

zx1 mio External Reference Specification H

zx1 mio
(Memory and I/O)

External Reference Specification

Revision 1.0 03/27/03 Page 1 of 57

zx1 mio External Reference Specification H

1 OPERATION OVERVIEW ... 4
1.1 zx1-based Systems... 4
1.2 zx1 mio’s Major Blocks .. 5

1.2.1 Itanium-2 bus interface block (BIB).. 6
1.2.2 Memory Controller (MC) .. 6
1.2.3 I/O Cache Controller (IOCC) .. 6
1.2.4 Rope-quad Controller (RQC) .. 6

1.3 zx1 mio Interconnect ... 7
1.3.1 Itanium-2 Bus .. 7
1.3.2 I/O Ropes... 7

1.4 Terminology .. 8
1.3.3 PDH Bus.. 7

1.4.1 Device Terminology.. 8
1.4.2 Cache State Terminology .. 8
1.4.3 Address Space Terminology.. 8
1.4.4 Transaction Terminology .. 9
1.4.5 Other Terminology .. 11

2 System Address Map.. 12
2.1 zx1 mio Physical Address Map ... 12
2.2 The Compatibility Hole (640K to 1M).. 13

2.2.1 BIOS shadowing / write–protect ... 14
2.2.2 VGA support ... 14
2.2.3 ISA aliases ... 15

2.3 MMIO above 4 GB.. 17
2.4 I/O port space .. 18

2.4.1 Itanium-2 I/O Port Space... 18
2.4.2 LMMIO I/O Port Space... 18
2.4.3 GMMIO I/O Port Space .. 19
2.4.4 Summary of I/O Port Spaces ... 20

2.5 Range register programming ... 20
2.5.1 Range registers for the compatibility hole... 20
2.5.2 Range registers for LMMIO space .. 20
2.5.3 Range registers for GMMIO space.. 21
2.5.4 Range registers for I/O port space ... 21

3 I/O Subsystem... 22
3.1.1 Address Decoding ... 22

3.2 Function 0 Registers .. 24
3.2.1 Function 0 Class (FC) Register ... 25
3.2.2 Module Info (MI) Register .. 26
3.2.3 Address Range Registers ... 26

3.3 Function 1 Registers (IOC) ... 45
3.3.1 Function 1 ID Register .. 45
3.3.2 Function 1 Class (FC) Register ... 47
3.3.3 Rope Configuration Register ... 48
3.3.4 LBA_Port(N)_CNTRL Register.. 49

3.4 Transaction Overview ... 51
3.4.1 PIO Transactions ... 51
3.4.2 DMA.. 54
3.4.3 Peer to peer (P2P) transactions.. 55
3.4.4 Interrupt related functionality.. 56

Revision 1.0 03/27/03 Page 2 of 57

zx1 mio External Reference Specification H

Figure 1: zx1 mio Workstation System Block Diagram.. 4
Figure 2: zx1 mio Block Diagram... 5
Figure 3: zx1 mio Physical Address Map... 12
Figure 4: GMMIO I/O Port Space Mapping ... 19

Revision 1.0 03/27/03 Page 3 of 57

zx1 mio External Reference Specification H

1 OPERATION
OVERVIEW
This chapter provides an overview of the major zx1 mio blocks and transactions. It is only
intended to give the reader a start on understanding the overall architecture and operation of the
zx1 mio. The reader is referred to the zx1 ioa ERS for an overview of rope guest functionality.

1.1 zx1-based Systems
Figure 1 shows a block diagram of the zx1 mio in a typical 2-way workstation system. The
system is shown in a direct attach DDR main memory configuration.

Itanium-2 Bus

zx1 mio

Itanium-2

Itanium-2

zx1 ioa zx1 ioa zx1 ioa

AGP4x PCI-X PCI-X

zx1 ioa zx1 ioa zx1 ioa

PCI-X PCI-X PCI

DDR DDR

Figure 1: zx1 mio Workstation System Block Diagram

Revision 1.0 03/27/03 Page 4 of 57

zx1 mio External Reference Specification H

The zx1 mio provides 8 I/O ropes which support PCI, PCI-X, and/or AGP via the zx1 ioa chip.
The zx1 mio supports a direct data path between I/O and main memory without crossing the
processor bus. The peak I/O bandwidth is 3.2GB/s.

The zx1 mio supports a maximum of 512 DRAM devices (16GB using 256Mb DRAMs) without
the use of memory multiplexer chips. This configuration provides a peak bandwidth of 8GB/s in
the memory system (w/ 266MHz DDR), capable of extremely low latency (~70nS for idle system
open page). The zx1 mio also supports the zx1 sme (Scalable Memory Extender) memory mux
chip which will support a maximum of 2048 DDR devices and increase the peak bandwidth to
12.8GB/s.

The Itanium-2 bus will support 1-4 CPU’s with a frequency of 200MHz .

1.2 zx1 mio’s Major Blocks
The zx1 mio is partitioned into five major blocks (four are unique) as shown in Figure 2. Brief
descriptions of each of these blocks are provided below.

RQC0 RQC1

zx1 ioa

IOCC

BIB MC

RAM RAMItanium 2

D
illon

zx1 mio

Figure 2: zx1 mio Block Diagram

Revision 1.0 03/27/03 Page 5 of 57

zx1 mio External Reference Specification H

1.2.1 Itanium-2 bus interface block (BIB)

The BIB block provides the interface between the Itanium-2 bus, the memory controller (MC)
and the I/O cache controller (IOCC). Refer to the BIB chapter and the Itanium-2 bus spec for
additional Itanium-2 bus information. The pads expand the Itanium-2 data bus from 128-bits
externally to 256-bits internally which eliminates the need for any core circuitry to run at 2X the
Itanium-2 bus clock. Data is transferred directly between the IOCC and the MC and the Itanium-
2 I/O pads. The BIB controls the timing of these transfers and is the only block that understands
the Itanium-2 protocol.

The BIB provides the front end processing for the memory controller. It separates transactions
into read and write queues. Normally the reads are serviced first but the BIB is responsible for
detecting conflicts which will force writes to be executed ahead of reads.

1.2.2 Memory Controller (MC)

The zx1 mio’s memory controller provides the interface between the BIB and main memory. The
zx1 mio supports main memory in the form of double data rate SDRAM (DDR) directly attached
to the zx1 mio chip. This configuration provides the lowest cost and the lowest idle system
latency. This configuration will likely be used by any system that can get enough capacity in this
fashion. The zx1 mio also supports DDR memory attached via the zx1 sme mux chip. The mux
solution will provide four times the memory capacity as the direct attach solution for any given
memory technology. The mux configuration also has the advantage of allowing a peak
bandwidth that is twice that of the direct attach configuration at the expense of a couple cycles of
idle latency.

1.2.3 I/O Cache Controller (IOCC)

The IOCC is responsible for taking DMA requests generated from the RQCs and issuing them to
either the Itanium-2 bus or directly to the memory controller. It resolves write requests by
maintaining a small (16 entry) coherent cache that is used to merge the I/O write data with
existing memory data. DMA read requests are resolved through the re-order buffer which is used
to get the data in the proper order and to provide buffering between the Itanium-2 bus data rate
and the I/O data rate.

The IOCC also decodes all non-memory transactions and forwards them to their appropriate
destination (either one of the ropes, a register, or Processor Dependent Hardware (PDH)).

The IOCC is the home of a 16-entry translation cache (I/O TLB) which uses the IOPDIR in main
memory as the source for translating addresses from I/O virtual to physical addresses. The I/O
TLB can serve as the GART for AGP graphics devices.

1.2.4 Rope-quad Controller (RQC)

The rope-quad controller provides an interface between the IOCC and up to 4 I/O ropes. The
ropes it controls can be bundled as single-wide, double-wide, or quad-wide bundles. The rope-

Revision 1.0 03/27/03 Page 6 of 57

zx1 mio External Reference Specification H

quad controller provides the majority of “per-rope” functionality such as error detection,
Processor I/O Writes / Direct Memory Access Reads (PIOW/DMAR) ordering enforcement,
prefetching, flushing, side-band address decoding, etc. The RQC also contains the frequency
domain boundary between the Itanium-2 bus clock domain and input and output clock domain for
each rope.

1.3 zx1 mio Interconnect
The zx1 mio’s primary purpose is a “crossbar” used to move data between several different
busses at a very high bandwidth and with very low latency. This section provides brief
descriptions of each of those interfaces.

1.3.1 Itanium-2 Bus

Itanium-2 bus is the bus used by the Itanium-2 processors. It has split address and data with a
128-bit data bus. The data bus uses source synchronous clocking to transfer data on both edges of
the clock. The Itanium-2 bus is slated to run at 200MHz. The Itanium-2 bus has ECC on the data
bus and parity on the address bus. Itanium-2 bus supports up to 50-bits of physical address and
has a signal count of approximately 260 signals. Devices on the Itanium-2 bus maintain cache
coherency by using a snoopy-based protocol.

1.3.2 I/O Ropes

An I/O rope is a fast, narrow point-to-point connection between the zx1 mio and a rope guest
device (the zx1 ioa). The rope guest device is responsible for bridging from the I/O rope to an
industry standard I/O bus (PCI, AGP, and PCI-X). I/O ropes can be bundled together to increase
the width of the datapath. The zx1 mio has 8 single-wide ropes which can be bundled as double-
wide or quad-wide to increase the throughput as appropriate. The zx1 mio supports rope speeds
up to 266MHz. At 266MHz a single-wide rope is capable of about 500MB/s peak bandwidth
(PCI 4x bandwidth). PDH Bus

1.3.3 PDH Bus

The PDH bus is a 4-bit bus that connects the zx1 mio to the boot ROMs. The PDH bus runs at
one fourth of the Itanium-2 bus frequency and provides a point to point interconnect to the Dillon
ASIC which in turn interfaces to the PDH ROM, SRAM and other core PDH devices. If Dillon is
not present, ROM accesses will be forwarded to I/O rope 0. The control for the PDH bus lives
inside the IOCC in the zx1 mio.

Revision 1.0 03/27/03 Page 7 of 57

zx1 mio External Reference Specification H

1.4 Terminology

1.4.1 Device Terminology

Itanium-2 Definition
Requesting

Agent
The device that issues the transaction.

Addressed
Agent

The device that is addressed by the transaction.

Responding
Agent

The device that provides the response on the RS[2:0]# signals
to the transaction. This is typically the addressed agent and
will always be zx1 mio.

Snooping
Agent

A device that snoops coherent transactions to maintain cache
coherency.

Deferring
Agent

The device that defers a transaction and accepts responsibility
for completing the transaction at a later time.

Table 1: Itanium-2 Device Names

1.4.2 Cache State Terminology

Itanium-2 Definition
Invalid Cache line is not valid.
Shared Cache line is valid, not modified and may be in more than one

agent’s cache.
Exclusive Cache line is valid, not modified and only in this agent’s

cache.
Modified Cache line is valid, modified and only in this agent’s cache.

Table 2: Itanium-2 Cache States

1.4.3 Address Space Terminology

Itanium-2 Definition
Memory Memory address space is a 50-bit address space that is divided

into multiple regions. A region may be allocated to either the
memory controller or an I/O device.

Main
Memory

Main Memory address space is the portion of the Memory
address space that is allocated to the memory controller.

Memory
Mapped I/O

(MMIO)

Memory Mapped I/O address space is the portion of Memory
address space that is allocated to I/O devices or zx1 mio
registers.

I/O Port
Space (IOS)

I/O Port space is a x86 legacy 16-bit address space that is
allocated exclusively to I/O devices.

Table 3: Itanium-2 Address Spaces

Revision 1.0 03/27/03 Page 8 of 57

zx1 mio External Reference Specification H

1.4.4 Transaction Terminology

.

zx1 mio
Name

Itanium-2 Definition

Main
Memory

Code Read

Memory
Read

Requesting agent is reading a cache line containing code from
main memory. No coherency snoop is performed.

