four access types (Protected Access, Unprotected Access, 
Diagnostic Access, and CTI Cache Flush Entry) originate from a 
processor on the same node as the MAC making the access check. The 
last three memory types originate from a remote node and are 
transferred to the MAC from a TAC.



64 Chapter 2 

Physical address space
CSR access

Table 26 Memory Region Access Checking Summary

Memory Region Access Checking Summary
Associated with each MAC are eight memory buses, each having up to 
four rows of SDRAMs. A table is used to map the row specified in the 
physical address to a physically installed row of SDRAMs. The upper and 
lower buses of memory are configured independently by a MAC 
controller.

Memory Type

Access Type
Main Memory CTI Cache Non-

existent 
MemoryProtected Unprotected Protected Unprotected 

Protected 
Access

OK Error Error Error Error

Unprotected 
Access

Error OK Error Error Error

Diagnostic 
Access

OK OK OK OK Error

CTI Cache 
Flush Entry

Error Error OK OK Error

CTI 
Protected 
Access with 
High 
Availability 
Disabled

OK Error OK Error Error

CTI 
Protected 
Access with 
High 
Availability 
Enabled

Error Error Error Error Error

CTI 
Unprotected 
Access

Error OK Error OK Error



Chapter 2 65

Physical address space
CSR access

Each MAC has a register to specify the memory row mapping. Figure 
24shows the format of the register. All fields are written by a write 
access, and read by a read access. Reset has no effect. Writing to reserved 
bits is ignored and reading to reserved bits return the value zero.

 Figure 24 MAC Memory Row Configuration register definition

The two-bit Row field of a physical address and the target are used to 
index one of the eight sets of Row fields of a MAC Memory Row 
Configuration CSR. The target can be either a lower bus (buses 0-3) or an 
upper bus (4-7).

The fields in the MAC Memory Row Configuration Register are defined 
as follows:

• Row Size field (2 bits each)—Indicates the size of the SDRAM row.

Table 27 Row Size field values

• Row Exist field (1 bit each)—Indicates that physical memory exists at 
the indexed row of memory. The field checks for the existence of 
physical memory.

0 6355

Installed Row
Row Exist
Row Size

Row 1 Row 2

Row 0

Row 3 Row 0 Row 1 Row 2 Row 3

473931237 15

Buses 4-7Buses 0-3

Field value Row size

0 16 Mbyte (2 Mbit x 8 SDRAMs)

1 64 Mbyte (8 Mbit x 8 SDRAMs)

2,3 128 Mbyte (8 Mbit x 4 or 16 Mbit x 8 SDRAMs)



66 Chapter 2 

Physical address space
CSR access

• Installed Row field (2 bits each)—Maps the row specified by the 
access address to the physical memory row. The mechanism only 
allows rows from a lower bus (0-3) to be mapped to other lower bus 
rows, and rows from upper buses (4-7) to other upper bus rows.

TAC Configuration register
Each TAC has one TAC Configuration register that specifies information 
that can be different for each TAC. The format of the TAC Chip 
Configuration register is shown in Figure 25. All fields of the register are 
read by a read access.

 Figure 25 TAC Configuration register definition

The fields in the TAC Configuration register are defined as follows:

• TAC part number field (bits 0:15)—Specifies the part number for the 
TAC chip. A write is ignored and a read returns the hard wired value.

• TAC version field (bits 16:19)—Specifies the version for the TAC chip. 
A write is ignored and a read returns the hard wired value.

• TAC identification field (bits 61:63)—Specifies the identification 
number for the physical TAC. The value is written by software.

0 63

ReservedTAC
version

2016
TAC

part number

61

TAC ID



Chapter 3 67

3 Cache Management

This chapter presents the concepts and mechanisms associated with 
cache management on an V2500 System.



68 Chapter 3 

Cache Management
Cache concepts

Cache concepts
V2500 supports caching to minimize the effect of access latency to local 
and remote node memory. The following sections describe the PA-8500 
caches, the CTI cache, Cacheability, and Address Aliasing.

PA-8500 caches
Each processor in an V2500 system has a data cache and an instruction 
cache. The operation of copying information from memory into a cache is 
referred to as move-in. Whenever a memory item is moved into the 
cache, that processor may modify it there. If another processor references 
the same item while the copy is still in the first processor cache, the 
original referenced memory item and the copy must be identical to 
maintain coherency. The V2500 cache management mechanism 
maintains this coherency.

The PA-8500 processor supports speculative execution of code as one of 
its performance acceleration features. Speculative execution is enabled 
whenever virtual address translation is being performed. Speculative 
execution allows data cache move-in of any coherent memory line which 
exists in a page of memory that has its virtual-to-physical address 
translation in the processor’s TLB. Additional restrictions are that 
virtual-to-physical translation must be enabled (PSW D-bit set) and that 
the TLB entry must have the U-bit (uncacheable bit) cleared to allow a 
data cache move-in (direct or speculative load).

The PA-8500’s instruction cache and data cache each have a 32 byte line 
size.

CTI cache
Each node maintains a cache of memory references received from other 
nodes. This cache is referred to as the CTI cache. Any data that has been 
moved into a processor cache and is still resident in the processor cache 
is also “encached” in that node’s CTI cache. Consequently, the CTI cache 
directory information can be used to locate any global data currently 
encached by the node.



Chapter 3 69

Cache Management
Cache concepts

The CTI cache is physically indexed and tagged with the global physical 
address (40-bit physical address). Since the cache is physically indexed, 
there are no aliasing issues.

The V2500 system ensures cache coherence between multiple nodes (two 
or more nodes that map the same global address will get a consistent 
view). This is done by maintaining a linked sharing list that contains a 
list of all the nodes sharing each cache line, or the node that exclusively 
owns the cache line. Within every node a record is kept of which 
processors have encached each line in the CTI cache so that incoming 
coherency requests (read shared or private for a remote node’s use) can 
be forwarded to the appropriate processors.

The CTI cache line size is 32 bytes. 

Cacheability
Memory references eligible for cache move-in are cacheable references. 
Some memory references may not legally cause a move-in; these 
references are referred to as uncacheable. There are two types of memory 
regions which are non-cacheable, these are:

• Coherent memory pages which are virtually mapped with a TLB 
entry with the U-bit set

• Cache coherence between processors

The cache-coherent part of a multiprocessor system behaves as if there 
were a single data cache and a single instruction cache (logically). If 
there are multiple data caches, they must cross interrogate for current 
data and must broadcast purges and flushes (except for FDCE and 
FICE). Purges and flushes do not cause TLB faults on other processors.

In the cache-coherent part of a multiprocessor system, all data 
references must be satisfied by data obtained using cache coherence 
checks. This data must have remained coherent since it was moved in. 
Implementations with write buffers must also check buffer contents on 
cache coherence checks in order to ensure proper ordering of storage 
accesses.



70 Chapter 3 

Cache Management
Cache concepts

Address aliasing
Normally, a virtual address does not translate to two different physical 
addresses. The operating system ensures that this does not happen 
(through correct management of TLBs and PDIRs, see the PA-RISC 2.0 
Architecture Reference Manual and the Exemplar Programming Guide).

Several virtual addresses, or a virtual address and a physical address, 
can in special situations map to the same physical memory. Such 
mappings present a consistent view of memory only when the current 
read operation produces the same data that was stored last.

The processor caches permit a physical memory location to be accessed 
by both a physical address and a virtual address where the two are 
identical. Such a virtual address is said to be equivalently mapped. 
Equivalently mapped virtual and physical references present a 
consistent view of memory.

Two or more distinct virtual addresses mapped to the same physical page 
are said to be virtual aliases. Virtual aliases may or may not provide a 
consistent view of memory, depending on the difference in their virtual 
addresses (both the offset and space portions). In order for two mappings 
to present a consistent view, they must index the same cache line. The 
actual indexing function is processor implementation-specific.

When the conditions required for keeping the caches of a system 
coherent are not met, hardware alone can not keep an application’s view 
of memory consistent. The O/S software may use cache flushing to keep 
the view of memory consistent.



Chapter 3 71

Cache Management
Cache operations

Cache operations
The V2500 system supports flush and prefetch operations on the 
processor’s caches and the node’s CTI cache. This section describes these 
operations.

PA-8500 cache operations
The PA-8500 has both instruction and data caches. These caches may be 
flushed by specifying either a specific memory line address, or by 
specifying the specific cache entry to flush. The difference between the 
two methods is whether the cache tag is checked for a match. When a 
memory line’s address is specified, the tag is compared. Only if the tag 
matches does the cache’s entry get flushed. When a cache entry is 
specified that entry is flushed, independent of the cache line’s tag value.

Each processor cache operation is issued by executing a single processor 
instruction. These instructions are PDC, FDC, FIC, FDCE, or FICE 
instructions. The instructions are not privileged allowing use by user 
applications.

The instructions which flush based on a memory line address are PDC, 
FDC and FIC. These instructions are broadcast to other processors 
within a node that may be sharing the same cache lines. These 
instructions, therefore, have global effects within a node.

The PA-8500 implemented the date cache purge instruction (PDC) as a 
data cache flush operation. As a result, PDC and FDC have identical 
functionality. Both operations flush cache lines from all processors on the 
local node and from the node’s CTI cache. FDC and PDC instructions 
write data from dirty cache lines back to memory.

The instructions which flush a cache entry independent of the tag value 
are FDCE (Flush Data Cache Entry) and FICE (Flush Instruction Cache 
Entry). These instructions flush an entry from the executing processor’s 
caches only. If the cache line in the data cache is dirty, it will be written 
back to local memory or the CTI cache. However, the CTI cache is not 
flushed.

Cache flush instructions must be followed by a sync instruction to ensure 
that all flushes have made it to memory.



72 Chapter 3 

Cache Management
Cache operations

CTI cache operations
V2500 has four operators for CTI cache management. These operators 
are:

• CTI cache global flush

• CTI cache Flush Entry

• CTI cache prefetch for read

• CTI cache prefetch for write

These operators are used to manipulate the contents of the CTI cache 
without directly effecting the contents of the processor’s caches. 
Indirectly, a prefetch operation may force an entry out of the CTI cache, 
forcing the memory line out of a processor cache as well.

CTI cache global flush
This operator is used to flush the memory line for a specific address out 
of all CTI caches in the entire system. Once completed, the operation is 
defined to have the memory line be at memory and not encached in any 
processor’s data cache or any node’s CTI cache.

CTI cache flush entry
The CTI Cache Global Flush operator performs a CTI cache flush entry 
operation when issued with a physical address which is mapped to a CTI 
cache memory region. The flush entry operation is performed only on the 
referenced CTI cache.

This implies that the physical addresses devoted to the CTI cache must 
be addressable by the processor, even though in normal circumstances 
load or store instructions are not issued on these addresses. 

CTI cache prefetch for read
This operator is used to accelerate a memory line in to the CTI cache of 
the local node. The CTI cache will contain the memory line for read 
access (not write accessible) after the operation is complete.

CTI cache prefetch for write
This operator is used to accelerate a memory line to the CTI cache of the 
local node. The CTI cache will contain the memory line for read and 
write access after the operation is complete.



Chapter 3 73

Cache Management
Cache operation summary

Cache operation summary
The following table gives the result of executing the various flush, purge 
and prefetch primitives for differing initial conditions.

Table 28 Cache operation summary

Instruction Current state Mem 
type

Resulting 
processor 

cache state

Resulting 
CTI cache 

state

Other 
nodes 
state

FDCE, FDC, 
FIC, FICE, 
PDC

clean, in data or 
instruction cache

local no longer 
encached

not 
applicable

not 
applicable

FDC, FDCE, 
PDC

dirty, in data 
cache

local data written 
to memory, no 
longer 
encached

not 
applicable

not 
applicable

FDC, FIC, 
PDC

not encached in 
processor

local no longer 
encached on 
any processor 
in node

not 
applicable

not 
applicable

FDCE, FICE, 
FIC

clean, in 
processor data or 
instruction cache

global data no longer 
encached

unchanged, 
data may 
still be 
encached

may be 
encached

FDCE dirty, in 
processor data 
cache

global data written 
to CTI cache; 
no longer 
encached

dirty; 
encached

not 
encached 
(current 
node is 
exclusive 
owner)

FDC, PDC clean, in 
processor data 
cache

global data no longer 
encached

data no 
longer 
encached

may be 
encached



74 Chapter 3 

Cache Management
Cache operation summary

FDC, PDC dirty, in 
processor data 
cache

global data written 
to memory; no 
longer 
encached

no longer 
encached

memory 
consistent; 
no longer 
encached

FDC, PDC data not in 
processor cache, 
but present in 
CTI cache

global unchanged 
(not 
encached) 

written 
back if 
dirty; no 
longer 
encached

may be 
encached if 
clean

FDCE, FICE data not in 
processor cache, 
but present in 
CTI cache

global unchanged 
(not 
encached)

unchanged unchanged

CTI Cache 
Flush Global

any state global written to 
memory if 
dirty; no 
longer 
encached

no longer 
encached, 
written to 
memory if 
dirty

no longer 
encached, 
written to 
memory if 
dirty

CTI Cache 
Flush Entry

any state global written to 
memory if 
dirty; no 
longer 
encached

no longer 
encached, 
written to 
memory if 
dirty

unchanged

CTI Read 
Prefetch

not encached in 
node

global not encached encached, 
shared

may be 
encached

CTI Write 
Prefetch

not encached in 
node

global not encached encached, 
exclusive

not 
encached

Instruction Current state Mem 
type

Resulting 
processor 
cache state

Resulting 
CTI cache 
state

Other 
nodes state

Instruction Current state Mem 
type

Resulting 
processor 

cache state

Resulting 
CTI cache 

state

Other 
nodes 
state



Chapter 3 75

Cache Management
Cache operation summary

Cache operation interfaces
This section presents the hardware interfaces available to software to 
issue the cache management operations.

PA-8500 cache interfaces
All processor cache operations are issued with a single PA-8500 processor 
instruction. These operations include Flush Data Cache (FDC or PDC), 
Flush Data Cache Entry (FDCE), Flush Instruction Cache (FIC), and 
Flush Instruction Cache Entry (FICE).

CTI cache interfaces
The PA-RISC architecture (1.0 and 2.0) does not support the concept of a 
CTI Cache. Thus, there are no PA-RISC architected instructions for 
issuing the CTI cache operations. The V2500 system provides interfaces 
to these operations using non-PA-RISC-architected mechanisms. User 
applications are not allowed to directly use these mechanisms to ensure 
compatibility with previous and future generation platforms which may 
choose to implement the interface mechanisms differently. Access to 
these mechanisms is provided through the use of the Architectural 
Interface Library (AIL). The library routine interfaces are consistent on 
all Exemplar platforms, allowing applications to be portable.

CTI cache AIL routines
AIL interface routines are provided to implement a global cache flush 
(cache_flush) and CTI cache prefetch (read_prefetch and write_prefetch). 
The definition of these interface routines are as follows:

void cache_flush(virt_addr);
void *virt_addr;

void read_prefetch(virt_addr);
void *virt_addr

void write_prefetch(virt_addr);
void *virt_addr;



76 Chapter 3 

Cache Management
Cache operation summary

Cache_flush is a CTI-wide cache line flush; after its execution the 
referenced cache line is not cached anywhere in the system until a 
subsequent reference (direct, prefetch or speculative). Read_prefetch 
accelerates a cache line into the CTI cache for read access by the local 
node; it can be shared with other nodes. Write_prefetch accelerates a 
cache line into the CTI cache for local node read or write use; it is 
exclusively owned by the local node.

There are two interface mechanisms which exist to issue the CTI cache 
operations. The first mechanism issues the operations by using a single 
PA-8500 instruction. The second method issues the operations through 
the use of CSR read and write operations. These two mechanisms are 
explained in the following sections.

Instruction method of issuing cache 
management operations
The PA-8500 processor implements an instruction which allows an 
operation to be passed directly to the PAC. Fields of the instruction allow 
specification of which operation to perform and whether read and/or 
write protection checking should be performed. The instructions are 
enabled using a field in one of the PA-8500’s Remote Diagnostic 
Registers. When enabled, the instructions are allowed to executed at any 
privilege level. The AIL routines may execute these instructions to issue 
the CTI cache operations. A user application may also execute these 
instructions, resulting in functional, but non-portable code.

There are three CTI cache instructions. The formats for these 
instructions are shown on the following pages.



Chapter 3 77

Cache Management
Cache operation summary

CTI cache flush global  instruction
The CTI Cache global instruction is decribed below. 

Description: The memory line specifed by the effective address 
generated by the instruction is written back to memory 
if it is dirty in any cache on any node of the system, all 
shared copies of the memory line are marked invalid. 
After execution of the instruction, the memory line will 
not be cached anywhere in the system. The offset is 
formed from the base register, b.

 The hint field, h, determines whether read or write 
access protection checks are performed. The h-field of 
the instruction also specifies whether speculative 
execution of the instruction is allowed. Speculative 
execution occurs when the h-field value is 1 or 2. Table 
29 defines the assembly language h-field values.

 The PSW D-bit (Data address translation enable) 
determines whether a virtual or absolute address is 
used.

 Table 29 CTI cache flush global hint field values

01 b 02 s h rv0

6 5 5 2 2 51

3

2

A

4

CTI Cache Flush Global NCFG

Format:          
NCFG            (s,b)

Description h

No read or write access protection check 1

Read access protection check 2

Read and write access protection check 3



78 Chapter 3 

Cache Management
Cache operation summary

Operation: If (RDR enabled) {
space ¨ space_select(s,GR[b],SHORT);
offset ¨ GR[b];
Global_flush(space, offset);
} else
Illegal_instruction_trap

Exceptions: Non-access data TLB miss fault
Illegal_instruction_trap
Data memory access rights trap

Restrictions: The base register must be 32-byte aligned.



Chapter 3 79

Cache Management
Cache operation summary

CTI cache prefetch read
The CTI cache prefetch read instruction is described below.

Description: The memory line specifed by the effective address 
generated by the instruction is prefetched for read 
access into the local node’s CTI cache. If the memory 
line was being held for private use (cached for write) 
prior to the instruction, then the cached line is written 
back to memory. The line may be cached in other node’s 
CTI cache for read access after the instruction is 
performed. The offset is formed from the base register, 
b.

 The hint field, h, determines whether read or write 
access protection checks are performed. The h-field of 
the instruction also specifies whether speculative 
execution of the instruction is allowed. Speculative 
execution occurs when the h-field value is 2. Table 30 
defines the assembly language h-field values.

 Table 30 CTI cache prefetch read hint field values

 The PSW D-bit (Data address translation enable) 
determines whether a virtual or absolute address is 
used

01 b 04 s h rv0

6 5 5 2 2 51

3

2

A

4

CTI Cache Prefetch Read NCPR

Format:          
NCPW            (s,b)

Description h

Read access protection check 2

Read and write access protection check 3



80 Chapter 3 

Cache Management
Cache operation summary

Operation: If (RDR enabled) {
space ¨ space_select(s,GR[b],SHORT);
offset ¨ GR[b];
Global_flush(space, offset);
} else
Illegal_instruction_trap

Exceptions: Non-access data TLB miss fault
llegal_instruction_trap 
Data memory access rights trap

Restrictions: The base register must be 32-byte aligned.



Chapter 3 81

Cache Management
Cache operation summary

CTI cache prefetch write
The CTI cache prefetch write instruction is described below.

Description: The memory line specifed by the effective address 
generated by the instruction is prefetched for write 
access into the local node’s CTI cache. If the memory 
line was being held for private use (cached for write) 
prior to the instruction, then the cached line is written 
back to memory. The line will not be cached in any 
other node’s CTI cache after the instruction is 
performed. The offset is formed from the base register, 
b.

 The hint field, h, determines whether read or write 
access protection checks are performed. The h-field of 
the instruction also specifies whether speculative 
execution of the instruction is allowed. Speculative 
execution occurs when the h-field value is 2. Table 31 
defines the assembly language h-field values.

 Table 31 CTI cache prefetch write hint field values

 The PSW D-bit (Data address translation enable) 
determines whether a virtual or absolute address is 
used.

01 b 06 s h rv0

6 5 5 2 2 51

3

2

A

4

CTI Cache Prefetch Write NCPW

Format:          
NCPW            (s,b)

Description h

Read access protection check 2

Read and write access protection check 3



82 Chapter 3 

Cache Management
Cache operation summary

Operation: Operation:If (RDR enabled) {
space ¨ space_select(s,GR[b],SHORT);
offset ¨ GR[b];
CTIcache_prefetch_read(space, offset);
} else
Illegal_instruction_trap

Exceptions: Non-access data TLB miss fault
llegal_instruction_trap 
Data memory access rights trap

Restrictions: The base register must be 32-byte aligned.



Chapter 3 83

Cache Management
Cache operation summary

CSR method of issuing cache management 
operations
An alternate method of issuing the CTI cache operations exists that uses 
a sequence of instructions that use PAC CSR reads and writes. This 
method is a lower bandwidth approach, but does not require any non-
architected support from the PA-8500 processor.

Operation CSRs
The three operations (CTI cache flush global, CTI cache prefetch read, 
and CTI cache prefetch write) are issued by writing the 40-bit physical 
address where the operation is to be performed to a PAC CSR. There is a 
different CSR for each of the three operations. The names of the CSRs for 
Processor 0 are:

• Processor 0 CTI Cache Flush Global

• Processor 0 CTI Cache Prefetch Read

• Processor 0 CTI Cache Prefetch Write

Three CSRs with similar names exist for Processors 1, 2 and 3.

Instruction sequence
The sequence of instructions which will issue a CTI cache global flush is 
as follows:

loop
LDI1,%t1
STD%t1,(CSR_OP_CNTX); Arm CSR Operations
LPAncfg_addr,%t2
STD%t2,(CSR_NCFG); Issue NC Global Flush
LDD(CSR_OP_CNTX),%t4
BB,*>=%t4,62,loop; Check if triggered

The steps of the sequence are:

1. Arm the operation by writing to the PAC Operation Context register’s 
Armed bit.

2. Perform virtual to physical address translation

3. Issue the CTI Cache operation with the physical address provided as 
the data of the write.



84 Chapter 3 

Cache Management
Cache operation summary

4. Check the PAC Operation Context register Triggered bit to make sure 
the operation was issued. If the Triggered bit is not set then the 
operation must be restarted.

The sequence uses the Armed and Triggered mechanism of the PAC to 
check whether a processor interrupt (internal or external) occurred 
between the load physical address (LPA) instruction and the store to the 
operation CSR. The write to the operation CSR will issue the operation 
to the remainder of the system provided that the Armed bit is set. When 
the Armed bit is set, writing to the operation CSR causes the Armed bit 
to be cleared and the Triggered bit to be set.

If an interrupt does occur during the sequence, the operating system’s 
software interrupt handler should clear the Armed bit. With the Armed 
bit cleared, the write to the operation CSR will not issue the operation to 
the remainder of the system and the branch at the bottom of the 
instruction sequence will cause the entire sequence to be retried. This is 
required to ensure that a valid virtual-to-physical address translation is 
passed to the operation CSR.



Chapter 3 85

Cache Management
Cache management CSRs

Cache management CSRs
CSRs may be used to issue cache management operations.

The CSR based cache management operations use only loads and stores 
to CSR space to issue the operations. The operations are issued by 
performing the following steps:

1. Arming the operation by setting the Armed bit in the Operation 
Context CSR.

2. Writing to the appropriate Cache Management Operation CSR 
address to perform the operation with the data being the 40-bit 
physical address of the target memory line.

3. Reading the Triggered bit in the Operation Context CSR to verify that 
the operation succeeded.

Cache management operations
This section describes the CSR registers which are required to issue 
cache management operations. The following CSRs reside in the PAC. 
The CSRs include:

• Operation Context register

• Operation Address register

• Cache Flush Global address

• Cache Prefetch for Read address

• Cache Prefetch for Write address

PAC Operation Context register
Each PAC has four Operation Context CSRs, one for each processor. The 
operation context is applied to other CSRs in two ways. One is by arming 
a CSR and the other is by indicating that the armed CSR was triggered, 
that is, it performed a specific function. shows the format of the PAC 
CSR Operation Context register.



86 Chapter 3 

Cache Management
Cache management CSRs

 Figure 26 PAC Operation Context register

The fields of the CSR Operation Context register are defined as follows:

• U-bit Fetch Triggered field (bit 53)—Indicates that a read short to a 
coherent memory line was observed from the processor associated 
with this CSR while the U-bit Fetch Armed field was non-zero. The 
bit is cleared by reset.

• U-bit Fetch Armed field (bits 54:55)—Enables translation of a read 
short to coherent memory space into a non-coherent semaphore 
operation. The first read short, to coherent or non-coherent space, will 
cause the U-bit Fetch Armed field to be cleared (disabled). Only if the 
read short is to coherent memory space is the operation translated to 
a non-coherent semaphore and the U-bit Fetch Triggered bit set. Note 
that TLB purges have no effect on this field. The field is cleared by 
reset. Table 32shows the values used to enable non-coherent 
semaphore operations.

Table 32 U-bit Fetch Armed field values

• Triggered field (bit 62)—Indicates that a CSR operation executed 
when the Armed bit was set. The Triggered bit is cleared by software 
and is set by hardware.

