
Abstract
Compiler optimizations play a key role in unlocking the

performance of the PA-8000, an innovative dynamically-
scheduled machine which is the first implementation of the
64-bit PA 2.0 member of the HP PA-RISC architecture fam-
ily. This wide superscalar, long out-of-order machine pro-
vides significant execution bandwidth and automatically
hides latency at runtime; however, despite its ample hard-
ware resources, many of the optimizing transformations
which proved effective for the PA-8000 served to augment
its ability to exploit the available bandwidth and to hide
latency. While legacy codes benefit from the PA-8000’s
sophisticated hardware, recompilation of old binaries can
be vital to realizing the full potential of the PA-8000, given
the impact of new compilers in achieving peak perfor-
mance for this machine.

1  Introduction

The PA-8000 [20,25] is the first implementation of the
64-bit PA-RISC 2.0 architecture [30]. The processor is
dynamically scheduled with a 56-entry reorder queue,
organized as a 28-entry ALU queue and a 28-entry mem-
ory queue; this reorder queue is significantly longer than
that of any other microprocessor currently available in the
marketplace [34]. The PA-8000 is 4-issue superscalar, with
2 integer arithmetic/logic units, 2 shift/merge units, 2 load/
store address units, 2 floating point multiply/accumulate
units, and 2 floating point divide/square-root units. Given
its lengthy reorder queue and wide issue, the PA-8000
might be expected to subsume certain functionality of the
low level compiler optimizer, such as instruction schedul-
ing. However, experience has demonstrated that the combi-
nation of innovative hardware and aggressive optimization,
including compile-time scheduling, yields the PA-8000’s
strong performance, which at 180MHz is currently 11.8
peak SPECint95 ratio and 20.2 peak SPECfp95 ratio.

The remainder of this paper is organized as follows.
First, the effect of optimization on PA-8000 performance is
examined. Next, compiler optimization techniques particu-
larly suited to the PA-8000 are discussed. Performance
measurements for the PA-8000 vis a vis competitive sys-

tems are then reported. The paper concludes with lessons
learned in optimizing for a superscalar out-of-order
machine.

2  Performance Impact of Optimization

The performance impact of optimization for the PA-
8000 is substantial. Legacy codes and codes not utilizing
advanced optimization techniques may not realize the
machine’s full performance potential.

While the PA-8000 delivers solid speed-up on legacy
codes, such codes can suffer significant lost performance
opportunity by not being rebuilt for the PA-8000. Peak
SPECint95 binaries built for the PA-8000 using the 10.20
version of the PA-RISC compilers run 38% faster on the
PA-8000 than do peak SPECint95 binaries built for the PA-
7200 using the 10.01 version of the PA-RISC compilers;
similarly built peak SPECfp95 binaries run 53% faster.
Legacy codes do not exploit new PA-8000 features, may
contain PA-8000 hazards, and do not benefit from the latest
improvements in the compiler optimizer.

The power of the PA-8000 hardware provides advanced
optimization techniques with more leverage to increase
performance than was available in past PA-RISC proces-
sors. Peak SPECint95 binaries are 46% faster than those
built with -O on the PA-8000, while they are only 38%
faster than those built with -O on the PA-7200 (all built
using the 10.20 compilers). Peak SPECfp95 binaries are
41% faster than those built with -O on the PA-8000, while
only 9% faster than -O on the PA-7200.

3  Optimization Techniques for the PA-8000

The optimizations described in this paper (and more!)
are incorporated in version 10.20 of the PA-RISC compil-
ers. All HP compilers for the PA-RISC share common opti-
mizing components. The structure of HP compilers and the
purpose of each optimizing component are shown in Figure
1 [24]. The user selects desired optimizing components
with command-line options; for example, the low level
optimizer may be invoked via -O and the high level opti-
mizer is typically invoked via +O3 or +O4. The user may
employ the profile-based optimization (PBO) framework to
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have data about a program gathered during instrumented
runs on representative data sets and fed back into the opti-
mization process.