Main
Memory

Read

Memory
Read

Requesting agent is reading the most current copy of the cache
line from main memory and does not need exclusive ownership.
The requesting agent may mark the line exclusive if no other
snooping agent owns the line.

Memory
Read and
Invalidate

Memory
Read and
Invalidate

Requesting agent is reading the most current copy of the cache
line from main memory and needs to have exclusive access. All
snooping agents must invalidate the line. (The requesting agent
plans to modify a portion of the cache line.)

Memory
Invalidate

Memory
Read and
Invalidate

Requesting agent needs exclusive access to a cache line from
main memory and is invalidating the cache line in all snooping
agents’ caches. (The requesting agent plans to modify ALL of the
cache line.)

Memory
Read

Current

Memory
Read

Current

Requesting agent (Always the IOC) is reading the most current
copy of the cache line from main memory, but will never own the
line. If the cache line is in another agent’s cache, it does not need
to change the cache line’s state.

Main
Memory
Write or
Explicit

Writeback

Memory
Write

Requesting agent is writing a modified cache line to main
memory. No coherency snoop is performed.

Implicit
Writeback

Implicit
Writeback

Snooping agent is writing a modified cache line to an agent that
requested the line earlier. The line may also be written to main
memory by the memory controller.

DMA Read Memory
Read

An I/O device is reading the most current copy of the cache line
from main memory and does not need exclusive ownership.

DMA Write Memory
Read and
Invalidate

&
Memory

Write

An I/O device is writing data to main memory. The I/O cache
must first obtain exclusive ownership of the cache line before it
modifies the cache line.

Internal
Read

N/A A special type of non-coherent DMA Read transaction. An I/O
device is reading a cache line directly from the memory controller
without issuing the read on the Itanium-2 bus. The read is non-
coherent since it is not snooped on the Itanium-2 bus. Software
must avoid conflicts when using Internal Reads.

Internal
Read

Return

N/A A special way to return data for a DMA Read transaction. Main
memory read return data is transferred directly from the memory
controller to the I/O cache without using the Itanium-2 data bus.

Revision 1.0 03/27/03 Page 9 of 57

zx1 mio External Reference Specification H

zx1 mio
Name

Itanium-2 Definition

Internal
Writeback

N/A A special type of Explicit Writeback for DMA Write transactions.
The I/O cache transfers DMA Write data directly to the memory
controller without using the Itanium-2 bus.

MMIO
Read

Memory
Read

Requesting agent (always a CPU) is reading from a non-coherent
I/O device that is mapped into an MMIO region in memory
address space.

MMIO
Write

Memory
Write

Requesting agent (always a CPU) is writing to a non-coherent I/O
device that is mapped into an MMIO region in memory address
space.

IO-Port
Read

IO Read Requesting agent (always a CPU) is reading from a non-coherent
I/O device that is mapped into IO port space.

IO-Port
Write

IO Write Requesting agent (always a CPU) is writing to a non-coherent I/O
device that is mapped into IO port space.

Purge TC Purge TC Requesting agent is invalidating an entry in the processor
translation cache.

PCI
Interrupt

Interrupt An I/O device is sending an interrupt to a processor by asserting
one of the PCI interrupt lines.

PCI
Interrupt

Transaction

Interrupt An I/O device is sending an interrupt to a processor via a special
case MMIO Write transaction to address 0xFEE0_0000 to
0xFEEF_FFFF.

Interrupt
Acknowl-

edge

Interrupt
Acknowl-

edge

Requesting agent is reading an interrupt vector from an 8259A or
similar interrupt controller. Interrupt acknowledge transactions
are routed to Rope 0.

Special
Transaction

Special
Transaction

Requesting agent is indicating some rare event to the system.
Possible events are: NOP, Halt, Stop Grant Acknowledge and
xTRP Update.

Table 4: Itanium-2 Transactions

Revision 1.0 03/27/03 Page 10 of 57

zx1 mio External Reference Specification H

1.4.5 Other Terminology

Itanium-2 Definition
Programmed

I/O
(PIO)

Programmed I/O transactions include MMIO Reads, MMIO
Writes, IO-Port Reads, IO-Port Writes, Posted IO Reads and
Posted IO Writes. All of these are initiated by a processor.

Peer-to-Peer
(P2P)

Peer-to-Peer transactions include any access by an I/O device
to MMIO address space or I/O Port space. The target may be a
device on the same bus as the initiating I/O device or on a
different bus. zx1 mio supports all types of Peer-to-Peer
transactions when the originator and the target are on the same
bus. zx1 mio only supports Peer-to-Peer MMIO Write
transactions when the originator and target are on different
buses.

Posted Posted transactions are completed on the originating bus
before being completed on the destination bus. This can only
be done for write transactions. The address and data for the
write transaction are “posted” in a queue and the transaction is
completed later. This definition is borrowed from the PCI
specification.

Table 5: Other Terminology

Revision 1.0 03/27/03 Page 11 of 57

zx1 mio External Reference Specification H

2 System Address Map
This chapter describes the physical address map and then presents the rationale behind the design
of range registers in the zx1 mio and the rope guest (zx1 ioa) that determine how transactions are
routed.

2.1 zx1 mio Physical Address Map
A version of the physical address map for Itanium-2 processors as implemented by the zx1 mio is
shown in Figure 3: zx1 mio Physical Address Map.

Memory 0 (1 GB)0x000_0000_0000
Virtual I/O (1 GB)0x000_4000_0000

LMMIO (2 GB)
0x000_8000_0000

Memory 2 (252 GB)

0x001_0000_0000

0x040_0000_0000

Memory 1 (3 GB)
0x040_4000_0000

GMMIO (8 GB max)

Unused

Unused

0x041_0000_0000

Unused

Distributed Rope 0
Distributed Rope 1

...

Distributed Rope 7

Directed Rope X

Directed Rope Y

I/O Ports (64 MB)

MMIO

Memory 0
VGA Framebuffer

BIOS Shadow

Memory 0

0x000_0000_0000
0x000_000A_0000
0x000_000C_0000
0x000_0010_0000

Distributed Rope 0
(1TB max)

Distributed Rope 1
(1TB max)

...

Distributed Rope 7
(1TB max)

Chipset Registers
Interrupt Message

Processor Reserved
Firmware

0x000_FED0_0000
0x000_FEE0_0000
0x000_FEF0_0000
0x000_FF00_0000

(Not in HP-UX)

(Not in HP-UX)

0xF00_0000_0000

0xF80_0000_0000

Figure 3: zx1 mio Physical Address Map

Revision 1.0 03/27/03 Page 12 of 57

zx1 mio External Reference Specification H

From the zx1 mio’s perspective, there are several relevant regions:

The Compatibility Hole. 640K - 1M (0x000A_0000 – 0x000F_FFFF.) Named such because
the region is required for compatibility with early PCs.

The I/O Virtual Region. The I/O virtual address space. This space is reserved for I/O devices
that want to use the I/O PDIR to gain access to main memory. There is no memory mapped in this
region. (If memory lived in this region, then 32-bit addressable I/O devices could not access it.)
The memory that would have been mapped in this region is relocated to Memory 1.

The LMMIO Region. The I/O hole below 4GB. The upper 19MB of this region are reserved for
the purposes stated in the address map. This region starts at 2G (0x8000_0000) and ends at 4GB-
19MB-1 (0xFED0_0000). The memory that would have been mapped in this region is relocated
to Memory 1.

The GMMIO Region. The I/O hole above 4GB. Both starting and ending addresses are
programmable and will change from one system to the next. This region should be placed above
all main memory. NOTE: The GMMIO region is currently enabled in firmware, however,
this region is not currently assigned to any cards/devices. The OSes are not yet using the
GMMIO region.

Firmware Space – Firmware space is 16MB located at 0xFF00_0000 – 0xFFFF_FFFF (at least
for Itanium-2). Transactions to this space are forwarded to Dillon if it is present. Otherwise they
are forwarded to rope 0. The zx1 mio supports cacheline sized reads to Dillon but a maximum of
16-byte reads if firmware is located below rope 0. The memory that would have been mapped in
this region is relocated to Memory 1.

Memory Space. Memory space is divided into 3 separate regions (memory0, memory1 &
memory2). Memory1 is unused until memory0 is full. Memory2 is unused until memory1 is full.
Memory0 starts at address 0x0 and grows upward until it hits 0x3FFF_FFFF. Memory1 starts at
0x40_4000_0000 and grows upward to 0x40_FFFF_FFFF. Memory2 starts at address
0x01_0000_0000 and grows to the maximum supported memory capacity at address
0x3F_FFFF_FFFF.

2.2 The Compatibility Hole (640K to 1M)
The following table shows how the 640K to 1M area is used.

Address Range Hexadecimal Usage

640K - (768K-1) A_0000 - B_FFFF VGA frame buffer area
768K - (800K-1) C_0000 - C_7FFF VGA BIOS
800K - (896K-1) C_8000 - D_FFFF BIOS (ISA or PCI)
896K - (960K-1) E_0000 - E_FFFF Extended system BIOS
960K - (1M-1) F_0000 - F_FFFF System BIOS

Table 6: Compatibility Hole

Revision 1.0 03/27/03 Page 13 of 57

zx1 mio External Reference Specification H

Note that the VGA frame buffer is located in the first 128K. If a VGA device is present,
transactions to that address range will be routed to the PCI bus that hosts the VGA device. The
remaining 256K is all used for various forms of BIOS.

2.2.1 BIOS shadowing / write–protect

BIOS is firmware that is stored in a ROM and typically executed at power up. However, since
ROM accesses are slow, it is desirable to copy the ROM content to RAM before executing it. In
ISA systems, the ROM itself will be located in the area shown above, so the chip set has to jump
through all kinds of hoops to allow execution of the code from RAM. That process is called
BIOS shadowing.

Fortunately, systems using zx1 mio do not support ISA. In PCI, the BIOS ROMs are architected
to be relocatable and their code need not be executed in place. Instead, the ROM itself is mapped
to some region above 1 MB (presumably in the I/O hole below 4 GB) and the code is copied to
the area below 1 MB. Unfortunately, some BIOSs are still written with the assumption that they
execute out of a ROM and therefore, if they write to themselves, the content will not change. This
means that writes to memory designated for BIOS in a zx1 mio system must be ignored, just like
they would if the memory were an actual ROM. An exception must be made during the INIT
process because PCI BIOSs do have an INIT function that is allowed to write to BIOS with the
intent of shrinking it. Once the INIT function has been executed, the BIOS memory area must be
“write–protected”. What this means for hardware is that the area from 768K to 1M is actually
claimed by memory, even though it is considered an I/O hole. The zx1 mio’s IOC does not
respond to transactions in that range. The rope guest treats these transactions as normal
DMA. That memory is only used for BIOS. The bus interface block (BIB) in the zx1 mio
implements the “write–protection” feature. If the bios_wp field of the BIB_MODE register is 0,
then memory from 0xC_0000 to 0xF_FFFF can be read and written. If the bios_wp field of the
BIB_MODE register is 1, then memory from 0xC_0000 to 0xF_FFFF can be read, but the writes
will be discarded by the zx1 mio.

A note on terminology: BIOS shadowing really applies to ISA. The implementation described
above is much simpler, because it is for PCI only. This implementation should not really be
called BIOS shadowing. It is just BIOS write–protect.

2.2.2 VGA support

The zx1 mio will be designed to allow a VGA device to exist on any PCI or AGP bus. The PC
architecture fundamentally only supports one VGA device in the system, so there is no support
for multiple VGA devices, either on one PCI bus or on separate PCI busses. If multiple VGA
devices are installed, the firmware should disable all but one of them. Of course, any number
of non–VGA type graphics devices can be supported.