0 63

reserved

55

U-bit Fetch Triggered

52

U-bit Fetch Armed

Triggered
Armed

61

U-bit Fetch Triggered

Field Value Non-coherent semaphore operation

0 Disabled

1 Fetch and Increment

2 Fetch and Decrement

3 Fetch and Clear



Chapter 3 87

Cache Management
Cache management CSRs

• Armed field (bit 63)—Set by software to arm the functionality of 
specific PAC processor CSRs. The PAC CSRs armed by this bit are:

• Fetch and Increment address

• Fetch and Decrement address

• Fetch and Clear address

• Non-coherent Read address

• Non-coherent Write address

• Coherent Increment address

• CTI Cache Global Flush address

• CTI Cache Prefetch for Read address

• CTI Cache Prefetch for Write address

Each of these CSRs and the effect on them by the Armed bit is discussed 
in various chapters of this document. The Armed bit is set by software 
and is cleared by either hardware or software. 

Table 33 shows the Armed and Triggered bit transitions which hardware 
controls when software accesses one of the operation address CSRs.

Table 33 PAC Operation Context register transitions when Operation 
address accessed

Table 34 shows the Armed and Triggered bit transitions which hardware 
controls when a TLB invalidate transaction is detected.

State Transition when Operation Issued

Present Value Next Value

Triggered Armed Triggered Armed

0 0 0 0

0 1 1 0

1 0 0 0

1 1 1 1



88 Chapter 3 

Cache Management
Cache management CSRs

Table 34 PAC Operation Context register transitions when TLB invalidate 
issued

Context State Save/Restore
The PAC Operation Context register has an Armed and Triggered 
mechanism to protect an operation being issued using the multistep CSR 
approach from being corrupted by a processor interrupt (external, DTLB 
miss, etc.) that disrupts the sequence. The mechanism works by having 
all interrupt handlers examine the PAC Operation Context register and 
take appropriate action. The following situations will occur:

• No operation being setup (Armed bit cleared) — An operation setup 
sequence was not interrupted. No modification of the bits is 
necessary.

• Operation is being setup (Armed bit set) — An operation setup 
sequence was interrupted. The Armed and Triggered bits must be 
cleared to abort the sequence and force a retry. The Armed bit is 
cleared to prohibit an operation from being allowed to start. The 
Triggered bit is cleared to prohibit software from believing the 
operation was issued successfully.

If the thread which is interrupted is to be context switched, then the 
modified Armed and Triggered bits must be saved and later restored 
when the thread is to resume. Note that no other CSR context must be 
saved/restored for the CSR method of issuing operations to function 
properly.

State Transition when TLB Invalidate detected

Present Value Next Value

Triggered Armed Triggered Armed

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1



Chapter 3 89

Cache Management
Cache management CSRs

PAC Operation Address registers
Each PAC has four Operation Address registers, one for each processor. 
The register stores the address used for CSR operations.

The format of the PAC Operation Address register is shown in Figure 27. 
The field of the register is read by a read access.

 Figure 27 PAC Operation Address register definition

The PAC Operation Address register (bits 24:63) is written to by software 
with a write to the address of this CSR or by writing to any of the 
following CSR addresses:

• Coherent Increment address

• CTI Cache Global Flush address

• CTI Cache Prefetch for Read address

• CTI Cache Prefetch for Write address

The Operation Address field specifies the address for each of the 
following CSR operations:

• Fetch and Increment address

• Fetch and Decrement address

• Fetch and Clear address

• Non-coherent Read address

• Non-coherent Write address

• Coherent Increment address

• CTI Cache Global Flush address

• CTI Cache Prefetch for Read address

• CTI Cache Prefetch for Write address

Addresses that reference the first 32 to 128 Mbytes (depending in the 
Force Node ID value in the PAC System Configuration register) of 
physical memory on node zero are forced to reference the local node. 

0 63

reserved

23

Operation Address



90 Chapter 3 

Cache Management
Cache management CSRs

To perform this mapping, the hardware compares the Upper Page, 
Row, and most significant six bits of the Interleave Base fields for the 
value zero. When these fields are all zero, then the Node ID of the 
address is forced to that of the local node.

Cache Management Operation addresses
Each PAC has three Cache Management addresses per processor. The 
three operation addresses are for: CTI Cache Flush Global, CTI Cache 
Prefetch for Read, and CTI Cache Prefetch for write. Writes to these 
addresses trigger the respective cache management operation.

If the Armed bit in the PAC Operation Context register is set, a write to 
one of the addresses results in the cache management operation being 
sent to memory. The address of the target memory line is specified as the 
data of the double word store instruction which issues the operation. As 
part of the cache management operation, the target memory line address 
is written to the Operation Address register, the Armed bit is cleared and 
the Triggered bit is set. If the Armed bit is not set, the PAC returns an 
undefined value to the processor, and the Armed and Triggered bits are 
not modified.



Chapter 4 91

4 Synchronization

There are two types of processor synchronization which is supported by 
the V2500 architecture. The first type is used to enforce exclusive access 
of a shared data structure. A data structure that is shared by multiple 
processors must have a mechanism that allows only a single processor to 
atomically modify its data. V2500 servers supports coherent semaphore 
operations to achieve exclusive access.

The second type of processor synchronization is called barrier 
synchronization. This type is used to inhibit any processor from 
beginning the next section of a program until all processors have 
completed the previous section of the program.

The following sections present the V2500-supported coherent semaphore 
operators (used for mutual access of data structures), non-coherent 
semaphore operators (used primarily for barrier synchronization 
operations), barrier synchronization, and PA-8500 TLB entry U-bit 
functionality.



92 Chapter 4 

Synchronization
Coherent semaphore instructions

Coherent semaphore instructions
There are two instructions for semaphore operations in coherent 
memory:

• Load and Clear Word (LDCW)

• Load and Clear Double (LDCD)

The load implies that the semaphore variable memory line is loaded into 
the processor data cache.

NOTE The LDCW and LDCD instructions ignore the TLB-U bit for all modes of 
operation. This implies that the user may accelerate a non-coherent 
memory line into the data cache of a processor by incorrectly using the 
LDCW or LDCD instructions.

The function performed by the LDCW and LDCD instructions are 
effected by Remote Diagnostic register 30, DIAG_KITTYHAWK bit. 
When this bit is set to one, the LDCW and LDCD instructions ignore the 
cache hint field and always accelerate the memory line to the processor’s 
data cache. Otherwise when the bit has the value zero, the hint bits are 
used to determine whether the instruction accelerates the memory line 
into the processor’s data cache to be cleared, or whether the MAC is 
expected to perform the clear function.



Chapter 4 93

Synchronization
Noncoherent semaphore operators

Noncoherent semaphore operators
The V2500 server supports six semaphore operators not defined in the 
PA-RISC architecture. These special operators may enhance semaphore 
operations in some applications, because they operate directly on 
semaphore variables located in unencacheable memory pages (pages 
with the U-bit set in the TLB entry; see the section “PA-8500 TLB Entry 
U-bit” on page 103). They do not accelerate the semaphore into the data 
cache.

These noncoherent semaphore operators include the single and double 
versions of the following operations:

• Fetch and Clear

• Fetch and Increment

• Fetch and Decrement

The fetch implies that the semaphore variable goes directly into a 
processor register. When either the fetch and increment or fetch and 
decrement instruction reads the variable, the MAC automatically 
increments or decrements it.

In addition to these fetch instructions, noncoherent read and write 
operations are also available to access semaphore variables. If a 
noncoherent semaphore operator accesses a memory line that is 
encached by a processor, the semaphore operation will fail, resulting in 
an error being returned to the processor. All semaphore variables are 16-
byte aligned. Semaphore operations to nonaligned variables produce 
undefined results. 

NOTE The Exemplar Architecture defines all semaphore variables to be 16-byte 
aligned and that Semaphore operations to nonaligned variables produce 
undefined results. On non-coherent semaphore operations can be issued 
to any memory word for word sized operations and any double word for 
double-word-sized operations.

AIL routines for non-coherent semaphores
All non-coherent semaphore operations should be accessed using the 
Architectural Interface Library (AIL) to maintain portability across the V-
Class family of products. The AIL library implements the non-coherent 



94 Chapter 4 

Synchronization
Noncoherent semaphore operators

semaphore operations with a sequence of CSR operations. V2500 servers 
support two methods to issue non-coherent semaphore operations. The 
methods are described in the following sections.

First method of issuing non-coherent semaphore 
operations
All non-coherent semaphore operations are issued using accesses to PAC-
local CSRs. The mechanism requires a sequence of instructions to issue an 
individual operation.

The sequence of instructions for a fetch_and_inc32 is as follows:

PROBEWfetch_addr;Check protection
loop
LDI1,%t1
STD%t1,(CSR_OP_CNTX);Arm Operation
LPAfetch_addr,%t2
STD%t2,(CSR_OP_ADDR);Fetch address
LDW(CSR_FETCH_INC),%t3;Issue fetch
LDD(CSR_OP_CNTX),%t4
BB,*>=%t4,62,loop;Check trigger

Implementing noncoherent semaphore operations requires the following 
sequence of instructions using PAC CSRs: 

1. Check write access privilege for the semaphore address.

2. Arm the operation by writing to the PAC Operation Context register 
Armed bit. 

3. Write the physical address to the PAC Operation Address register.

4. Read the Fetch Operation address. The value read is the return value 
for the semaphore operation.

5. Check the PAC Operation Context register Triggered bit to make sure 
the operation was issued. If the Triggered bit is not set, the operation 
must be restarted. The Armed bit is cleared when the sequence is 
interrupted by either an external interrupt or a TLB miss.

The other noncoherent semaphore operations and the noncoherent read 
operation can also use this sequence by using a different Fetch Operation 
CSR address. The noncoherent write operation is similar to the above 
sequence, except that the load instruction is replaced with a store 
instruction with the value to be stored.



Chapter 4 95

Synchronization
Noncoherent semaphore operators

Second method of issuing non-coherent semaphore 
operations
A second method was added to the PAC in order to avoid the possibility of 
a user causing an HPMC to be sent to a processor.

All non-coherent semaphore operations are issued using accesses to PAC 
local CSRs. The mechanism requires a sequence of instructions to issue 
an individual operation.

The sequence of instructions for a fetch_and_inc32 is as follows:

loop
LDI 0x100,%t1
STD %t1,(CSR_OP_CNTX);Arm Operation
LDW fetch_addr,%t2;Issue operation
LDD (CSR_OP_CNTX),%t4
BB,*>=%t4,55,error;Check armed
BB,*>=%t4,53,loop;Check trigger

The steps of the sequence are:

1. Arm the operation by writing to the PAC Operation Context register U-
bit Fetch Armed field.

2. Read back the PAC Operation Context register (or any other PAC 
register). This step is required to prevent a race condition between 
the arming of the operation and the fetch operation.

3. Issue the fetch operation. The value read is the return value for the 
semaphore operation. The size of the load instruction, word, or double 
word indicates the size of the semaphore operation.

4. Check the PAC Operation Context register U-bit Fetch Armed field to 
determine if the operation is still armed. If it is, the TLB-U bit was not 
set for the page of memory that was the target of the semaphore. 

5. Check the PAC Operation Context register U-bit Fetch Triggered bit to 
make sure the operation was issued. If the U-bit Fetch Triggered bit is not 
set, then the operation must be restarted.



96 Chapter 4 

Synchronization
Barrier synchronization

Barrier synchronization
Not all threads in a multithread process complete at the same time. 
Multi-threaded applications usually require synchronization of threads 
when all threads must complete a section of computation prior to any thread 
starting the next section. A barrier is placed between the two sections of 
computation. The threads hit the barrier and are held until all threads are 
ready to continue.

A barrier synchronization counting semaphore is a running count of the 
number of threads that have reached the barrier. The last processor to 
finish writes a nonzero value to the release semaphore signaling the 
other processors that the threads are synchronized.

Barrier synchronization operations are accessed through AIL routines. 
The 

The operation of the barrier synchronization AIL routine, barrier_sync, 
is functionally equivalent to the following:

void
barrier_sync (unsigned int *semaphore,

 unsigned int semaphore_init,
 unsigned int *release,
 unsigned int release_value)

{
if (fetch_and_dec32(*semaphore) - 1 == 0) {

*semaphore = semaphore_init;
*release = release_value;

} else
while (*release == release_value);

}



Chapter 4 97

Synchronization
Barrier synchronization

The operation of the barrier synchronization AIL routine, barrier_sync2, 
is functionally equivalent to the following:
void
barrier_sync2 (int *semaphore,

 unsigned long long *release,
 unsigned long nthreads)

{
unsigned long long tmp;

tmp = *release;
if(fetch_and_inc32(semaphore)+1==nthreads){

*semaphore = 0;
coherent_inc64(release);

}
/* coherent_inc64() is a weakly ordered
 * operation
 */
while (*release == tmp);

}

The V2500 server implements the coherent_inc64() function in 
hardware for improved performance of the barrier release operation. The 
function coherently increments a double word in memory.

The operation is performed in the CTI cache of each node that has encached 
that memory line. Once the double word of the memory line is incremented 
in a CTI cache, all processors with that memory line cached invalidate the 
memory line from their data caches. Invalidating the memory line from the 
data caches forces each processor to re-access the CTI cache, obtaining the 
newly incremented value. The newly incremented value does not compare 
as equal to the original release value, and the barrier synchronization 
operation releases the thread that issued it.

NOTE The barrier release variable must be the first double word of a memory 
line, and the remainder of the memory line should not be used (for 
performance reasons). The TLB U-bit must not be set for the page 
containing the barrier release memory line.

The semaphore variable must be the first word of a memory line. The 
TLB U-bit must be set for the page containing the semaphore memory 
line.



98 Chapter 4 

Synchronization
Barrier synchronization

Issuing the coherent_inc64 operation
The barrier_sync2 AIL routine described in the previous section re
quires the coherent_inc64.

There are two methods that perform the coherent_inc64 operation. 
The first is to use a single PA-8500 instruction; the second uses a 
sequence of CSR accesses to issue the operation. 

coherent_inc64 instruction
The coherent increment double instruction is described below.

Description: The memory system increments the double word 
specifed by the effective address generated by the 
instruction. If the memory line was being held for 
private use (cached for write) prior to the instruction, 
then the encached line is written back to memory. The 
line may be cached in the CTI cache of other nodes for 
read access after the instruction is performed. The 
offset is formed from the base register, b.

 The instruction performs read and write access 
protection checking and is not executed specutively.

 The PSW D-bit (Data address translation enable) 
determines whether a virtual or absolute address is 
used.

 The fields have the same meaning as the FDC 
instruction of the PA-RISC 2.0 Architecture. The im5 
field of the FDC instruction is set to zero for this 
instruction. The PAC uses im5 field with a zero value 
ito detect a CINCD operation.

Coherent Increment Double CINCD

Format:          
CINCD

01 b 00 s FA rv0

6 5 5 2 8 51

(s,b)



Chapter 4 99

Synchronization
Barrier synchronization

Operation: space ¨ space_select(s,GR[b],SHORT);
offset ¨ GR[b];
Coherent_increment_double(space, offset)

Exceptions: Non-access data TLB miss fault
Data memory access rights trap

Restrictions: The base register must be 32-byte aligned.



100 Chapter 4 

Synchronization
Barrier synchronization

CSR method of issuing coherent_inc64
An alternate method of issuing the coherent_inc64 operation exists 
that uses CSR operations rather than a single PA-8500 instruction. The 
CSR method requires a sequence of instructions that accesses PAC 
CSRs.

This method takes more execution time to setup and issue the operation 
than the single instruction method but does not require any non-
architected PA-8500 support.

The following sequence of instructions provides an alternate method of 
issuing the coherent_inc64 function:

PROBEW cincd_addr ;Check protection
loop

LDI 1,%t1
STD %t1,(CSR_OP_CNTX) ;Arm Operation
LPA cincd_addr,%t2
STD %t2,(CSR_CINCD) ;Issue Coh.Inc.
LDD (CSR_OP_CNTX),%t4
BB,*< %t4,62,loop ;Check trigger

The steps of the sequence are:

1. Check write protection for the operation address.

2. Arm the operation by writing to the CSR Operation Armed register 
Armed bit.

3. Perform virtual-to-physical address translation.

4. Issue the Coherent Increment operation with the physical address 
provided as the data of the write.

5. Check the PAC Operation Context register Triggered bit to make sure 
the operation was issued. If the Triggered bit is not set then the 
operation must be restarted. The Armed bit is cleared when the 
sequence is interrupted by either an external interrupt, or a TLB miss.



Chapter 4 101

Synchronization
PAC semaphore addresses

PAC semaphore addresses
The PAC has multiple registers and several addresses to implement 
CSR-based semaphore operations. The two types of registers, the 
Operations Context register and the Operation Address register, are 
detailed in the chapter  “Cache Management.” The addresses are 
discussed in the following sections.

PAC Fetch Operation addresses
Each PAC has six Fetch Operation addresses, three for each processor 
pair. Reading these addresses triggers one of the following noncoherent 
fetch semaphore operations:

• Fetch and Increment

• Fetch and Decrement

• Fetch and Clear

If the Armed bit in the Operation Context register is set, an access to one of 
the fetch operation addresses results in a fetch operation to memory. As part 
of the fetch operation, the Armed bit is cleared and the Triggered bit is set. 
The address contained in the Fetch Operation Address register is used as the 
address for the fetch operation, If the Armed bit is not set, the PAC returns 
an undefined value to the processor, and the Armed and Triggered bits are 
not modified.

The size of the read access of the fetch operation address determines the size 
of the operation, word or double word. Any word-aligned address can be 
used for word operations, and any double-word-aligned address can be 
used for double word addresses.

PAC Noncoherent Read and Write Operation 
addresses
Each PAC has two Noncoherent Read Operation addresses, one for each 
processor pair. Each PAC also has two Noncoherent Write Operation 
addresses, one for each processor pair. A read of the noncoherent read 
address triggers the noncoherent read operation. A write to a 
noncoherent write address triggers a noncoherent write operation.



102 Chapter 4 

Synchronization
PAC semaphore addresses

If the Armed bit in the Operation Context register is set, the address 
contained in the Operation Address register becomes the address for the 
operation. As part of the noncoherent operation, the Armed bit is cleared 
and the Triggered bit is set. The address contained in the Fetch 
Operation Address register is used as the address for the non-coherent 
access.If the Armed bit is not set, the PAC returns an undefined value to 
the processor, and the Armed and Triggered bits are not modified. For a 
Noncoherent Write Operation, if the Armed bit is not set, the PAC drops 
the noncoherent write.

The size of the read or write access to the CSR Operation address determines 
the size of the operation, word or double word. Any word aligned address 
can be used for word operations, and any double word aligned address can 
be used for double word addresses.

PAC Coherent Increment addresses
Each PAC has four Coherent Increment addresses, one for each processor. 
Writes to these addresses trigger coherent increment operations.

If the Armed bit in the Operation Context register is set, a write to one of the 
addresses results in a coherent increment operation at memory. The address 
of the double word that is incremented is obtained from the data of the 
double word store instruction that is used to issue the operation. As part of 
the coherent increment operation, double word memory address is written 
to the Operation Address register, the Armed bit is cleared and the 
Triggered bit is set. If the Armed bit is not set, the PAC returns an undefined 
value to the processor, and the Armed and Triggered bits are not modified.



Chapter 4 103

Synchronization
PA-8500 TLB Entry U-bit

PA-8500 TLB Entry U-bit
Each PA-8500 TLB entry contains a bit that controls whether an access 
to coherent memory space should accelerate the memory line into its 
data cache. The V2500 server uses this bit to inhibit noncoherent 
operations from being moved into data cache.

Table 35 lists the supported semaphore operators and the associated PA-
8500 instructions used to issue the operations for the accessed memory 
page.

Table 35 Semaphore operation instructions

TLB entry U-
bit value

PA-8500 
instruction Semaphore operation

0
(Coherent)

LDCW Load and Clear 32-bit

LDCD Load and Clear 64-bit

CINCD Coherent Increment 64-bit

1
(Noncoherent)

FINCW Fetch and Increment 32-bit

FINCD Fetch and Increment 64-bit

FDECW Fetch and Decrement 32-bit

FDECD Fetch and Decrement 64-bit

FCLRW Fetch and Clear 32-bit

FCLRD Fetch and Clear 64-bit

LDW Noncoherent Load 32-bit

LDD Noncoherent Load 64-bit

STW Noncoherent Store 32-bit

STD Noncoherent Store 64-bit



104 Chapter 4 

Synchronization
PA-8500 TLB Entry U-bit

An entire memory page must be used in a consistent manor with respect 
to coherent or noncoherent operations. Mixing of coherent and 
noncoherent accesses to a memory line result in errors being returned to 
the issuing processor.



Chapter 5 105

5 Interrupts

This chapter discusses the interrupt mechanism of the V2500 server. 

The PA-RISC 2.0 Architecture manual presents a detailed discussion of 
the interrupt mechanism implemented for the PA-8500 processor, and 
that material is not presented in this book. Instead, this chapter 
discusses interrupts registers unique to the V2500 server.



106 Chapter 5 

Interrupts
Overview

Overview
Interrupts cause process control to be passed to an interrupt handling 
routine. Upon completion of interrupt processing, a Return From 
Interrupt (RFI) instruction restores the saved processor state, and the 
execution proceeds with the interrupted instruction.

When responding to an interrupt, the processor behaves as if a single 
instruction were fetched and executed, not pipelined. Any interrupt 
conditions raised by that instruction are handled immediately. If there 
are none, the next instruction is fetched, and so on.

Faults, traps, interrupts, and checks are different classes of interrupts.

A fault occurs when an instruction requests a legitimate action that 
cannot be carried out due to a system problem. After the problem has 
been corrected, the instruction causing the fault executes normally. 
Faults are synchronous with respect to the instruction stream.

A trap occurs when a function requested by the current instruction can 
not or should not be carried out. For example, attempting to access a 
page for which a user does not have privilege causes a trap. Another 
example is when the user requires system intervention before or after 
the instruction is executed, such as page reference traps used for 
debugging. Traps are synchronous with respect to the instruction 
stream.

An interrupt occurs when an external device requires processor 
attention. The external device sets a bit in the External Interrupt 
Request register (EIRR). Interrupts are asynchronous with respect to the 
instruction stream.

A check occurs when the processor detects a malfunction. The 
malfunction may or may not be correctable. Checks can be either 
synchronous or asynchronous with respect to the instruction stream.



Chapter 5 107

Interrupts
Processor interrupts

Processor interrupts
The PA-8500 processor is sent an external interrupt by writing to its 
External Interrupt Request Register (EIRR). Provided that the PA-
8500’s external interrupts are enabled (processor status word’s I-bit) and 
that the External Interrupt Enable Mask (EIEM) register has not 
masked the particular interrupt being sent, the processor current 
execution of instructions will be interrupted to deal with the external 
interrupt. 

The processors send interrupts to other processors. Also, hardware 
detected events may send an interrupt to a processor. Independent of the 
source of the interrupt, the interrupt is sent to the destination processor 
by writing to that processor’s External Interrupt Request Register.

The V2500 server interrupts occur from several sources which include:

• Other processors

• I/O subsystem

• Memory subsystem 

• Time of Century counter loss of synchronization

• Utilities board

The EIRR is written to using a double word store. 

All fields of the register are undefined when read.

The format of the EIRR is shown in Figure 28.

 Figure 28 PA-8500 External Interrupt Request register definition

The Interrupt Number field (bits 26:31) specifies the external interrupt 
to be set in the EIRR. The value of the interrupt, 0-63, is encoded in the 
six-bit field.

0 63

ReservedInterrupt
number

26

Reserved

31



108 Chapter 5 

Interrupts
Processor interrupts

Five-bit processor identifier
Each PA-8500 processor within a node has a unique five-bit identifier 
that to specifying which processor an interrupt should be sent. The 
identifier is five bits wide (specifying up to 32 processors). 

 Figure 29 Five-bit processor identifier

The fields in the Processor Identifier are defined as follows:

• Slot ID bit (bit 0)—Identifies which of the two processors on a runway 
bus is being referenced.

• PAC ID<0:2> field (bits 1:3)—Identifies which of the eight PACs within a 
node is being referenced.

• Bus ID field (bit 4)—Identifies which of the two runway buses of a PAC 
is being referenced.

The 2-bit Proc. ID field of the Processor Configuration register on each 
processor determines which of the four processors physically attached to 
a PAC it is. The most significant bit of the Proc. ID field specifies the 
processor Slot ID, and the least significant bit specifies the processor Bus 
ID.

The processors attached to PAC 0 are numbered 0, 1, 16, and 17, with 
processors 0 and 16 sharing one runway bus, and processors 1 and 17 
sharing the other. The remaining PACs within a node are numbered in a 
similar manor.

0 4
Bus IDPAC ID<0:2>Slot ID

1-3



Chapter 5 109

Interrupts
Utilities board interrupts

Utilities board interrupts
Almost all interrupts are sent directly to the processor EIRR with the 
exception of those associated with the core logic bus connected to the 
Utilities board. The Utilities board collects system environmental 
interrupts and applies them to the EIRR. The Utilities board handles the 
following types of interrupts:

• Environmental conditions

• Transfer of control (TOC)

• External communications

• System warnings and failure

Figure 28 shows how these interrupts are presented to the processor.