The PA-RISC Low Level Optimizer (LLO) performs
global optimizations within a procedure [29,21]. It consists
of the following phases: basic block formation and optimi-
zation, interval construction and calculation of reaching
dataflow information [27], global common subexpression
elimination, calculation of need dataflow information, pro-
motion of memory variables, loop optimizations, formation
and optimization of definition/use webs, instruction sched-
uling, coloring register allocation, peephole optimization,
branch optimization, branch reachability fixing, and
(again) instruction scheduling. The LLO incorporates
many aggressive low level techniques, including register
reassociation [40] and software pipelining [38].

The PA-RISC High Level Optimizer (HLO) handles
transformations which depend on a high semantic level
intermediate representation of the input code and/or on
cross-procedure or cross-module processing. Such trans-
formations include inlining, cloning, whole program analy-
sis, parallelization, vectorization, loop interchange, and

loop fusion. For the various implementations of the PA 1.0
and PA 1.1 architectures, the HLO was essentially
machine-independent; however, for the PA-8000, the
HLO’s operation was influenced by machine-specific con-
siderations.

Optimization techniques introduced or significantly
enhanced in the 10.20 version of the PA-RISC compilers
can be divided into four areas: optimization for procedural
dependencies, for true dependencies, for resource conflicts,
and general and high-level optimization. Procedural depen-
dencies are engendered by branching; on the PA-8000, cor-
rectly predicted branches which hit in the branch target
address cache incur no penalty, while mispredicted
branches may have a relatively large penalty of around 6
cycles. Techniques introduced in this area include loop
unrolling, superblock formation, assertion propagation
[4,22], if-conversion, static branch prediction hinting
[6,37], and switch statement improvements. The latencies
associated with producing a value needed by a subsequent
operation are true dependencies; the PA-8000’s reorder
queue is intended to hide these latencies, but its length rep-
resents a limitation on its ability to do so. Techniques intro-
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duced in this area include data cache prefetching,
instruction scheduling for dependent chains [16], strength
reduction extensions, store load dependence elimination,
and tree height reduction [32]. Resource conflicts reflect
hardware constraints and features. Techniques introduced
in this area include FDIV/FQRT polarity scheduling [16],
nullified delay slot scheduling, prefetch spreading [16,31],
single-precision floating point false dependence avoidance,
memory access coalescing [13], exploiting PA-8000
instruction set extensions, and two target operation avoid-
ance. Finally, a number of general and high-level optimiza-
tion techniques were introduced or improved; these include
type-inferred aliasing [11], scalar replacement, shrink-
wrapping [10], inlining, cache-related transformations, and
loop-level transformations. A subset of these techniques
are discussed below; more information can be found in
[HOLL96].

3.1  Loop Unrolling
Loop unrolling [15], in which a loop body is replicated

one or more times with appropriate adjustments to array
indices and loop control code, reduces the iteration over-
head associated with looping (i.e., increment/decrement,
test, and branch). In addition, it exposes more cross-itera-
tion ILP to the optimizer. While the PA-8000 hardware can
automatically schedule instructions across iterations, loop
unrolling and certain other optimizations it enables were
found to be quite effective for this machine. Loop unrolling
for the PA-8000 is discussed in detail in [41]; below is a
brief description of loop unrolling in the PA-RISC LLO,
with PA-8000 issues highlighted.