A VGA device claims the following address ranges:

• Memory space from 640K to 768K-1. (I.e., A_0000 to B_FFFF.)
• I/O port ranges: 0x3B0 through 0x3DF and their 10 bit aliases (if enabled). (Aliases are

explained below.).

Revision 1.0 03/27/03 Page 14 of 57

zx1 mio External Reference Specification H

The enable bit of the VGA Routing Register (VGA_ROUTE) controls whether the IOC will
claim VGA addresses or not. When the enable bit in VGA_ROUTE is 1, the IOC claims VGA
addresses, regardless of what is programmed in the rest of its I/O space range registers.
Otherwise, the IOC will not claim VGA addresses. In other words, for the VGA I/O port space,
the VGA enable bit takes precedence over the I/O port distributed and directed range. The
VGA_ROUTE also contains routing information that tells the IOC which rope contains the VGA
device. If the IOC claims VGA transactions, it forwards them, according to the routing
information, to the appropriate rope.

The rope guest (zx1 ioa) has two bits that control VGA routing. The following table summarizes
the rope guest VGA routing bits.

zx1 ioa Description
FV (forward VGA) bit in
the Status, Information,
and Control register

When this control bit is 1, the rope
guest will allow local bus peer-to-peer
to the VGA address space.

VPE (VGA peer-to-peer
enable) bit in the Slave
Control register

When this control bit is 1, the rope
guest will allow remote bus peer-to-
peer to the VGA address space.

Table 7: zx1 ioa VGA Routing Bits

The FV bit must be set if a VGA device is located on the zx1 ioa’s PCI[X]/AGP bus. Only one
zx1 ioa in the system should have its FV bit set. The following table outlines how the FV bit
relates to the VPE bit in the zx1 ioa’s SLAVE_CTRL register:

For Each zx1 ioa in the System FV VPE

VGA is present below this zx1 ioa 1 X

VGA is present in the system (not this zx1 ioa) 0 1

VGA is not present in the system 0 0

Table 8: zx1 ioa VGA Routing Possibilities

Note: The programming for VGA must be coordinated among the three registers containing VGA
related bits (i.e., FV bit in the zx1 ioa’s SIC register, VPE bit in the zx1 ioa’s SLAVE_CTRL
register, and finally the zx1 mio’s VGA_ROUTE register).

2.2.3 ISA aliases

In the old days, ISA cards only decoded 10 bits of the I/O port address. With such cards, their
I/O ports got aliased 64 times in the 16 bit I/O space. For example, on a 10 bit decoding VGA

Revision 1.0 03/27/03 Page 15 of 57

zx1 mio External Reference Specification H

ISA card, the I/O port at 0x3B0 is aliased to 0x7B0, 0xBB0, 0xFB0, 0x13B0, ..., and 0xFFB0.
On PCI, of course, the VGA cards will decode all 16 bits. (Hopefully, all 32 bits.) But, they are
allowed to map new registers at any of the aliases. PCI VGA cards are explicitly permitted to do
this. So, when VGA Enable is set, the zx1 mio will claim all 64 aliases of the VGA I/O port space
and forward them to PCI without modifying the address. This just means that the VGA I/O port
decoding logic need not look at the upper 6 bits of the 16 bit I/O address. The zx1 mio provides a
“VGA-lite” bit that can inhibit the VGA aliases from being forwarded to the VGA rope.

There is no special support for VGA palette snooping. (Palette snooping is best described in the
PCI to PCI bridge architecture specification.) Devices that snoop VGA palette accesses must
reside under the same zx1 mio PCI that the VGA device itself resides onThe I/O Hole Below 4
GB

The table below describes the address space for the I/O hole ending at 4 GB - 1.

Address Range Hexadecimal Usage
(2G) - (4G-19M-1) 8000_0000 - FECF_FFFF LMMIO, PCI memory mapped I/O

(4G-19M) - (4G-18M-1) FED0_0000 - FEDF_FFFF Configuration space
(4G-18M) - (4G-17M-1) FEE0_0000 - FEEF_FFFF Interrupt message space
(4G-17M) - (4G-16M-1) FEF0_0000 - FEFF_FFFF Processor reserved
(4G-16M) - (4G-1) FF00_0000 – FFFF_FFFF Firmware space

Table 9: I/O Hole Below 4GB

LMMIO, or the PCI Memory mapped I/O range is the preferred range for allocating the
memory mapped I/O space to PCI devices. This range is known as “LMMIO,” for Less than 4
GB Memory Mapped I/O. Note that this range is used for all the different I/O buses in the
system and must be divided among them. The IOC contains range registers that facilitate the
division of this range in two different ways, distributed and directed. The distributed range is
comprised of a lower and upper bound. The memory between the bounds is split up into 8 equal
portions corresponding to each rope, hence the name “distributed range”. The IOC allows for a
maximum of two different directed ranges. Each of these ranges may be assigned, or “directed”
to only one rope. These ranges are comprised of a lower and upper bound, as well as a rope
designation.

Whenever zx1 mio systems are configured for multiple ropes per rope guest, the memory
allocated to that rope guest’s additional ropes by the IOC distributed range is also forwarded to
the primary rope (e.g. if rope 0 and 1 are configured as a double rope then the address range
allocated for rope 1 by the distributed range will be forwarded to rope 0). Space allocated by a
distributed range can always be re-directed by assigning a directed range to the space (i.e.
Directed ranges have higher priority than distributed ranges).

The rope guest also has range registers that tell it what portion of the address space is assigned to
it. This information is used to determine if a peer-to-peer transaction is destined for another I/O
device on the local I/O bus or if the peer-to-peer transaction needs to be forwarded to another
rope.

Revision 1.0 03/27/03 Page 16 of 57

zx1 mio External Reference Specification H

Today’s x86 systems have a default space where I/O APICs are mapped. The rope guest’s I/O
SAPIC (which is essentially equivalent to an I/O APIC) is not mapped in the default range from
0xFEC0_0000 – 0xFECF_FFFF. Rather, it is in the zx1 mio’s configuration space. Future OSs
are required to understand I/O APICs mapped to arbitrary addresses. The default I/O APIC range
mentioned above is absorbed by LMMIO.

Configuration Space is where various registers in the zx1 mio are mapped. See the address map
chapter for details on which range the zx1 mio claims. Note that the location of the rope guest
configuration space is programmable through the ROPE_CONF_BASE register described in the
IOC chapter. It is likely that ROPE_CONF_BASE will be located somewhere near the top of the
LMMIO range and outside of both the distributed and directed portions of that range (the
configuration space has priority over LMMIO directed and distributed ranges so overlap is
possible). The rope guest configuration space will form its own distributed range (partitioned for
16 logical ropes) starting at ROPE_CONF_BASE and ending at ROPE_CONF_BASE + 128K, or
8K for each rope.

The Interrupt Message Space is used by PCI to send interrupt messages to processors. On the
Itanium-2 bus, these messages are sent as special interrupt transactions, so this address range
remains unused for the normal memory space. STOREs to that space by the processors will get
converted to interrupt Special transactions for inter–processor interrupts. See the SAPIC spec for
more information. The rope guest will always claim PCI writes to this space and convert them to
interrupt transaction on the Itanium-2 bus. PCI reads of this space result in a target–abort. By
default, the zx1 mio never responds to Itanium-2 bus transactions to this address range; they
should never happen anyway. The zx1 mio’s LMMIO range registers could be programmed to
respond to that range, but it isn’t recommended. Note: In today’s PCs, the interrupt message
space is used for the local APIC.

The Processor Reserved Range. From the zx1 mio’s perspective, this range is unused.

The Firmware space, 16 MB of space from (4G-16M) to (4G-1), is used exclusively as
processor dependent hardware space. The IOC claims this range and forwards the transactions to
Dillon (if present) via the PDH bus. Dillon maps a boot ROM and various other resources into
this space. Additional details are in the Dillon ERS. If Dillon is not present then these requests
are forwarded to the PCI on rope 0. The zx1 mio supports cacheline sized requests to PDH if
Dillon is present. If Dillon is not present then the requests must be 16 bytes or less.

2.3 MMIO above 4 GB
The zx1 mio allows additional memory mapped I/O above 4 GB. Such ranges are called
“GMMIO,” for Greater than 4 GB Memory Mapped I/O. If such a range is enabled, it should be
placed above any main memory in the system. The IOC only allows for a distributed range in the
GMMIO space. This distributed space can be divided among up among the logical ropes, as in
the LMMIO space, but differs in that the first 64MB of each rope’s space is optionally mapped to
I/O port space. Processor writes to GMMIO space will be claimed by the zx1 mio and forwarded
to the respective PCI bus. Note: each rope’s GMMIO space must be a minimum of 4GB. The zx1
mio provides the ability to optionally re-map GMMIO into LMMIO on each rope. The zx1 mio
does this translation by clearing the upper 32-bits of the address before forwarding the transaction
to a rope.

Revision 1.0 03/27/03 Page 17 of 57

zx1 mio External Reference Specification H

2.4 I/O port space
The I/O port space is required purely for legacy reasons. x86 processors have always had it.
There are many I/O devices out there that map their registers in I/O port space instead of memory
space. Generally, new I/O devices should be designed to reside in memory space, but many
standard PC functions have fixed allocations in the I/O port space and those are likely to continue
to exist there.

There is really only 64 KB of useable I/O port space, so it is difficult to allocate. If a PCI device
is designed so that it can be accessed through either memory space or I/O space, it should be
mapped into memory space. I/O port space should be used only when there is no alternative.

Like the memory mapped I/O space, the I/O port space will also have to be distributed between
different ropes. The entire 64KB I/O port space can be distributed equally between the logical
ropes. I.e., each rope gets 8KB. The IOC supplies a programmable directed range which is
intended to recover I/O port space lost due to unused ropes.

The zx1 mio has 3 ways to access PCI I/O port space: Itanium-2 I/O port space transactions, I/O
port space in LMMIO ranges, and I/O port space in GMMIO ranges.

2.4.1 Itanium-2 I/O Port Space

When an IA-64 processor executes a load/store to an architected I/O space 64KB range, the
processor emits an I/O port space transaction on the Itanium-2 bus. When the zx1 mio sees an
Itanium-2 bus I/O port space transaction it claims the transaction if the zx1 mio’s
IOS_DIST_BASE register is enabled. The zx1 mio uses the following logic to find a destination
rope for the transaction:

• If the I/O port address is a VGA one (0x3b0-0x3df inclusively) and VGA routing is enabled,
then the VGA route register indicates the target rope.

• If the I/O port address is a 10 bit alias of a VGA register and VGA routing is enabled and
VGA-lite is disabled, then the VGA route register indicates the target rope.

• If the I/O port address falls within the zx1 mio’s I/O port directed range (and the directed
range is enabled) then the EIOS_BASE register indicates the target rope.

• Otherwise bits [15:13] of the I/O port address are used to select a rope. This gives each rope
(8 per zx1 mio) 8KB of I/O port space. Whenever zx1 mio systems are configured for
multiple ropes per rope guest, the I/O port address allocated to that rope guest’s additional
rope is also forwarded to the primary rope (e.g. if rope 0 and 1 are configured as a double
rope then the double rope will have 16KB of I/O port address allocated to it).

In all of the above cases writes to Itanium-2 I/O port space are non-posted. This space provides
64 KB of non-posted system I/O port space.

2.4.2 LMMIO I/O Port Space

If enabled, the zx1 mio claims a 1 MB densely packed range of LMMIO for I/O port space. This
space is evenly distributed across each of the zx1 mio’s 16 ropes. VGA routing is not done for
access to this space. Bits [18:16] are used to select a target rope. Accesses to this space are non-

Revision 1.0 03/27/03 Page 18 of 57

zx1 mio External Reference Specification H

posted. This gives each rope 64 KB of non-posted I/O port space, duplicated twice (i.e. bit 19 is
don’t care).