110 Chapter 5 

Interrupts
Utilities board interrupts

 Figure 30 Core logic interrupt system

The Utilities board provides interrupt information to all PACs in the 
system. Each PAC determines if one of its four processors is enabled to 
handle the pending interrupt.

The Utilities board accepts eight separate interrupt sources listed in 
Table 36.

Processor 3Processor 2

EIRR EIRR

Processor 1

Utilities board

Processor 0

EIRR EIRR

SMUC

DUART 0
DUART 1

TOC Button
TOC Line

Environmental Warning
Environmental Error

System Hard Error

Core Logic bus
To other PACsTo other SPACs

Interrupt Delivery CSRs

SPUC
SONIC

PAC



Chapter 5 111

Interrupts
Utilities board interrupts

Table 36 Core logic interrupt sources

The Utilities board processes interrupts as follows:

• Interrupts are latched into the Interrupt Status register in the MUC.

• Interrupts can also be forced into the Force Interrupts register for testing 
purposes.

• Interrupts are compared to data in the Interrupt Mask register, and, 
if they are not masked out, are sent across the core logic bus to the 
Interrupt Delivery register in the PAC.

• If the PAC determines that one of its processors has the interrupt 
enabled, it delivers the interrupt information to the processor by 
writing to the processor EIRR.

PAC interrupt logic
Each PAC receives an eight-bit mask from the PUC (using the core logic 
bus) that specifies the interrupt sources sent to the processors. Each PAC 
has interrupt delivery information for each of the eight possible 
interrupt sources. Figure 31 shows the interrupt delivery data.

Core logic interrupt source Interrupt bit

DUART channel 0 0

DUART channel 1 1

SONIC controller 2

Transfer of control button 3

Transfer of control line (from test station) 4

Environmental warning 5

Environmental error 6

System hard error 7



112 Chapter 5 

Interrupts
Utilities board interrupts

 Figure 31 PAC interrupt delivery information

The information contains individual enables for each of the four 
processors connected to a PAC, the type of exception, and the interrupt 
number or an interrupt exception type.

PAC Interrupt Delivery registers
There are two 64-bit Interrupt Delivery registers on each PAC. Each 
register specifies the delivery information for four of the eight interrupt 
sources.

 Figure 32 PAC Interrupt Delivery register definition

The fields and bits of the PAC interrupt delivery registers are defined as 
follows:

Processor enable bits—Indicate that the processor is enabled to handle 
the exception.

Exception type fields—Indicate the type of exception:

Intr. Num

1 2 6

Type 00 - Interrupt
01 - HPMC
10 - TOC
11 - Power Fail

Processor 3 Enable
Processor 2 Enable

1

Processor 1 Enable
Processor 0 Enable

11

0

Definition

Exception Type

4 15
Intr

Num

20 31 36 47 52 63

Processor Enable 3
Processor Enable 2
Processor Enable 1
Processor Enable 0

Intr
Num

Intr
Num

Intr
Num



Chapter 5 113

Interrupts
Utilities board interrupts

• Interrupt

• HPMC

• TOC loss of synchronization

• Power failure

Interrupt number fields—Indicate the interrupt source to the delivery 
registers.

The Utilities board interrupts map to the core logic interrupt delivery 
registers as shown in Table 37. All fields are written to by a CSR write 
and read using a CSR read. Reset has no effect on the register.

Table 37 Core logic interrupt delivery registers

Utilities board interrupt source Register and bits

Duart Channel #0 Register 0, bits 4:15

Duart Channel #1 Register 0, bits 20:31

SONIC controller Register 0, bits 36:47

Transfer of Control Button Register 0, bits 52:63

Transfer of Control Line
(from test station)

Register 1, bits 4:15

Environmental Warning Register 1, bits 20:31

Environmental Error Register 1, bits 36:47

System Hard Error Register 1, bits 52:63



114 Chapter 5 

Interrupts
Utilities board interrupts

PUC interrupt logic
The following PUC interrupt registers comprise the PUC interrupt logic:

• Interrupt Status register

• Interrupt Mask register

• Interrupt Force register

PUC Interrupt Status register
The PUC contains one Interrupt Status register. The register maintains 
the status of the pending Utilities board interrupts given in Table 37. 
Figure 33 shows the definition of the register. 

 Figure 33 PUC Interrupt Status register definition

The Interrupt source field (bits 0:7) indicates the source of the PUC 
interrupt. The bits are set when the PUC detects an active input 
interrupt signal. The contents of the register are read by a CSR read 
operation. Each bit set in the data of a CSR write operation clears the 
associated bit of the status register, and a reset clears the register.

Each individual bit of the Interrupt Status register can be cleared 
without affecting the other bits, even when the register is receiving an 
interrupt. Clearing a bit has precedence over setting it. This means that 
if an input interrupt is still asserted when the bit is cleared, the status 
bit is set on the following cycle, and a new interrupt is sent to each PAC 
ASIC.

Table 38 shows the bit field assigned to each core logic interrupt source.

0 7 31

ReservedInterrupt source



115 Chapter 5 

Interrupts
Utilities board interrupts

Table 38 PUC Interrupt register field definitions

PUC Interrupt Force register
The PUC contains one Interrupt Force register. The register allows 
software to force an interrupt on any of the eight interrupts. Figure 34 
shows the definition of the register. 

 Figure 34 PUC Interrupt Force register definition

The Interrupt force field (bits 0:7) indicates the interrupt(s) being forced. 
The contents of the register are read by a CSR read operation and 
written by a CSR write operation. Setting a bit forces an interrupt, 
regardless if it is enabled or not. A reset clears the register. Table 38 
shows the interrupts assigned to each core logic interrupt force bit.

Register bit  Interrupt source

0 DUART channel 0

1 DUART channel 1

2 SONIC controller

3 Transfer of control button

4 Transfer of control line (from test station)

5 Environmental warning

6 Environmental error

7 System hard error

0 7 31

Interrupt force Reserved



116 Chapter 5 

Interrupts
Utilities board interrupts



Chapter 6 117

6 I/O subsystem

The I/O subsystem connects the system to its peripheral devices using 
the industry standard peripheral component interface (PCI) bus. A fully 
configured system provides up to eight, 64-bit PCI buses, one for each 
PAC. Each bus supports up to four controllers for a maximum of 28 PCI 
controllers for the system.



118 Chapter 6 

I/O subsystem
Overview

Overview
The I/O subsystem transfers data coherently to and from the system 
main memory, eliminating the need for flushing the processor caches. 
Figure 35 shows a block diagram of the I/O subsystem based on the PCI-
bus Interface Controller (SAGA).

 Figure 35 I/O system block diagram

The SAGA provides memory-mapped access from the processor to the I/O 
controllers and allows external devices to transfer data into and out of 
system memory. There is one SAGA per PAC. Each SAGA has a pair of 
unidirectional links to the associated PAC. Each SAGA has two physical 
SRAM banks, one for SAGA data prefetch and one for PCI controller-
shared memory.

5/17/99
V25M165

interface
EPAC

interface
PCI-bus

controller

data
Prefetched

SRAM channel context

PCI bus

Up to three controllers per PCI bus

Shared memory/

10 2

SRAM

3



Chapter 6 119

I/O subsystem
Logical I/O channel

Logical I/O channel
The SAGA uses the concept of a logical I/O channel to translate PCI 
addresses and prefetch system coherent memory. A logical channel 
defines a pipe between four Mbytes of PCI memory space to four Mbytes 
of system coherent memory. 

Each channel has a distinct address mapping between the PCI bus 
address space and the system main memory. It also has a buffer for 
storing prefetched data during read data transfers. The buffer hides PCI 
start-up latencies associated with read data transfers.

The logical I/O channel also has a posted write buffer for collecting 32-
byte data cache lines before flushing them to system coherent memory. 
Figure 36 depicts the logical I/O channel concept, and Figure 37 shows 
the PCI bus command and address format.

 Figure 36 Logical I/O channel model

5/13/99
V25M163

Controller
PCI

(Address Translation
Rd Channel Prefetch

Rd Channel Prefetch
(Address Translation

(Address Translation
Rd Channel Prefetch(Address Translation

Rd Channel Prefetch(Address Translation
Rd Channel Prefetch

1008 Read Channel Pipes

1008 Write Channel Pipes

Controller
PCI

Controller
PCI

4MB

4MB
4MB

4MB

4MB
4MB

System
Coherent Memory

PIC
PCI
Bus

(Address Translation
Posted Write Buffer(Address Translation

Posted Write Buffer(Address Translation
Posted Write Buffer(Address Translation

Posted Write Buffer(Address Translation
Posted Write Buffer

Controller
PCI



120 Chapter 6 

I/O subsystem
Logical I/O channel

 Figure 37 PCI bus command and address

The 10 most significant bits of the PCI address define the logical channel 
number, providing a total of 1,024 logical channels. Channels 1008-1023 
are reserved, leaving a maximum of 1,008 read channels and 1,008 write 
channels. The 22-bit channel offset gives each channel a four-Mbyte data 
space. Consecutive channels may be chained to allow transfers larger 
than four Mbytes.

NOTE Each channel can be used for one or more DMA transfers on a controller. 
Best performance is usually realized, however, with a single I/O transfer 
per channel. A channel can not be used by multiple controllers at the 
same time.

Channel initialization
Before a processor initializes an I/O operation, it must set up a channel 
for the appropriate controller by writing to the SAGA Channel Builder 
register.

The build consists of a single write to the Channel Builder register. See 
the section “SAGA Channel Builder register” on page 142. The SAGA 
initializes all the external SRAM channel context state and prefetches 
any needed data and TLB entries. 

Channel context and shared memory SRAM
The SAGA maintains both channel context and shared memory in its 
external Channel Context SRAM (CCSRAM). The channel context space 
reserves 64 Kbytes from the base of the SRAM, and shared memory for 
both controller and expanded is available for the remainder. The SAGA 
supports up from 256 Kbytes to 2 Mbytes of external CCSRAM. See 
Figure 38.

Channel Page Page offset

031 21 11

Address



Chapter 6 121

I/O subsystem
Logical I/O channel

 Figure 38 CCSRAM Layout

Channel context
The channel context portion of the SRAM contains information to 
determine how to perform the DMA transfer between PCI and system 
memory. Channel context access is mapped into both PCI memory space 
and processor I/O space. The channel context region, however, is only 
directly accessed for diagnostic use. The processor programs channel 
context state through the SAGA Channel Builder register.

Shared memory
The SAGA provides a locally shared memory region in the CCSRAM for 
all status and control structures that support the PCI controllers. This 
SRAM is not coherent with main memory. It is visible, however, from 
both PCI memory space and processor I/O space.

channel context

shared memory

0x00_0000

Controller

0x01_0000

SAGA

0x04_0000

0x020_0000

shared memory
Expanded



122 Chapter 6 

I/O subsystem
Host-to-PCI address translation

Host-to-PCI address translation
The 40-bit system address map, shown in Figure 39, reserves 16 Gbytes 
from 0xF8 0000 0000 to 0xFB FFFF FFFF for host access to PCI devices.

 Figure 39 I/O address space format

The fields for the I/O address space are defined as follows:

• Dxbr field bits (6:9)—Specifies one of eight PACs

• Unit field bits (9:10)—Specifies one of four I/O units (SAGAs) 
connected to a PAC.

• Offset field bits (11:39)—Specifies 29-bit SAGA mapping.

PCI configuration space
The PCI specification establishes three PCI address spaces: 
configuration, I/O, and memory. Dedicated read and write commands 
select a particular space for a PCI bus operation. 

The PCI configuration space contains a set of configuration registers that 
must be implemented by all bus targets except host bridges. The 
configuration registers allow the SAGA to set up PCI I/O and memory 
space requirements in the system address map. Figure 39 shows the PCI 
configuration address format.

10 Dxbr Unit

0 4 1196 39

1111 Offset



Chapter 6 123

I/O subsystem
Host-to-PCI address translation

 Figure 40 PCI I/O configuration space format

The fields for the I/O configuration space format are defined as follows:

• Bus number field (bits 16:23)—Indicates PCI bus number. Bus 0 is 
the bus directly attached to the SAGA. Any other PCI buses must be 
assigned Bus numbers 1 to 255 during the software probe.

• Device number field (bits 24:28)—Specifies the device on one PCI bus 
segment. Bus 0 only supports Device 0 through Device 3.

• Function number field (bits 29:31)—Specifies the function on a PCI 
device.

• Register number field (bits 32:37)—Specifies the register within a PCI 
function.

• Byte number field (bits 38:39)—Provides the byte address. This field 
and the packet size code establish the PCI byte enables during the 
access. Accesses must be aligned to their natural size. The SAGA does 
not support 64-bit double-word accesses to PCI.

PCI I/O and memory space
PCI I/O and PCI memory space allow host access to device-specific CSRs. 
Target implementation of either space is optional. However, if a device 
implements either space, it must also implement a corresponding base 
address register in PCI configuration space to allow consistent address 
mapping. 

PCI I/O and PCI memory space may each be as large as four Gbytes. PCI 
I/O space uses a full byte address, so the SAGA combines the least 
significant bits of the system address with the packet size code to create 
the PCI byte address and the PCI byte enables. PCI memory space uses 
four byte-aligned addresses; smaller entities are addressed by bus byte 
enables.

Function
16 322924 39

Byte

38

number
000 0000

9

Bus number RegisterDevice
number

Function
number  number



124 Chapter 6 

I/O subsystem
Host-to-PCI address translation

I/O space-to-PCI map
As shown in Figure 41, the SAGA maps its partition of I/O space into the 
three PCI spaces. It also reserves an area for diagnostic windows into the 
external SAGA context/shared memory and external SAGA prefetch 
memory. 

The PCI defines eight Gbytes of I/O and memory space, but the SAGA 
only has 0.5 Gbyte of space in which to operate. Therefore, the address 
map is necessarily sparse. Only the PCI configuration space maps on a 
one-to-one basis. 

The SAGA can generate PCI addresses, increasing from 0x0000 0000 in 
PCI I/O space and decreasing downward from 0xFFBF FFFF in PCI 
memory space. The allocation boundary between I/O and memory space 
is programmable in 64-Mbyte increments and can range from no I/O 
space and all memory space to no memory space and all I/O space. 

Maximizing the PCI I/O space also maximizes the number of available 
PCI DMA channels, while increasing the PCI memory space comes at the 
cost of 16 PCI DMA I/O channels per 64-Mbyte increment. 



Chapter 6 125

I/O subsystem
Host-to-PCI address translation

 Figure 41 I/O space to PCI space mapping

PCI CONFIG

SAGA Context/

PCI I/O

PCI MEM

Addr[11:40]

 PCI MEM Space

0x00000000

0x1fffffff

0x04000000

0x1c000000

0x1fe00000

0x00000000

0x00000000

0x00000000

0x00ffffff

0xe4000000

0xffc00000

0xffffffff

Device DMA

0x01000000

SAGA Context/

PCI I/O Space

Device DMA

SAGA Prefetch

0xffe00000

0x18000000

0xffffffff

Shared Memory

Shared Memory

0x1fe40000

Memory

0x1fc00000

PCI Addr

0x1bc00000

ffbfffff

(Chan. 0-911)

0xe3ffffff

PCI CONFIG Space

0xfc000000

Node I/O Space

Device Mem

PCI Addr

PCI Addr

Unimplemented

Shared Memory
Alias



126 Chapter 6 

I/O subsystem
PCI-to-host memory address translation

PCI-to-host memory address translation
There are two types of address translation: physical and logical. An 
Address Translation Enable bit (ATE) for each channel determines the 
address translation between PCI and system coherent memory. SAGA 
only supports 32-bit PCI addressing.

In the physical translation mode, data is fetched directly from a four-
Mbyte buffer in system main memory. 

Logical address translation implies that the translation process uses an 
intermediate step to derive the system address. The process uses 
translation tables in system memory for data transfers. 

Most modern I/O controllers use part of the host memory for storing 
control and status blocks. Typically, these are accessed using word 
accesses over the PCI bus. Since the main memory access latency is 
relatively large, part of the channel context SRAM is used for storing the 
control and status structures. 

By addressing logical channel 1023, a controller accesses the entire 
SRAM.

Physical address translation
The simplest translation mode is the physical translation mode. In this 
mode, the four-Mbyte PCI channel directly maps into a four-Mbyte, 
physically contiguous block of system memory. The 22-bit PCI channel 
offset is combined directly with the 18-bit channel physical base pointer 
to generate the 40-bit system address.



Chapter 6 127

I/O subsystem
PCI-to-host memory address translation

 Figure 42 Physical mode address translation

Some I/O transfers, specifically remote receive transfers with many 
small I/O streams, need to be handled in a nondeterministic order. If 
each transfer were located in its own channel, software could run out of 
channels. If the transfers are packed into a single logical channel, the 
TLB miss overhead when switching streams would then limit the 
controllers throughput.

Software can pack remote receive buffers into a single physical channel 
and reduce the number of channels used, reduce the number of channel 
swaps, and eliminate TLB miss latencies.

9/29/97
IOEXS107

18 bit system
physical base

pointer

(EPIC SRAM)
Channel context

280 39

32-bit PCI memory address

System page number System page offset

Page offsetPage numberChannel number

31 21 11 0

10 12

18

18

10

40-bit system physical address



128 Chapter 6 

I/O subsystem
PCI-to-host memory address translation

Logical address translation
The more common way to map the 32-bit PCI address into the 40-bit 
system address is using a logical translation mode channel. For logical 
translations, a translation table is used to generate the 40-bit system 
address from the 32-bit PCI address.

 Figure 43 Logical mode address translation

The logical address translation mode is based on a translation lookaside 
buffer much like the processor TLB. The translation table converts the 
PCI bus addresses into system addresses on a page (four-Kbyte) basis, 
and therefore, are aligned on page boundaries. A TLB base pointer 
points to the page of TLB entries in system memory. The PCI page 

9/29/97
IOEXS106

28-bit system TLB entry
(prefetched and cached)

Page table
(host memory)

28-bit system
TLB base pointer

(EPIC SRAM)
Channel Context

280 39

32-bit PCI memory address

System page number System page offset

28

Page offsetPage numberChannel number

31 21 11 0

10

12

40-bit system physical address

10



Chapter 6 129

I/O subsystem
PCI-to-host memory address translation

number indexes this table, pointing to a system page number. This 
system page number and the PCI page offset are combined to generate 
the 40-bit system address.

I/O TLB entry format
The I/O TLB entries in system coherent memory are the same as those 
used by the data mover. They are not the same as the processor TLB 
entries.

 Figure 44 I/O TLB entry format

An I/O page table consists of 1,024 TLB entries. Each 28-bit TLB entry 
points to a four-Kbyte page of system coherent memory. Therefore, the 
table consumes four Kbytes of system coherent memory. The channel 
TLB base pointer points to its channel page table. The PCI page number 
indexes the page table to address the needed TLB entry. See Figure 43.

V TLB entry

0 314

TLB Valid bit



130 Chapter 6 

I/O subsystem
PCI memory read transfers

PCI memory read transfers
To handle long and variant system memory latencies, the SAGA uses 
several different prefetch techniques in combination to ensure that the 
data needed by a controller is available at the time it is needed. These 
techniques include: 

• Channel prefetch/refetch

• Device consumption-based prefetch

• Device stall prefetch

These techniques allow the SAGA to:

• Compensate for start-up latencies from memory

• Maintain a minimal prefetch depth that matches the memory latency 
needed for the controller consumption rate of that data

• Increase prefetch depth dynamically, as needed, to account for larger 
latencies than the current depth of the prefetch buffer can hide

Read data is coherent at the point that the request is satisfied in system 
memory. I/O transfers are not included, however, in system memory 
sharing lists. Therefore, if the data is modified later, the SAGA 
prefetched data will be stale. This fact dictates that direct memory 
accesses (DMA) from system memory be used only for buffered data that 
is defined prior to the SAGA issuing any prefetches for that data. To 
purge prefetched data from the SAGA prefetch buffers, the channel must 
be either reinitialized or rebuilt through the Channel Builder register.

To accommodate these prefetch techniques, the SAGA provides two types 
of data prefetch storage:

• Channel Prefetch space

• Device Prefetch space

The channel prefetch space hides start-up latencies, and the device 
prefetch space maintains the streaming data. When a PCI transfer 
starts, data is supplied from the smaller channel prefetch buffer. Once 
that data from this buffer is exhausted, the data is pulled from the larger 
device prefetch buffer.



Chapter 6 131

I/O subsystem
PCI memory read transfers

Channel prefetch space
Channel prefetch space stores channel prefetch data. This space hides 
the typical start-up latency for system accesses when a controller 
switches from one channel to another. 

There is one channel prefetch buffer per channel for a total of 1,008 
channel prefetch buffers. The amount of storage space needed to cover 
the start-up latency for system accesses determines the depth of each 
channel prefetch buffer. The depth of the buffer is sized with the 
following formula:

Channel prefetch depth = PCI bandwidth * Local memory latency 

Device prefetch space
Device prefetch space stores the prefetch data of a streaming device. It 
buffers a single controller stream of data from memory. The depth of the 
buffer is sized to hide latencies with minimal stalls on the PCI bus.

There is one device prefetch buffer per controller. The depth of the buffer 
is sized with the following formula:

Device prefetch depth = PCI bandwidth * Remote memory latency

Channel prefetch/refetch modes
For small transfer high bandwidth controllers, the start up latency 
dictates the effectiveness of the controller to move data. The start up 
latency is the time from which a controller provides the SAGA a new 
address stream to the time the SAGA provides the first data word. 

The SAGA provides a Channel prefetch enable (P) bit to hide controller 
start-up memory latencies. When enabled (P is set to 1), the SAGA 
Channel Builder register prefetches data at channel initialization time. 
The prefetched data is stored locally in the channel space of the SAGA 
external SRAM. Therefore, when a controller presents the SAGA with an 
address mapping into this channel, the data is already local to the 
SAGA, reducing the latency to first data word.

A controller that uses time-multiplexing on its read streams (for 
example, an ATM controller) can also be programmed with a Channel 
Refetch (R) bit. When this bit is enabled (R set to 1) and one channel is 
swapped for another, the SAGA first refetches data into the channel 



132 Chapter 6 

I/O subsystem
PCI memory read transfers

prefetch buffer, starting where the controller left off. This guarantees 
that when the controller comes back to this address stream, the next 
needed data is available in channel prefetch space. 

Device consumption-based prefetch
Each SAGA can be connected to controllers with different bandwidth 
requirements. The SAGA must ensure that each controller has fair 
access to the system memory. 

The SAGA consumption-based prefetch algorithm keeps the prefetch 
request rate matched to the amount of data that a controller is 
consuming from the SAGA. Each time a line of data is transferred across 
the PCI interface to a controller, a prefetch is scheduled for that SAGA 
device prefetch buffer. This also ensures that the depth of the prefetch 
buffer is maintained at the minimal level that satisfies the consumption 
rate of the controllers, keeping the SAGA from over prefetching for a 
particular controller. 

Stall prefetch
Occasionally a controller needs data that is not available in the SAGA 
device prefetch buffer (for example, when the controller address stream 
jumps outside the depth of the device prefetch buffer). In this case, the 
stall prefetch mechanism causes the SAGA to issue a constant stream of 
data prefetches at a programmable interval until the critical line returns 
to the SAGA. Once prefetch data is available, the prefetch algorithm 
reverts to the consumption-based prefetch algorithm.



Chapter 6 133

I/O subsystem
PCI memory write transfers

PCI memory write transfers
The SAGA has one independent write buffer per PCI controller. In order 
to minimize the write traffic to memory, a write buffer accumulates 
sequential bytes into a cache line of data prior to sending it to system 
memory. Any of the following events can cause the SAGA to flush this 
write buffer to memory:

• The controller writes the last byte of a cache line.

• The controller writes a noncontiguous byte stream (a jump).

• A synchronization event forces a write pipe flush.

When the controller write buffer accumulates a cache line of data, a 
WritePurge operation flushes the line of data to memory. When the 
memory subsystem receives the data, it purges this line from all 
processors. 

When a partial line needs to be flushed to memory, however, a 
WritePurge can not be used, since the current cache line in memory 
must be merged with the partial cache line of the SAGA. The SAGA 
provides a Write Purge Partial (W) mode bit per channel that defines 
how the SAGA should perform this partial cache line merging.

Write purge partial disabled
If the Write Purge Partial bit is cleared, the nonwritten portion of the 
cache line in memory must be maintained coherently. Therefore, the 
SAGA must perform a Dflush_Alloc/Write_Mask flow. The SAGA 
first issues a Dflush_Alloc to flush the line back to memory, locking 
down the line. When Dflush_Alloc is complete, the SAGA issues the 
Write_Mask operation. This operation writes the data to memory with a 
mask to allow the memory subsystem to merge the two lines together 
and release the line in memory.



134 Chapter 6 

I/O subsystem
PCI memory write transfers

Write_Purge_Partial enabled
If the Write_Purge_Partial bit is set, there is no guarantee that the 
nonwritten portion of the cache line in memory is coherently maintained. 
Setting this bit provides accelerated partial line transfers to system 
coherent memory, making this mode suitable for transfers like those to 
kernel buffers but not suitable for I/O transfers directly to user space.

