
For:billk
Printed on:Tue, May 18, 1999 16:18:14
From book:lasi_ers
Document:cover_page
Last saved on:Tue, May 18, 1999 16:08:55
Document:TOC
Last saved on:Tue, May 18, 1999 16:11:27
Document:LOT
Last saved on:Tue, May 18, 1999 16:11:25
Document:LOF
Last saved on:Tue, May 18, 1999 16:11:25
Document:intro
Last saved on:Wed, Mar 17, 1999 16:18:18
Document:overview
Last saved on:Wed, Mar 17, 1999 16:20:32
Document:scsi
Last saved on:Wed, Mar 17, 1999 16:25:23
Document:lan
Last saved on:Wed, Mar 17, 1999 16:32:40
Document:Parallel
Last saved on:Wed, Mar 17, 1999 16:52:13
Document:audio
Last saved on:Wed, Mar 17, 1999 17:30:43
Document:Serial
Last saved on:Wed, Mar 17, 1999 17:33:39
(...)

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���� ��� ���

712 I/O Subsystem ERS

Revision 1.1
12 February 1993

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���� ��� ���

Notice
The information contained in this document is subject to change without notice.

HEWLETT–PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
MATERIAL. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett–Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett–Packard sassumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett–Packard.

This document contains proprietary information that is protected by copyright. All rights are re-
served. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of the Hewlett–Packard Company.

Copyright � 1992–1999 by HEWLETT–PACKARD COMPANY All Rights Reserved.