In the 1MB above the LMMIO I/O Port Space are 8 areas of 128K each which allow access to the
MMIO addresses 0xa0_0000 to 0xb_ffff for the VGA frame buffer area on each rope.

2.4.3 GMMIO I/O Port Space

If GMMIO is enabled, then each rope has a GMMIO range. The first 64 MB of each rope’s
GMMIO range is backed by 64 KB of I/O port space on that rope. The zx1 mio converts
load/store accesses to the first 64 MB of each rope’s GMMIO range to I/O port space transactions
on the rope agent (if zx1 ioa then its PCI I/O port space transactions). Each 64MB I/O port space
is broken into 16K spaces of 4KB. The 4KB pages map to exactly four bytes of I/O port space as
illustrated below in Figure 4: GMMIO I/O Port Space Mapping. These mappings, taken together
form a unique 64KB I/O port space for each of the 16 logical ropes. Itanium-2 transactions to
these spaces will be claimed by the zx1 mio and then converted to I/O port space accesses to the
corresponding 64KB of I/O port space. Accesses to these 64 MB GMMIO ranges are non-posted.
This gives each rope 64 KB of non-posted I/O port space. With 16 ropes per zx1 mio this yields
1 MB of non-posted system I/O port space.

 .
 .
 .

 .
 .
 .

0x0000

0x0008
0x0004

0xFFFC

MMIO offset + 0x0000000

MMIO offset + 0x0001000

MMIO offset + 0x0002000

MMIO offset + 0x3FFF0000

Figure 4: GMMIO I/O Port Space Mapping

Revision 1.0 03/27/03 Page 19 of 57

zx1 mio External Reference Specification H

2.4.4 Summary of I/O Port Spaces

Space Space per
rope

Space
per

system

Posted? Directed I/O
port range

applies

VGA
routing
applies

Itanium-2 I/O Port
Space

4 KB (less
VGA aliases)

64 KB Non posted Yes Yes

LMMIO I/O Port
Space

64 KB 1 MB Non posted No No

GMMIO I/O Port
Space

64 KB 1 MB Non posted No No

2.5 Range register programming
This section describes how the range registers in the zx1 mio fit together with range registers in
the rope guest. The registers mentioned here are described in detail in the IOC chapter of this
document and in the Slave Controller chapter of the rope guest ERS.

Some general rules:

• If two or four ropes are combined into a single logical rope then that rope gets the address
space allocated to all of the ropes involved. (e.g. If rope0 is configured as a double-wide rope
then it will get the addresses allocated to both rope0 and rope1).

• If a directed range overlaps the distributed range, the directed range takes precedence.
Therefore, if a directed range is used to reassign the distributed space allocated to an unused
rope, that address space is “recovered.”

• It is illegal to have directed ranges overlap each other.

2.5.1 Range registers for the compatibility hole

The only zx1 mio and rope guest registers relevant to this range are the ones associated with
VGA. These were explained in section 2.2.2.

2.5.2 Range registers for LMMIO space

First, distributed LMMIO in the IOC defines a range of memory to be divided equally among the
up to 16 logical ropes. LMMIO_DIST_BASE and LMMIO_DIST_MASK specify the location
and the size of the range. LMMIO_DIST_ROUTE specifies which address bits to use for
selecting which rope gets a particular transaction. The rid_lsb field of the
LMMIO_DIST_ROUTE register should be programmed with (log 2 (size of the range in bytes /
8)). The divide by 8 in this formula comes from the fact that the range is being split across 8
ropes. Space allocated to unused ropes is wasted.

Each rope guest needs to know what portion of distributed LMMIO is assigned to it. This should
be programmed in the rope guest’s LMMIO_BASE and LMMIO_MASK registers. No routing
information is needed. Note that only the particular 1/8th of the distributed space allocated to this
rope guest is programmed into these registers. Note that the LMMIO distributed range cannot

Revision 1.0 03/27/03 Page 20 of 57

zx1 mio External Reference Specification H

access above 0xfe00_0000, which means that for a 2GB LMMIO distributed area, rope 7 area is
only 224MB instead of 256M like the rest.

To handle cases where a particular rope needs more space than is allocated by the distributed
range, directed LMMIO ranges in the IOC should be use. Each directed LMMIO range is
specified by three related registers: LMMIO_DIR_BASEx, LMMIO_DIR_MASKx, and
LMMIO_DIR_ROUTEx. There are two such ranges, so x varies from 0 to 1. The Base register
specifies the starting address of the range while the Mask register sets the size. Finally, the Route
register specifies the rope to which addresses within this range will be routed. It should be
apparent that ROUTE registers of directed ranges are different from ROUTE registers of
distributed ranges.

If a directed range in the IOC is allocated to a particular rope, the rope guest on that rope needs to
know that too. To allow this, an ELMMIO (Extra LMMIO) range is provided. It consists of a
BASE and a MASK register. Since there is only one ELMMIO range, only one IOC directed
range should be allocated to a rope – even though the IOC does not impose that restriction.

Finally, the rope guest needs to know about the size of the system wide LMMIO region. This is
called WLMMIO and is programmed into WLMMIO_BASE and WLMMIO_MASK registers.
PCI mastered transactions within WLMMIO will be treated as some form of peer-peer.

2.5.3 Range registers for GMMIO space

For GMMIO, the IOC supports only a distributed range. It works very much like the distributed
LMMIO except that it works with addresses above 4GB. The rope guest has a corresponding
GMMIO range that specifies how much GMMIO is allocated to that rope guest. Also, the rope
guest has a WGMMIO range that specifies the size of the system wide GMMIO space. This is
conceptually similar to WLMMIO.

2.5.4 Range registers for I/O port space

The IOC has an IOS_DIST_BASE register where only the enable bit is implemented. If that bit
is a 0, the zx1 mio doesn’t claim I/O port space transactions. The zx1 mio has an implied
distributed range for I/O port space in the IOC. If IOS_DIST_BASE is enabled, the entire 64 KB
is distributed across the 8 ropes. I.e., each rope gets 8 KB. Additionally, the IOC has one
directed I/O port space range. This can be used to recover the space allocated to an unused rope.

The rope guest needs to know what portion of the I/O port space is allocated to it. The space
supplied by the implied distributed range should be programmed in the IOS_BASE and
IOS_MASK registers. If additional space is supplied with the directed range, EIOS_BASE and
EIOS_MASK should be used to program that range as well. The rope guest does not need a
“whole” IOS range because the entire 64 KB space is the whole IOS range. This is because main
memory is never mapped to I/O port space.

I/O ports in the VGA range are always routed based on VGA related bits. I.e., VGA takes
precedence over all other I/O range registers. Note that it is forbidden for a rope guest to do a
P2P write to an address that turns into an I/O port space address (i.e. is deferred).

Revision 1.0 03/27/03 Page 21 of 57

zx1 mio External Reference Specification H

3 I/O Subsystem
The zx1 mio IOC design is centered around a small coherent cache connected via 8 ropes to chips
that control industry standard I/O busses (zx1 ioa).

The following list outlines the feature set for the IOC.

• Support for 128-byte cachelines

• 3.2GB/s peak aggregate bandwidth

• Hardware enforced coherency

• 16-entry, fully associative coherent buffer for DMA writes (2KB)

• 16-entry re-order buffer for DMA reads (2KB)

• 16-entry, fully associative translation cache w/ programmable page sizes (I/O TLB)

• 8 high-speed rope connections (533MT/s)

• Support for single, double-wide, and quad-wide ropes

• Support for split transactions on all ropes.

• Parity protection on all data paths

• Internal path to main memory to minimize processor bus traffic

• Optional (via hints) enforcement of PIOW/DMAR ordering constraints

• Supports inter-rope P2P writes.

3.1.1 Address Decoding

The targets for PIO transactions that are decoded by the PIO control block are listed in Table 10.
Note that all address ranges must be power of 2 size and naturally aligned. All addresses in the
table are assumed to be 44-bit addresses.

Destination Starting Address Block
Size

Description

zx1 mio
configuration

FED0_0000 64KB All zx1 mio registers will be accessed through this
space. All registers are 8 bytes. This space
allows for 16 functions at 4K bytes apiece.

Revision 1.0 03/27/03 Page 22 of 57

zx1 mio External Reference Specification H

Destination Starting Address Block
Size

Description

Rope guest
configuration

programmable
(8000_0000 –
FFFE_0000)

128KB The base address for this range is specified in the
ECNFG_BASE register. There are 2 functions
(8KB) allocated to each rope guest. The upper
64KB is reserved for future expansion.

Reserved FED0_4000 16KB Reserved for future expansion. Note that this
Reserved area is right in the middle of the 64KB
zx1 mio Configuration area.

Firmware Space

FF00_0000 16MB All accesses in this range will be forwarded to the
PDH bus if Dillon is present. Otherwise they will
be sent to rope0. This range has lower priority
than any of the other I/O ranges (e.g. If there is
overlap between an LMMIO directed range and
the PDH range, the LMMIO range will be used).

PCI I/O port space
distributed range

0 64KB I/O port space transactions will be divided into 8
equal segments. Addresses in each segment will
be forwarded to the corresponding rope and result
in an I/O space transaction on PCI.

PCI I/O port space
directed range

programmable
(0 – F000)

4KB-
64KB

I/O port space transactions in this address range
will be forwarded to a specific rope and result in
an I/O space transaction on PCI.

PCI LMMIO space
distributed range

programmable
(8000_0000 –
FFF0_0000)

1M-2GB Addresses in this space will be divided into 8 or
16 equal segments (one per rope). Transactions
will be forwarded to the appropriate rope and
result in a PCI memory transaction with a 32-bit
address.

PCI LMMIO space
directed range (x2)

programmable
(8000_0000 –
FFF0_0000

1M-2GB Transactions in this address space will be
forwarded to the appropriate rope and result in a
PCI memory transaction with a 32-bit address.
The destination rope is programmable. There are
two sets of PCI LMMIO ranges.

PCI GMMIO
distributed memory
space

programmable
(1_0000_0000 –
FFF_0000_0000)

4G–8TB Addresses in this space will be divided into 16
equal segments. The first 64MB of each segment
will optionally be mapped down to 64KB of
posted IOP for that rope. All other addresses will
result in a PCI memory transaction with a dual
address cycle (DAC). Bits 43:0 of the Itanium-2
address will be used to generate the PCI address
for these transactions. This range supports a
mode that forces bits 63:32 of the PCI address to

Revision 1.0 03/27/03 Page 23 of 57

zx1 mio External Reference Specification H

Destination Starting Address Block
Size

Description

0’s and therefore avoids the DAC on PCI.
VGA MMIO space A_0000 128K Required for compatibility with OS’s that depend

on VGA. Addresses in this range will be
forwarded to the specified rope. Note that this
space can be disabled if VGA is not required.

VGA I/O port space 3B0 48B +
Aliases

Required for compatibility with OS’s that depend
on VGA. Addresses in this range will be
forwarded to the specified rope. The Aliases
imply that only the 10 least significant bits of the
16-bit IOS address should be decoded. Note that
this space can be disabled if VGA is not required.
This range supports a mode that will not include
the aliases.

Table 10: PIO Targets Decoded by the IOCC

Note that the zx1 mio will always forward an interrupt acknowledge transaction from the
Itanium-2 bus to rope 0.

3.2 Function 0 Registers
This section gives bit level descriptions of all the registers residing in function 0 of the zx1 mio
Function 0 ID Register

The Function ID Register is used to uniquely identify the function.

M
S
B

Function 0 ID Register
(0xFED0_0000)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

function_id[15:0] vendor_id[15:0]
Power On Initialization

16’h1229 16’h103C

Size: 64-bit only
Field Access Description
vendor_id[15:0] R Always set to 16’h103c
function_id[15:0] R Always set to 16’h1229

Register 1: Function 0 ID Register

Revision 1.0 03/27/03 Page 24 of 57

zx1 mio External Reference Specification H

3.2.1 Function 0 Class (FC) Register

The Function Class (FC) register defines Function 0’s class code, revision level and line size. It is
read-only.