The Write_Purge_Partial provides a mask that defines the data to be 
written to memory. The remaining bytes of the cache line come from 
what is currently in memory. When this data is received, the memory 
subsystem purges any users of the cache line.



Chapter 6 135

I/O subsystem
I/O subsystem CSRs

I/O subsystem CSRs
The SAGA is controlled by CSRs. All CSRs are 64-bit aligned and may 
only be accessed using noncoherent Read Short and Write Short packets. 
The SAGA registers include:

• SAGA Chip Configuration

• SAGA PCI Master Configuration

• SAGA PCI Master Status

• SAGA Channel Builder

• SAGA Interrupt Configuration

• SAGA Interrupt Source

• SAGA Interrupt Enable

• PCI Slot Configuration

• PCI Slot Status

• PCI Slot Interrupt

• PCI Slot Synchronization

SAGA CSR address decoding
The SAGA CSR address decoder looks at system address bits [4:5] to 
determine the target address space (I/O or SAGA CSRs) and bits [24:39] 
to index the CSR space. Accesses to unimplemented SAGA CSR space 
return error responses to the requestor. Reserved addresses and bits 
ignore writes and return zeros on reads.

The SAGA CSRs may be accessed by addressing, the mapping of which is 
shown in Figure 45.

 Figure 45 SAGA CSR 40-bit address format

0

F

24

Page

4

11

28

Register

37

000

21

Chip

18

DXbr

39

Not used



136 Chapter 6 

I/O subsystem
I/O subsystem CSRs

The bits and fields of the SAGA CSR space address are as follows:

• DXbr field (bits 18:19)—Specifies which of the eight cross bar ports 
the request is to be routed. 

• Chip field (bits 21:23)—Routes the packet to the appropriate chip at a 
crossbar port. 

• Page field (bits 28:36)—Separates groups of CSRs into similar usage 
spaces.



Chapter 6 137

I/O subsystem
I/O subsystem CSRs

SAGA CSR definition
This section describes the SAGA CSRs.

SAGA Chip Configuration register

The SAGA contains one SAGA Chip Configuration register on each 
SAGA. It specifies configuration information.

 Figure 46 SAGA Chip Configuration register definition

The fields of the SAGA Chip Configuration register are defined as 
follows:

• SAGA part number field (bits 0:15)—Specifies the part number for 
the SAGA chip. A write is ignored and a read returns the hardwired 
value.

• SAGA version code field (bits 16:19)—Specifies the version of the 
SAGA chip. A write is ignored and a read returns the hardware value.

• Multiple Delayed Transaction bit (bit 23)—Specifies the support level 
for PCI 2.1 multiple delayed transactions.

• Implementation dependent field (bits 24:63)—Specifies 
implementation dependent information. The value in this field should 
not be modified during normal use.

PCI Master Configuration register

There is one PCI Master Configuration register on each SAGA that 
provides configuration information about the PCI Master interface. The 
format of the register is shown in Figure 47. All reserved fields are read 
as zero, and writes are ignored. All implemented fields are read with the 
last value written.

0 63
SAGA
version

16
SAGA part

19

Implementation dependentnumber

22 23



138 Chapter 6 

I/O subsystem
I/O subsystem CSRs

 Figure 47 PCI Master Configuration register definition

The fields and bits in the SAGA PCI Master Configuration register are 
defined as follows:

• Arbitration disable timeout field (bits 0:15)—Defines the PCI 
arbitration disable timeout threshold. This field defines the 
controller’s arbitration disable time-out from the read and write 
managers. The incrementer for this timer is in units of 256 PCI 
clocks.

• Reset PCI bus field (bit 23)—Resets the PCI bus.his output triggers 
external hardware to reset the PCI bus.

• PCI Memory_I/O Boundary field (bits 29:31)—Controls the amount 
of Node Local-I/O space mapped to PCI MEM and PCI I/O address 
space in contiguous 64-Mbyte blocks. Figure 48 shows the PCI 
memory space setting.

0 29 38 59 63

Arbitration

Master parity error response

PCI memory space limit

Enable data byte swap during host access to PCI

Generate bad data parity on PCI master writes
Generate bad address parity on PCI master writes

disable timeout

54

Disable host highest priority

PCI memory I/O boundary

Disable PCI bus arbiter time-out on bus grants

Reset PCI bus

23 50

Disable PCI retry counter

15

Rsvd



Chapter 6 139

I/O subsystem
I/O subsystem CSRs

 Figure 48 PCI Memory space setting

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

PCI Config Space

PCI
I/O

PCI
Memory

PCI
I/O

PCI
I/O

PCI
I/O

PCI
I/O

PCI
I/O

PCI
I/O

PCI
Memory

PCI
Memory

PCI
Memory

PCI
Memory

PCI
Memory

PCI
Memory

Reserved

Starting 
Address

0x0000_0000

0x0400_0000

0x0800_0000

0x0C00_0000

0x1000_0000

0x1400_0000

0x1800_0000

0x1C00_0000

0x1FC0_0000

0x1FFF_FFFF

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

PCI Memory_IO boundary settings

M
em

o
ry



140 Chapter 6 

I/O subsystem
I/O subsystem CSRs

• PCI memory space limit field (bits 38:47)—Resets to 0x3f0 or 1008 
decimal. The SAGA reserves the upper 60-Mbytes (channels 1008-
1022 inclusive) for PCI controller shared memory address space and 
the highest four Mbytes (channel 1023) for SAGA context SRAM. The 
SAGA does not respond to PCI Controller DMA from channels 1,022 
down to the value stored in this register. This register value updates 
on write to the PCI Memory_I/O Boundary field, and is read-only.

• Disable PCI retry counter bit (bit 50)—Specifies the PCI retry counter 
is enabled.

• Enable data byte swap during host access to PCI bit (bit 51)—Causes 
host accesses to the PCI to swap data bytes.

• Disable Host highest priority bit (bit 54)—Indicates the host is 
participating in rotating priority with other devices.

• Disable PCI bus arbiter timeout on bus grants bit (bit 55)—Indicates 
that the PCI bus arbiter does not timeout on bus grants.

• Master Parity Error Response bit (bit 59)—Indicates that the SAGA 
performs its normal operation when it detects a parity error as bus 
master.

• Generate bad address parity on PCI master writes bit (bit 62)—Forces 
bad address parity out to PCI (for diagnostic use only). 

• Generate bad data parity on PCI master writes bit (bit 63)—Forces 
bad data parity out to PCI (for diagnostic use only).

PCI Master Status register

Each SAGA has one PCI Master Status register that provides status 
information for the PCI Master interface. All fields are cleared by a reset 
except the SAGA Device Select Timing field; it is hardwired to the value 
one.



Chapter 6 141

I/O subsystem
I/O subsystem CSRs

 Figure 49 PCI Master Status register definition

The bits in the SAGA PCI Master Status register are defined as follows:

• PCI bus in reset bit (bit 0)—Indicates that the PCI bus is reset.

• Parity error detected bit (bit 3)—Indicates that the SAGA detected a 
parity error on incoming read data while the SAGA was bus 
master.This bit is set regardless of Master Parity Error Response bit 
in the PCI Master Control CSR. Returns an error response to the 
requestor and sets the Master error in Error Cause CSR.

• Data parity error detected bit (bit 7)—Indicates that a parity error 
was detected on the bus while SAGA was PCI bus master. SAGA was 
PCI bus master, asserted PCI_PERR_ or received PCI_PERR_ during 
its bus tenure, and the Master Parity Error Response bit in the PCI 
Master Control CSR was set. Returns an error response to the 
requestor and sets the Master error in Error Cause.

• Sent master abort bit (bit 8)—Indicates that the SAGA was master 
and sent a Master Abort (no target claimed the bus cycle). The Host 
receives an error response. The Host will receive an error response to 
it’s request. In the case of an address parity error, one or more targets 
should signal SERR_. Returns an error response to the requestor and 
also sets the Master error in Error Cause.

• Saw target abort bit (bit 11)—Indicates that the SAGA was master 
and received a Target Abort. The Host will receive an error response. 
The Host will receive an error response to it’s request. In the case of 
an address parity error claimed by a target, the target should 

14

PCI bus in reset

30

Parity error detected
Data parity error detected
Sent master abort
Saw target abort
Broken device
SAGA device select timing

117 63

Reserved



142 Chapter 6 

I/O subsystem
I/O subsystem CSRs

terminate with a target abort and signal SERR_ to SAGA. Returns an 
error response to the requestor and sets the Master error in Error 
Cause.

• Broken device bit (bit 12)—Indicates that the SAGA PCI interface 
received a grant and an Idle bus for 16 clocks but did not run a bus 
cycle. The SAGA returns an error response to the requestor and sets 
the Master error in the Error Cause register.

• SAGA device select timing field (bits 14:15)—Sets medium-speed 
address decode on PCI. This field is read-only.

SAGA Channel Builder register
The SAGA Channel Builder register on each SAGA sets up channel 
context in preparation for an I/O operation. The format of the register is 
shown in Figure 50. Writing to this register stores the value to all fields, 
and reading it returns the last written value. A reset clears all fields. A 
read from the Channel Builder register returns the current state. A 
write to the Channel Builder register causes channel state to be modified 
as defined by the written data.

 Figure 50 SAGA Channel Builder register definition

The fields and bits in the SAGA Channel Builder register are defined as 
follows:

• Operation code field (bits 0:1)—Determines the operation the channel 
builder will perform.

• Write channel field (bit 3)—Indicates a memory write channel when 
set or a memory read channel when cleared.

• Controller PCI slot number field (bits 4:5)—Determines the PCI slot 
that this channel uses.

• Channel number field (bits 6:15)—Indicates the PCI channel to be 
built. The valid range is from 0 to the PCI memory space limit.

Translation table entry/ATPRLine PageChannel

Controller PCI slot number
Write channel
Operation code

Physical base pointer

6336322616640

flags



Chapter 6 143

I/O subsystem
I/O subsystem CSRs

• Page number field (bits 16:25)—Indicates the 10-bit PCI page 
number. 

• Line number field (bits 26:31)—Indicates the line number inside the 
page from which to start prefetch (only applies if a read channel, i.e. 
the Write Channel bit = 0). 

• A - Address translation enable bit (bit 32)—Indicates the channel is in 
logical mode (translation on), if the A bit is set to a one value. If the A 
bit is set to a zero value, the channel is in physical mode (address 
translation off). This field also interprets the translation table base 
Pointer field.

• T -TLB fetch enable bit (bit 33)—If set, TLBs are fetched from 
memory; if T=0, only previously encached TLBs are available.

• P -Prefetch/Write purge partial enable bit (bit 34)—Indicates that 
data prefetch starts at the same time as channel build for read 
channels. It indicates that write purge partials are enabled for a 
write channel.

• R -Refetch bit (bit 35)—Enables data refetch prior to a read channel 
being swapped out.

• Translation table entry/Physical base pointer field (bits 36:63)—
Indicates SAGA function as follows:

• If the A bit is set to a one value and operation code is either a 
Build or Init, then the field is the translation table base pointer. 
This 28-bit field points to the translation table base address where 
TLBs are fetched.

• If the A bit is set to a one value and operation code is a Prefetch, 
this field is the 28-bit TLE for the data prefetch.

• If the A bit is set to a zero value the field is an 18-bit physical base 
pointer for this channel number, pointing to a four-Mbyte 
physically contiguous block of memory.

A read from the Channel Builder CSR returns the current state. A write to 
the Channel Builder CSR causes channel state to be modified as defined by 
the written data.



144 Chapter 6 

I/O subsystem
I/O subsystem CSRs

SAGA Interrupt Configuration register

The SAGA has one SAGA Interrupt Configuration register that specifies 
the interrupt number and processor when an interrupt occurs. The 
SAGA forwards the interrupt by writing the interrupt number to a local 
processor EIRR register. Since the SAGA can only send interrupts to one 
of the 16 processor EIRR registers on the system, only four bits of the 
address are programmable. All programmable fields are reset to zero.

 Figure 51 SAGA Interrupt Configuration register definition

The fields and bits in the SAGA Interrupt Configuration register are 
defined as follows:

• Destination crossbar port field (bits 18:20)—Indicates the crossbar 
port (and therefore which PAC) to which the interrupt will be sent.

• Even/Odd processor chip field (bits 23)—Specifies which of the two 
processors for the given PAC the interrupt is to be sent.

• SAGA Interrupt number (bits 58:63)—Indicates the processor 
External Interrupt register interrupt bit to be set.

SAGA Interrupt Source register

Each SAGA has one Interrupt Source register that holds pending SAGA 
interrupts. Source bits are set when the source of the interrupt occurs 
and remains set until cleared. Interrupts are accumulated regardless of 
the state of the enable. If the interrupt is enabled in the SAGA Interrupt 
Enable register, then SAGA sends an interrupt. If the interrupt enable is 
written to a one value while the interrupt is pending in the Interrupt 
Source register, the SAGA generates an interrupt following the response 
to the register write.

18 23

Destination crossbar port
 SAGA Interrupt number

Even/Odd processor chip

0 58 63

ReservedReserved



Chapter 6 145

I/O subsystem
I/O subsystem CSRs

 Figure 52 SAGA Interrupt Source register definition

The bits in the SAGA Interrupt Source register are defines as follows:

• SAGA soft error bit (bit 15)—Indicates that a bit has been set in the 
Error Cause register that is configured as a soft error.

• Saw SERR_ field (bit 31)—Indicates the SAGA received an SERR_ on 
the PCI bus.

SAGA Interrupt Enable register

SAGA Interrupt Enable register has a bit for every source interrupt in 
SAGA Interrupt Source. A one value in any SAGA Interrupt Enable bit 
causes an interrupt when the corresponding source event in SAGA 
Interrupt Source occurs. This register resets to zero (all interrupts 
disabled). The format for this register is shown in Figure 53.

 Figure 53 SAGA Interrupt Enable register definition

The bits in the SAGA Interrupt Enable register are defined as follows:

• SAGA soft error enable field (bit 15)—Indicates that an interrupt can 
be sent when a soft error occurs. A value of one enables the interrupt.

• SERR_ Interrupt Enable field (bit 31)—Indicates that an interrupt 
can be sent when a PCI SERR_ occurs. A value of one enables the 
interrupt. (SERR_ always sets PCI Master Status CSR Saw Serr 
regardless of this bit).

15 31

SAGA soft error
Saw SERR_

630

ReservedReservedReserved

15 31

SAGA soft error enable
SERR_ interrupt enable

630

ReservedReservedReserved



146 Chapter 6 

I/O subsystem
I/O subsystem CSRs

PCI Slot Configuration register

There are four PCI Slot Configuration registers, one for each supported 
PCI expansion slot. These registers provide control of the PCI interface.

 Figure 54 PCI Slot Configuration register definition

The bits in the PCI Slot Configuration register are defined as follows:

• PCIx interrupt synchronization disable bit (bit 19)—Disables the 
synchronization of a device on interrupt.

• PCIx interrupt enable bit (bit 23)—Enables the forwarding of a device 
interrupt.

• PCIx Perr response bit (bit 39)—Enables PCI_PERR_ data parity 
error signalling.

• PCIx_Swap SRAM bit (bit 46)—Enables byte swapping on PCIx 
shared memory transfers.

• PCIx_Swap DMA bit (bit 47)—Enables byte swapping on PCIx DMA 
transfers.

• PCIx Arb Disable bit (bit 55)—Disables bus arbitration for PCIx.

• PCIx Read Manager Reset bit (bit 58)—Resets SAGA Read manager 
x.

• PCIx Write Manager Reset bit (bit 59)—Resets SAGA Write manager 
x.

0 58 635519 23 39

PCIx interrupt sync disable
PCIx interrupt enable

46

PCIx Perr response
PCIx swap SRAM

PCIx swap DMA
PCIx Arbitration disable

PCIx read manager reset
PCIx write manager reset

Reserved Reserved



147 Chapter 6 

I/O subsystem
I/O subsystem CSRs

PCI Slot Status register

Each SAGA has four PCI Slot Status registers that specify the status of 
slot specific events. Bits in these registers are set when SAGA is the 
target of one of the four controllers and a status event occurs. All 
writable fields are reset to the value zero.

 Figure 55 PCI Slot Status register definition

The fields and bits in the PCI Slot Status register are defined as follows:

• PCIx interrupt line bit (bit 3)—Indicates the current state of the PCIx 
INTA_ line (read only).

• PCIx sent target abort bit (bit 7)—Indicates that the SAGA sent this 
slot a Target Abort bus cycle termination. This bit does not set the 
PCI Controller x bit in the Error Cause register.

• Saw address parity error bit (bit 11)—Indicates that the SAGA 
detected an address phase parity error on a transfer from this slot. 
The SAGA terminates the transfer with target abort and relies on the 
transaction master to report the error to software. This bit sets the 
PCI Controller x bit in the Error Cause register.

• Broken device bit (bit 12)—Indicates this slot received a grant during 
an idle bus for 16 clocks but did not run a bus cycle. The bus arbiter 
flags it as broken until the device removes it’s request.This bit sets 
the PCI Controller x bit in the Error Cause CSR.

• Saw data parity error bit (bit 15)—Indicates the SAGA (as a target) 
detected a PCI data phase parity error on incoming (write) data from 
this slot. This bit does not set the PCI Controller x bit in the Error 
Cause register.

0 3 7 15

Saw data parity error
Broken device
Saw address parity error
PCIx sent target abort
PCIx interrupt line

PCI present/power requirement code

11 30 63

ReservedReserved



148 Chapter 6 

I/O subsystem
I/O subsystem CSRs

• PCI card present/power requirements code field (bits 30:31)—
Indicates a PCI controller is present and the power requirements of 
that controller. This field is read only.

PCI Slot Interrupt Configuration register

Each SAGA has four PCI Slot Interrupt Configuration registers that 
specify the interrupt number and processor when an interrupt occurs on 
the corresponding PCI slot. The SAGA forwards the interrupt by writing 
the interrupt number to a local processor EIRR register. Because the 
SAGA can only send interrupts to one of the 16 processor EIRR registers 
on the system, only four bits of the address are programmable. All 
programmable fields are reset to zero.

 Figure 56 PCI Slot Interrupt Configuration register definition

The fields in the SAGA PCI Slot Interrupt Configuration register are 
defined as follows:

• Destination crossbar port field (bits 18:20)—Determines to which 
crossbar port (and therefore which PAC) the interrupt will be sent.

• Even/Odd processor chip field (bits 23)—Specifies which of the two 
processors for the given PAC the interrupt is to be sent.

• Interrupt number field (bits 58:63)—Specifies the processor External 
Interrupt register interrupt bit to be set.

18 23

Destination crossbar port
 SAGA PCI Interrupt number

Even/odd processor chip

0 57 63

ReservedReserved



Chapter 6 149

I/O subsystem
I/O subsystem CSRs

PCI Slot Synchronization register

The SAGA has four PCI Slot Synchronization registers, one for each of 
the four PCI bus slots. Software polls these registers to determine when 
the write pipe has been flushed.

A processor reads these registers to synchronize the write pipe for the 
corresponding device. The registers are read-only, and the CSR interface 
returns zero status after the requested device operation completes. The 
format of the PCI Slot Synchronization register is shown in Figure 57.

 Figure 57 PCI Slot Synchronization register definition

The fields and bits in SAGA PCI Slot Synchronization register are defines as 
follows:

• The Synchronization status bit (bit 55)—Specifies the completion 
status of the device write manager for the corresponding slot.

• Number of Outstanding Write Purges field (bits 56:63)—Specifies the 
number of outstanding write purges left to be returned before the 
device is synchronized. This field is informational only and should not 
be used in determining sync completion.

0 55 63

Synchronization Status

Reserved

Number of Outstanding Write Purges



150 Chapter 6 

I/O subsystem
Byte swapping

Byte swapping
In order to address different byte ordering between the PCI bus and the 
rest of the system, the SAGA provides CSR-configurable bits to define 
how to handle byte ordering of data crossing from one domain into the 
other. The CSRs configure byte swapping on the following data paths:

• PCI read and write of system coherent memory on a per-controller 
basis via the PCI Slot Configuration register See the section “PCI Slot 
Configuration register” on page 146).

• PCI read and write of shared memory on a per-controller basis via the 
PCI Slot Configuration register

• Host read and write of PCI I/O, Memory, and Configuration space via 
the PCI Master Configuration register See the section “PCI Master 
Configuration register” on page 137).



Chapter 7 151

7 Performance monitors

This chapter discusses the hardware used to determine the performance 
of the system. Some performance factors include:

• Parallel program efficiency

• Communications costs

• I/O bandwidth

• Cache-hit rate



152 Chapter 7 

Performance monitors
Performance factors

Performance factors
The performance of applications run on the V2500 server depends upon 
the factors already stated. The V2500 server includes hardware to 
measure each of the principal factors. The measurements indicate the 
overall results and provide data that enables programmers to identify 
changes to algorithms that improve overall performance. The process of 
measuring performance is intrusive and can impact system performance.

Some of the important factors and concepts for their measurement are:

• Efficient parallel algorithms—Parallel algorithms pose both validity 
and performance problems for the programmer and often prove more 
difficult to debug than single-threaded applications. Useful tools 
include:

• Trace data correlated between threads

• Deadlock detection

• Synchronization statistics

• Measurement of effective parallelism

• Granularity measurements of parallel regions

• Lock order enforcement

• I/O performance—The largest I/O factor is data transfer rates in the 
disk subsystem. Of particular interest are peak measurements, as 
most I/O is done in a burst mode. Also, information about disk access 
patterns should be available.

• Communication costs—Concerns in communication include the 
following:

• Memory usage

• Memory access patterns of particular code sections

• Communication costs between threads

• Cache-hit rate—Algorithms must optimize cache use to perform well. 
Consequently, the V2500 server provides data on overall hit ratios, 
hit ratios per processor, hit ratios over time, cache miss trace data, 
and data that tells which program statements are causing the most 
misses.



Chapter 7 153

Performance monitors
Performance monitor hardware

Performance monitor hardware
The V2500 server provides registers to record events and enable 
performance measurement. These registers include:

• Processor interval timer

• Per-processor latency counter

• PAC CTI cache-hit-rate counter

• Time-of-century clock (TIME_TOC)

Interval timer
Each processor has a 32-bit timer in control register 16. These timers 
count at a frequency between twice the peak instruction rate and half the 
peak instruction rate. They are not synchronized, nor can they be loaded 
by software. The timers may optionally generate an interrupt when the 
count reaches a certain value.

These timers are used for:

• Generating periodic clock interrupts to the processors for scheduling 
purposes.

• Measuring fine granularity time intervals within processors 
independent of other processors.

• Implementing thread timer register (TTR) in software. The operating 
system allows user-read access to this timer in order to use the TTR.

Per processor latency counters
V2500 system monitors all coherent read accesses made by its 
processors. The information monitored includes:

• Total coherent read latency

• Total coherent read count

Total latency for read requests is accomplished by incrementing a 
counter each cycle by the number of outstanding reads. The value in the 
counter can be divided by the total number of reads to provide the 
average access time for read requests.



154 Chapter 7 

Performance monitors
Performance monitor hardware

Latency counter
The latency counter is a 40-bit read-write register that increments by the 
number of outstanding processor data reads (0 to 10) at the system clock 
frequency. The PAC has two latency registers, one for each processor. 
Figure 58 shows the bit definition of the Performance Monitor Latency 
Pn register counter (where n is the processor number).

 Figure 58 PAC Performance Monitor Latency register definition

The fields in the Processor Read Latency register are defined as follows:

• Count field (bits 0:27)—Accumulates the count of all coherent read 
requests. The field can roll over no quicker than every 13 seconds (228 * 6 
/ 120 Mhz).

• Latency field (bits 28:63)—Accumulates the total latency of all coherent 
read requests. The number of coherency read requests the processor has 
outstanding increments the counter each cycle . The field can roll over no 
quicker than every 57 seconds. (236 / 120 Mhz / 10).

Event counters
The PAC has a 32-bit read-write memory access event counter shown in 
Figure 59.

 Figure 59 PAC Performance Monitor Memory Access Count Pn register 
definition

0 6328
Count Latency

0 31 6332

Not used Memory access count



Chapter 7 155

Performance monitors
Performance monitor hardware

Per PAC CTI cache hit rate counters
A V2500 system monitors all CTI cache read accesses made at the 
memory controllers (MAC). The information monitored includes:

• Total CTI cache read accesses.

• Total CTI cache read hits.

The CTI cache hit rate is computed by dividing the total CTI cache read 
hits by the total CTI cache read accesses.

Each PAC has a pair of CTI cache monitoring counters that includes one 
CTI cache read access counter and one CTI cache read hit counter. The 
counters are grouped and concatenated into a 64-bit register, thereby 
requiring only one access read the pair of counters. The following section 
describes the register. 

There is one CTI Cache Hit Rate register per PAC that determines the 
CTI cache hit rate of the accesses issued by the four processors attached 
to that PAC. The counters are each 32-bits wide and are paired in a 64-
bit register.

The format of the CTI Cache Hit Rate register is shown in Figure 60. The 
fields of the register are read by a read access and written by a write 
access.