The fundamental heuristic related to loop unrolling is
the selection of the unroll depth; several attributes of the
PA-8000 are relevant to the selection criteria. One factor
considered is the number of instructions in the loop. For
this factor, unroll depth is chosen as a balance between the
fact that the PA-8000 can handle substantial code size
growth, by virtue of its large (1 megabyte) instruction
cache, and the potential side-effects of code size growth,
which may include increased register pressure leading to
spilling or excessive compile time and space consumption.
Another factor considered relates to data cache prefetch-
ing. If PA-8000 explicit data cache prefetch instructions
(Section 3.4) will be inserted into the loop, and if the mem-
ory access stride is less than the cache line length in the
original loop, it is desirable to limit the unroll depth so that
the stride remains within the cache line length in the
unrolled loop, to promote the efficacy of the prefetch over-
head reduction algorithm. If recurrent scalar replacement
(Section 3.9) has been performed, an unroll depth which
matches the recurrence distance allows the removal of cop-
ies which carry values across iterations. Critical resource
usage is also considered; in particular, the number of long
latency floating point divide (FDIV) and square root
(FSQRT) operations is counted, because an unroll factor
which yields an even number of these operations in the
loop body is preferable to aid FDIV/FSQRT polarity
scheduling (Section 3.6). The expected trip count (which

may be constant, based on profiling information, or derived
from static heuristics) is also relevant; choosing an unroll
depth which is a multiple of the expected trip count may
tend to allow execution of the compensation loop1 to be
avoided. The user may suggest an unroll depth for the pro-
gram’s loops via a command line option. Finally, issues
related to managing the unrolled loop are considered in
selecting the unroll depth. An unroll depth which is a
power of two allows the use of an inexpensive shift opera-
tion to determine how many times to execute the compen-
sation loop; in this case, the compensation loop is executed
prior to the unrolled loop, so that the index variable associ-
ated with the unrolled loop is not live on loop exit, improv-
ing the operation of register reassociation for the unrolled
loop. An unroll depth which is not a power of two requires
a more expensive operation to determine how many times
to execute the compensation loop; in this case, the compen-
sation loop is placed after the unrolled loop with its repeti-
tion factor determined by the remainder value of the
unrolled loop’s index variable, which is thus live on exit
from the loop impacting register reassociation’s efficacy.

Perhaps surprisingly, application code may contain
loops which iterate a constant number of times. This
occurs, for example, when the code solves a problem
which involves a fixed width in certain dimensions. Com-
pletely unrolling constant trip count loops and removing all
loop overhead, even when the resulting code size growth is
nontrivial, proved to be profitable on the PA-8000.

When a loop has a fairly small trip count, its iterate-or-
exit branch can have a high misprediction rate. If control
passes through this poorly predicted loop fairly often, per-
formance may be impacted. In any such situation which
does not lend itself to regular unrolling and for which the
small trip count tends to usually have a particular value, the
loop body can be replicated that number of times, with
each copy retaining its own branch. This simple form of
unrolling serves to split the loop’s single branch point into
several branch points, each of which is more predictable
(i.e., each will likely fall through).

3.2  Superblock formation
Superblock formation [26] is an optimizing and an opti-

mization-enabling transformation, which involves dupli-
cating code so that certain incoming edges into a
commonly executed path of the control flow graph can be
removed. As a result, larger basic blocks are constructed
and some control flow overhead is eliminated, reducing
pressure on the PA-8000’s branch prediction cache (BPC)
and thereby improving its prediction accuracy. These
changes can in turn be exploited in a number of ways. For
example, after constructing superblocks, a common subex-
pression which was only valid on a certain path through the
code could become available on a distinct path (thereby
allowing a common subexpression elimination framework
to effect a form of partial redundancy elimination). The

1. The compensation loop is executed when there are too few itera-
tions to be handled by the unrolled loop.



PA-8000’s tolerance for code size growth and its high
branch misprediction penalty make this transformation
attractive.

Superblock formation consists of identifying traces [18]
which represent frequent paths through the code and then
duplicating certain code along those traces, modifying or
removing branches as appropriate. The LLO’s algorithm is
similar to that described in [9]. Using profile information
collected via the PBO framework, traces are constructed by
repeatedly picking the basic block with the highest execu-
tion frequency from a bucket of candidate basic blocks, ini-
tially filled with all basic blocks that meet a certain
threshold execution level, and then forming an associated
trace by selecting adjacent frequently-executed basic
blocks. After traces are constructed, decisions concerning
whether and how much tail duplication should be done are
made. Tail duplication of blocks containing a large percent-
age of conditional branches is avoided, since introducing
multiple copies of those branches can increase conflicts in
the PA-8000’s BPC. Superblocks are formed during the
basic block construction phase, to allow subsequent phases
to capitalize on the transformed code. However, some
phase ordering issues are associated with this choice and
are addressed by not creating superblocks which may inter-
fere with loop optimizations or with if-conversion.