M
S
B

Function 0 Class Register
(0xFED0_0008)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved line_size[7:0]
Power On Initialization

24’h000000 8’h20

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

class_code[23:0] revision[7:0]
Power On Initialization

24’h068000 8’h23

Size: 64-bit only
Field Access Description

revision[7:0] R

Will start out at 8’d0 for the first version of the chip and will
be incremented in future revisions if there are any changes to
this function. A 8’h23 for TR2.3, 8’h22 for TR2.2, 8’h20 for
TR2.0, TR2.1.

class_code[23:0] R Always set to 24’h068000 (other bridge)
line_size[7:0] R Always set to 8’h20 to reflect a 128-byte cacheline

Register 2: Function Class (FC) Register (function 0)

Revision 1.0 03/27/03 Page 25 of 57

zx1 mio External Reference Specification H

3.2.2 Module Info (MI) Register

The Module Info (MI) register in the zx1 mio is present only in function 0. It is used to identify
the module and indicate which functions are present in the module.

M
S
B

Module Info Register
(0xFED0_0100)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

functions_present[15:0] module_id[15:0]
Power On Initialization

16’h0703 16’h000A

Size: 64-bit only
Field Access Description
module_id[15:0] R Always set to 16’h000A
function_present[15:0] R Always set to 16’h0703. This indicates that zx1 mio uses

functions 0, 1, 8, 9, & 10.

Register 3: Module Info (MI) Register

3.2.3 Address Range Registers

The IOCC contains a set of programmable read/write address range registers. The range registers
set bounds for the lower (less than 4 GB, i.e. LMMIO) and upper (greater than 4 GB, i.e.
GMMIO) Memory-Mapped I/O holes, and I/O Port Space ranges. The bit mappings of the range
registers are documented in this chapter. The zx1 mio has 2 directed ranges and one distributed
range in LMMIO space. It has a single distributed range in GMMIO space. The intent is that
almost all devices map through the LMMIO distributed space. Large PIO devices can either use
GMMIO, or the LMMIO distributed area can be configured to give each rope (except for 7)
256MB (512MB for double ropes). Rope 7 will have 224MB instead of 256MB.

If range registers are mapped to conflict with each other (at least LMMIO distributed is expected
to do this), the following priorities detail which range will be selected (high to low priority).

1) zx1 mio registers.

2) Rope guest registers.

4) lmmio0 directed range

5) lmmio1 directed range

Revision 1.0 03/27/03 Page 26 of 57

zx1 mio External Reference Specification H

7) GMMIO area.

8) PDH area.

9) LMMIO distributed.

For I/O space access, the priority is VGA I/O, IOS directed, then IOS distributed.

3.2.3.1 LMMIO Directed Range Registers

The zx1 mio supports 2 directed LMMIO address ranges. Each directed LMMIO address range
can be assigned to any of the ropes connected to the zx1 mio, and multiple ranges can be assigned
to a single rope. There are three registers associated with each of the LMMIO directed ranges
which set the base address, size of the range, and the target rope.

Revision 1.0 03/27/03 Page 27 of 57

zx1 mio External Reference Specification H

3.2.3.1.1 LMMIO Directed Base Register

The LMMIO_DIR_BASE Register is instantiated two times, once for each LMMIO directed
range. It defines a 1 MB-aligned base address for the directed LMMIO range assigned to the
given rope, and enables decoding to that range. The base of the LMMIO range must be greater
than or equal to 2 GB and less than 4 GB (i.e. LMMIO ranges match only 32-bit addresses).

M
S
B

LMMIO_DIR_BASE[0],[1] Register
([0xFED0_0300],[0xFED0_0318])

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

1 BASE_ADDR Reserved RE
Power On Initialization

1 0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 0 Range Enable – This bit must be asserted for
any address to ever hit this range.

BASE_ADDR R/W 0 30:20 Specifies the starting address of the range. Bit
31 of the address is assumed to be a 1 and all
other bits of the address are assumed to be 0.

Register 4: LMMIO_DIR_BASE(N)

Revision 1.0 03/27/03 Page 28 of 57

zx1 mio External Reference Specification H

3.2.3.1.2 LMMIO Directed Mask Register

The LMMIO_DIR_MASK Register is instantiated two times, once for each directed LMMIO
range. It defines the address mask that defines the size of that range. The size can be any power of
2 from 1MB to 2 GB. When a bit is asserted in the mask register, that bit position in the address
will be compared to that bit position in the base address. If there is a 0 in the mask register, then
that bit position will be ignored when doing the decoding. If the address matches the base
register in all bit positions that are being compared (as specified in the mask register) then the
address is considered to fall into the range.

M
S
B

LMMIO_DIR_MASK[0],[1] Register
([0xFED0_0308],[0xFED0_0320])

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

1 MASK Reserved
Power On Initialization

1 0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

MASK R/W 0 30:20 Specifies the bit positions in the incoming
address that need to be compared with the
contents of the base register to determine if
the address fall in the specified range.

Register 5: LMMIO_DIR_MASK

Revision 1.0 03/27/03 Page 29 of 57

zx1 mio External Reference Specification H

3.2.3.1.3 LMMIO Directed Range Route Register

The LMMIO_DIR_ROUTE register is instantiated two times, once for each directed LMMIO
range. It is used to route a transaction hitting the given LMMIO range to a rope. Note that up to
16 ropes can be specified.
M
S
B

LMMIO_DIR_ROUTE[0],[1] Register
([0xFED0_0310],[0xFED0_0328])

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved ROUTE
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

ROUTE R/W 0 2:0 Specifies the target rope for any address that
hits in the respective directed range.

Register 6: LMMIO_DIR_ROUTE

3.2.3.2 LMMIO Distributed Range Registers

The zx1 mio supports a single distributed LMMIO address range. Address space in this range is
divided into 8 equal regions which are assigned to each of zx1 mio’s 8 ropes.

The LMMIO_DIST_BASE and LMMIO_DIST_MASK registers define the base and mask for
the LMMIO distributed range, respectively. Their bit mappings are the same as those of the
LMMIO_DIR_BASE and LMMIO_DIR_MASK registers, respectively. The
LMMIO_DIST_ROUTE Register is used to route an address falling within the LMMIO
distributed range to one of 8 ropes.

NOTE: The top 32MB of the LMMIO distributed area are disabled if the top of LMMIO
distributed space is at (4GB-1). That is, all addresses at or above 0xfe00_0000 cannot be
accessed via the LMMIO distributed region. This was done to allow LMMIO distributed range to
be programmed with a 2GB size, and not have rope 7 interfere with HPA space or various Intel
reserved address areas.

Revision 1.0 03/27/03 Page 30 of 57

zx1 mio External Reference Specification H

3.2.3.2.1 LMMIO Distributed Base Register

The LMMIO_DIST_BASE defines a 1 MB-aligned base address for the distributed LMMIO
range and enables decoding to that range. The base of the LMMIO range must be greater than or
equal to 2 GB and less than 4 GB (i.e. LMMIO ranges match only 32-bit addresses). The zx1
mio cannot access any address greater than 0xfe00_0000 with the LMMIO distributed region.

M
S
B

LMMIO_DIST _BASE Register
(0xFED0_0360)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

1 BASE_ADDR Reserved RE
Power On Initialization

1 0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 0 Range Enable – This bit must be asserted for
any address to ever hit this range.

BASE_ADDR R/W 0 30:20 Specifies the starting address of the range. Bit
31 of the address is assumed to be a 1 and all
other bits of the address are assumed to be 0.

Register 7: LMMIO_DIST_BASE

Revision 1.0 03/27/03 Page 31 of 57

zx1 mio External Reference Specification H

3.2.3.2.2 LMMIO Distributed Mask Register

The LMMIO_DIST_MASK register defines the address mask that defines the size of the range.
The size can be any power of 2 from 1MB to 2GB. When a bit is asserted in the mask register,
that bit position in the address will be compared to that bit position in the base address. If there is
a 0 in the mask register, then that bit position will be ignored when doing the decoding. If the
address matches the base register in all bit positions that are being compared (as specified in the
mask register) then the address is considered to fall into the range. Addresses above 0xfe00_0000
cannot be accessed using LMMIO distributed area.

M
S
B

LMMIO_DIST_MASK Register
(0xFED0_0368)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

1 MASK Reserved
Power On Initialization

1 0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

MASK R/W 0 30:20 Specifies the bit positions in the incoming
address that need to be compared with the
contents of the base register to determine if
the address fall in the specified range.

Register 8: LMMIO_DIST_MASK

Revision 1.0 03/27/03 Page 32 of 57

zx1 mio External Reference Specification H

3.2.3.2.3 LMMIO Distributed Range Route Register

The LMMIO_DIST_ROUTE register is used to specify the bits of the address that contain the
target rope number for addresses that hit in the LMMIO Distributed range.

M
S
B

LMMIO_DIST_ROUTE Register
(0xFED0_0370)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0 9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

ROUTE Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved
Power On Initialization

0

4

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

ROUTE R/W 0 63:58 Specifies the bit position in the address that
represents the least significant bit of the 3-bit
target rope number. The legal values for zx1
mio are 16 – 28. Set to top masked bit –2.

Register 9: LMMIO_DIR_ROUTE

3.2.3.3 GMMIO Distributed Range Registers

The zx1 mio decodes a single GMMIO (>4GB) address space that is divided into equal sized
chunks and distributed to multiple ropes.

You should not program GMMIO to claim addresses below 4GB (i.e. the GMMIO_BASE
register is the initial value of all 0’s) or you will suffer a quick death.

You should also not overlap the GMMIO space with any other space.
Please refer to a system memory map for the recommended GMMIO address location.

Revision 1.0 03/27/03 Page 33 of 57

zx1 mio External Reference Specification H

3.2.3.3.1 GMMIO Distributed Range Base Register

M
S
B

GMMIO_DIST _BASE Register
(0xFED0_0378)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved BASE_ADDR
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved RL PD RE
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 0 Range Enable – This bit must be asserted for
any address to ever hit this range.

PD R/W 0 1 I/O Port Space Disable – When asserted, the
lower 64MB of each segment of the
distributed range is treated just like the rest of
the segment (MMIO).

RL R/W 0 2 Re-map to LMMIO – When asserted, the
upper 32-bits of the address will be cleared
before sending the transaction to the rope.

BASE_ADDR R/W 0 43:32 Specifies the starting address of the range.

Register 10: GMMIO_DIST_BASE Register

The GMMIO_DIST_BASE Register defines the base address used for the distributed range above
4 GB. GMMIO ranges match only greater than 32-bit addresses.

Bit 0 is the range enable. If it is 1, decoding of addresses within the distributed GMMIO range are
decoded, and transactions hitting the range are forwarded to the appropriate rope. (as determined
by the GMMIO Mask and GMMIO ROUTE registers, defined below). If the bit is 0, transactions
are not forwarded.

When the PD bit is not set, a transaction falling within the lowest 64 MB of the GMMIO segment
assigned to a PCI bus (i.e. the range addr_base to addr_base+64MB) is converted to an I/O Port
Space transaction for that PCI bus. More detail on the addressing scheme used for I/O Port Space
is given in the Operation Overview chapter. When the PD bit is asserted these transactions in the
lower 64MB will be treated like the rest of the range.

The RL bit is asserted to cause transactions in this range to be remapped below 4G. This is
accomplished by simply clearing all bits past bit 31. If none of the address bits 43-32 are set
when GMMIO is enabled, the system will die because memory addresses will be claimed as I/O.