 Figure 60 PAC CTI Cache Hit Rate register definition

The fields in the PAC CTI Cache Hit Rate register are defined as follows:

• Hit Count field (bits 0:31)—Accumulates the number of CTI cache 
read requests which hit. The count can roll over no quicker than every 
64 seconds (232 * 6 cycles / 120 Mhz / 2 proc).

• Read Count field (bits 32:63)—Accumulates the number of CTI cache 
read requests. The count can roll over no quicker than every 64 
seconds (232 * 6 cycles / 120 Mhz / 2 proc).

0 63

Hit count Read count



156 Chapter 7 

Performance monitors
Performance monitor hardware

Time-of-Century clock
The V2500 server Time-of-Century clock (TIME_TOC) can be used to 
time-stamp trace data stored within the system. It also provides time-
stamping of transmitted messages. The receiving processor can 
determine the transmission time by subtracting time-stamp from the 
current time. Each PAC has a 64-bit TIME_TOC register accessed with a 
single 64-bit read. 

 Figure 61 Time-of-century clock hardware

Clock generator
The CUB core logic generates a 16-Mhz clock for the each TIME_TOC 
register. The PAC synchronizes the 16-Mhz clock to its own clock and 
generates a TIME_TOC clock every seven or eight PAC clocks. The 
TIME_TOC logic generates a synchronization pulse every 256 
TIME_TOC clocks. 

TIME_TOC Sync.
Pulse Generator

TIME_TOC

1 mSec
2 mSec
4 mSec

Inter/Intra Hypernode
TIME_TOC Sync. Pulse

Distribution Logic

TIME_TOC Sync.
Pulse Checker

Time-of-Century 16 Pre-scale/
Synchronizer

Sync.

Off
On

Clock 16 Mhz
Clock

64-bit CSR
Read Access

Counter Register Generator

Resolution

TIME_TOC
Sync.
Master



Chapter 7 157

Performance monitors
Performance monitor hardware

TIME_TOC synchronization pulse generation and 
distribution
A single PAC acts as the TIME_TOC synchronization master of the 
system (the outputs of all other PACs are in a high-impedance state). The 
master PAC sends its synchronization pulse to the nonmaster PACs on 
the master synchronization node. The synchronization pulse is 
distributed to the other nodes by setting a bit in the header of CTI 
packets. The amount of time required to distribute the synchronization 
pulse is a function of system size.

Each TAC has a CSR which specifies the source for the incoming 
synchronization pulse (sync. signal, CTI incoming X link, or CTI 
incoming Y link). The CSR also specifies whether the sync. pulse should 
be propagated to the CTI out going X link and/or the CTI out going Y 
link. 

TIME_TOC synchronization pulse checker
Logic ensures that the TIME_TOC registers maintain synchronization 
within their specified resolution. It checks to ensure the time between 
TIME_TOC synchronization pulses is in the range of TIME_TOC 
synchronization period plus or minus one-half the TIME_TOC 
synchronization resolution. If it detects a TIME_TOC synchronization 
pulse that occurs early or late, it sends an interrupt to one of the 
processors connected to the PAC. Table 39 shows the check range for 
each of the supported resolutions.

Table 39 Time-of-Century synchronization check range

When the resolution field of the PAC TIME_TOC configuration register 
has the value zero (TIME_TOC off), TIME_TOC synchronization pulse 
checking is disabled.

Resolution Check Range (16 µSec clocks)

1 µSec 256 ± 7

2 µSec 256 ± 15

4 µSec 256 ± 31

Resolution Check Range (16 µSec clocks)



158 Chapter 7 

Performance monitors
Performance monitor hardware

Pre-Scale/Synchronizer
The pre-scale logic performs a divide by 16 on the SPAC 16-millisecond 
clock resulting in a 1 micro second period signal. This signal is used to 
enable incrementing the Time-of-Century Counter register.

The Time-of-Century Counter register synchronization function is 
performed by rounding up/down the pre-scale value when a sync. pulse 
arrives. The amount of rounding is a function of the TIME_TOC 
resolution. shows the function applied for rounding with the three 
supported resolutions.

Table 40 Time-of-Century synchronization check range

1 µSec Resolution
Rounding Applied to bits Pre-scale<0:3>

Original Value Rounded Value

0-7 0

8-F F

2 µSec Resolution
Rounding Applied to bits {TIME_TOC<63>:Pre-scale<0:3>}

Original Value Rounded Value

00-0F 00

10-1F 1F

4 µSec Resolution
Rounding Applied to bits {TIME_TOC<62:63>:Pre-
scale<0:3>}

Original Value Rounded Value

00-1F 00

20-3F 3F



Chapter 7 159

Performance monitors
Performance monitor hardware

When the Sync Mode field of the Time-of-Century Configuration register 
has the value zero (by reseting or explicitly writing to the field), the pre-
scale register is set to zero and inhibited from incrementing until the 
first sync pulse is received.

Holding the pre-scale value to zero allows all TIME_TOC associated 
initialization to proceed independently. Once all initialization is 
complete, then synchronization pulse generation in the master PAC is 
enabled.

The Time-of-Century Counter register increments its 48-bit value when 
the pre-scale register reaches the value 0xF. 

PAC Time-of-Century Counter register
The Time-of-Century  Counter register is a 64-bit, read-write register of 
which only the least significant 48 bits are implemented (48 bits support 
an uptime of 8.9 years). Read access supports normal operation, and 
write access supports initialization as well as testing.

The Time-of-Century  register increments its 48-bit value when the pre-
scale register reaches the value 0xF. The format of the PAC Time-of-
Century  register is shown in Figure 62.

 Figure 62 Time-of-Century  Clock register definition

The TOC field (bits 16:63) increments each time the prescale logic has 
the value of 0xF. The register is accessible using a 64-bit CSR read or 
write. Reset does not effect this register. The least significant two bits 
may be rounded up or down when a synchronization pulse is received, 
depending on the resolution selected for the Time-of-Century logic.

PAC Time-of-Century Configuration register
The format of the PAC Time-of-Century  configuration register is shown 
in Figure 63.

0 6316

Reserved TIME_TOC



160 Chapter 7 

Performance monitors
Performance monitor hardware

 Figure 63 PAC Time-of-Century  Configuration register definition

The bits and fields of the PAC Time-of-Century  Configuration register 
are defined as follows:

• Interrupt number field (bits 53:58)—Specifies the interrupt number 
sent to one of the two processors when a synchronization pulse check 
problem is detected. The field is not initialized by reset.

• Interrupt processor bit (bit 59)—Specifies the processor to which an 
interrupt is sent when a synchronization pulse check problem is 
detected. The field is not initialized by reset. An interrupt can only be 
sent to one processor of each processor bus, and the Interrupt 
Processor bit specifies which runway bus the interrupt is to be sent. 
The value of zero specifies that the interrupt be sent to runway bus 
zero, processor zero. Similarly, a value of one specifies that the 
interrupt is to be sent to runway bus one, processor zero. The 
interrupt can not be sent to processor one of a runway bus. The field 
is not initialized by reset.

• Synchronization mode bit (bit 60)—Indicates whether the 
synchronization pulse starts incrementing or synchronizing the Time-
of-Century and prescale registers. At reset the field is cleared and 
indicates that the next synchronization pulse received will start 
incrementing the Time-of-Century and prescale registers. The 
reception of a synchronization pulse sets this bit. When the 
synchronization mode field is set, the reception of a synchronization 
pulse causes the prescale and least significant bits of the Time-of-
Century register to be rounded.

• Master bit (61)—Specifies that the PAC is the TIME_TOC master. 
The PAC generates and delivers the synchronization pulse to the 
other PACs. A value of one enables this operation. The field is reset to 
the value zero.

• Resolution field (bits 62:63)—Specifies the Time-of-Century register 
resolution. The field is reset to the value zero (TIME_TOC off). Table 
41 shows the supported resolutions.

0 63

Reserved ResolutionMaster

60 61
Sync.
mode

59
Interrupt

proc.
Interrupt
Number

5852 62



Chapter 7 161

Performance monitors
Performance monitor hardware

Table 41 Time-of-Century resolutions

A value of zero (TIME_TOC off) disables TIME_TOC synchronization 
pulse checking.

TAC Time-of-Century Configuration register
The format of the TAC Time-of-Century Configuration register is shown 
in Figure 64.

 Figure 64 TAC Time-of-Century Configuration register definition

The fields of the TAC Time-of-Century Configuration register are defined 
as follows:

• Source field (bits 60:61)—Specifies which synchronization pulse input 
(sync. signal, X incoming link, or Y incoming link) should be propagated 
to the enabled synchronization pulse output. Table 42 shows the Source 
field selection values.

Table 42 Time-of-Century synchronization pulse source 

Value Resolution

0 TIME_TOC off

1 1 microsecond

2 2 microseconds

3 4 microseconds

0 63
Y LinkX Link

6261
Source

59

Value Selection

0 None

1 synchronization signal

2 X CTI link

3 Y CTI link



162 Chapter 7 

Performance monitors
Performance monitor hardware

The Source field is cleared by reset.

The synchronization pulse propagates to the local node (driven to the 
synchronization signal) when the Source field is set to X CTI link, or 
Y CTI link.

• X link field (bit 62)—Enables a synchronization pulse from the source 
selected by the Source field to be propagated to the X CTI out going link.

• Y link field (bit 63)—Enables a synchronization pulse from the selected 
source to be propagated to the Y CTI out going link.

TIME_TOC reset and initialization
Reset has the following effect on the TIME_TOC logic:

• The synchronization mode bit of the PAC TIME_TOC configuration 
CSR register is cleared, forcing the prescale register to the value zero. 

• The TIME_TOC register is inhibited.

• The master field of the PAC TIME_TOC configuration register is 
cleared. With this field set to zero, the TIME_TOC synchronization 
pulse is disabled.

• The resolution field of the PAC TIME_TOC configuration CSR is 
cleared, disabling the TIME_TOC synchronization checking logic.



Chapter 8 163

8 System utilities 

Each V2500 server has a section of hardware known as the Exemplar 
Core Utilities board (CUB) located on the MIB. On the CUB are two 
FPGAs: the Exemplar Processor Utilities (PUC) and the Exemplar 
Monitoring Utilities (MUC). The PUC provides the CUB a means to send 
interrupts and error messages to the processors and to receive control 
messages from the processors. The MUC performs all environmental 
monitoring. The CUB board connects to all PACs through the core logic 
bus. 



164 Chapter 8 

System utilities
Utilities board

Utilities board
The CUB, or Utilities board, handles all system housekeeping chores. It 
connects directly to the MIB where it attaches to the core logic bus, the 
environmental sensors, and other test points. It interfaces to the liquid 
crystal display (LCD), the optional teststation (an ethernet connection), 
and other external devices. Figure 65 shows the Utilities board 
functional layout. 

The heart of the CUB is the core logic. This section of hardware connects 
internally with the MUC for receiving environmental interrupts and to 
the PUC as an interface to the core logic bus. The core logic contains 
initialization and booting firmware. It also interfaces to the LCD and to 
serial RS232 links, as well as to ethernet links. An optional teststation 
can be connected via these links to run diagnostics and configure the 
system.

The MUC latches system interrupts, most of which are from 
environmental sensors located throughout the system. The MUC and the 
power-on circuit together control system power-up. The MUC interfaces 
to a light-emitting diode (LED) diagnostic display through the power-on 
circuit.

The PUC provides the core logic an interface to the core logic bus. There 
are actually two buses; each one connects up to four PACs. The PUC 
communicates to the PACs using data packets.

The JTAG (Joint Test Action Group) interface supports a teststation and 
a mechanism to fan out JTAG to all the boards in the system. It is used 
only for testing.

The V2500 server uses a test method called scanning to test boards and 
other hardware units. With the teststation connected to the ethernet 
between nodes, you can test any part of the system.

The JTAG interface contains a microprocessor to capture packets from 
the ethernet and apply them to the JTAG test bus controller or to take 
scan information from the JTAG test bus controller and send it out on 
the ethernet. The teststation can also read and write every CSR in the 
system. 



Chapter 8 165

System utilities
Utilities board

 Figure 65 Utilities board

PAC PAC PAC PAC PAC PAC PAC PAC

PUC

Core logic

Core logic bus

Clock
logic

JTAG

and interface

RS232RS232

controller

Test
station

(optional)

MIB

Ethernet
LED display

To
other
nodes

MUC

Utility Bus

Liquid crystal

Power-on

Ethernet

Core logic bus

To
Power

To
Power

display

Environmental
sensors

Utilities board

Node
scanning



166 Chapter 8 

System utilities
Core logic

Core logic
This section describes the core logic bus and core logic hardware 
functions.

Flash memory
The core logic contains nonvolatile storage for processor-dependent code. 
This code consists of primary loader code, the Open Boot PROM (OBP) 
code, the OBP interface firmware, spp_pdc, and power-on self test 
software (POST) (see the chapter  “Booting,”  for more information). This 
EEPROM memory is four MBytes, configured as one-million addresses 
by 32 data bits with only 32-bit read and write accesses allowed. It is 
writable by the processors for field upgrades and can be written when 
the PUC is scanned. 

Nonvolatile static RAM
The core logic section contains a nonvolatile battery-backed static RAM 
(NVSRAM). The NVSRAM is used to write system log information 
(failures) and store configuration information. This RAM is byte 
addressable and can be accessed even after power failures occur.

Real Time Clock
The core logic has a battery backed real time clock used to determine the 
date and time when the system boots. The real time clock is physically 
part of the NVRAM device.

DUART
The CUB logic contains a Dual Universal Asynchronous Receiver-
Transmitter (DUART). One port, configured as a basic RS232 port, 
provides an interface to the simplest core system functions. With this 
interface, you can connect a terminal as a local console to analyze 
problems, reconfigure the system, or provide other user access. The 
parallel port of the DUART drives the LCD. The second RS232 port can 
be connected to a modem for field service.



Chapter 8 167

System utilities
Core logic

SRAM
SRAM is needed to support the simple core system functions. When the 
system powers up, the processors operate out of this SRAM. They run 
self test software to test and configure the rest of the system. Once the 
system is fully configured, the processors execute out of main memory. 
The SRAM is byte addressable and is 256 KBytes, configured as 64K 
addresses by 32 data bits (with parity).

Console ethernet
The ethernet I/O port connects to another optional system console that 
has an ethernet port. You can use the console for initializing, testing, and 
troubleshooting the system. 

LEDs and LCD
LEDs display environmental information, such as the source of an 
environmental error that caused the CUB to power down the system.

The LCD is driven by one of the processors via the CUB. A large amount 
of information can be displayed on the LCD. The core logic drives the 
LCD via the parallel port on the DUART.

COP interface
COP chips (serial EEPROMs) are located on the major boards with 
information such as serial number, error history, configuration 
information, and so on. The MUC connects to the COP bus selector (CBS) 
chip on the MIB and allows the system to read any COP in the system. 



168 Chapter 8 

System utilities
PUC

PUC
The PUC applies interrupts and error messages to the processors and 
receives control messages from the processors. It has two 18-bit, 
bidirectional buses. Each interface connects up to four PACs. The PUC 
provides core logic bus arbitration for the eight PACs. 

Through the PUC, the PAC has an interface to the core logic bus on the 
CUB. This bus connects the PUC, the MUC, and the core logic section 
together.

PUC Processor Agent Exist register
The Processor Agent Exist register indicates which PACs exist in the 
system. During reset, all PACs assert their REQ lines. This sets 
corresponding bits in this register. The PUC ignores the REQ lines (with 
respect to core logic bus requests) approximately eight clocks after reset 
to allow the PACs to change from exist mode to request mode.

 Figure 66 PUC Processor Agent Exist register definition

A value of one on any bit indicates that the respective PAC 0-7 is active 
and exists.

PUC Revision register
The Revision register indicates the revision level of the PUC FPGA.

 Figure 67 PUC Revision register

Revision bits are read to determine the revision of the PAC.

0 1 2 3 4 5 6 7

PAC exist bits

0 1 2 3 4 5 6 7

PAC revision bits



Chapter 8 169

System utilities
MUC and Power-on

MUC and Power-on
The MUC performs all environmental monitoring on the CUB. It 
attaches to the core logic bus so that processors can monitor the system 
by accessing these CSRs.

The MUC works in conjunction with a hardware section on the CUB 
known as the power-on circuit. This circuit controls powering up the 
entire system. It operates when the rest of the system is powered off or in 
some indeterminate state. It drives the environment LED display which 
is a basic (minimal hardware, no software) indication of what 
environmental error caused the CUB to power down the system.

The teststation can also read the environmental LED display.

Environmental monitoring functions
The MUC and the power-on circuit monitor the following environmental 
conditions:

• ASIC installation error sensing

• FPGA configuration and status

• Thermal sensing

• Fan Sensing

• Power failure sensing

• 48-volt failure

• 48-volt maintenance

• Ambient air temperature sensing

• Power-on



170 Chapter 8 

System utilities
MUC and Power-on

Table 43 Environmental conditions monitored by the MUC and power-on 
circuit

Environmental conditions detected by power-on 
function
The power-on function detects environmental errors (such as ASIC 
Install or FPGA Not OK) immediately and does not turn on power to the 
system until the conditions are corrected. It also detects environmental 
errors such as 48-volt Fail while the system is powering up and Midplane 
Power Fail after the system has powered up. If a failure is detected in 
these two cases, the power-on circuit turns off power to the system.

Condition Type Action

ASIC Not 
Installed OK

Environmental 
error

Power not turned on, LED 
indication

FPGA not OK Environmental 
error

Power not turned on, LED 
indication

48-volt fail Environmental 
error

Power turned off, LED 
indication

Midplane power 
fail

Environmental 
error

Power turned off, LED 
indication

Board over temp Environmental 
error

Power off in one second, LED 
indication, Interrupt

Fan not turning Environmental 
error

Power off in one second, LED 
indication, Interrupt

Ambient air hot Environmental 
error

Power off in one second, LED 
indication, interrupt

Other power fail Environmental 
error

Power off in one second, LED 
indication, interrupt

Ambient air warm Environmental 
warning

LED indication, interrupt

48-volt 
maintenance

Environmental 
warning

LED indication, interrupt

Hard error Hard error LED indication, interrupt



Chapter 8 171

System utilities
MUC and Power-on

Environmental warnings such as 48-volt maintenance are also detected 
by the power-on circuit. It applies these to the MUC, which then sends 
an environmental warning interrupt to the system processors.

In all cases, the power-on circuit lights an environmental LED display 
code. The environmental LED display code is prioritized so that it only 
displays the highest priority error or warning.

Environmental conditions detected by MUC
The MUC detects most of the environmental conditions. It samples error 
conditions during a time period derived from a local 10-Hz clock that 
drives the power-on circuit. It registers all the environmental error 
conditions twice and then ORs them together. If the conditions persist for 
200 milliseconds, the environmental error bit is set, and an 
environmental error interrupt is sent to the PUC, which sends it on to 
the processors. The MUC then waits 1.2 seconds and commands the 
power-on circuit to power down the system.

This same procedure exists for an environmental warning except that an 
environmental warning interrupt is sent and the circuit does not power 
down the system. 

The environmental error interrupt and the 1.2 second delay provide the 
system adequate time to read CSRs to determine the cause of the error, 
log the condition in NVRAM, and display the condition on the LCD. 

After the system is powered down, the CUB is still powered up, but all 
outputs are disconnected from the system.

Environmental LED display
Second-level registers in the MUC drive the 6-bit display. The MUC 
prioritizes the environmental errors and warnings and passes the 
information to the power-on circuit. This circuit prioritizes the 6-bit field 
with its environmental conditions and produces a 7-bit field plus an 
attention bit (ATTN) that drives the Display. ATTN is on if there is an 
environmental warning.

In general, the power-on-detected errors are a higher priority than MUC-
detected errors, the lower the error code number, the higher its priority. 
Environmental warnings are lower priority than the environmental 
errors. Table 44 shows the LED display error codes.



172 Chapter 8 

System utilities
MUC and Power-on

Table 44 Environmental LED display

ATTN bit LED Display Description

1 00 CUB 3.3-volt error (highest priority)

1 01 ASIC Install 0 (MIB)

1 02 ASIC Install 1 (MEM)

1 03 FPGA not OK

1 04-07 DC OK error (UL, UR, LL, LR)

1 08-11 48-volt error, NPSUL fail, PWRUP=0-
9

1 12-1B 48-volt error, NPSUR failure, 
PWRUP=0-9

1 1C-25 48-volt error, NPSLL failure, 
PWRUP=0-9

1 26-2F 48-volt error, NPSLR failure, 
PWRUP=0-9

1 30-39 48-volt error, no supply failure, 
PWRUP=0-9

1 3A 48-volt 7yo-yo error

1 3B MIB power failure (MIBPB)

1 3C Clock failure

1 3D-3F Not used (3)

1 40-47 MB0-MB7 power failure

1 48-4F PB0L, PB1R, PB2L, PB3R, PB4L, 
PB5R, PB6L, PB7R power failure

1 50-57 PB0R, PB1L, PB2R, PB3L, PB4R, 
PB5L, PB6R, PB7L power failure 
(possibly switch R and L)

1 58-5B IOB (LR,LF,RF,RR) power failure



Chapter 8 173

System utilities
MUC and Power-on

The top of the table is the highest priority, the bottom the lowest. If a 
higher condition occurs, that one is displayed.

Monitored environmental conditions 
This section describes each environmental condition that is monitored by 
the power-on circuit and the MUC.

CUB 3.3-volt error
This error indicates that the CUB 3.3-volt power supply has failed, but 
the 5-volt supply has not.

ASIC installation error
Each ASIC has install lines to prevent power-up if an ASIC is installed 
incorrectly (such as an PAC installed in an RACs position). If an ASIC is 
improperly installed, the CUB does not power up the system. This 
condition is not monitored after power up.

1 5C-61 Fan failure (UR,UM,UL,LR,LM,LL)

1 62 Ambient hot

1 63 Overtemp MIB

1 64-67 Overtemp quadrant (RL, RU, LL, LU)

1 68 Hard error

1 69 Ambient warm

1 6A-6F Not used (6)

1 70-73 DC supply maintenance 
(UL,UR,LL,LR)

1 74-7F Not used (12)

0 00-09 PWRUP state (00=System all powered 
up), attention LED off

ATTN bit LED Display Description



174 Chapter 8 

System utilities
MUC and Power-on

DC OK error
When this error is displayed, the power-on circuit did not power up the 
system, because one or more 48-volt power supplies reported an error. In 
systems with redundant 48-volt power supplies, this error means that 
two or more 48-volt supplies reported an error.

48-volt error
If the 48-volt supply has dropped below 42 volts for any reason other 
than normally turning off the system or an ac failure, then this error is 
displayed by the power-on circuit. Also, the 48-volt supply that reported 
the error and the power-up state of the system at the time of the error is 
displayed.

48-volt yo-yo error
This error indicates that a 48-volt error occurred and the CUB lost and 
then later regained power without the machine being turned off. The 
power-on circuit will display this error and not power on the system, 
because the 48-volt supply is likely at fault.

Clock failure
If the system clock fails, then the MUC will be unable to monitor 
environmental errors that could possibly damage the system. If the 
power-on circuit receives no response from the MUC, it powers down the 
system and displays this error.

FPGA configuration and status
The MUC is programmed by a serial data transfer from EEPROM upon 
utility board power-up. If the transfer does not complete properly, the 
MUC cannot configure itself and many environmental conditions cannot 
be monitored. The power-on circuit monitors both the MUC and PUC and 
does not power up the system, if they are not configured correctly.

Board over-temperature
There is one temperature sensor per board that detects board 
overheating. The sensors are bussed together into four system quadrants 
plus the MIB and applied to the MUC.



Chapter 8 175

System utilities
MUC and Power-on

Fan sensing
Sensors in the six fans determine if the fans are running properly. The 
MUC waits 12.8 seconds for the fans to spin up after power-up before 
monitoring them.

Power failure
Because a power failure on a board could cause damage to other boards, 
a mechanism is in place to detect 3.3-volt failures on each board. Power 
failures are considered environmental errors, and the system is powered 
down after they are detected.

MIB power failure
If the MIB power fails, the power-on circuit powers down the entire 
system. The CUB is still active, but the power-on circuit displays the 
power failure condition and disables all CUB outputs that drive the 
system. This condition persists until power is cycled on the CUB.

48-volt maintenance
There are up to four 48-volt power supplies. Each sends a signal to the 
power-on circuit. If any supply fails at any time, the circuit asserts the 
48-volt maintenance line to the MUC, which reports the environmental 
warning to the processors. The power-on circuit displays the highest 
priority 48-volt supply that failed.

Ambient air sensors
The ambient air sensors detect a too warm or too hot condition in the 
input air stream. Ambient air too warm is an environmental warning; 
ambient air too hot is an environmental error that powers down the 
system. 

The temperature set points are set by the teststation. The digital 
temperature sensor has nonvolatile storage for the temperature set 
points. Power-on reset starts the digital temperature sensor without the 
core logic microprocessor intervening.



176 Chapter 8 

System utilities
MUC and Power-on

Environmental control
Described in the following sections are functions the CUB performs to 
control the system environment.

Power-on
When the power switch is turned on, the outputs of the 48-volt power 
supplies become active. Several hundred milliseconds after the CUB 5-
volt supply reaches an acceptable level, the power-on circuit starts 
powering up the other dc-to-dc converters of the system in succession.