3.3  If-conversion
On the PA-RISC architecture, all computational and

branch instructions can nullify the execution of the follow-
ing instruction. In the case of computational instructions,
nullification is performed conditionally, based on the out-
come of a test; this conditional nullification represents a
simple form of predicated execution [14]. If-conversion is
an optimization technique involving the conversion of con-
ditional blocks of code to sequences of conditional simple
statements; this technique can serve to transform control
flow dependencies into data flow dependencies, by includ-
ing the condition as an input to the operation [1]. The con-
ditional simple statement semantics of if-conversion can be
realized using nullification on a computational instruction,
thereby avoiding branching. Surprisingly, although avoid-
ing branching is quite desirable on the PA-8000, develop-
ing heuristics for deciding when to perform if-conversion
was difficult.

The problem is that there are certain overheads associ-
ated with nullification on the PA-8000. Nullification engen-
ders a latency; a non-branch conditionally nullified
operation is not considered data-ready until its potentially
nullifying instruction has launched for execution. Note that
there would be no such latency if the instruction were sim-
ply located on a correctly-predicted branch path. More
importantly, when an instruction is nullified, the dependen-
cies which were established in the reorder queue are
affected. In this regard, nullification is an anomaly for an
out-of-order machine. The PA-8000 hardware accelerates
the nullify-slot operation of certain instructions; these
instructions are said to be inselect convention.

A detailed description of if-conversion for the PA-8000

can be found in [3]. Factors governing its application
include the amount of conditional code, the balance
between the amount of then and else code for if-then-else
constructs, and the execution frequency on alternative
paths through the control flow graph. Producing candidate
if-converted code sequences involves careful selection and
efficient utilization of guarding conditionals, the use of
unconditional code when appropriate, and the exploitation
of select convention instructions. Estimated best-case pro-
cessor cycles for the original and if-converted code are
compared; computing these cycle counts was complicated
by the difficulty in calculating cycles for an out-of-order
machine, particularly with respect to expected mispredic-
tion costs [3]. If-conversion, judiciously applied, proved
very effective for the PA-8000.

3.4  Data Cache Prefetching
A cache miss on the PA-8000 has a latency which may

be in excess of 50 cycles. To aid in hiding this latency, the
PA-8000 supports the explicit data cache prefetch instruc-
tions defined by the PA 2.0 architecture. Encoded as inte-
ger loads to general register zero, these instructions (unlike
normal loads) do not engender exceptions or traps and are
not subject to retirement delays pending service from the
cache.

Compiler-generated data cache prefetch [35] for the PA-
8000 is discussed in detail in [19]; a brief overview is given
here. The LLO will insert explicit data prefetch instruc-
tions into loops (including those with internal control flow)
which contain regular data access patterns in terms of
effective memory strides. Worst-case cache alignment of
user data is taken into account, and runtime dimensioned
arrays are supported. Given the expected cache miss
latency, the number of loop iterations in advance of which
to prefetch data is determined by the expected loop itera-
tion latency, which depends on the composition of the loop
and on PA-8000 scheduling information. The prefetch
algorithm focuses on innermost loops, but prefetches for
non-innermost loops as well, if they are expected to be exe-
cuted relatively more often each time they are entered than
loops nested within them. One interesting situation occurs
when an enclosing loop is expected to be executed more
often each time it is entered than a nested loop, and the two
loops have conflicting stride directions. In this case, the
LLO will reverse the direction of the prefetches in the
nested loop, so that it will effectively be prefetching for
future iterations engendered by the outer loop.