Revision 1.0 03/27/03 Page 34 of 57

zx1 mio External Reference Specification H

3.2.3.3.2 GMMIO Distributed Range Mask Register

The GMMIO_DIST_MASK register defines the address mask that defines the size of the range.
The size can be any power of 2 from 4GB to 16 TB. When a bit is asserted in the mask register,
that bit position in the address will be compared to that bit position in the base address. If there is
a 0 in the mask register, then that bit position will be ignored when doing the decoding. All
address bits above bit 43 will always be compared and all bits below bit 32 will never be
compared. If the address matches the base register in all bit positions that are being compared (as
specified in the mask register) then the address is considered to fall into the range. When the
address falls in this range it will be forwarded to the rope specified in the
GMMIO_DIST_ROUTE register.

M
S
B

GMMIO_DIST_MASK Register
(0xFED0_0380)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved MASK
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

MASK R/W 0 43:32 Specifies the bit positions in the incoming
address that need to be compared with the
contents of the base register to determine if
the address fall in the specified range.

Register 11: GMMIO_DIST_MASK

Revision 1.0 03/27/03 Page 35 of 57

zx1 mio External Reference Specification H

3.2.3.3.3 GMMIO Distributed Range Route Register

The GMMIO_DIST_ROUTE register is used to specify the bits of the address that contain the
target rope number for addresses that hit in the GMMIO Distributed range. Note that up to 16
ropes can be specified. .

M
S
B

GMMIO_DIST_ROUTE Register
(0xFED0_0388)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

ROUTE Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

ROUTE R/W 0 63:58 Specifies the bit position in the address that
represents the least significant bit of the 3-bit
target rope number. This has the effect of
dividing the range into equal chucks. The
legal values for zx1 mio are 28-41.

Register 12: GMMIO_DIST_ROUTE Register

Revision 1.0 03/27/03 Page 36 of 57

zx1 mio External Reference Specification H

3.2.3.4 IOS Distributed Range

The IOS Distributed Range is used for routing I/O port space transactions on the Itanium-2 bus to
the correct rope. The IOS distributed range is 64KB. In routing an I/O Port Space transaction to a
rope, VGA range decode take precedence over distributed decode. In other words, the decode
algorithm first checks if there is a match against the VGA I/O Port Space range and if it doesn’t
match, the transaction is routed to the rope whose ID is given by the distributed range. Note that
the range assumes a 32-bit address but only 16-bits of that address will ever be forwarded to a
rope (i.e. bits 31:16 will always be cleared before forwarding the address to a rope). In an IA64
processor, bits 31:16 will be cleared anyway according to the Itanium-2 spec.

Revision 1.0 03/27/03 Page 37 of 57

zx1 mio External Reference Specification H

3.2.3.4.1 IOS Distributed Base Register

The IOS_DIST_BASE is used only for the purpose of enabling the range. It is assumed that the
base address of the range is always located at 0x0.

M
S
B

IOS_DIST _BASE Register
(0xFED0_0390)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved RE
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 0 Range Enable – This bit must be asserted for
any address to ever hit this range.

Register 13: IOS_DIST_BASE

Revision 1.0 03/27/03 Page 38 of 57

zx1 mio External Reference Specification H

3.2.3.4.2 IOS Distributed Range Mask Register

The IOS distributed range mask register is used to specify the size of the range. The range is
64KB. This register should be left at its default value, but writing to it will do absolutely nothing
except change what value is read from this register.

M
S
B

IOS_DIST_MASK Register
(0xFED0_0398)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5 4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

12’hFFF RESERVED Reserved
Power On Initialization

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RESERVED R/W 4’hF 19:16 Bits should be left high.

Register 14: IOS_DIST_MASK

Revision 1.0 03/27/03 Page 39 of 57

zx1 mio External Reference Specification H

3.2.3.4.3 IOS Distributed Range Route Register

The IOS_DIST_ROUTE register is used to specify the bits of the address that contain the target
rope number for addresses that hit in the IOS Distributed range. The range can be divided into
either 8 or 16 ropes.

M
S
B

IOS_DIST_ROUTE Register
(0xFED0_03A0)

L
S
B

6
3

6
2 1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

ROUTE Reserved

0 0 1 0

3
1

3
0

2

6

Power On Initialization
1 0

9
2
8 7

2
6

2
5 4

2
3

2
2 1

2
0

1
9

2 2 2 1
8

1
7

1
6

1
5

1
4

1
3 2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved
Power On Initialization

0

Size: 64-bit only
Symbol Reset Name

ROUTE R/W 6’d12 63:58 Specifies the bit position in the address that
represents the least significant bit of the 3-bit
target rope number. The legal value for zx1
mio is 13. This gives 8 8KB regions.

Register 15: IOS_DIST_ROUTE

3.2.3.5 IOS Directed Range Registers

The zx1 mio has a single IOS directed range. It takes precedence over the IOS distributed range.
It is provided primarily for the case where a portion of the IOS distributed space needs to be re-
directed to a different rope.

1

Access Bit
Position

Revision 1.0 03/27/03 Page 40 of 57

zx1 mio External Reference Specification H

3.2.3.5.1 IOS Directed Base Register

The IOS_DIR_BASE Register defines a 256 byte-aligned base address for the directed I/O Port
Space range. This register also contains the range-enable bit used to enable the range.

M
S
B

IOS_DIR_BASE Register
(0xFED0_03C0)

L
S
B

6
3

6
2

6
1

6
0

5 5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

9

0 0 0

2
6

2 2
4

2
3

2 2
1

2
0

1
5 2 9

1 1
8 7

1
6

1
5

1
4

1 1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved BASE_ADDR Reserved RE
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 0 Range Enable – This bit must be asserted for
any address to ever hit this range.

BASE_ADDR R/W 0 15:8 Specifies the starting address of the range.

Register 16:IOS_DIR_BASE

3

0

Revision 1.0 03/27/03 Page 41 of 57

zx1 mio External Reference Specification H

3.2.3.5.2 IOS Directed Mask Register

The IOS_DIR_MASK Register defines the address mask that determines the size of the range.
The size can be any power of 2 from 256 bytes to 64KB. When a bit is asserted in the mask
register, that bit position in the address will be compared to that bit position in the base address.
If there is a 0 in the mask register, then that bit position will be ignored when doing the decoding.
If the address matches the base register in all bit positions that are being compared (as specified
in the mask register) then the address is considered to fall into the range. It is assumed that IOS
transactions have a 32-bit address.

M
S
B

IOS_DIR_MASK Register
(0xFED0_03C8)

L
S
B

6
3 2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

6

0 0

3
0

2 2
8

2
7

2 2
5

2
4

2
9 6 3

2
2

2
1

2 1
0 9

1
8

1
7

1
6

1 1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

16’hFFFF MASK Reserved
Power On Initialization

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

MASK R/W 0 15:8 Specifies the bit positions in the incoming
address that need to be compared with the
contents of the base register to determine if
the address fall in the specified range.

Register 17: IOS_DIR_MASK

5

0 0

Revision 1.0 03/27/03 Page 42 of 57

zx1 mio External Reference Specification H

3.2.3.5.3 IOS Directed Range Route Register

The IOS_DIR_ROUTE register is used to route a transaction hitting the directed IOS range to a
specific rope.

M
S
B

IOS_DIR_ROUTE Register
(0xFED0_03D0)

L
S
B

6
3

6
2 1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

6

0 0

2
8

2 2
6

2
5

2 2
3

2
2

2 2
0

1
9

1
7 4 1 8

1 1
7 6

1
5

1
4

1
3

1 1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved ROUTE
Power On Initialization

0

Size: 64-bit only
Symbol Reset Name

ROUTE R/W 0 2:0 Specifies the target rope for any address that
hits in the respective directed range.

Register 18: IOS_DIR_ROUTE

2

Access Bit
Position

Revision 1.0 03/27/03 Page 43 of 57

zx1 mio External Reference Specification H

3.2.3.6 Rope Configuration Base Register

The ROPE_CONFIG_BASE Register is used to set the base address for the LMMIO distributed
range assigned to rope guest Configuration Space. This range is aligned on a 128 KB boundary
and divided into 16 chunks of 8 KB each. Since the range size is hard-wired, there is no need for
mask or route registers. The upper 64KB is reserved. This range takes precedence over the
LMMIO distributed or directed ranges.

M
S
B

ROPE_CONFIG _BASE Register
(0xFED0_03A8)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

1 BASE_ADDR Reserved RE
Power On Initialization

1 0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 0 Range Enable – This bit must be asserted for
any address to ever hit this range.

BASE_ADDR R/W 0 30:17 Specifies the starting address of the range. Bit
31 of the address is assumed to be a 1 and all
other bits of the address are assumed to be 0.

Register 19: ROPE_CONFIG_BASE

Revision 1.0 03/27/03 Page 44 of 57

zx1 mio External Reference Specification H

3.2.3.7 VGA Range Routing Register

The VGA Range Routing Register defines how MMIO and I/O Port Space transactions falling
within the hard-wired VGA address range are routed to PCI buses. This register implements a
range enable and 4 bits of route to identify the rope attached to a PCI bus with VGA devices. The
VGA range takes precedence over all other address ranges. The VL bit is used to disable the
decoding of the VGA aliases (see the system map chapter for more details)

M
S
B

VGA_ROUTE Register
(0xFED0_03B0)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

RE VL Reserved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved ROUTE
Power On Initialization

0

Size: 64-bit only
Symbol Access Reset Bit

Position
Name

RE R/W 0 63 Range Enable – Must be asserted for any
address to hit this range. This bit is only set if
there is VGA graphics in the system.

VL R/W 0 62 VGA-lite – When asserted, the VGA aliases
are not considered part of this range.

ROUTE R/W 0 3:0 Specifies the target rope for any address that
hits in the respective directed range. Please
leave bit 3 equal to 0.

Register 20: VGA_ROUTE

3.3 Function 1 Registers (IOC)
Note that these registers may be written to using any byte enables permitted for an 8 byte write.
That is, these registers pay attention to the byte enable bits on an 8 byte Itanium-2 write.

3.3.1 Function 1 ID Register

The Function ID Register is used to uniquely identify the function.

Revision 1.0 03/27/03 Page 45 of 57

zx1 mio External Reference Specification H

M
S
B

Function 1 ID Register
(0xFED0_1000)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

function_id[15:0] vendor_id[15:0]
Power On Initialization

16’h122a 16’h103C

Size: 64-bit only
Field Access Description
vendor_id[15:0] R Always set to 16’h103c
function_id[15:0] R Always set to 16’h122a

Register 21: Function 1 ID Register

Revision 1.0 03/27/03 Page 46 of 57

zx1 mio External Reference Specification H

3.3.2 Function 1 Class (FC) Register

The Function Class (FC) register defines Function 1’s class code, revision level and line size. It is
read-only.

M
S
B

Function 1 Class Register
(0xFED0_1008)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved line_size[7:0]
Power On Initialization

24’h000000 8’h20

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

class_code[23:0] revision[7:0]
Power On Initialization

24’h068000 8’h23

Size: 64-bit only
Field Access Description

revision[7:0] R
Will start out at 8’d0 for the first version of the chip and will
be changed in future revisions if there are any changes to this
function. A 8’h23 for TR2.3, 8’h22 for TR2.2.

class_code[23:0] R Always set to 24’h068000 (other bridge)
line_size[7:0] R Always set to 8’h20 to reflect a 128-byte cacheline

Register 22: Function Class (FC) Register (function 1)

Revision 1.0 03/27/03 Page 47 of 57

zx1 mio External Reference Specification H

3.3.3 Rope Configuration Register

The rope configuration register contains the information that enables or disables each of the rope
controllers as well as enabling two and four wide rope communication. Writes of the register only
take affect after a rope soft reset to the affected rope(s) is initiated by a write to the
LBA_Port(N)_CTRL register. .
M
S ROPE_CONFIG Register

(0xFED0_1040)

L
S
B

6
3

6
2

6
1 0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved U U Q4 Q0 D6 D4 D2 D0 U U U U UU U U

0 1 1 1 1 1 1 1 1

B

6

Power On Initialization
0 0 0

Size: 64-bit only
Field Access Description
D0 R/W Configures rope 0 to operate as double-wide

(ignored if Q0 == 1)
D2 R/W Configures rope 2 to operate as double-wide

(ignored if Q0 == 1)
D4 R/W Configures rope 4 to operate as double-wide

(ignored if Q1 = 1)
D6 R/W Configures rope 6 to operate as double-wide

(ignored if Q1 = 1)
Q0 R/W Configures rope0 to operate as quad-wide
Q4 R/W Configures rope4 to operate as quad-wide
U R/W Unused – bits are R/W for backwards compatibility but the

contents of these bits are ignored by the hardware.