The power-on circuit does not power up the system if an ASIC is installed 
incorrectly (see the section “ASIC installation error” on page 173) or if an 
FPGA is not configured (see the section “FPGA configuration and status” 
on page 174). It keeps the system powered up unless an environmental 
condition occurs that warrants a power-down.

Voltage margining
Voltage margin is divided into four groups to minimize control, but 
allows all boards that communicate with each other to be margined 
separately for nominal, upper, and lower voltage.

MUC CSRs
This section describes some of the MUC CSRs.

Processor Report register
There are two Processor Report registers. They indicate the processors 
that are working in the system. One register handles processors 0-15 and 
the other handles processors 16-31. Each processor reports by writing to 
this register and setting the bit corresponding to the processor number.

 Figure 68 Processor Report register definition

0 151 2 3 4 5 6 7 8 9 10 11 12 13 14

P15P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14



Chapter 8 177

System utilities
MUC and Power-on

P0-P15 comprise a fully readable and writable field. The bits are cleared 
on reset. Once a bit is written to a one value, it remains set until cleared 
by reset. Writes of a zero value do nothing. The bit, Px, set to a one value, 
indicates that processor x has reported in working.

Processor Semaphore register
The Processor Semaphore register provides a signaling function for 
processor synchronization. This is an atomic read-and-increment 
register.

 Figure 69 Processor Semaphore register definition

Count is cleared on reset. Writes load any value. Reads return the value 
of Count and then increment Count atomically.

RAC Data register
The RAC data register holds the data to be written to the destination 
RAC CSR or the data that has been read from the RAC CSR.

 Figure 70 RAC Data register definition

RAC Data bits comprise a fully readable and writable field. After an RAC 
read operation, the RAC Data register holds the data. After the RAC 
write operation, the data is stored in the RAC register, and RAC Data is 
undefined.

RAC Configuration Control register
The RAC Configuration Control register selects the target RAC, the 
address of the CSR within that RAC, and the type of CSR access (read or 
write). It controls the RAC CSR operation and then returns status of the 
operation.

0 1511

CountReserved

0 15

RAC Data



178 Chapter 8 

System utilities
MUC and Power-on

 Figure 71 RAC Configuration Control register definition

The fields and bits of the RAC configuration Control registers are defined 
as follows:

• Select field (bits 6:7)—Selects the target RAC. This field is write only.

• Address field (bits 10:11)—Selects the address of the CSR within that 
RAC.

• SB Start/Busy bit (bit 14)—Starts the RAC operation by writing a 
one value. Reading the bit returns the status of the operation (0=idle, 
1=busy). SB and SEL must be written together.

• RW bit (bit 15)—Selects the type of operation: Read (RW=1), or Write 
(RW=0). 

MUC Reset register
The MUC Reset register initiates a reset or displays the type of the last 
reset. This CSR also contains the revision status.

 Figure 72 MUC Reset register definition

The bits and field of the Reset register are defined as follows:

• SR (Soft Reset) bit (bit 6)—Initiates a soft reset.

• HR (Hard Reset) bit (bit 7)—Initiates a hard reset.

The combination of SR and HR bits in the read mode indicate the 
resets shown in Table 45. The combination of SR and HR bits in the 
write mode indicate the resets given in Table 46.

SelectReserved Address SB RW

0 156 7 10 11 14

Revision levelReserved SR HR

0 156 7 8



Chapter 8 179

System utilities
MUC and Power-on

Table 45 Reset register read codes

Resets are initiated by writing to this register. Reset is asserted 
according to the codes in Table 46. The only difference between a hard 
and soft reset is the action taken by the software upon reading the 
codes.

Table 46 Reset register write codes

• Revision field (bits 8:15) indicates the revision of the MUC FPGA. 
This field is read only. 

General semaphore register
There are four General Semaphore register available on a SMUC used to 
provide general purpose critical code region locking by level software. 
This is an atomic Read-and-Set register.

 Figure 73 General semaphore register definition

The General Semaphore register Sema field (bit 0) indicates the current 
state of the semaphore. A read access returns the current value of the 
Sema field and then sets the bit atomically. A write will clear the bit 
(independent of the value being written). The field is cleared on reset.

SR HR - Read Last reset was

0 0 Power-on reset

0 1 Hard reset

1 0 Soft reset

SR HR - Write Action taken

X 1 Hard reset

1 0 Soft reset

0 151

Sema reserved



180 Chapter 8 

System utilities
JTAG interface

JTAG interface
The JTAG interface supports a teststation and a mechanism to fan out 
JTAG to all the boards in a system. It is used only for testing. 

The JTAG functions are described in the following sections.

Teststation interface
The teststation can be a PA-RISC based workstation. The interface to the 
teststation is an ethernet AUI port for flexibility in connecting to many 
workstations.

AC test
An ac test is performed by a Test Bus Controller (TBC) scanning in data 
to all boards in the system and loading an ac test instruction into all 
ASICs on one board.

Once all boards have been almost loaded with the ac test instruction and 
paused, the TBC takes all boards out of pause mode simultaneously 
causing them all to exit update together and execute the ac test.

The ac test enables clocks inside the ASICs so that they test internal and 
external paths at the system clock rate. They all execute on the same 
system clock.

Clock margining
Parallel ports on the core logic microprocessor select the nominal, upper, 
or external clock that drives the system.



Chapter 9 181

9 Booting 

The CUB contains system booting functions. It connects to the system 
teststation to provide a means of initialization, diagnostic testing, and 
remote booting of the system.



182 Chapter 9 

Booting
Booting

Booting
Booting a system refers to a sequence of events that loads and executes 
the operating system code. This sequence, or boot procedure, begins at 
power-on with the system in an unknown state and ends when the 
system begins executing the operating system. 

Hardware reset
When power is applied to the system, all controllers receive a power-up 
reset signal. Hardware initialization occurs within the first few clocks 
after the reset pulse is negated.

The reset signal has the following effects:

• PAC initialization—Hard error reporting is disabled, and all error 
registers hold their previous values if a hard error was logged before 
reset was applied. The identification number of each processor is read 
from a CSR. The registers can only be cleared by software.

• PUC initialization—Hard error reporting is disabled, and all error 
registers are cleared. All other PUC CSRs hold their previous values 
and can only be cleared by software.

• PIC initialization—Hard error reporting is disabled, and all error 
registers hold their previous values. The registers can only be cleared 
by software.

• RAC initialization—Hard error reporting is disabled, and all error 
registers hold their previous values. The registers can only be cleared 
by software. All ports are disabled.

• MAC initialization—Hard error reporting is disabled, and all error 
registers hold their previous values if a hard error was logged before 
reset was applied. The registers can only be cleared by software.



Chapter 9 183

Booting
Booting

Power-On Self Test routine
When the system first powers up, all processors and supporting 
hardware must be initialized before the system proceeds with booting. 

Upon power up, POST begins executing and brings up the system from 
an indeterminate state and then executes OBP. POST determines the 
system hardware configuration before running OBP. If POST encounters 
an error during initialization, it passes the appropriate error code to an 
LCD.

Figure 74 shows how POST initializes the processors up to booting of 
OBP.



184 Chapter 9 

Booting
Booting

 Figure 74 POST program flow

PA-8500
Initialization

Processor 0
PA-8500

Initialization

Processor 1
PA-8500

Initialization

Processor 31
PA-8500

Initialization

Processor 30

PA-8500
Self-test

PA-8500
Self-test

PA-8500
Self-test

PA-8500
Self-test

initialization

Fetch processor
semaphore CSR

Command
wait
loop

Other processors

Core logic

checksum
NVRAM

determination
Node configuration

initialization
ASIC

initialization
Main memory

initialization
Multinode 

Master processor

Boot OBP

Node clean-up

Boot OBP Boot OBP Boot OBP

Master processor

Processor 0 Processor 1 Processor 31Processor 30



Chapter 9 185

Booting
Booting

Basic processor initialization and selftest
Upon reset, all processors and caches are initialized. If the 
NVRAM selftest variable is set, then all processors execute 
selftests.

Each processor determines its identification (ID) from the PAC. 
Also, each processor fetches the Processor Semaphore register in 
the PUC. Because register requests are queued, one processor 
will fetch this CSR before the others and becomes the booting, or 
monarch, processor. All others go into an idle loop, waiting for 
commands. The booting processor continues executing POST code 
from the EEPROM.

Core logic initialization
The core logic contains SRAM and DUARTs that support external 
terminal connection for the console and the LCD panel. POST 
initializes the SRAM, DUARTs, and all controller CSRs in the 
system.

Checksum verification of the core logic NVRAM
The PUC EEPROM contains the POST, OBP, system diagnostics 
code, and the spp_pdc code. In addition, these four routines use 
shared data structures in NVRAM that are validated by POST by 
reading and comparing checksums embedded in the structures. 

System configuration determination
POST determines which and how many controllers reside in the 
system (not every system contains a full complement of support 
hardware). It also determines the number of memory modules 
and their sizes. Any controller (ASIC) that does not respond to 
any CSR access is considered to be failed.



186 Chapter 9 

Booting
Booting

System ASIC initialization
POST sets every system controller (ASIC) to a known state. The state is 
based both on configuration parameters and the current hardware 
configuration. 

PACs are reported in the PUC PAC-Exist register.

MACs and SAGAs are reported in the PAC Configuration register.

RACs are always all present (they are not sensed).

System main memory initialization
The processor reads the node ID from the COP EEPROM and loads it 
into the node_ID field of the System Configuration register.

Next, the monarch processor determines the memory configuration for 
all MACs. It determines the size, population, and installation of each 
DIMM on a memory board. The monarch processor assigns available 
processors to initalize the EMBs, and initializes memory and tags in 
parallel.

Multinode initialization
For multinode systems, POST initializes all other nodes after node 0. 
The task is shaded in Figure 74, because it is shown in greater detail in 
Figure 75. POST first verifies the system is configured for multinode 
operation. It then verifies that the memory configuration in each node is 
compatible. After POST initializes the CTI rings and cache in each node, 
it verifies that it can access memory in each node. POST then 
synchronizes the Time-of-Century counters and nodes.



Chapter 9 187

Booting
Booting

 Figure 75 POST multinode initialization flow

System clean up and OBP boot process
POST resets the PUC Processor Semaphore CSR and cleans up any 
residual state information from the initialization process. All processors 
now begin to execute the OBP routine at approximately the same time.

memory configuration
Verify valid multinode

Initialize ERI ring

access to other nodes
Verify hardware-level

Initialize CTI cache

memory access
Verify remote 

Configure Time-of-century counter

initialization
Main memory

with other nodes
Compare memory configuration

synchronization hardware

of nodes
Final synchronization

Node clean-up



188 Chapter 9 

Booting
HP-UX bootup

HP-UX bootup
Once each processor in the system has completed initialization and 
selftest, it loads and executes OBP. The following is the sequence of 
events for booting the system starting with loading OBP (for every 
processor) and finishing with the system ready for use:

• The processor loads OBP—After initialization and selftest, each 
processor loads and begins executing OBP. OBP transfers its ROM 
image to SRAM, initializes the virtual mode, and turns on 
translation.

• OBP builds its device tree—It probes the system hardware.

• The processor loads spp_pdc from flash RAM—This firmware is 
layered over OBP and provides interface between OBP and the HP-
UX kernel. spp_pdc must be loaded before OBP can perform any boot 
functions. 

• OBP loads system boot loader—It opens the boot disk, loads a special 
system loading program, and closes boot disk.

• The processor executes spp_pdc—This firmware layer must be 
executing so that OBP can complete booting the system.

• The processor executes system boot loader—The loader starts in 
physical mode (32 bits) and performs the following tasks:

• Relocates itself

• Opens PCI devices through spp_pdc 

When spp_pdc calls OBP to perform PCI I/O transfers, OBP must 
turn on its virtual mode and then turn virtual mode off again 
when it returns control to spp_pdc. This means all buffers must 
already be equivalently mapped in OBP's virtual mode page 
tables. 

• Reads in the kernel using spp_pdc for I/O

• Starts the kernel

• The kernel reads /etc/ioconfig—spp_pdc opens the boot device for I/
O.

• The kernel boot I/O completes.



Chapter 9 189

Booting
HP-UX bootup

• spp_pdc closes the boot device.

• OBP turns off Virtual Mode—It removes PCI CSR virtual mode 
mapping.

• The kernel switches to its virtual mode 

• The kernel relocates the system boot loader

• Kernel continues booting in one of two ways: normal boot and install 
boot.

Normal booting
For normal booting, the following additional tasks are performed:

• OBP loads the special system kernel loader into memory.

• The kernel loader loads /stand/vmunix or user-specified kernel.

• The kernel uses kernel loader for boot I/O to load /etc/ioconfig. 
Booting is complete.

Install booting
For install booting, the following sequence is performed:

• OBP loads the kernel loader into memory.

• The kernel loader loads VINSTALL LIF image.

• VINSTALL uses the kernel loader for boot I/O to load ramdisk 
VINSTALLFS

• VINSTALL completes booting, and the cold install GUI opens for the 
user.



190 Chapter 9 

Booting
HP-UX bootup



Chapter 10 191

10 Error handling

An error (or fault) is an abnormal condition with hardware or firmware 
(processor-dependent code); the cause of the abnormality can be either 
transient or permanent. The cause can also be classified as a recoverable 
(soft or advisory) error or an unrecoverable (hard) error, depending on 
whether continued operation of the system is possible. 

Most hardware faults are transient in nature, not being the result of a 
permanent hardware failure. The effect of these errors can many times 
be contained while the system continues to operate. There are, of course, 
occasions when hardware fails, continued operation is not possible, and 
the system must be taken down for diagnostic evaluation.



192 Chapter 10 

Error handling
Soft errors

Soft errors
A recoverable error that results in the disabling of one or more processes 
but allows continued operation of the system is a soft error. An example 
of a soft error is a parity error on data read by a process. The process 
cannot continue, but the system continues to operate.

Soft errors can occur only during transactions that require a response. 
The error is reported to the requesting processor in one of two ways:

• The requesting processor detects the error itself (for example, a parity 
error).

• The detecting hardware sends an error response instead of its normal 
response. The error response contains some useful information about 
the error.

Whenever a soft error is reported to a processor, it invokes an HPMC. 
Any process running on a processor when an HPMC occurs can be 
aborted by the operating system. If the process is a kernel or server, an 
operating system panic occurs. In this case, the system must be rebooted.



Chapter 10 193

Error handling
Advisory errors

Advisory errors
A special type of recoverable error is an advisory error. Advisory errors 
are usually corrected by hardware or firmware. They are logged in the 
appropriate CSRs of the detecting controller and do not affect any 
processes running on the system. An example is a single-bit ECC 
memory error. 

Advisory errors are not reported. Software must poll the CSRs 
periodically to determine their occurrence. Reading the CSRs when a soft 
error is detected can determine if it propagated from an earlier detected 
advisory error. 

If a detected error causes corrupted data and another soft error is 
detected before corrupted data is consumed, it is also considered an 
advisory error. An example is a data parity error detected during a 
“responseless” request, such as a write-back, where corrupted data is 
written to memory. This error is logged as an advisory error. Any further 
reference to the line will cause a soft error, an indication that the data is 
corrupt.

There are some uncorrectable errors that can be classified as advisory 
errors. This would be the case when corrupted data resulting from the 
uncorrectable error is consumed and the consumer is notified; yet, the 
error can be detected again. Normally, for soft errors the consumer is 
only notified once.

Some advisory errors are reported by an interrupt to the processor 
specified for servicing error interrupts.



194 Chapter 10 

Error handling
Hard errors

Hard errors
Hardware can fail in such a manner that a process can receive corrupt 
data without detecting it. If an error is detected that prevents returning 
an error response or corrupts data so that future references cannot 
detect the corruption, it is considered a hard error. An example is a 
parity error detected on the address of a memory transaction. The 
appropriate memory line cannot be updated, and future consumers of the 
line can not be notified of the corruption. 

A hard error is sent to the MUC and then the PUC may generate an 
interrupt, HPMC, or transfer of control (TOC) to one or all processors in 
the system. See “PUC interrupt logic” on page 114 for more information 
on PUC interrupts. 

All error CSRs are locked (or frozen) when a hard error is detected so 
that additional errors caused by the propagation of the hard error are not 
logged. Usually, only one controller fails in the error condition. If more 
than one controller detects a hard error, however, the state in the MUC 
and clock phase information in each chip indicate the chip that first 
detected the hard error.

When a hard error occurs, the system must be rebooted. The failed 
hardware can be deconfigured, as part of reboot, to allow the system to 
quickly resume operation (possibly with degraded performance) in the 
presence of broken hardware.

The hard error is logged in the MUC System Hard Error register. This 
register logs the first hard error detected, allowing isolation to the 
controllers or group of controllers that detected the error first.

Figure 76 illustrates the characteristics of the three error types: soft, 
advisory, and hard.



Chapter 10 195

Error handling
Hard errors

 Figure 76 Determining error types

Advisory error
Yes

No

When corrupted data

Yes
Soft error

Can processor

 used, will another
 recoverable error be

aborted?

Was error corrected 

transparent to all
by hardware or firmware

processes?

Advisory error
Yes

No

associated with the error is

detected?

using corrupted data
be notified and the process

No

Hard error



196 Chapter 10 

Error handling
Error responses

Error responses
When an error occurs during a response-expected data request, the 
requested data is not returned. Instead, an error response is returned to 
the requestor. This type of error is called a soft error and is logged as 
such in the appropriate CSR of the requesting controller. 

The response contains information that specifies the detecting controller 
and the detected error condition or error code; it does not contain data. 
After receiving an error response, the PAC logs the error and returns a 
directed error response packet to the requesting processor or SAGA (in 
the case of an I/O request). The processor logs the error information in its 
SADD_LOG register and the SAGA logs the error information in its 
internal CSRs. Error recovery software can then read these CSRs and 
take appropriate action.

Figure 77 shows the format for the processor SADD_LOG after an error 
response.

 Figure 77 SADD_LOG after error response

The Error Source field (bits 28:31) indicates one of the sources as shown 
in Table 47.

0 63328 28

0x08 Zeros

Error source

Error Information

11



Chapter 10 197

Error handling
Error responses

Table 47 SADD_LOG error source field definition

The value in the Error Information field (bits 32:63) depends on the 
source of the error response.

If the error source field indicates the response was from either 
Hyperplane crossbar inputs (that is, external to the PAC), the Error 
Information field (bits 32:63) contains the information shown in Figure 
78.

 Figure 78 PAC error response information when received from either 
crossbar input

Error source field Source

0x0 Hyperplane crossbar 0 input

0x1 Hyperplane crossbar 1 input

0x2 Hyperplane crossbar 0 output

0x3 Hyperplane crossbar 1 output

0x4 Runway input

0x5 PAC CSRs

0x6-0xf Reserved

ErrorDetecting Detecting
0

3233 34 4039 45 46 49 52 57 63

Chip
Detecting

board

R0 packet

ErrorTransaction
ID

Crossbar
T Type

51 56

code node
Detecting



198 Chapter 10 

Error handling
Error responses

The subfields and bits of the Error information field are defined as 
follows:

• R0 bit (bit 33)—Indicates that the intended response in the crossbar 
was an R0 packet.

• Crossbar T type field (bits 34:39)—Specifies the transaction type of 
the intended Hyperplane crossbar response.

• Transaction ID field (bits 40:45)—Specifies the transaction ID of the 
intended response.

• Detecting chip field (bits 46:48)—Specifies the controller that detected 
the error.

• Detecting board field (bits 49:51)—Specifies the instance of the 
controller that detected the error (there are eight instances of each 
controller that can return an error response).

• Error code field (bits 52:56)—Specifies the error condition detected by 
the chip that sent the error response. 

• Detecting node field (bits 57:63)—Specifies which node that sent the 
error response.

If the error source field indicates the response was from the Hyperplane 
crossbar output logic (internal to the PAC), the Error information field 
(bits 32:63) contains the transaction ID (TID) of the outgoing 
transaction. If the error source field indicates an error detected by the 
PAC Runway bus input logic, the Error information field (bits 32:63) 
contains the type of runway error. If the error source field indicates an 
error in one of the PAC CSRs, the Error information field (bits 32:63) 
contains the CSR error code.



Chapter 10 199

Error handling
Hard error logging

Hard error logging
Hard errors result when data has been corrupted as a result of a 
hardware failure and the requesting processor can not be notified

The hard error is logged in the MUC System Hard Error register. This 
register logs the first hard error detected, allowing isolation to the 
controllers or group of controllers that detected the error first.

When a hard error occurs, the PUC sends a directed error to one or more 
processors over the core logic bus, forcing the destination processor to 
take a high-priority machine check. The SADD_LOG register in the 
target processor or processors contains information indicating that a 
directed error due to a hard error was received. The contents of the 
SADD_LOG, after a hard error has been received, are shown in Figure 
79.

 Figure 79 Processor SADD_LOG register definition after directed error 
due to hard error

The bits and fields of the SADD_LOG register after a directed error due 
to a hard error are as follows:

• Processor 0, 1, 2 and 3 enable fields (bits 16:19)—Specify which 
processors are enabled to receive hard error directed errors. 

• HPMC source field (bits 28:31)—Indicates the source of the high-
priority machine check (value equals 0x9).

0 63328 28

0x08 Zeros

Processor 3 enable

11

Reserved

16 18 20 22

01 Rsvd 0x9 Zeros

HPMC source

Processor 2 enable
Processor 1 enable
Processor 0 enable

Rsvd



200 Chapter 10 

Error handling
Error handling CSRs

Error handling CSRs
Most controllers contain at least one of the following registers:

• Error Cause

• Error Address

• Error Information 

• Error Configuration

These registers are accessible through load and store instructions and 
diagnostic scan.

The Error Cause register logs multiple errors. It has a sticky bit for every 
possible error condition that can be detected for the controller. Because 
an error condition can occur under multiple circumstances, a different 
bit exists in the Error Cause register for each unique circumstance. 

The Hard Error Group (G) bit indicates that a hard error was detected by 
another controller. When this occurs, all other error sources are masked 
out and remain that way until the G-bit is reset. They are also masked 
out when the controller detects its own hard error.

If a hard error is logged, or the G bit is set, the contents of this register 
are not changed during reset.

The Error Address register contains the address of any error that can be 
isolated to a specific address. This register is loaded or held under the 
same error conditions as the Error Information register. 

The Error Information register contains error recovery or diagnostic 
information. This register contains the type of error (listed in increasing 
severity):

• None (00)

• Advisory (01)

• Soft (10)

• Hard (11)

It also contains the error number for advisory or soft errors. The error 
number is undefined for hard errors. If an error is detected of the same 
or lower severity as that already stored in the register, the Error 



Chapter 10 201

Error handling
Error handling CSRs

Information register is not overwritten, but the Multiple Error (M) bit is 
set. If an error type of greater severity is detected, the Error Information 
register is overwritten with new error information. When error 
information is overwritten, the Overwritten (O) bit in the register is set. 

The Simultaneous Group Errors (S) bit indicates that another chip was 
asserting the hard error signal input to this chip when it logged an error. 

If a hard error is logged, or the G bit is set, the contents of the Error 
Information register are not changed during reset.

The Error Configuration register contains two bits for every bit in the 
Error Cause register. They are encoded as follows:

• 00—Disable the error

• 01—Treat as an advisory error

• 10—Treat as a soft error

• 11—Treat as a hard error

These bits control updating of the Error Information and Error Address 
registers. They have no effect on the controller behavior except for the 
following conditions:

• If an error is disabled (bit-pair value is 00) and the controller can still 
do something meaningful toward completing the operation, the error 
is ignored. For example, a chip might ignore an address alignment 
error and assume a certain address when the error is disabled. If no 
behavior makes sense when an error occurs (that is, the error cannot 
be ignored), then the disable has no effect on chip operation.

• If the controller scan ring option stop_on_hard bit is set and an error 
is configured as a hard error (bit-pair value is 11), registers 
containing information associated with the error must be held. This 
allows access to the information through scan.



202 Chapter 10 

Error handling
Processor error detection

Processor error detection
The processor detects errors that occur during transfers to and from its 
Runway bus and cache interfaces. It logs these errors and invokes either 
an LPMC or an HPMC. An LPMC is similar to a trap and allows the 
process to be restarted. An HPMC is usually fatal to the process, but it 
may not require a system reboot. Error handling code determines if a 
processor detected error is treated as advisory, soft or hard.

When errors occur outside the processor that result in an error response 
to the processor, error information is stored in the processor SADD_LOG 
register. For timeout errors occurring during noncoherent load or fetch 
operations, the address associated with the error is stored in the Read 
Short Logging register. Miscellaneous diagnostic registers contain 
information about cache parity errors.



203 Chapter 10 

Error handling
PAC error detection

PAC error detection
When the PAC receives an error response from the Hyperplane crossbar 
destined for a processor, it sends a directed error, followed (in most cases) 
by a dummy response to the requesting processor. The error response 
informs the processor that a soft error was detected during its request 
and forces the processor to invoke an HPMC. There is no Error Address 
register in the PAC. When the PAC receives an error response destined 
for the SAGA, it forwards it as an error response packet on the SAGA 
interface.

When detecting an error, the PAC stores addresses and other error 
information in two databases. The information in these databases is 
accessible with loads and stores. When errors are detected, the PAC 
copies information from the database into certain error CSRs. 