��
����������� � � ��� ��

���� � (#!2'4#1 � � ��� ��

���� �#�230#� �3++�06 � � ��� ��

���� �#1'%,� �#�+ � � ��� ��

��
������� � � ��� ��

���� �3,!2'-,�*� �0%�,'7�2'-, � � ��� ��

���� �#01-,�*'26� ��0" � � ��� ��

������ ��1'� �-,$'%30� '*'26 � � ��� ��

���� �#*#.&-,#� �3..-02 � � ��� ��

�� �	�
 � � ��� ��

	��� �,20-"3!2'-, � � 	�� ��

	��� �4#04'#5 � � 	�� ��

	��� �#�230#1 � � 	�� ��

	��� �'%,�*� �#$','2'-,1 � �
�� ��

	�	� ������� ��12� �',%*#��,"#"� �3..-02 � �
�� ��

	�
� ������� ��12� �'$$#0#,2'�*� �3..-02 � �
�� ��

	��� �*-!)� ��2#1 � �
�� ��

	��� ���� ���� �-"#� �'21 � �
�� ��

	�
� ���� ���� �#4'1'-,� �-"# � �
�� ��

	���� �,2#003.21 � � ��� ��

	���� �#%'12#0� �#2 � � ��� ��

	������ ����� �#1#2� �#%'12#0 � � ��� ��

	������ ���� ���� �,2#0,�*� �#%'12#01 � �
�� ��

�� ��� � � ���� ��

��� �,20-"3!2'-, � � ���� ��

��� �#$#0#,!#1 � � ���� ��

��� �-+#,!*�230#� �,"� �-,4#,2'-,1 � � ���� ��

��� �4#04'#5 � � ���� ��

�	� �0�,1�!2'-,� �6.#1 � � ���� ��

�	��� �&�,,#*� �22#,2'-, � � ���� ��

�	��� �-02� �!!#11 � � ���� ��

�
� �#1#2 � � ���� ��

�
��� �-,1#/3#,!#1 � � ���� ��

�
����� ��0"5�0#� �#1#2 � � ���� ��

�
����� ���� �-02� �#1#2 � � ���� ��

�
����� �-$25�0#� �#1#2 � � ���� ��

�
��� �0-2-!-* � � ���� ��

�
����� ��0"5�0#� �#1#2 � � ���� ��

�
����� ���� �-02� �#1#2 � � ���� ��

�
����� �-$25�0#� �#1#2 � � ���� ��

��� �,2#003.21 � � ���� ��

��� �0-%0�++',%� �-,1'"#0�2'-,1 � � ���� ��

����� �,"'�,� �-"# � � �	�� ��

����� �31� �'7# � � �	�� ��

����� �612#+� �-,$'%30�2'-,� �-',2#0 � � �	�� ��

����� �61 31� �62# � � �	�� ��

������� �-"# � � �	�� ��

�����	� �86� !,5277/)� %1(� �5&-75%7-21 � � ���� ��

�����
� �2'.)(� �<'/)6 � � �
�� ��

������� �17)55837� �-1� �2/%5-7< � � �
�� ��

������� �,%11)/� :-7',� �/+25-7,0 � � �
�� ��

����� �)5*250%1')� �216-()5%7-216 � � �
�� ��

������� ����� #)'725 � � �
�� ��

�����	� �)025<� �5+%1-=%7-21 � � �
�� ��

��� 7%7-21� �2(%/� �((5)66 � � �
�� ��

���� ���� �)025<� �%3 � � �
�� ��

�� �
�
�����
�����
�� � � ���� ��
���� �1752(8'7-21 � � ���� ��

��	� �9)59-): � � ���� ��

��
� �)%785)6 � � ���� ��

���� �((5)66-1+ � � ���� ��

���� �2:)5� "3� �)6)7 � � 	��� ��

��
� �8-'.� �)*)5)1')� *25� �%5%//)/� /%9)� �)+-67)56 � � 	��� ��

���� /%9)� �)+-67)5� �)6'5-37-216 � � 	��� ��

������ �-5)'7)(� �%67)5� �)6)7� ��((5)66� 6/9��;���� � � 	��� ��

����	� $5-7)��)%(� �%7%� ��((5)66� 6/9��;���� � � 		�� ��

����
� �%5%//)/� �257� 7%786� ��((5)66� 6/9��;���� � � 		�� ��

������ �%5%//)/� �)9-')� �21752/� ��((5)66� 6/9��;��	� � � 	
�� ��

������ �2()� �21752/� ��((5)66� 6/9��;���� � � 	
�� ��

����
� ��� �21752/��17)55837� 7%786� ��((5)66� 6/9��;���� � � 	��� ��

������ !-0-1+� �)/%<� �2817)5� �� ��((5)66� 6/9��;��
� � � 	��� ��

������ !-0-1+� �)/%<� �2817)5� �� ��((5)66� 6/9��;���� � � 	
�� ��

���� �%5%//)/� �257� ���� �21752//)5 � � 	��� ��

���� �%5%//)/� ���� �)+-67)5� �%3 � � 	��� ��

����� �2:� �%5%//)/� �257� ���� $25.6 � � 	��� ��

����� �%5-7<� �55256� %1(� �86� !-0)2876 � � 	��� ��

���	� �)7%-/)(� �)+-67)5� �)6'5-37-216 � � 	��� ��

���	��� �%5%//)/� ���� �)6)7� �)+-67)5 � � 	��� ��

���	�	� �855)17� �((5)66� �)+-67)56 � � 	��� ��

���	�
� �<7)� �2817� �)+-67)56 � � 	��� ��

���	��� ���� 7%786� 5)+-67)5 � �
��� ��

���	��� ���� $5-7)� 6-1+/)� 0%6.� &-7 � �
��� ��

���	�
� ���� �2()� 5)+-67)5 � �
��� ��

���	��� ���� �17)55837� �2++-1+� �)+-67)5 � �
��� ��

���	��� ���� �%6.� �)+-67)5 � �
	�� ��

���	��� ����� �-0-7� �)+-67)5 � �
	�� ��

���	���� ���� �/)%5� &<7)� 32-17)5 � �
	�� ��

���	���� ���� �%67)5� �/)%5 � �
	�� ��

���	��	� �/)%5� �%6.� 5)+-67)5 � �
	�� ��

���
� !<3-'%/� ����)48)1') � �

�� ��

����� �� �� �203%7-&-/-7< � �
��� ��

����� !)67-1+ � �
��� ��

���
� !-0-1+� �;%03/)6 � �
��� ��

�� 	�������������� � � ���� ��
���� �1752(8'7-21 � �
��� ��

������ �8(-2� �)6'5-37-21 � �
��� ��

������ !*0*4-32<� �*6(5.47.32 � � 	��� ��
���� ���� �31182.(&7.32 � � 	��� ��
��	� �&5132<� �5(-.7*(785* � �
��� ��
��
� �8).3� 3+7:&5*� �27*5+&(* � �
��� ��

��
��� �&6*%�++6*7 � �
��� ��
��
��� ��� 5*,.67*5� � ��))5*66�� �;���� � �
	�� ��
��
�	� �2.7.&0.=.2,� 7-*� ����� � �

�� ��
��
�
� �0&<'&(/� &2)� �*(35).2, � �
��� ��
��
��� �&.2� �327530 � � ���� ��
��
��� �9*5>5&2,*� �2).(&7.32 � � ���� ��
��
�
� ���� 5*,.67*5 � � ���� ��

��
��� ����� 5*,.67*5 � � ���� ��
���� !!$� 3+7:&5*� �27*5+&(* � � �	�� ��
������ �*(*.9*� �8++*5� &2)� !5&261.7� �30)� �*,.67*5 � � �	�� ��
������ �27*55847� �2&'0*� �*,.67*5 � � �
�� ��
����	� �27*55847� �)*27.+.(&7.32� �*,.67*5 � � ���� ��
����
� �.+3� �327530� �*,.67*5 � � ���� ��
������ �.2*� �327530� �*,.67*5 � � ���� ��

������ �3)*1� �327530� �*,.67*5 � � �
�� ��
����
� �.2*� 7&786� �*,.67*5 � � ���� ��
������ �3)*1� 7&786� �*,.67*5 � � ���� ��
������ �.9.635� �&7(-� �*,.67*5� � � � � ���� ��
������� �.9.635� �&7(-� �*,.67*5� � � � � ���� ��
������� !*0*4-32<� �2+351&7.32� �<7* � � ���� ��

���� � ��� �27*5+&(* � � ���� ��

�� ������� ��!���� ��#�!���� � �
��� ��
���� �2753)8(7.32 � � �	�� ��
���� �*&785*� 811&5< � � �	�� ��

��	� �*,.67*5� �*+.2.7.326 � � �	�� ��
��
� �.++*5*2(*6� +531� � ������ � � �
�� ��

��� ����������
���� � �
	�� ��
����� �2753)8(7.32 � � ���� ��

����� �*&785*� 811&5< � � ���� ��
���	� �*,.67*5� �*+.2.7.32 � � ���� ��

��� ���� ��#�!����� ��!� ��%���!����$"� � �
��� ��
�2753)8(7.32 � � �
�� ��

�*,.67*56 � � �
�� ��
��� �*,.67*5 � � �
�� ��
�*6*7� �*,.67*5 � � ���� ��
�(9)&7&� �*,.67*5 � � ���� ��
#17)&7&� �*,.67*5 � � ���� ��
�327530� �*,.67*5� ���"� � � ���� ��
 7&786� �*,.67*5� ��*&)� 320<� � � ���� ��

�))5*66.2, � �
��� ��
�27*55847� 453(*66.2, � �
��� ��
!.1.2, � �
��� ��

��� �
� ��� % � � ���� ��
����� �2753)8(7.32 � �
��� ��

����� ���� �/%0!2).- � � ���� ��

������� �%04)#)-'� 2(%� �)0#3+!0� �3&&%0 � � ���� ��

����� ��� �+.//6� �%')12%01 � � ���� ��

������� ���� �%')12%01 � � ���� ��

� � ���%�� �#$" � � 	��� ��
���� �4%04)%5 � � �
�� ��

���� �%,.06� �!/ � � �
�� ��

���� �%0&.0,!-#% � � ���� ��

������ �%!$)-'� �!2! � � ���� ��

������ 0)2)-'� �!2! � � ���� ��

��� �"(�$� �)%&� � �'##"$& � � 		�� ��
����� �4%04)%5 � � ���� ��

����� �%1%2 � � ���� ��

������� ������� �.-&)'30!")+)26 � � ���� ��

������� ���� �%1%2 � � ���� ��

����� �,!02� �.5%0� �5)2#(� � �
�� ��

���	� ���� �.-20.+ � � ���� ��

�� ��%�����!�"'%� ����%&�$% � �
��� ��
���� ���� �.-&)'30!2).-� �%')12%01 � �
��� ��

���� �%22)-'� 2(%� �%')12%01 � �
��� ��

������ �0),!06� ���� �.-&)'30!2).-� �%')12%0 � �
��� ��

������ �%#.-$!06� ���� �.-&)'30!2).-� �%')12%0 � �
��� ��

���� �00.0� �.'')-'� �%')12%0 � �
��� ��

��	� �!1)� �%01).-� �.-20.+� �%')12%0 � �
��� ��

��� �!&�$$'#&% � �
��� ��
�	��� �4%04)%5 � �

�� ��

�	��� �%')12%0� �%&)-)2).-1 � �

�� ��

�	��� �-2%003/2� �/%0!2).- � �
��� ��

�	�	� �-2%003/2� �%')12%0� �)2� �11)'-,%-21 � �
��� ��

�	�
� �00.0� �!-$+)-' � �
��� ��

��� ��
� �!&�$���� � �
��� ��
�
��� �-2%0&!#%� �4%04)%5 � �
��� ��

�
��� �.--%#2).-� �.-20.+� �!2(� �
��� ��

�
����� �.-20.+� �),/+)&)#!2).-� �$%!1 � �
��� ��

�
��� �!1)�1� � �!2!� ��$$0%11� �!2(� �
��� ��

�
�	� ����� ���� �%(!4).0� �3,,!06 � � ���� ��

��� � �$��&$�&�"! � � ���� ��
����� ���� �0")20!2).-� �4%04)%5 � � ���� ��

����� �0")20!2).-� �!1*� �%')12%0 � � ���� ��

����� �)1!"+)-'� 2(%� �0")20!2).-� �.-20.++%0 � � ���� ��

�	�
�"��% � � ���� ��
�-20.$3#2).- � � ���� ��

�4%04)%5 � � �
�� ��

����%&�$% � � �	�� ��

�
��� ����%&�$
� � � ���� � � �	�� ��

�
����� ����%&�$
� � � ���� � � �
�� ��

�
����� ����%&�$
� � � ���'��� �� �	������ ��)� ��$��&� �$�#'�!�(� � �
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�
����� ����%&�$
� � � ���'��� �� ����
	� ��)� ��$��&� �$�#'�!�(� � �
�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���� �"�������!&% � � �
�� ��

� � ���� ��

�	� � ��������� ��� � ���� ���� ������� ��� � �

�� ��

�
� � ���������
�� � ���� ������� ������� ��� � � ����� ��

���&!� 	�� ����� �!#$,-!+� �!- � �
�� ��

���&!�
�� ������ �!#$,-!+� �!"$($-$)(, � � �	�� ��

���&!� ��� ���� �(-!+"��!� �!#$,-!+, � � ���� ��

���&!� ��� ���� ��� �!#$,-!+ � � ���� ��

���&!�
�� ���� �)(-+)&� �!#$,-!+ � � ���� ��

���&!� ��� ���� �-�-.,� �!#$,-!+ � � ���� ��

���&!� ���� �&)**1� �$,%� �)(-+)&&!+� �!#$,-!+, � � ���� ��

���&!� ���� �&)**1� �!#$,-!+, � � ���� ��

���&!� ���� ���� �!#$,-!+, � � ���� ��

���&!� ���� �&)**1� �)(-+)&� �!#$,-!+� �$-� �!"$($-$)(� � ���� ��

���&!� �	�� �&)**1� �-�-.,� �!#$,-!+� �$-� �!"$($-$)(� � ���� ��

���&!� �
�� �&)**1� ���� � +!,,� �!#$,-!+� �$-� �!"$($-$)(� � �	�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���&!� ���� �&)**1� ���� �(��&!� �!#$,-!+� �$-� �!"$($-$)(� � �	�� ��

���&!� ���� ���� �!,!-� �!#$,-!+ � � �
�� ��

���&!� �
�� �)/!+� �)(-+)&� �!#$,-!+� �$-� �!"$($-$)(� � ���� ��

���&!� ��� ���� �)("$#.+�-$)(� �+$'�+1� �!#$,-!+� �$-� �!"$($-$)(� �
��� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���&!� ��� ���� �)("$#.+�-$)(� �!�)(�+1� �!#$,-!+� �$-� �!"$($-$)(� �
��� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���&!� ��� �++)+� �)##$(#� �!,$,-!+ � �
��� ��

���&!� ���� �(-!++.*-� �!#$,-!+, � �
��� ��

���&!� ���� �(-!++.*-� �)(-+)&� �!#$,-!+� �$-� �!"$($-$)(� �
��� ��

���&!� ���� ����� ����� �(� ���� �$-� �!"$($-$)(� �
��� ��

���&!� ���� ���� �.,� ��,-!+, � � ���� ��

���&!� ���� �+�$-+�-$)(� ��,%� �!#$,-!+ � � ���� ��

���&!� �	�� ����� �(-!+(�&� �(� �0-!+(�&� �&)�%, � � �
�� ��

���&!� �
�� ����� ���� �)!""$�$!(-, � � �
�� ��

���&!� ���� � +!,,�)"",!-,� ")+���� ��� � � ��	�� ��

���&!� ���� ��,$� ��,!� � +!,,!, � � ��	�� ��

�$".+!� ��� ���� �.�,0,-!'� �&)�%� �$�"+�' � � ��� ��

�$".+!� ��� ��+�&&!&� ��-�� �$'$(" � � �
�� ��

�$".+!� ��� ��+')(0� �&)�%� �$�"+�' � � ���� ��

�$".+!� 	�� �&)**0� ���� � +!,,� �!"$,-!+ � � ���� ��

�$".+!� ��� �&�,#� ������ �!')+0� ��* � � �	�� ��

�$".+!�
�� �)/!+�)/(� �$+�.$-� &)"$� � � ���� ��

�$".+!� ��� � ����� �&)�%� �$�"+�'
� �
��� ��

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���� �� �

1
1 INTRODUCTION

1.1 Objectives
The primary objective for the 712 I/O subsystem is to provide a core set of I/O functionality that is
consistent with the cost and performance goals of the 712 box.

The primary objective for this document is to describe the software interface to 712 I/O with enough
detail to allow driver development. This document (along with referenced documents) contains
enough detail to ascertain the intended functionality of each block on the Lasi chip down to the regis-
ter level.

This version of the document (1.1) should contain an accurate description of the 712 I/O Subsystem
functionality for Lasi 1.0.

1.2 Feature Summary
The following is a list of the features of the 712 I/O Subsystem:

� SCSI (DMA)

� LAN (DMA)

� Parallel Printer Interface (DMA)

� CD quality Stereo Audio (DMA)

� serial RS232 port

� PS/2 Keyboard and mouse interface

� Real Time Clock

� 256K bytes of Flash EPROM

� Power system support

� PC floppy disk drive (DMA–optional)

� telephone interfaces (optional)

� Personality Card (optional)

1.3 Design Team
<Deleted from public version of document>

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��	� �� �

2
2 OVERVIEW

2.1 Functional Organization
The heart and soul of the 712 I/O Subsystem is the Lasi chip. The vast majority of the I/O functional-
ity in 712 is either completely implemented on Lasi or accessed through Lasi. The one exception
to this is the optional personality card which has its own GSC interface. The personality card is in-
tended for IBM Token Ring or an additional I/O device implemented with a second Lasi chip. The
Block diagram in figure 1 shows the organization of the 712 I/O Subsystem.

Figure 1. I/O Subsystem Block Diagram

SCSI

LAN

Parallel

Audio/phone

RS232

PS/2 Keybd

Real–Time

PC Floppy
Interface

GSC
Interface

LASI

EPROM
Interface PC Floppy Flash

Controller

Personality Card

GSCCPU & Graphics

Interface
Audio
Circuit

Telephony
Card
(Optional)

EPROM

& Mouse

Clock

2.2 Personality Card
The personality card allows some flexibility in Gecko I/O while maintaining the lowest possible fac-
tory cost for the base system. The current plan is to have two different flavors of the personality card.
The first card would use an ASIC (Wax) to interface GSC to the TI Token Ring chip set. The second

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
� �� �

would use another Lasi chip to implement a second copy of one or more of the I/O devices imple-
mented in Lasi.