Register 23: Rope Configuration Register

At reset, both the zx1 mio and the rope slave (zx1 ioa) are configured for single wide rope
communication. To change to two wide the following steps must be taken:

1 Read the rope guest’s rope configuration register (offset 0x0610) to determine if the rope is
connected for two wide or 4 wide rope communication.

2 Write a 1 to the rf bit of the corresponding rope control register. This will reset the selected
zx1 mio rope controller and the rope guest below it.

3 Read the rope control register until the rc bit (bit 32) is a 0.

Revision 1.0 03/27/03 Page 48 of 57

zx1 mio External Reference Specification H

4 Write to the rope guest’s rope configuration register, setting it to the appropriate width.
Communication with the rope guest is not possible until the next two steps are executed.

5 Write to the zx1 mio’s rope configuration register, setting it to the same width as was
programmed in the rope guest.

6 Write to the rf bit of the corresponding rope control register. This will reset the selected zx1
mio rope controller and the rope guest below it.

7 Read the rope control register until the rc bit (bit 32) is a 0.

8 Start a software timer to count to 1ms. This is the minimum PCI bus reset time.

9 Wait for the 1ms timer that was started in step 8 above.

10 Write a 0 to the rf bit of the rope guest Status_Control register. This brings the I/O bus out of
reset. Communication with PCI devices is now possible.

3.3.4 LBA_Port(N)_CNTRL Register

LBA_Port(N)_CNTRL (0<=N<=7) registers provide the ability to perform a soft reset to a
specific rope. They are also used to clear all the error registers for a specific rope controller. In
addition, this register specifies whether PIO transactions are completed with a –1 or a hardfail
when the rope controller is in fatal mode.

Revision 1.0 03/27/03 Page 49 of 57

zx1 mio External Reference Specification H

M
S
B

LBA_Port(N)_CNTRL Register
(0xFED0_1200 – 0xFED0_1238)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Reseved RC
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

Reserved HF CE CL Reseved RF
Power On Initialization

0

Size: 64-bit only
Field Access Description
RF W Reset Function - Writing a 1 will force a soft reset the

corresponding LBA_Port
RC R Reset Complete - Will read 1 while a LBA_Port is being reset.

Will go to 0 on its own once reset is complete.
HF R/W Hard Fail - If set, returns HardFails instead of all 1s on reads

with errors.
CE R/W Clear enable – Enables software to clear the error log by

writing a 1 to the CL bit. Cleared by hardware the contents of
the error log registers change.

CL R/W Clear Error Log - Clears the associated Error registers if CE is
currently set. Will be cleared by hardware if the attempt to
clear the error logs is unsuccessful.

Register 24: LBA_Port(N)_CNTRL

The behavior of the CE/CL bits when clearing error registers is clarified in Table 1 : 1

Value Written Previous Value Final Value
CL CE CL CE CL CE

Result

0 0 X X 0 0 Unchanged or new error
0 1 X X 0 0 New Error Logged
0 1 X X 0 1 Logs Unchanged
1 0 X 0 0 0 Unchanged or new error
1 0 X 1 0 0 Not Cleared and New Error
1 0 X 1 1 0 Cleared
1 1 X X U U Undefined

Table 11: CL/CE Bit Behavior

The procedure for clearing the error log is:

1. Write to the LBA_Port(N)_CNTRL register and assert the CE bit.
2. Read the error log.
3. Write to the LBA_Port(N)_CNTRL register and assert the CL bit.

Revision 1.0 03/27/03 Page 50 of 57

zx1 mio External Reference Specification H

4. Read the LBA_Port(N)_CNTRL register. If the CL bit is set then the error log was cleared.
Otherwise, the error log has been modified since it was read so it was not cleared and the
procedure must be repeated.

NOTE: The logic for an LBA Port (i.e., a rope controller) doesn’t clear an error internally until
the log has been cleared. Thus, any inbound rope activity which occurs before the log has been
cleared will be treated as if the error were still in effect.

3.4 Transaction Overview

This section describes the basic transaction types supported by the zx1 mio (Memory accesses,
PIO, DMA, peer to peer, interrupt message, interrupt acknowledge transactions, etc). Some
knowledge of PCI protocol is helpful when reading this section.

3.4.1 PIO Transactions

PIO Transactions are read and write transactions that are initiated by a CPU with a non-memory
target. These transactions can vary in size from 1-byte to 1 cacheline. Possible targets include
PCI memory space, PCI I/O space, zx1 mio registers, etc. The following sections give examples
of each supported type of PIO transaction. A peer-to-peer (P2P) transaction is a special case of a
PIO transaction in that is initiated by a PCI device.

3.4.1.1 MMIO Write Transaction

Any time a memory write transaction appears on the Itanium-2 bus, the IOCC will compare it
against the I/O addresses allocated to the zx1 mio. If the address is an I/O address, the IOCC
determines the target for the transactions (rope, register or PDH) and forwards the address,
transaction type, and rope number to appropriate target. The BIB responds with a normal no data
response during the response phase on the Itanium-2 bus. During the data phase of the
transaction, the BIB will tell the IOCC that the data is I/O data and the IOCC will grab the data
directly from the Itanium-2 bus pads. The IOCC will convert the ECC to byte parity and combine
it with the address and forward it to the correct rope controller. The RQC sends the address,
transaction information, and data over the rope to the rope guest. The rope guest obtains
ownership of the I/O bus and masters a memory write transaction on the I/O bus. If the I/O
device performs a retry or disconnect during the data phase, the rope guest will retry or resume
the transaction later. Flow control at the Itanium-2 bus interface and ropes controller is
performed as described in the chapters for those blocks.

Memory write transactions to sequential addresses can be coalesced. This is called write
combining in Itanium-2 bus terminology. The Itanium-2 processor is capable of doing write
combining in the CPU for a burst size of 1-8, 16, 32 or 128 bytes. Eventually, the rope guest
will see a single PCI write address and multiple data values so that the rope guest can attempt to
burst it out to the PCI device without the overhead associated with additional arbitration and
addressing phases.

Revision 1.0 03/27/03 Page 51 of 57

zx1 mio External Reference Specification H

3.4.1.1.1 Register writes

Writes to the zx1 mio’s and the rope guests’ registers are a special case of MMIO writes. These
writes are either for registers inside the zx1 mio or for registers inside one of the rope guest
devices. Writes destined for the zx1 mio registers are decoded by the IOCC and issued on the
zx1 mio’s internal regbus. Writes destined for the rope guest devices are decoded by the IOCC
and forwarded to the appropriate rope.

3.4.1.2 MMIO Read

The Itanium-2 processor can initiate uncacheable memory reads of 1-8 or 16 bytes. Anytime a
memory read transaction appears on the Itanium-2 bus, the zx1 mio’s IOCC will compare the
address against the MMIO address ranges allocated to the zx1 mio. If the address falls in any of
these ranges the IOCC forwards the address, transaction type, TID, and rope number to the RQC.
It then signals to the BIB that the transaction “hit” in the IOCC’s address space. During the
snoop phase the BIB indicates it will defer the transaction by asserting DEFER# and VSBL. The
IOCC will write the transaction information (including the TID) to the target rope inside the
RQC. The RQC sends the transaction out over the rope to the rope guest. The RQC stores the
TID in it’s local TID FIFO. The rope guest stores the transaction information in the Delayed
Request FIFO. This allows posted write transactions to pass “delayed” transactions for the
purpose of deadlock avoidance. The rope guest may attempt the read transaction multiple times
due to a target retry or disconnect prior to completion of the transfer. The rope guest is required
to maintain fair arbitration between posted write transactions and delayed transactions.

When all the requested data has been obtained, the rope guest collects the data and it is sent over
the rope to the zx1 mio. The RQC in the zx1 mio gets the data and combines it with it TID before
sending it on the IOCC. The IOCC signals the BIB that it has PIO return data available and
eventually the BIB will indicate that the data can be driven directly to the Itanium-2 bus pads and
on to the original requester.

Flow control is implemented in the same manner as for MMIO writes and was described earlier in
this chapter.

You’re probably asking yourself, “Why is the rope guest required to allow posted writes to pass
delayed transactions?” The reason is the deadlock avoidance strategy for PCI assumes that
completion of MMIO writes is never conditional upon completion of anything else. If a read is
ahead of an MMIO write, and the read is retried by the target, the write must still be allowed to
proceed. Moving the read to the Delayed Request FIFO allows that to happen.

3.4.1.2.1 Register reads

Register reads are a special case of MMIO reads. As explained in the register write section, there
are 2 types of register accesses, zx1 mio register reads and rope guest register reads. For zx1 mio
register reads the transaction is sent to the regbus by the IOCC. When the read data is available,
the IOCC signals the BIB that read return data is ready. The BIB signals the IOCC when it needs
to drive the data directly to the Itanium-2 pads and on to the original requester. Register reads are
required to go through a delay transactions FIFO (just like MMIO reads) for deadlock avoidance.
Rope guest register reads are handled in the zx1 mio just like an MMIO read.

Revision 1.0 03/27/03 Page 52 of 57

zx1 mio External Reference Specification H

The register bus in the zx1 mio is actually implemented as a 16-bit daisy-chained connection
between all the blocks in the zx1 mio. The address and data must propagate around the entire
chain before data is returned. Therefore, register reads tend to be very slow in the zx1 mio.

3.4.1.3 I/O Port Writes

I/O port Write transactions are never posted by the zx1 mio. They operate like a hybrid of MMIO
writes and MMIO reads. Data is transferred from the Itanium-2 bus to the PCI bus, just like an
MMIO write. However, a completion response is sent from the PCI bus back up the rope to the
IOCC, just like an MMIO read.

The IOCC decodes the Itanium-2 bus transaction as an I/O port write and determines the target
rope. It then signals to the BIB that it is claiming the transaction and forwards the address, TID,
and target rope number to target rope inside the RQC. This is like an MMIO write except the TID
is sent along with the other transaction information. As with an MMIO read, the BIB responds
during the snoop phase with a deferred response by asserting DEFER#. When the data phase
occurs on the Itanium-2 bus the data is claimed by the BIB and the IOCC is told that it owns the
data. An I/O port write transaction then proceeds exactly like an MMIO write until the
transaction reaches the rope guest. At this point the rope guest stores all the transaction
information and data into the Delayed Request FIFO (just like an MMIO read). When the IO-
port write reaches the head of the Delayed Request FIFO, the rope guest does a IO-port write
transaction. After the rope guest successfully completes the IO-port write on the I/O bus, the
transaction behaves as an MMIO read return with no data. The data makes its way to one of zx1
mio’s RQC’s which combine the data with the TID and forward it to the IOCC. The IOCC
signals to the BIB that PIO return data is available and the BIB eventually completes the write
using a deferred reply transaction on the Itanium-2 bus.

3.4.1.4 I/O Port Space Read

I/O Port Reads work just like MMIO Memory reads except that on the I/O bus the rope guest will
use I/O port transactions instead of the memory read transactions.