If an error response to a processor is received or a parity error is detected 
on the Hyperplane crossbar during a response to a processor, the PAC 
copies the error information in the database and into the error CSRs.

If a timeout transaction is detected on the Runway bus, the information 
corresponding to the timed out response is copied into error CSRs.

If an error is encountered during a message or copy operation, a 
processor is interrupted, and the detected error condition is logged in the 
operation status queue.

The PAC has an interface to Utilities board functions by way of the core 
logic bus. Processors receive interrupts, fetch instructions, and log error 
information over the bus. Access to the bus is unaffected by most errors, 
including a large percentage of hard errors, allowing the processors to 
perform error logging and recovery. 



204 Chapter 10 

Error handling
RAC error detection

RAC error detection
The RAC routes Hyperplane crossbar packets between the PAC and the 
MAC, checking parity on these packets to and from internal queues. It 
does not regenerate parity, but passes received parity through queues to 
its output ports. When the RAC detects an error, it is logged in the Error 
Cause and Error Information registers.

There is no Error Address register in the RAC. The RAC does not detect 
when an address is being sent in a packet; therefore, it cannot log the 
address in an Error Address register.



Chapter 10 205

Error handling
MAC error detection

MAC error detection
The MAC contains memory error detection and correction hardware that 
corrects and logs single-bit errors. When a single-bit error occurs, an 
interrupt is sent to a designated processor. Single-bit errors on memory 
data persist in memory and must be scrubbed by error handling 
software. When the MAC detects a multibit error on a memory tag, the 
MAC generates a hard error. If it detects a multibit error on requested 
memory data, it sends a parity error with the data to the requestor. If the 
MAC detects a multibit error on a read-modify-write operation, it writes 
bad ECC (that results in a multibit error) to the line to notify any 
potential users the data line is corrupted. 



206 Chapter 10 

Error handling
TAC error detection

TAC error detection
In multinode systems, hypernodes connect through the X- and Y-ring 
CTIs. The STAC provides an interface between the hypernode and the 
ring interconnect. It provides error detection and containment at both 
the hypernode side and ring side.

A cyclic redundancy code (CRC) covers every packet transferred between 
the STAC and the CTI (except for idle packets that have redundant 
information). If a CRC error is detected on a packet, the CRC is stomped 
(logically XORd with a pattern) allowing packets to be quickly passed 
from hypernode to hypernode and providing error handling software a 
means of determining which hypernode first detected the CRC error. 



Appendix A 207

A CSR map

Table 48 lists the CSRs in the V2500 server.

Table 48 V2500 server CSR map

40-Bit physical 
address CSR space CSR register name

0xF0 0000 0000 - 
0xF0 FFFF FFFF

Core Logic

0xF0 xx00 0000 - 
0xF0 xx7F FFFF

PDC EEPROM V2500 implements 4 MBytes (0x0-0x1FFFFF)

0xF0 xx80 0000 - 
0xF0 xxEF FFFF

SRAM V2500 implements 256 KBytes (0x820000-
0x81FFFF)

0xF0 xxC0 0000 - 
0xF0 xxC0 FFFF

PUC
byte access

PUC CSR space

0xF0 xxC0 0000 Interrupt Status register

0xF0 xxC0 0004 Interrupt Enable register

0xF0 xxC0 0008 Interrupt Force register

0xF0 xxC0 000C PAC Exist register

0xF0 xxC0 0010 PUC Revision register

0xF0 xxC0 0014 PUC Error register

0xF0 xxC1 0000 - 
0xF0 xxCF FFFF

MUC MUC CSR space

0xF0 xxC1 0000 Half Word 
Access

Processor Report 0 register

0xF0 xxC1 0004 Processor Semaphore register

0xF0 xxC1 0008 RAC Scan Data register

0xF0 xxC1 000C RAC Scan Control register

0xF0 xxC1 0010 System Hard Error register

0xF0 xxC1 0014 System Hard Error Enable register



208 Appendix A 

CSR map

0xF0 xxC1 0018 System Hard Error Control register

0xF0 xxC1 001C Error Cause register

0xF0 xxC1 0020 Environment Error A register

0xF0 xxC1 0024 Environment Error B register

0xF0 xxC1 0028 Environment Error C register

0xF0 xxC1 002C Environment Control register

0xF0 xxC1 0030 Reset register

0xF0 xxC1 0034 General Semaphore 0 Register

0xF0 xxC1 0038 Processor Report 1 Register

0xF0 xxC1 003C General Semaphore 1 Register

0xF0 xxC1 0040 General Semaphore 2 Register

0xF0 xxC1 0044 General Semaphore 3 Register

0xF0 xxD0 0000 - 
0xF0 xxD2 FFFF

DS1646 Nonvolatile Ram and Real Time Clock

0xF0 xxD1 0000 - 
0xF0 xxD1 FFF7

Byte, Half,
Word or Double 
Word Access

Nonvolatile SRAM

0xF0 xxD1 FFF8 RTC Control register

0xF0 xxD1 FFF9 RTC Seconds register

0xF0 xxD1 FFFA RTC Minutes register

0xF0 xxD1 FFFB RTC Hour register

0xF0 xxD1 FFFC RTC Day register

0xF0 xxD1 FFFD RTC Date register

0xF0 xxD1 FFFE RTC Month register

40-Bit physical 
address CSR space CSR register name



Appendix A 209

CSR map

0xF0 xxD1 FFFF RTC Year register

0xF0 xxD3 0000 - 
0xF0 xxD4 5FFF

83932B Sonic 
Ethernet

Ethernet Interface Chip

0xF0 xxD3 0000 Half Word 
Access

Command register 

0xF0 xxD3 0004 Data Configuration register

0xF0 xxD3 0008 Receive Control register

0xF0 xxD3 000C Transmit Control register

0xF0 xxD3 0010 Interrupt Mask register

0xF0 xxD3 0014 Interrupt Status register

0xF0 xxD3 0018 Upper Transmit Descriptor address

0xF0 xxD3 001C Current Transmit Descriptor address

0xF0 xxD3 0020 Transmit Packet Size register

0xF0 xxD3 0024 Transmit Fragment Count register

0xF0 xxD3 0028 Transmit Start address 0 register

0xF0 xxD3 002C Transmit Start address 1 register

0xF0 xxD3 0030 Transmit Fragment Size register

0xF0 xxD3 0034 Upper Receive Descriptor address 

0xF0 xxD3 0038 Current Receive Descriptor address 

0xF0 xxD3 003C Current Receive Buffer address 0 register

0xF0 xxD3 0040 Current Receive Buffer address 1 register

0xF0 xxD3 0044 Remaining Buffer Word Count 0 register

0xF0 xxD3 0048 Remaining Buffer Word Count 1 register

0xF0 xxD3 004C End of Buffer Word Count register

40-Bit physical 
address CSR space CSR register name



210 Appendix A 

CSR map

0xF0 xxD3 0050 Upper Receive Resource address register

0xF0 xxD3 0054 Resource Start address

0xF0 xxD3 0058 Resource End address

0xF0 xxD3 005C Resource Read Pointer

0xF0 xxD3 0060 Resource Write Pointer

0xF0 xxD3 0064 Temporary Receive Buffer address 0 register

0xF0 xxD3 0068 Temporary Receive Buffer address 1 register

0xF0 xxD3 006C Temporary Buffer Word Count 0 register

0xF0 xxD3 0070 Temporary Buffer Word Count 1 register

0xF0 xxD3 007C Last Link Field address

0xF0 xxD3 0080 Temporary Transmit Descriptor address 

0xF0 xxD3 0084 CAM Entry Pointer

0xF0 xxD3 0088 CAM address Port 2 register

0xF0 xxD3 008C CAM address Port 1 register

0xF0 xxD3 0090 CAM address Port 0 register

0xF0 xxD3 0094 CAM Enable register

0xF0 xxD3 0098 CAM Descriptor Pointer register

0xF0 xxD3 009C CAM Descriptor Count register

0xF0 xxD3 00A0 Silicon Revision register

0xF0 xxD3 00A4 Watchdog Timer 0 register

0xF0 xxD3 00A8 Watchdog Timer 1 register

0xF0 xxD3 00AC Receive Sequence Count

0xF0 xxD3 00B0 CRC Error Tally register

40-Bit physical 
address CSR space CSR register name



Appendix A 211

CSR map

0xF0 xxD3 00B4 FAE Tally register

0xF0 xxD3 00B8 Missed Packet Tally register

0xF0 xxD3 00BC Maximum Deferral Timer register

0xF0 xxD3 00FC Data Configuration register 2

0xF0 xxD4 6000 - 
0xF0 xxD4 9FFF

16552 DUART 
Serial Port 0

Serial Port 0, used for console communication

0xF0 xxD4 6000 Byte Access Receiver Buffer register/
Transmitter Holding register/
LSB Divisor Latch

0xF0 xxD4 6004 Interrupt Enable register/
MSB Divisor Latch

0xF0 xxD4 6008 Interrupt Identification register/
FIFO Control register

0xF0 xxD4 600C Line Control register

0xF0 xxD4 6010 Modem Control register

0xF0 xxD4 6014 Line Status register

0xF0 xxD4 6018 Modem Status register 

0xF0 xxD4 601C Scratch Pad register (SCR)

0xF0 xxD4 A000 - 
0xF0 xxD4 BFFF

16552 DUART 
Serial Port 1

Serial Port 0

0xF0 xxD4 A000 Byte Access Receiver Buffer register/
Transmitter Holding register/
LSB Divisor Latch

0xF0 xxD4 A004 Interrupt Enable register/
MSB Divisor Latch

0xF0 xxD4 A008 Interrupt Identification register/
FIFO Control register

40-Bit physical 
address CSR space CSR register name



212 Appendix A 

CSR map

0xF0 xxD4 A00C Line Control register

0xF0 xxD4 A010 Modem Control register

0xF0 xxD4 A014 Line Status register

0xF0 xxD4 A018 Modem Status register

0xF0 xxD4 A01C Scratch Pad register

0xF0 xxD4 C000 - 
0xF0 xxD4 FFFF

16552 DUART 
Parallel Port

Parallel Port, used for communication

0xF0 xxD4 C000 Byte Access Read Data/
Write Data

0xF0 xxD4 C004 Read Status

0xF0 xxD4 C008 Read Control/
Write Control

0xF4 0000 0000 - 
0xF7 FFFF FFFF

Node-local 
Nonaccelerated 
I/O

0xF8 0000 0000 - 
0xFB FFFF FFFF

Node-local 
Accelerated I/O

0xFC 0000 0000 - 
0xFC 003F FFFF

Node 0 Globally accessible CSRs physically residing on 
Node #0

0xFC 0000 0000 - 
0xFC 0000 FFFF

PAC 0 PAC CSR space

0xFC 0000 0000 PAC 0, Page 0 System Configuration register

0xFC 0000 0008 Double-word 
Access

PAC Chip Configuration register

0xFC 0000 0010 PAC Core Logic Interrupt Delivery register 0

0xFC 0000 0018 PAC Core Logic Interrupt Delivery register 1

0xFC 0000 0020 Memory Board Configuration register

40-Bit physical 
address CSR space CSR register name



Appendix A 213

CSR map

0xFC 0000 0080 PAC Error Cause register 0

0xFC 0000 0088 PAC Error Info register

0xFC 0000 0098 PAC Error Configuration register 0

0xFC 0000 00A0 PAC Error Configuration register 1

0xFC 0000 00A8 PAC Error Cause register 1

0xFC 0000 0200 PAC CTI Cache Hit Rate register

0xFC 0000 0300 Time-of-Century Configuration register

0xFC 0000 0308 PAC0, Page 2 Time-of-Century Count register

0xFC 0000 2000 PAC 0, Page 2
Processor 0 
Specific

Processor 0 Configuration register

0xFC 0000 2010 Processor 0 CSR Operation Context register

0xFC 0000 2018 Processor 0 CSR Operation address register

0xFC 0000 2020 Processor 0 Fetch and Increment address

0xFC 0000 2028 Processor 0 Fetch and Decrement address

0xFC 0000 2030 Processor 0 Fetch and Clear address

0xFC 0000 2038 Processor 0 Noncoherent Read address

0xFC 0000 2040 Processor 0 Noncoherent Write address

0xFC 0000 2060 Processor 0 Coherent Increment address

0xFC 0000 2068 CPU #0 CTI Cache Flush Global Address

0xFC 0000 2070 CPU #0 CTI Cache Prefetch for Read

0xFC 0000 2078 CPU #0 CTI Cache Prefetch for Write

0xFC 0000 2200 Processor 0 Performance Monitor Memory Access 
Count 0 register

40-Bit physical 
address CSR space CSR register name



214 Appendix A 

CSR map

0xFC 0000 2208 Processor 0 Performance Monitor Memory Access 
Count 1 register

0xFC 0000 3000 PAC 0, Page 3
Processor 1 
Specific

Processor 1 Configuration register

0xFC 0000 3010 Double Word 
Access

Processor 1 CSR Operation Context register

0xFC 0000 3018 Processor 1 CSR Operation address register

0xFC 0000 3020 Processor 1 Fetch and Increment address

0xFC 0000 3028 Processor 1 Fetch and Decrement address

0xFC 0000 3030 Processor 1 Fetch and Clear address

0xFC 0000 3038 Processor 1 Noncoherent Read address

0xFC 0000 3040 Processor 1 Noncoherent Write address

0xFC 0000 3060 Processor 1 Coherent Increment address

0xFC 0000 3068 CPU #1 CTI Cache Flush Global Address

0xFC 0000 3070 CPU #1 CTI Cache Prefetch for Read

0xFC 0000 3078 CPU #1 CTI Cache Prefetch for Write

0xFC 0000 3200 Processor 1 Performance Monitor Memory Access 
Count 0 register

0xFC 0000 3208 Processor 1 Performance Monitor Memory Access 
Count 1 register

0xFC 0000 6000 SPAC 0, Page 6
Processor 2 
Specific

Processor 2 Configuration Register

0xFC 0000 6010 Processor 2 CSR Operation Context Register

0xFC 0000 6018 Processor 2 CSR Operation Address Register

40-Bit physical 
address CSR space CSR register name



Appendix A 215

CSR map

0xFC 0000 6020 Processor 2 Fetch and Increment Address

0xFC 0000 6028 Processor 2 Fetch and Decrement Address

0xFC 0000 6030 Processor 2 Fetch and Clear Address

0xFC 0000 6038 Processor 2 Non-Coherent Read Address

0xFC 0000 6040 Processor 2 Non-Coherent Write Address

0xFC 0000 6060 Processor 2 Coherent Increment Address

0xFC 0000 6068 CPU #1 CTI Cache Flush Global Address

0xFC 0000 6070 CPU #1 CTI Cache Prefetch for Read

0xFC 0000 6078 CPU #1 CTI Cache Prefetch for Write

0xFC 0000 6200 Processor 2 Processor Read Latency Register

0xFC 0000 6208 CPU2 Performance Monitor Configuration

0xFC 0000 7000 SPAC 0, Page 7
Processor 3 
Specific

Processor 3 Configuration Register

0xFC 0000 7010 Double Word 
Access

Processor 3 CSR Operation Context Register

0xFC 0000 7018 Processor 3 CSR Operation Address Register

0xFC 0000 7020 Processor 3 Fetch and Increment Address

0xFC 0000 7028 Processor 3 Fetch and Decrement Address

0xFC 0000 7030 Processor 3 Fetch and Clear Address

0xFC 0000 7038 Processor 3 Non-Coherent Read Address

0xFC 0000 7040 Processor 3 Non-Coherent Write Address

0xFC 0000 7060 Processor 3 Coherent Increment Address

0xFC 0000 7068 Processor 3 CTI Cache Flush Global Address

40-Bit physical 
address CSR space CSR register name



216 Appendix A 

CSR map

0xFC 0000 7070 Processor 3 CTI Cache Prefetch for Read

0xFC 0000 7078 Processor 3 CTI Cache Prefetch for Write

0xFC 0000 7200 Processor 3 Read Latency Register

0xFC 0000 7208 CPU3 Performance Monitor Configuration

0xFC 0001 0000 - 
0xFC 0001 FFFF

SAGA SAGA CSR space

0xFC 0001 0000 SAGA 0, Page 0 System Configuration register (Reserved on 
SAGA)

0xFC 0001 0008 Double Word 
Access

SAGA Chip Configuration register

0xFC 0001 0010 PCI Master Configuration register

0xFC 0001 0018 PCI Master Status register

0xFC 0001 0020 SAGA Channel Builder register

0xFC 0001 0080 SAGA Error Cause register

0xFC 0001 0088 SAGA Error Configuration register

0xFC 0001 0090 SAGA Error Address register

0xFC 0001 0098 SAGA Error Info register

0xFC 0001 00A0 SAGA Interrupt Configuration register

0xFC 0001 00A8 SAGA Interrupt Source register

0xFC 0001 00B0 SAGA Interrupt Enable register

0xFC 0001 0100 PCI Slot 0 Configuration register

0xFC 0001 0108 PCI Slot 0 Status register

0xFC 0001 0110 PCI Slot 0 Interrupt Configuration register

0xFC 0001 0118 PCI Slot 0 Synchronization register

40-Bit physical 
address CSR space CSR register name



Appendix A 217

CSR map

0xFC 0001 0120 PCI Slot 1 Configuration register

0xFC 0001 0128 PCI Slot 1 Status register

0xFC 0001 0130 PCI Slot 1 Interrupt Configuration register

0xFC 0001 0138 PCI Slot 1 Synchronization register

0xFC 0001 0140 PCI Slot 2 Configuration register

0xFC 0001 0148 PCI Slot 2 Status register

0xFC 0001 0150 PCI Slot 2 Interrupt Configuration register

0xFC 0001 0158 PCI Slot 2 Synchronization register

0xFC 0001 0160 PCI Slot 3 Configuration register

0xFC 0001 0168 PCI Slot 3 Status register

0xFC 0001 0170 PCI Slot 3 Interrupt Configuration register

0xFC 0001 0178 PCI Slot 3 Synchronization register

0xFC 0002 0000 - 
0xFC 0002 FFFF

CPU 0 Node 0, CPU 0 CSR Space

0xFC 0002 0000 Word or Double
Word Access

External Interrupt Request Register

0xFC 0003 0000 - 
0xFC 0003 FFFF

CPU 1 Node 0, CPU 1 CSR Space

0xFC 0003 0000 Word or Double
Word Access

External Interrupt Request Register

0xFC 0006 0000 - 
0xFC 0006 FFFF

CPU 2 Node 0, CPU 2 CSR Space

0xFC 0006 0000 Word or Double
Word Access

External Interrupt Request Register

0xFC 0007 0000 - 
0xFC 0007 FFFF

CPU 3 Node 0, CPU 3 CSR Space

40-Bit physical 
address CSR space CSR register name



218 Appendix A 

CSR map

0xFC 0007 0000 Word or Double
Word Access

External Interrupt Request Register

0xFC 0004 0000 - 
0xFC 0004 FFFF

MAC MAC CSR space

0xFC 0004 0000 MAC 0, Page 0 System Configuration register

0xFC 0004 0008 MAC Chip Configuration register

0xFC 0004 0020 Memory Row Configuration register

0xFC 0004 0028 Unprotected Memory Region register

0xFC 0004 0030 Normal CTI Cache Memory Region Register

0xFC 0004 0038 Unprotected CTI Cache Memory Region Register

0xFC 0004 0080 MAC Error Cause register

0xFC 0004 0088 MAC Error Info register

0xFC 0004 0090 MAC Error address register

0xFC 0004 0098 MAC Error Configuration register 0

0xFC 0004 00A0 MAC Error Configuration register 1

0xFC 0004 00B0 MAC Error Interrupt register

0xFC 0004 0200 Diagnostic Address register

0xFC 0004 0208 Diagnostic Data register

0xFC 0004 0210 Diagnostic Data Register

0xFC 0004 0218 Diagnostic Read Memory Tag Address

0xFC 0004 0220 Diagnostic Read Memory Data address

0xFC 0004 0228 Diagnostic Write Memory Data address

0xFC 0004 0230 Diagnostic Read Memory ECC address

0xFC 0004 0238 Diagnostic Write Memory ECC address

40-Bit physical 
address CSR space CSR register name



Appendix A 219

CSR map

0xFC 0004 0240 Diagnostic Initialize Memory address

0xFC 0004 0248 Diagnostic Scrub Memory address

0xFC 0005 0000 - 
0xFC 0005 FFFF

Node 0, TAC 0 Node 0, TAC 0 CSR Space

0xFC 0005 0000 TAC 0, Page 0 System Configuration Register

0xFC 0005 0008 Double Word 
Access

TAC Chip Configuration Register

0xFC 0005 0010 TAC Ring Configuration Register

0xFC 0005 0018 TAC Chip Status Register

0xFC 0005 0080 TAC Error Cause Register

0xFC 0005 0088 TAC Error Info Register

0xFC 0005 0090 TAC Error Address Register

0xFC 0005 0098 TAC Error Configuration Register

0xFC 0005 0300 Time-of-Century Configuration Register

0xFC 0006 0000 - 
0xFC 0006 FFFF

Reserved

0xFC 0007 0000 - 
0xFC 0007 FFFF

Reserved

0xFC 0008 0000 - 
0xFC 000F FFFF

Hyperplane 
crossbar Port 1

0xFC 0010 0000 - 
0xFC 0017 FFFF

Hyperplane 
crossbar Port 2

0xFC 0018 0000 - 
0xFC 001F FFFF

Hyperplane 
crossbar Port 3

0xFC 0020 0000 - 
0xFC 0027 FFFF

Hyperplane 
crossbar Port 4

40-Bit physical 
address CSR space CSR register name



220 Appendix A 

CSR map

0xFC 0028 0000 - 
0xFC 002F FFFF

Hyperplane 
crossbar Port 5

0xFC 0030 0000 - 
0xFC 0037 FFFF

Hyperplane 
crossbar Port 6

0xFC 0038 0000 - 
0xFC 003F FFFF

Hyperplane 
crossbar Port 7

0xFC 1000 0000 - 
0xFC 103F FFFF

Node 1

0xFC 2000 0000 - 
0xFC 203F FFFF

Node 2

0xFC 3000 0000 - 
0xFC 303F FFFF

Node 3

%
%
%

0xFC F000 0000 - 
0xFC F03F FFFF

Node 15

40-Bit physical 
address CSR space CSR register name



Index 221

Index

A
absolute pointer, 22
access

latency, 39
remote, 50

address, 9, 20, 24, 25, 29, 48, 
129, 166, 177, 194

absolute, 20
generation, 30
logical, 126

translation, 128
mapping, 119, 123, 131
memory, 29, 30, 126, 127, 140
physical, 9, 20, 21, 22, 24, 26, 

29, 43, 48, 61, 94, 100, 126, 
127, 128

translation, 100, 126
physical translation, 126
SAGA CSR format, 135
space, 9, 20, 22, 24, 119

format of I/O, 122
partitioning, 21
PCI, 122
target, 135

virtual, 9, 70
Address Aliasing, 68
Address aliasing, 70
Address Translation Enable bit 

(ATE), 126
addressable units, 22
advisory error, 191, 193, 194, 

195, 200, 201, 202
AIL routines

CTI cache, 75
architecture, xv, 1, 2, 20, 93, 

105

B
block, 30, 35, 58, 126, 143
block TLB, 126

booting, 5, 8, 164, 166, 181, 182, 
183, 184, 185, 187, 192, 
194, 202

core logic initialization, 185, 
187

hardware reset, 182
HP-UX, 188

installation, 189
normal, 189

node ASIC initialization, 186
node clean up and OBP boot 

process, 187
node configuration 

determination, 185
node main memory 

initialization, 186
POST, 183, 184, 185, 187
processor initialization, 185
processor selftest, 185

buffer, 119, 126, 127, 129, 130, 
131, 132, 133, 134

prefetch, 119, 130, 131, 132
receive, 127
write, 133

bus, 3, 5, 6, 8, 9, 117, 122, 126, 
141, 146, 147, 164, 165, 
167, 168, 198, 202, 203

COP, 167
core logic, 3, 4, 5, 8, 43, 109, 

110, 111, 165, 168, 169
JTAG, 164, 165, 180
PCI, 20, 117, 119, 120, 122, 

123, 126, 129, 131, 138, 
140, 141, 145, 146, 147, 
149, 150

Runway, 5, 198, 202, 203
byte, 22
byte swapping, 150

C
Cache

operations, 71

cache
coherence, 9, 17, 31
coherence and GSM, 17
CTI, 15, 17, 39, 62, 68, 69, 71
CTI AIL routines, 75
CTI flush entry, 72
CTI flush global instruction, 77
CTI global flush, 72
CTI interfaces, 75
CTI prefetch for read, 72
CTI prefetch for write, 72
CTI prefetch write, 81
CTI size options, 40
data, 9, 15, 17, 68, 69, 71, 103
flush instructions, 71
flushes, 17
hit, 15, 152
hit rate, 151
instruction, 9, 15, 17, 68, 69, 

71
instructions, 71
line movement, 12, 17
management CSRs, 85
management operations, 85
miss, 15, 152
operation, 73
operation interfaces, 75
PA-8500 interfaces, 75
parity errors, 202
processor, 9, 92