Data prefetch can increase performance on the PA-8000
dramatically. For several benchmarks, the speedups were
between 50 and 100%. Unfortunately, data prefetch can
also diminish performance. Prefetch instructions are added
selectively to minimize their overhead without unduly
compromising miss coverage by exploiting apparent group
spatial and group temporal locality among references to
different elements of the same array. Nevertheless, explicit
data prefetch instructions consume retirement bandwidth
and increase cache accesses, and these costs may not be
offset by a corresponding decrease in data cache miss over-



head, either because the prefetched data is already cache-
resident (and in general, the compiler cannot determine this
statically), or because the prefetched data displaces (or is
displaced by) other needed cache data, or because the
prefetched data is not actually used by the application. Due
to the risk of performance loss, data prefetch is only per-
formed at the user’s request.

3.5  Strength Reduction
On the PA-8000, FDIV is a relatively long latency oper-

ation (17 cycles single precision, 31 cycles double preci-
sion). Hence, when a division is to be performed multiple
times with the same divisor, it is preferable to compute the
reciprocal and then to replace the division operations with
multiplications. This strength reduction technique, termed
FDIV weakening, is performed by the LLO in a variety of
situations, involving both loops and straight-line code.
Note that the technique can affect floating point accuracy,
and is only applied when the user has indicated that this
type of optimization is acceptable.

The PA-RISC instruction set architecture does not
include multiply or divide operations on operands in the
integer registers. Several strength-reducing transformations
are related to this design decision. Integer multiplication by
a constant is replaced by a series of shift-add instructions.
Integer division and remainder after division by a constant
are computed using a floating point multiplication by the
reciprocal, which is produced as a literal at compile time.
Integer division and remainder after division by a variable
are calculated using a floating point multiplication by the
reciprocal, which is produced at run time.

3.6  FDIV/FSQRT Polarity Scheduling
The PA-8000 has two FDIV/FSQRT units. However, to

simplify the hardware, there is a constraint on both units
being used simultaneously, which is that the two associated
instructions must be of opposite polarity, i.e., one must
have an even and the other an odd slot address in the reor-
der queue. Because the units are not pipelined and have a
long latency, a substantial performance benefit can be
derived in some cases from laying out the code so that
FDIVs and FSQRTs which are executed in close temporal
proximity have opposite polarity.

The final instruction scheduling phase performs polarity
scheduling in several situations. For a single basic block
containing more than one FDIV or FSQRT, it tracks ALU
queue slot addresses and positions code so that successive
independent FDIVs or FSQRTs are of opposite polarity.
For a single basic block loop containing an FDIV or
FSQRT instruction without loop-carried dependence, it
ensures that the loop has odd number of ALU instructions,
by padding with a NOP if necessary, so that the same
instruction will flip polarity on each successive iteration.
If-conversion, loop unrolling, superblock formation, and
assertion propagation can aid polarity scheduling by trans-
forming several basic blocks into a single basic block.

3.7  Single-precision Floating Point False Depen-

dence Avoidance
On the PA-RISC 1.1 and later architectures, there are 32

64-bit (double precision) floating point registers, which can
also be used as 64 32-bit (single precision) floating point
registers. To save hardware, the PA-8000 computes register
dependencies with respect to double precision registers.
Hence, if frX and frY are single precision registers which
form the two halves of a double precision register, a false
data dependence is recorded when frX is used within the
same reorder window in which frY is defined. Because of
this (false) dependence, the use instruction is not launched
until the definition instruction completes execution. When
the use instruction is launched, the fact that its established
dependency is incorrect is detected before it can retire and
the instruction is aborted, with its queue slot being marked
for subsequent relaunching. Dependent instructions may be
launched and aborted as well. Instructions which record
false dependencies are aborted and relaunched approxi-
mately every 4 cycles until the source of the false depen-
dence is retired, wasting bandwidth.