3.4.1.5 Accessing I/O Port Space through MMIO

The zx1 mio provides a way of generating I/O port transactions which allows a full 64KB of I/O
port space addresses to be allocated to each rope and allows the OS to assign user permissions to
I/O port space. (Called GMMIO IO-port space.) From the Itanium-2 bus perspective, GMMIO
IO-port transactions are simply MMIO transactions directed to the first 64 MB of MMIO space
above 4 GB that is allocated to a particular rope or I/O bus. When the IOCC sees an PIO
transaction to an address in this range, it will respond as it does to an I/O port space transaction.
The rope guest treats the transaction like an I/O port transaction except that it reduces the address
from a 64 MB space to a 64 KB space. This is done by shifting bits 25:12 to 15:2. The PIO
transaction supplies 8 byte enables, but an I/O port transaction can only have 4 byte enables. If
any of the 4 lower byte enables are asserted, they will be used for the transaction. If not, the
upper 4 byte enables will be used. This means that if some byte enables were asserted in both
groups, the upper 4 byte enables would be ignored. The response is returned up the rope to the

Revision 1.0 03/27/03 Page 53 of 57

zx1 mio External Reference Specification H

zx1 mio (ala I/O port writes). Upon seeing the response, the zx1 mio will complete the
transaction with a deferred reply transaction.

Regardless of how I/O port space is accessed, all I/O port transactions will be deferred on the
Itanium-2 bus until the transaction has completed on the PCI bus. This means that all I/O port
transactions are non-posted.

3.4.2 DMA

DMA refers to transactions initiated by I/O devices to a memory space which addresses actual
main memory. If they address MMIO space it is considered a peer-to-peer transaction (and not
DMA). Peer to peer is discussed in a separate section.

3.4.2.1 DMA Memory Read transactions

When the rope guest sees an I/O bus read command to an address that is not in MMIO space, it
claims the transaction. The rope guest generates a DMA read request and sends it up the rope to
the zx1 mio. The hint information for the request is obtained from a hint table in the rope guest
that is indexed by the master ID and one or two address bits. If the address falls within the range
that the I/O TLB in the zx1 mio is translating, then the address is translated by the I/O TLB into a
50-bit physical address. If the address is outside the translation range or if the DVI bit is set the
address is passed unmodified through the TLB. Once through the TLB, the request will be issued
to the Itanium-2 bus if it is a coherent request or directly to the memory controller (via the BIB) if
it is a non-coherent request.

When data is returned in response to the read request (either from the Itanium-2 bus or from
memory) it is forwarded to the requesting rope and eventually gets to the rope guest. If the DMA
device is on traditional PCI the data will be returned immediately to the DMA initiator
(connected transaction). Rope guest’s are not allowed to retry a PCI read request unless it has a
delayed completion resource available. If the request came from PCI-X then the returning data
will be queued until there is an opportunity to return it.

The zx1 mio will continue to fetch additional data and send it down the requesting rope at a rate
determined by the hint bits, the data width configuration of the rope, and the rate of data
consumption by the requesting device. If the request is a fixed-length transaction then it will
continue to return data until the specified amount has been returned. If it is a connected
transaction then the zx1 mio will continue to return data to the rope guest until it receives a
disconnect command.

3.4.2.2 DMA writes

When the rope guest sees an I/O bus write command to an address that is not in its own MMIO
space, it claims the transaction. The address and data are sent up the rope to the zx1 mio. If the
address is outside the entire MMIO space and the interrupt space (in zx1 ioa), the transaction is
assumed to be DMA. DMA write transactions can be arbitrarily long, so any amount of data can

Revision 1.0 03/27/03 Page 54 of 57

zx1 mio External Reference Specification H

be sent with a single address. The zx1 mio will accumulate the data until the transaction ends or
the data spills over into a new cacheline. At that point an exclusive read request would be issued
to the Itanium-2 bus or directly to the memory controller if the request were non-coherent. If
every byte of the cacheline is being written then the zx1 mio will not request the actual data (only
ownership of the cacheline). Once the zx1 mio has obtained ownership for the cacheline (and
possibly the data), the DMA data will be moved into the I/O cache where it effectively becomes
part of main memory.

If the last byte of the cacheline was written (or if the aggressive flush hint was asserted) the
cacheline will immediately be queued for flushing after the data is written into the I/O cache.
Eventually the line will be copied directly from the cache to main memory without being visible
on the Itanium-2 bus.

It is possible that a CPU could recall ownership of a line prior to the DMA data being copied into
the cache. If this happens, the line will be re-fetched once the data is available for immediate
copy into the cache. At that time the IOCC will retain ownership until the data has been moved
into the cache, thus insuring forward progress.

3.4.2.3 Burst order for DMA transactions (both read and write)

On the Itanium-2 bus, the zx1 mio’s cacheline read requests will never use critical word first
capability. (i.e., the address will always be cacheline-aligned.) However, when the zx1 mio
sources data for an implicit writeback, critical word first must be supported. The Itanium-2 bus
interface block will implement that capability.

When the zx1 mio generates a read request to memory to resolve an I/O TLB miss the critical
word first feature of the bus will be utilized. The TLB will always use only a single word of the
returning data so by requesting it critical word first it makes it very easy (and quick) the get the
target word.

3.4.3 Peer to peer (P2P) transactions

The zx1 mio only supports peer-to-peer transactions between I/O devices on the same rope
guest’s I/O bus or MMIO space write transactions between rope guests. Devices are considered
to be on the same the rope guest’s I/O bus even if one or more of them are behind a downstream
bridge.

3.4.3.1 P2P Read and P2P Writes (same I/O bus)

These types of peer-peer transactions are easy. The rope guest decodes the address on the I/O bus
and determines that it is within the MMIO address space allocated to it. Therefore, the rope guest
does nothing, allowing the transaction to proceed between the 2 PCI devices.

Revision 1.0 03/27/03 Page 55 of 57

zx1 mio External Reference Specification H

3.4.3.2 P2P Writes (different I/O buses)

MMIO space peer-to-peer write transactions can be posted. The rope guest decodes the I/O bus
memory write transaction. If it is within MMIO space, but not the MMIO space allocated to this
the rope guest, the transaction is claimed. Regardless of the size of the memory write transaction
on the I/O bus, the rope guest will break them into 16 byte writes or smaller. Each write carries
an address and byte enables with it, so any subset of the bytes can be written. The P2P write
proceeds through the zx1 mio and is eventually issued on the Itanium-2 bus. Once the transaction
is issued on the Itanium-2 bus it comes back into the zx1 mio, which determines the target rope
and forwards the transaction to the appropriate rope guest. The transaction then completes just
like an MMIO write.

Peer-to-peer I/O ports space writes, regardless of if they are generated by GMMIO writes or not,
are not supported (primarily because they have a response and therefore have most of the issues
that P2P reads do).

3.4.4 Interrupt related functionality

Normally, PCI devices issue interrupts by asserting one of their interrupt wires (collectively
called INTx#). This form of interrupt is supported by the rope guest via an I/O SAPIC.
Additionally, message signaled interrupts are also supported. Finally, support for PC legacy 8259
Programmable Interrupt Controllers (PICs) is provided, through support for the int_ack
transaction on various I/O buses.

A message singled interrupt (MSI) transaction occurs when a I/O device does a Memory Write
transaction to the 1MB address range starting at 0xFEE0_0000 (zx1 ioa makes MSI space
programmable). The rope guest claims the transaction and forwards them to the zx1 mio as
interrupt address and interrupt data. The transaction makes its way to the Itanium-2 bus just like
a P2P write. The zx1 mio eventually does an interrupt transaction on the Itanium-2 bus with the
same address and data, but using the Itanium-2 bus encoding for an interrupt transaction. +Wire
Interrupts

The rope guest also contains logic to convert interrupts received over the INTx# pins to interrupt
transactions. The logic to do this is called an I/O SAPIC. When an INTx# pin is asserted, the
SAPIC looks up the associated entry in a table. The information in the table essentially specifies
the address and data values to use for generating an interrupt transaction. The interrupt
transaction is eventually forwarded to the zx1 mio and proceeds as described above.

3.4.4.2 Interrupt acknowledge (Int Ack) transaction

3.4.4.1 Message Signaled Interrupts (MSI)

To retain PC compatibility, Itanium-2 is capable of receiving interrupts from 8259 PICs and to
generate an IntAck transaction in response to fetch interrupt vector information from the 8259.
The IntAck cycle is simply a read; it just happens to be encoded differently. The processor
initiates an IntAck transaction on the Itanium-2 bus. The zx1 mio claims the transaction and

Revision 1.0 03/27/03 Page 56 of 57

zx1 mio External Reference Specification H

Revision 1.0 03/27/03 Page 57 of 57

defers it. An IntAck is then forwarded to the I/O bus below rope 0 (both PCI and PCI-X provide
an Interrupt Acknowledge transaction). The 8259 is restricted to this I/O bus. The IntAck
transaction proceeds just like an MMIO read. The rope guest issues an IntAck cycle and returns
the result back, just as with a regular MMIO read. The BIB does a deferred reply to return the
data to the processor.

	OPERATION OVERVIEW
	zx1-based Systems
	zx1 mio’s Major Blocks
	Itanium-2 bus interface block (BIB)
	Memory Controller (MC)
	I/O Cache Controller (IOCC)
	Rope-quad Controller (RQC)

	zx1 mio Interconnect
	Itanium-2 Bus
	I/O Ropes
	PDH Bus

	Terminology
	Device Terminology
	Cache State Terminology
	Address Space Terminology
	Transaction Terminology
	Other Terminology

	System Address Map
	zx1 mio Physical Address Map
	The Compatibility Hole (640K to 1M)
	BIOS shadowing / write–protect
	VGA support
	ISA aliases

	MMIO above 4 GB
	I/O port space
	Itanium-2 I/O Port Space
	LMMIO I/O Port Space
	GMMIO I/O Port Space
	Summary of I/O Port Spaces

	Range register programming
	Range registers for the compatibility hole
	Range registers for LMMIO space
	Range registers for GMMIO space
	Range registers for I/O port space

	I/O Subsystem
	
	Address Decoding

	Function 0 Registers
	Function 0 Class (FC) Register
	Module Info (MI) Register
	Address Range Registers
	LMMIO Directed Range Registers
	LMMIO Directed Base Register
	LMMIO Directed Mask Register
	LMMIO Directed Range Route Register

	LMMIO Distributed Range Registers
	LMMIO Distributed Base Register
	LMMIO Distributed Mask Register
	LMMIO Distributed Range Route Register

	GMMIO Distributed Range Registers
	GMMIO Distributed Range Base Register
	GMMIO Distributed Range Mask Register
	GMMIO Distributed Range Route Register

	IOS Distributed Range
	IOS Distributed Base Register
	IOS Distributed Range Mask Register
	IOS Distributed Range Route Register

	IOS Directed Range Registers
	IOS Directed Base Register
	IOS Directed Mask Register
	IOS Directed Range Route Register

	Rope Configuration Base Register
	VGA Range Routing Register

	Function 1 Registers (IOC)
	Function 1 ID Register
	Function 1 Class (FC) Register
	Rope Configuration Register
	LBA_Port(N)_CNTRL Register

	Transaction Overview
	PIO Transactions
	MMIO Write Transaction
	Register writes

	MMIO Read
	Register reads

	I/O Port Writes
	I/O Port Space Read
	Accessing I/O Port Space through MMIO

	DMA
	DMA Memory Read transactions
	DMA writes
	Burst order for DMA transactions (both read and write)

	Peer to peer (P2P) transactions
	P2P Read and P2P Writes (same I/O bus)
	P2P Writes (different I/O buses)

	Interrupt related functionality
	Message Signaled Interrupts (MSI)
	Interrupt acknowledge (Int Ack) transaction