Cacheability, 68, 69
channel context, 120, 121, 126, 

142
channel initialization, 120, 121, 

130, 131, 135, 142
channel prefetch space, 131
channel prefetch/refetch modes, 

131
check, 44, 50, 52, 106, 160
checksum verification, 185
coherency, 8, 17
Coherent Increment Double 

(CINCD), 103



222 Index 

coherent memory, 24, 119, 129
access, 42
address space, 63
lines, 39

coherent memory space, 19, 20, 
21, 24, 25, 30, 103

communication
node, 12

communication costs, 152
console ethernet, 164, 167, 180, 

181
control and status registers

access, 48
of node CSRs, 50
software, 57
to nonexistent CSRs, 51

configuration
MAC Configuration, 60
MAC Memory Row 

Configuration, 61
MUC RAC Configuration 

Control, 177, 178
PAC Configuration, 50, 56, 

186
PAC Memory Board 

Configuration, 58
PAC Processor 

Configuration, 57
PAC System Configuration, 

50
PAC Time of Century (TOC), 

157, 159
PCI Master Configuration, 

150
PCI Slot Interrupt 

Configuration, 148, 150
SAGA Chip Configuration, 

135, 137
SAGA Interrupt 

Configuration, 135, 144
SAGA PCI Master 

Configuration, 137, 138
core logic, 43

MUC Processor Report, 176
MUC Processor Semaphore, 

177
MUC System Hard Error, 

194
PUC Processor Agent Exist, 

168
PUC Revision, 168
RAC Configuration Control, 

177, 178
RAC Data, 177
RAC Reset, 178
Reset, 178

core logic space, 43
discussed, 5, 8
I/O, 44, 135

PCI Slot Configuration, 135, 
146, 150

PCI Slot Interrupt, 135, 148
PCI Slot Status, 135, 147
PCI Slot Synchronization, 

135, 149
SAGA Channel Builder, 120, 

121, 130, 131, 135, 142
SAGA Chip Configuration, 

135, 137
SAGA Interrupt 

Configuration, 135, 144
SAGA Interrupt Enable, 135, 

144, 145
SAGA Interrupt Source, 135, 

144, 145
SAGA PCI Master 

Configuration, 135, 137, 
138, 150

SAGA PCI Master Status, 
135, 140, 141

I/O memory space, 44
interrupt

External Interrupt Request 
register (EIRR), 106, 107, 
109, 111, 144, 148

MUC Interrupt Status, 111

PAC Interrupt Delivery, 111, 
112, 113

PUC Interrupt Force, 114, 
115

PUC Interrupt Mask, 111, 
114

PUC Interrupt Status, 114, 
115

non-I/O CSR space, 21
PAC

error response from crossbar, 
197

operation status queue, 203
SADD_LOG, 196, 197

performance monitors
PAC Time_TOC Clock, 159
SAGA Time_TOC Clock, 162
Time of Century (TOC), 107, 

153, 156, 157, 159, 160
processor-specific, PAC, 49
synchronization

PAC Coherent Increment 
Addresses, 102

PAC Fetch Operation 
Addresses, 101

PAC Operation Address, 94, 
102

PAC Operation Context, 94, 
102

PAC Read and Write 
Operation Addresses, 101

Transfer of Control (TOC), 
109, 112, 113

controllers
TAC, 66

core logic, 3, 8, 20, 21, 43, 110, 
111, 113, 114, 115, 156, 164, 
165, 166, 167, 168, 175, 
180, 185, 194, 203

bus, 3, 4, 5, 8, 43, 109, 110, 
111, 120, 122, 163, 164, 
165, 166, 168, 194, 203

checksum verification, 185



Index 223

console ethernet, 164, 167, 180
COP interface, 167, 186
CSRs, 43
environmental control

power-on, 176
voltage margining, 176

environmental display, 171
environmental monitoring 

conditions
3.3-volt error, 173
48-volt error, 174
48-volt maintenance, 175
48-volt yo-yo error, 174
ambient air sensors, 175
ASIC installation error, 173
board over-temperature, 174
clock failure, 174
dc OK error, 174
fan sensing, 175
FPGA configuration and 

status, 174
MIB power failure, 175
power failure, 175

environmental monitoring 
functions, 169

ASIC installation error, 169, 
170, 172, 173, 176, 185

detected by MUC, 171
error priority, 171
FPGA configuration and 

status, 168, 169, 170, 172, 
174, 176

power failure sensing, 169, 
170, 172, 175

power maintenance, 169, 
170, 175

power-on, 169
thermal sensing, 169, 170, 

174, 175
ethernet, 8, 165, 180, 181
flash memory, 166, 188
initialization, 185

LCD, 164, 165, 166, 167, 171, 
183, 185

LED, 164, 165, 167, 169, 170, 
171, 172

MUC Processor Report 
register, 176

MUC Processor Semaphore 
register, 177

MUC RAC Configuration 
Control register, 177, 178

MUC RAC Data register, 177
MUC Reset register, 178
NVSRAM, 166, 185
POST, 184, 187
power-on, 165, 169, 170, 171, 

173, 174, 175, 176, 182
processor initialization, 184, 

185, 187
processor selftest, 185
processor-dependent code, 166
PUC Processor Agent Exist 

register, 168
PUC Revision register, 168
RAM, 167
space, 20, 21, 43
spp_pdc, 188
Utilities board, 8, 165, 167, 

168, 169, 170, 171, 173, 
174, 175, 176, 177, 178

CPU
caches, 68

crossbar, 3, 5, 6, 43, 44, 49, 144, 
148, 197, 198, 203, 204

crossbar implementation, 14
CSR accesses

node, 48, 50
PAC-local, 48, 49
processor-local, 48

CTI, 12, 17
and GSM, 14
cache, 15, 17, 39, 62, 68, 69, 

71
memory region, 62

normal memory region, 63
size options, 40
unprotected CTI cache 

region, 63
cache AIL routines, 75
cache flush entry, 72
cache flush global instruction, 

77
cache global flush, 72
cache interfaces, 75
cache line size, 69
cache operations, 72, 83
cache prefetch for read, 72
cache prefetch for write, 72
cache prefetch write, 81
description, 12
implementation, 13
latency, 39
ring, 13, 14
rings, 11, 12

CUB (Core Utilities board), 3, 8, 
110, 156, 163, 164, 173, 174, 
181

D
data cache, 9, 15, 68, 69, 71
data mover, 129
data packet, 8, 48, 57, 123, 135, 

136, 164, 196, 198, 203, 204
data prefetch storage, 130
data sharing, 14
deadlock detection, 152
device consumption-based 

prefetch, 132
device prefetch space, 131
direct memory access (DMA), 

120, 121, 124, 130, 140, 146
distributed-memory application, 

12
double word, 22
Dual In-line Memory Module 

(DIMM), 7



224 Index 

Dual Inline Memory Module 
(DIMM), 25, 27

DUART (dual asynchronous 
universal receiver 
transmitter), 111, 113, 115, 
164, 166, 167, 185

E
ECC (Error Correction Code), 8, 

193, 205
EEPROM (Electrically Erasable 

Programmable Read Only 
Memory), 43, 166, 167, 174, 
183, 184, 185, 186, 187

environmental display, 171
environmental monitoring, 163
environmental monitoring 

conditions
3.3-volt error, 173
48-volt error, 174
48-volt maintenance, 175
48-volt yo-yo error, 174
ambient air sensors, 175
ASIC installation error, 173
board over-temperature, 174
clock failure, 174
dc OK error, 174
fan sensing, 175
FPGA configuration and 

status, 174
MIB power failure, 175
power failure, 175

environmental monitoring 
control

power-on, 176
voltage margining, 176

environmental monitoring 
functions

ASIC installation error, 169, 
170, 172, 173, 176, 185

detected by MUC, 171
error priority, 171

FPGA configuration and 
status, 168, 169, 170, 172, 
174, 176

power failure sensing, 169, 
170, 172, 175

power maintenance, 169, 170, 
175

power-on, 169
thermal sensing, 169, 170, 

174, 175
error

advisory, 191, 193, 194, 195, 
200, 201, 202

code, 171, 183, 196, 198
detection

MAC, 205
PAC, 203
RAC, 204

hard, 110, 111, 113, 115, 165, 
170, 182, 191, 195, 200, 
201, 203, 205

MUC System Hard Error, 194
multibit, 205
PAC error response from 

crossbar, 197
parity, 203, 204
response packet, 196, 203
responses, 196
SADD_LOG after error 

response, 196, 197
single-bit, 205
soft, 145, 191, 192, 193, 194, 

195, 196, 200, 201, 203
timeout transaction, 203

error handling CSRs, 200
ethernet, 8, 165, 180, 181
exception, 112
External Interrupt Request 

register (EIRR), 106, 107, 
109, 111, 144, 148

F
far-shared memory, 12
fault, 106, 191
flash memory, 166, 188
force hypernode ID function, 30
framing delimiter, 13

G
Globally Shared Memory (GSM), 

11, 12, 14
and cache coherence, 17
and memory latency, 15
and the crossbar, 14
and the CTI, 14
parallelization, 14
two level hierarchial memory, 

14
virtual address space, 14

granularity measurements, 152

H
hard error, 110, 111, 113, 115, 

165, 170, 182, 191, 195, 
200, 201, 203, 205

hard wired, 60
hardware initialization, 182
high-priority machine check, 31
HPMC (high priority machine 

check), 29, 50, 52, 111, 112, 
113, 192, 194, 202, 203

hypernode
connection of multiple 

hypernodes, 12
force ID function, 30
identifier, 31
local memory, 62

Hyperplane crossbar, 3, 5, 6, 9, 
43, 44, 49, 144, 148, 197, 
198, 203, 204



Index 225

I
I/O

address space format, 122
addresses, 20
buffer, 119
byte swapping, 150
channel context, 120, 121, 126, 

142
channel context and shared 

memory SRAM, 120, 121, 
142

channel initialization, 120, 
121, 130, 131, 135, 142

channel prefetch space, 131
channel prefetch/refetch 

modes, 131
CSRs, 135

PCI Slot Configuration, 135, 
146, 150

PCI Slot Interrupt, 135, 148
PCI Slot Status, 135, 147
PCI Slot Synchronization, 

135, 149
SAGA Chip Configuration, 

135, 137
SAGA Interrupt 

Configuration, 135, 144
SAGA Interrupt Enable, 135, 

144, 145
SAGA Interrupt Source, 144, 

145
SAGA PCI Master 

Configuration, 135, 137, 
138, 150

SAGA PCI Master Status, 
135, 140, 141

CSRsSAGA Interrupt Source, 
135

data prefetch storage, 130
device consumption-based 

prefetch, 132
device prefetch space, 131
Dflush_Alloc, 133

expanded shared memory, 121
Host-to-PCI address 

translation, 122, 123
I/O space-to-PCI map, 124
local space, 20, 21
logical address translation, 

128
logical channel, 119, 120, 126, 

127
page table, 129
PCI bus command and 

address, 120
PCI configuration space, 122, 

123, 124
PCI memory read transfers, 

130
PCI memory space, 121, 123, 

124, 127, 130, 133, 142
PCI memory write transfers, 

133
PCI read, 150
PCI write, 150
PCI-to-host memory address 

translation, 126
performance factors, 152
physical address translation, 

126
prefetch buffer, 132
prefetch techniques, 130
read channel, 120
SAGA Channel Builder 

register, 120, 121, 130, 
131, 135, 142

shared memory, 118, 120, 121, 
124, 140, 146, 150

stall prefetch, 132
system, 20
TLB Entry Format, 129
write channel, 120
write pipe flush, 133
Write_Mask, 133
Write_Purge_Partial disabled, 

133

Write_Purge_Partial enabled, 
134

instruction cache, 9, 68, 69, 71
interface, 5, 6, 8, 149, 166, 168, 

202, 203
cache, 202
COP, 167
JTAG, 165, 180
PCI, 5, 56, 57, 118, 132, 146
RS232, 166

internode CSR access, 23
interrupt, 3, 8, 52, 94, 105, 106, 

107, 109, 110, 113, 114, 115, 
144, 148, 153, 163, 168, 
170, 203

clock, 153
core logic, 110, 113
environmental, 164, 171
External Interrupt Request 

register (EIRR), 106, 107, 
109, 111, 144, 148

forcing, 115
interval timer, 153
logic, 114
MAC, 205
MUC Interrupt Status 

register, 111
PAC, 203
PAC Interrupt Delivery 

register, 111, 112, 113
PAC logic, 111
PCI, 146
processing, 111
processor, 107, 160
PUC Interrupt Force register, 

114, 115
PUC Interrupt Mask register, 

111, 114
PUC Interrupt Status register, 

114, 115
SERR_, 145
sources, 111
types, 112



226 Index 

interval timer, 153

J
JTAG (Joint Test Action Group), 

164, 165, 180
interface, 165, 180

L
latency, 9, 131

counter, 154
memory, 126, 130
start up, 131

LCD (liquid crystal display), 
164, 165, 166, 167, 171, 
183, 185

LED (light-emitting diode), 164, 
165, 167, 169, 170, 171, 172

line, 24
Load and Clear Double (LDCD), 

92, 103
Load and Clear Word (LDCW), 

92, 103
load instruction, 15
local I/O space, 20
lock order enforcement, 152
logical address translation, 128
longword, 22
LPMC (low priority machine 

check), 202

M
MAC

memory region registers
normal CTI cache memory 

region register, 62
unprotected CTI cache 

memory region register, 
62

unprotected memory 
register, 61

memory row configuration 
register, 42, 63

normal CTI cache memory 
region register, 63

unprotected CTI cache memory 
region register, 63

unprotected memory region 
register, 62

MAC (Memory Access 
controller), 3, 4, 6, 8, 25, 29, 
37, 50, 51, 57, 60, 61, 93, 
182, 185, 186, 204, 205

MAC (Monitoring Utilities 
Controller), 8

MAC CSRs
Configuration, 60
error detection, 205
Memory Row Configuration, 

61
Revision, 185

MAC initialization, 182
measurement of parallelism, 152
memory

access, 8, 9, 26, 48, 50, 93, 
101, 102, 103, 106, 118, 
121, 122, 123, 126, 130, 
132, 135, 152

address, 29, 30, 126, 127, 140
address generation, 30
banks, 7, 8, 29, 30, 37
block, 35, 58, 126, 143
buffer, 119, 126, 127, 129, 130, 

131, 132, 133, 134
coherent, 24, 119, 150

access, 42
address space, 63
lines, 39

coherent flush, 119
coherent I/O, 129
coherent space, 19, 20, 21, 24, 

25, 30, 103
control logic, 17
event counter, 154
flash, 166, 188
interleave, 9, 29, 35, 58

interleave base, 24
interleaving, 13
latency, 15, 17, 126, 130
latency counter, 154
line, 24
local access, 15
main, 167
mapping, 186
multibit errors, 205
node-private, 14
noncoherent, 121
nonexistent accesses, 42
normal region registers, 62
page, 24, 27, 49, 93, 103, 106, 

126, 129, 136
parity errors, 203, 204
PCI, 121, 123, 124, 127, 130, 

133, 142
physical, 9, 15, 22, 42
reference instructions, 15, 16
remote, 14
remote access, 15
sequential references, 9, 14
shared, 9, 118, 121, 150
shared I/O, 118, 120, 121, 124, 

140, 146, 150
sharing, 15
sharing lists, 130
single-bit errors, 205
storage units, 22
subsystem, 14
unprotected, 61
unprotected region, 62
usage measurement, 152
write-back, 17

messaging, 12
MIB (Midplane Interconnect 

board), 3, 163, 164, 165, 
167, 172, 174, 175



Index 227

MUC (Monitoring Utilities 
Controller), 111, 163, 164, 
165, 167, 168, 169, 171, 
173, 174, 175, 176, 177, 
178, 194

MUC CSRs
Processor Report, 176
Processor Semaphore, 177
RAC Configuration control, 

177, 178
RAC Data, 177
RAC Reset, 178
Reset, 178
System Hard Error, 194

N
node

addressing, 22
ASIC initialization, 186
clean up and OBP boot, 187
communication, 12
conceptual block diagram, 3
configuration determination, 

185
connection of multiple nodes, 

11
CSRs discussed, 5
CSRspace, 23
description of functional 

blocks, 5
HP Hyperplane crossbar, 3, 9
latency, 15
main memory initialization, 

186
memory, 15
RAC interconnection, 6
shared-memory, 9
Utilities board, 3, 8

node-private memory, 14
nonblocking access, 14
Noncoherent Load Double 

(LDD), 103

Noncoherent Load Word (LDW), 
103

noncoherent semaphore 
operators, 93

Noncoherent Store Double 
(STD), 103

Noncoherent Store Word (STW), 
103

nonexistent CSRs, 51
non-I/O CSR space, 20, 21
non-IO CSR space, 45
non-IO CSR space format, 45
normal memory, 62
NVSRAM (nonvolatile battery-

backed static RAM), 166, 
185

O
Open Boot PROM (OBP), 166, 

183, 185, 187, 188, 189
operation status queue, 203

P
PA-8500, 2, 5, 20, 22, 76, 103, 

105
cache interfaces, 75
cache operations, 71
caches, 68
External Interrupt Request 

register (EIRR), 107
initialization, 185
Runway bus, 5, 198, 202, 203
selftest routines, 185
TLB entry, 103

U-bit, 103
PAC

Operation Address registers, 
89

system configuration register, 
42

PAC (Processor Agent 
controller), 3, 4, 5, 6, 8, 31, 
42, 44, 45, 48, 49, 50, 51, 
52, 56, 57, 58, 76, 83, 85, 
87, 88, 89, 90, 94, 95, 98, 
100, 101, 102, 108, 110, 111, 
112, 114, 117, 118, 144, 148, 
153, 154, 155, 156, 157, 
159, 160, 162, 163, 165, 
168, 173, 182, 185, 186, 
196, 197, 198, 203, 204

PAC CSRs
Configuration, 50, 56, 57, 186
error detection, 203
Interrupt Delivery, 111, 112, 

113
Memory Board Configuration, 

58
Operation Address, 94
Operation Context, 94
Operation Context register, 85
Operation Status Queue, 203
PAC error response from 

crossbar, 197
Processor Configuration, 57
Revision, 185
SADD_LOG, 196, 197
Time of Century (TOC), 157, 

159
Time_TOC Clock, 159, 162

PAC initialization, 182
packet, 8, 48, 57, 123, 135, 136, 

164, 196, 198, 203, 204
error response, 196, 203
Hyperplane crossbar, 204
routing, 48, 57, 136
size, 123

page, 24, 27, 49, 93, 103, 106, 
126, 129, 136

field, 27
I/O table, 129
number field, 143
offset, 24



228 Index 

PA-RISC, xv, 1, 2, 20, 93, 105, 
180

PCI configuration space, 122, 
123, 124

PCI memory read transfers, 130
PCI memory space, 123
PCI memory write transfers, 133
PCI-to-host memory address 

translation, 126
PCU (Power-On Utilities 

Controller), 164
performance factors, 152

cache-hit rate, 152
communication costs, 152
deadlock detection, 152
I/O performance, 152
lock order enforcement, 152
measurement of parallelism, 

152
memory access patterns, 152
memory usage, 152
parallel algorithms, 152
synchronization statistics, 152

performance monitors, 151
granularity time intervals, 153
hardware, 153
interval timer, 153
memory event counter, 154
memory latency counter, 154
performance counters, 162
periodic clock interrupts, 153
thread timer, 153
Time of Century (TOC), 107, 

153, 156, 157, 159, 160
TIME_TOC Clock register, 

159, 162
TIME_TOC reset and 

initialization, 162
physical address, 9, 43, 48, 61, 

62, 94, 100, 128
physical address space, 20, 21, 

22, 24, 26, 29, 43, 61, 94, 
100, 126, 127, 128

physical address translation, 
126

physical memory, 15, 42
pipeline, 106
power-on, 164, 169, 170, 171, 

173, 174, 175, 176, 182
Power-On Selftest (POST), 183, 

185, 187
and spp_pdc, 188
basic processor initialization 

and selftest, 185
checksum verification, 185
core logic initialization, 185
node ASIC initialization, 186
node clean up and OBP boot, 

187
node configuration 

determination, 185
node main memory 

initialization, 186
prefetch buffer, 132
process, 106, 126, 152, 192, 194, 

202
processor

cache, 9
error detection, 202
error logging, 203
error recovery, 203
External Interrupt Request 

register (EIRR), 106, 107, 
109, 111, 144, 148

ID, 185
initialization, 185
interrupts, 107
Runway bus, 5, 198, 202, 203
SADD_LOG register, 202
selftest, 185

processor CSRs
External Interrupt Request 

Register (EIRR), 106, 144, 
148

processor-dependent code, 166, 
191

PUC (Power-On Utilities 
Controller), 8, 43, 111, 114, 
115, 163, 165, 168, 171, 174, 
182, 183, 185, 186, 187, 194

PUC CSRs
Interrupt Force, 114, 115
Interrupt Mask, 111, 114
Interrupt Status, 114, 115
Processor Agent Exist, 168
Revision, 168

PUC initialization, 182

R
RAC (Routing Attachment 

Controller), 3, 5, 6, 182, 204
RAC error detection, 204
RAC initialization, 182
RAC interconnection, 6
read encachement, 17
register, 61, 107, 131
remote access, 50
reset, 57, 58, 60, 61, 141, 142, 

144, 145, 146, 147, 148, 
160, 162, 168, 177, 178, 
182, 185, 187

hard, 142, 147, 160, 162, 178, 
179

power, 175
power-on, 179, 182
soft, 142, 147, 160, 162, 178, 

179
Return From Interrupt (RFI), 

106
RS232, 8, 164, 166
Runway bus, 5, 198, 202, 203

S
SADD_LOG, 196, 197
SAGA (PCI-bus Interface 

controller), 3, 4, 5, 20, 44, 
50, 51, 56, 57, 118, 119, 120, 
121, 122, 123, 124, 130, 



Index 229

131, 132, 133, 135, 137, 
138, 140, 141, 142, 143, 
144, 145, 147, 148, 149, 
150, 182, 185, 196, 203

SAGA CSRs
address decoding, 135
address format, 135
Channel Builder, 120, 121, 

130, 131, 135, 142
Chip Configuration, 135, 137
definition, 137
Interrupt Configuration, 135, 

144
Interrupt Enable, 135, 144, 

145
Interrupt Source, 135, 144, 

145
PCI Master Configuration, 

135, 137, 138, 150
PCI Master Status, 135, 140, 

141
PCI Slot Configuration, 135, 

146, 150
PCI Slot Interrupt, 135, 148
PCI Slot Status, 135, 147
PCI Slot Synchronization, 135, 

149
Revision, 185

SAGA initialization, 182
scan, 164, 165, 166, 180, 200, 

201
semaphore, 93, 103

barrier synchronization, 96
coherent instructions

Coherent Increment Double 
(CINCD), 103

Load and Clear Double 
(LDCD), 92, 103

Load and Clear Word 
(LDCW), 92, 103

Noncoherent Load Double 
(LDD), 103

Noncoherent Load Word 
(LDW), 103

Noncoherent Store Double 
(STD), 103

Noncoherent Store Word 
(STW), 103

MUC, register, 177
noncoherent operators, 93

Fetch and Clear, 93
noncoherent write operation, 

102
operation, 93, 94, 96
operation instructions, 103
PAC Fetch Operation 

Addresses
Fetch and Clear, 101
Fetch and Decrement, 101
Fetch and Increment, 101

PAC registers, 101
PUC, processor, 185, 187
variable, 93

sequential memory reference, 
13, 14

server, 9, 152, 163, 192
shared memory, 9, 118, 150
Single Inline Memory Module 

(SIMM), 26, 186
soft error, 145, 191, 192, 193, 

194, 195, 196, 200, 201, 203
speculative execution, 68
spp_pdc, 188
stale data, 17
stall prefetch, 132
sticky bit, 200
store instruction, 15
Store Ordering, 68
symmetric multiprocessor 

(SMP), 3
synchronization, 17, 52, 96, 113, 

133, 135, 149, 152, 153, 
157, 159, 160, 161, 162, 177

barrier, 96

noncoherent write operation, 
102

PAC semaphore registers, 101
PCI slot, 135, 146, 149
Time of Century clock, 160
TOC, 109, 112, 113, 162

Synchronous Dynamic Random 
Access Memory (SDRAM), 7, 
25, 26, 27, 60, 61

System Configuration register, 
52

definition, 53
system utilities, 163

T
TAC (Toroidal Access 

Controller), 66
TAC CSRs, 66
teststation, 164, 165, 166, 169, 

175, 180, 181
thread timer, 153
threads, 91
Time of Century (TOC) clock, 

107, 153, 156, 157, 159, 160
Time_TOC Clock register, 159, 

162
timeout transaction, 203
Transfer of Control (TOC), 109, 

111, 112, 113, 114, 115, 157, 
158, 159, 160, 161, 194

Translation Lookaside Buffer 
(TLB), 103, 129

trap, 106

U
unaligned reference trap, 22

V
virtual address, 70



230 Index 

W
word, 22
write pipe flush, 133
Write_Purge_Partial disabled, 

133
Write_Purge_Partial enabled, 

134
write-back, 17