To address this problem, the coloring register allocator
was revised to not assign both halves of a double precision
register to two single precision items with overlapping life-
times. While this “wasting” of registers might be expected
to impact performance, the benefit of avoiding single preci-
sion false dependence outweighed any penalty from
increased register pressure. The final instruction schedul-
ing phase was also modified to not reorder instructions in a
way which would introduce single precision false depen-
dence.

3.8  Exploiting PA-8000 Instruction Set Extensions
PA 2.0 is the first 64-bit member of the PA-RISC family.

Until the introduction of PA 2.0, 64-bit data items con-
sumed two registers and operations on those items was
handled via millicode calls. On PA 2.0, 64-bit data items
can be kept in a single register and operations on those
items can be performed inline.

PA-RISC integer load and store operations support 14-
bit immediate offsets, but prior to PA 2.0, floating point
load and store operations only provided 5-bit immediate
offsets. The PA 2.0 instruction set extended the offsets on
floating point memory operations to match those on integer
memory operations. Use of the wider offsets results in
tighter code sequences and, in particular, in improved reg-
ister reassociation.

The shift amount register (sar) is a 6-bit control register
which is used by the variable versions of the shift, extract,
deposit, and branch-on-bit instructions. For members of the
PA-RISC family introduced before PA 2.0, the following
code sequence was produced for 32-bit signed integer “z =
x << y”:

SUBI -1,y,temp !1s cmplt for DEPW bitpos
MTSAR temp !Move temp to sar
DEPW,Z x,sar,32,z !Bits #d most to least signf

and for “z = x >> y”:
SUBI -1,y,temp !1s cmpl for EXTRW bitpos
MTSAR temp !Move temp to sar



EXTRW,S x,sar,32,z !Bits #d most to least signft
The PA 2.0 ISA introduced MTSARCM (move ones com-
plement to sar), which allows shorter idioms; for 32-bit
signed integer “z = x << y”, the PA 2.0 code is:

MTSARCM y
DEPW,Z x,sar,32,z

and for “z = x >> y”, the PA 2.0 code is:
MTSARCM y
EXTRW,S x,sar,32,z
PA-RISC floating point comparisons set a compare bit

(C-bit) in the floating point status register. Prior to the
advent of PA 2.0, there was a single C-bit; PA 2.0 intro-
duced multiple C-bits. The instruction scheduler utilizes
multiple C-bits to hide latency, in sequences involving sev-
eral independent code streams containing if-conversion.

FMPYFADD and FMPYNFADD are PA 2.0 instruc-
tions which implement floating point multiply and accu-
mulate operations. These instructions take 4 operands, rb,
ra, rd, and rc; FMPYFADD produces rc = rd + (rb * ra) and
FMPYNFADD produces rc = rd - (rb * ra). On the PA-
8000, each of the floating point instructions FMPYFADD,
FMPYNFADD, FMPY, FADD, and FSUB takes the same
number of cycles, so it is profitable to combine an FMPY-
FADD or an FMPY-FSUB sequence into a single FMPY-
FADD or FMPYNFADD instruction. These instructions
are synthesized for the PA-8000 target during the first
instruction scheduling phase,1 as explained in [5]. Several
situations are considered. The most straightforward case is
when the result of an FMPY is used only once, by an
FADD or as the subtrahend of an FSUB; this substitution is
essentially a peephole transformation. More complicated is
the case when both operands of an FADD are distinct
FMPYs; this involves a choice as to which of the two
FMPYs should be included in the substitution. The PA-
8000 instruction scheduler chooses to reduce the number
of instructions on the code’s critical path by selecting the
FMPY with the longer path from the root nodes (the nodes
near the start of the basic block). Another case is when a
single FMPY feeds into two FADDs. Two FMPYFADDs
are generated, unless the associated extension of the origi-
nal FMPY’s operands’ live ranges engenders too much reg-
ister pressure, in which case no transformation is
performed. Finally, when a single FMPY feeds an FADD
or FSUB eligible for synthesis, but there are other consum-
ers of the FMPY result, the FMPY is duplicated and the
FMPYFADD or FMPYNFADD is generated as appropri-
ate; this shortens the path length to the result of the FMPY-
FADD or FMPYNFADD, even though the total number of
operations remains the same.

1. The generation of similar instructions (FMAs) is
handled by the front-end of IBM’s RS/6000 compiler, rather
than by its optimizer. This approach allows FMAs to be
produced even when optimization is not enabled, but may have
difficulty recognizing certain situations in which FMAs can be
employed and making trade-offs with respect to critical path
when there is a choice concerning where to introduce an FMA.

3.9  Scalar Replacement
Scalar replacement is a technique in which subscripted

variables that are reused in innermost loops are assigned to
scalar temporaries to facilitate their allocation to registers
[7]. The PA-RISC LLO also applies the technique to loops
with control flow [8] and to non-innermost loops. In addi-
tion, the LLO scalar-replaces non-subscripted variables,
including structure field references and references through
pointers, and uses the technique to provide a general
framework for loop-duration promotion of scalar variables
whose complete lifetimes do not warrant register promo-
tion [17]. Conditional references are scalar-replaced, if the
relevant address expression can be proven safe in its
unconditional setting, subject to profitability. Scalar
replacement is also applied to recurrent memory refer-
ences, after which predictive commoning [36] is used to
remove recurrent common subexpressions and to option-
ally perform recurrent FDIV weakening. Loop unrolling
allows the associated copies in the loop body to be
removed.

While performing scalar replacement, the LLO register-
promotes the scalar temporary; register pressure heuristics
are used to avoid over-allocation. Several transformations
are applied in association with the register promotion. If an
item with a loop invariant address is scalar-replaced and its
reuse set within the loop begins with an unconditional
store, then the scalar load which would usually be placed in
the loop header is not materialized; similarly, if an item
with a loop variant address is scalar-replaced and its reuse
set within the loop begins with an unconditional store, then
all associated loads located in the loop body are deleted. A
loop variant reuse set is usually not scalar-replaced if the
first load or last store is conditional; however, a reuse set
containing a conditional first load is transformed if pre-
ceded by an unconditional store, and a reuse set containing
a conditional last store is transformed if an unconditional
store can safely and profitably be inserted at the end of the
loop.

Note that scalar replacement can have beneficial effects
on the PA-8000 which are somewhat indirectly associated
with register promotion. If a load is launched out-of-order
before a store to the same address then, when the store
retires, entries in the reorder queue are purged and instruc-
tions following the store are refetched. (This scenario is
only likely when the store is located in a potentially nulli-
fied slot and the following load is not.) Since the LLO’s
scalar replacement can register-promote in this situation,
this expensive sequence is averted.

3.10  Inlining
Inlining, in which a subprogram call is replaced by a

copy of the callee’s body with suitable substitutions for
parameters and conflicting identifiers [12], improves per-
formance on models across the PA-RISC family. However,
it is particularly effective on the PA-8000, and heuristics
governing its application were tuned accordingly. Not only
does the PA-8000 have a large instruction cache, but also
the subroutine return branch, which is indirect through a



register, is not predicted on the PA-8000. Calls through
pointers, which are also register indirect and not predicted,
are potential bottlenecks as well. The HLO uses a combi-
nation of caller/callee site matching and profiling informa-
tion to introduce a runtime test against the address of an
indirect call’s likely target, to choose between making the
call and executing an inlined version of the recognized tar-
get. In addition, aggressive inlining yields benefits which
compare favorably vis a vis interprocedural analysis in
terms of facilitating other optimizations [39]; in some
cases, significant speed ups were realized on the PA-8000
by flattening entire call trees.

3.11  Cache-Related Transformations
The HLO performs two categories of cache-related

transformations: those intended to enhance locality and
those intended to reduce various kinds of conflicts. Using
the loop transformation framework described in [33], the
HLO enhances locality by interchanging loops to place
stride one accesses in the innermost loop. Loop fusion
sometimes serves to improve locality as well. The PA-8000
uses a direct-mapped caching scheme, and cache conflicts
between data items used in close temporal proximity occur
in some codes. The HLO, under a user option, will attempt
to reduce cache conflicts by inserting padding between
items stored adjacently, so as to modify their addresses
appropriately. In addition, the PA-8000’s data cache is non-
blocking; miss requests for up to ten distinct cache lines
can be outstanding at a given time and cache misses which
map to different banks are handled with less latency than
those which map to the same bank. The HLO can also
insert padding to reduce memory bank conflicts.

3.12  Latency-Related Loop Optimizations
Several HLO loop optimizations which consider latency

were particularly important for PA-8000 performance. Vec-
torization of reduction loops increased the ILP available
for exploitation by the PA-8000. A reduction is an opera-
tion that computes a scalar value from an array; a reduction
loop is serialized with respect to accesses to that scalar
value. However, if the operation is associative, it can be
vectorized by computing separate scalar values for subpar-
titions of the array & then combining those values appro-
priately to compute the final scalar value [2]. HLO
recognizes certain reduction loops and replaces them with
calls to vectorized library routines.

Another key latency-related HLO loop transformation
was loop interchange to make long latency operations loop
invariant. For example, in the following code, the divisor
varies in the inner loop.

DO 10 J=1,N
DO 10 I=1,M

10 X(I,J) = X(I,J) - (Z/Y(I))
However, if the loop were interchanged, then the divisor

would become inner loop invariant, and the division could
be moved out of the inner loop, reducing the number of
long latency divisions done overall. Note that this motiva-
tion for loop interchange may conflict with that of enhanc-

ing spatial locality; in this example, interchanging will
move stride one accesses out of the inner loop.

4  Competitive Performance

The authors chose to report performance with respect to
the SPEC95 benchmarks, since these codes are widely
available and familiar to many. The PA-8000 optimization
results for SPEC95base are given in the table below, along
with key competitors’ results [34]. Optimization contrib-
utes strongly to the PA-8000’s results; legacy binaries built
for the PA-7200 achieve 7.8 SPECint95 and 9.0 SPECfp95
when run on the PA-8000.
SPEC95BASE INT FP
HP PA-8000 180MHz 10.8 18.3
Digital 21164 500MHz 12.6 18.3
SGI R10000 200MHz  8.9 17.2
Sun Ultrasparc 200MHz  8.5 15.0

This paper has focused on the effect of compiler optimi-
zations on performance, but many other factors contributed
directly to the PA-8000’s SPEC95 results, including the
chip and system designs, the runtime library, the front-
ends, the intermediate code generator, the linker, and the
operating system. Indirect contributions are too numerous
to enumerate, but one that deserves special mention is that
of the performance simulator. The complexity of this
machine made compile-time estimations of performance
obsolete, and made accurate simulation crucial to deter-
mining the efficacy of optimizing transformations. Simula-
tion measurements exposed critical tuning opportunities
and brought to light counterintuitive attributes of code
behavior. In addition, once prototype hardware was avail-
able, the on-chip performance monitoring functionality
was very useful as well.

5  Conclusion

The synergy between innovative hardware and aggres-
sive optimization yields PA-8000’s industry-leading per-
formance. As has been suggested is the case for superscalar
out-of-order machines [28], optimizing for procedural
dependencies had a substantial impact on performance.
Developing appropriate heuristics for such optimizations
was challenging. Optimizing for true dependencies was
more important than expected for this machine, given that
it has a larger reorder queue than any other microprocessor
in the marketplace. Optimizing for resource conflicts was
important as well, despite the fact that the machine has a
generous number of processing units and registers. High
level optimization was influenced by machine-specific con-
siderations.
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