2.2.1 Lasi Configurability

The Lasi chip has four configuration bits that allow enough flexibility to use a second Lasi on the
personality card. The SPACE[1:0] bits control which of four possible base addresses are decoded by
Lasi. The RESET_SLAVE bit allows to another GSC device to drive the RESETL signal. The
ARB_SLAVE bit allows another device control GSC arbitration. These bits are all set during reset
by pulling configuration pins either high or low through a resistor. This configuration flexibility
allows more than one Lasi to reside on the same GSC. It also provides the flexibility required to
make Lasi useable by some non–Gecko systems. The configuration registers in the second Lasi can
be read by PDC to identify which of Lasi’s I/O functionality can be used (ie. have connectors) on the
second Lasi chip.

2.3 Telephone Support
Gecko supports an optional board that provides simultaneous access to two telephone lines. One can
be used for voice, and the other for either voice or data. This functionality is provided on a separate
board to reduce the cost of the base configuration and to accommodate the differences in internation-
al phone systems. This board has a dedicated interface that is not intended to support any other func-
tionality.

��� #� &� ���� ���	

�%�� ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���� ��� ��

3
3 SCSI

3.1 Introduction
SCSI (Small Computer System Interface) is a system level interface bus used to connect disc drives,
tape drives, and other I/O devices to a computer system. Numerous workstations today support this
bus standard, as SCSI is becoming the defacto disc interface standard. SCSI–1 consists of 8 bits of
data at up to a 4 MB/sec for synchronous transfer rate. SCSI–2, however, allows up to a 10 MB/sec
transfer rate with an 8 bit bus, up to 20 MB/sec with a 16 bit bus and up to 40 MB/sec with an extended
32 bit data bus.

3.2 Overview
The 712 I/O subsystem will support SCSI–2 specification and HPCS (HP Common SCSI) command
set. However, the 712 I/O subsystem will only support the 8 bit data bus SCSI configuration and will
support neither the 16 nor 32 bit data bus configuration.

The 712 built–in SCSI–2 port is implemented using a NCR 53C710 SCSI I/O Processor macrocell
inside the LASI chip, referred to as NCR 710 Macrocell. The NCR 710 Macrocell will be configured
in 8 bit single–ended SCSI–2 mode and, with a 40MHz SCSI clock, can transfer data at a maximum
data rate of 5 MB/sec on the SCSI bus.

The NCR 53C710 Host Bus interface contains a 32b DMA engine which supports burst transfer rates
up to 66 MB/sec, and a ”script processor,” which fetches its own commands and performs SCSI
transactions with minimal host processor intervention.

For a detailed description, refer to the NCR 53C710 SCSI I/O Processor Data Manual rev 1.0.

3.3 Features
� Full NCR 710 SCSI and ”SCRIPT” Compatibility

� SCSI–2 Single–Ended direct connection without external transceivers

� 40 MHz SCSI Clock (SCLK)

� Supports system frequencies up to 66MHz

� Snoop bit 1 SC[1] is connected for run time interrupt

��� #� &� ���� ���	

�%�� ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���� ��� ��

3.4 Signal Definitions
LASI supports the 8 bit Single–Ended SCSI–2 bus signals: scsd_L[7:0], scsdbp_L, scscd_L,
scsio_L, scsmsg_L, scsreq_L, scsack_L, scsbsy_L, scssel_L, scsatn_L, and scsrst_L.

The NCR 710 Differential Support Lines (14 signals) are not supported on the GECKO built–in
LASI pins.

Please see Appendix B: LASI Pin Definitions for detailed LASI signal list and LASI naming.

3.5 SCSI–2 Fast Single–Ended Support
The NCR 710 macrocell itself is capable of data transfer rates up to 10 MB/sec, however, LASI will
not support SCSI–2 Single–Ended timing at greater than a 5 MB/sec transfer rate. It may be possible
for very restricted configurations to run faster, but we have no plans to characterize or ensure this
operation.

3.6 SCSI–2 Fast Differential Support
The NCR 710 Differential Support Lines (14 signals) are not supported on the GECKO built–in
LASI pins. However, the NCR 710 Macrocell will contain the internal circuitry to generate these
signals for future macrocell applications. The NCR 710 Macrocell itself is capable of data transfer
rates up to 10 MB/sec in 8 bit Fast Differential mode. The rest of LASI and the GSC will be designed
to support 10 MB/sec data rates to allow for future LASI variants.

3.7 Clock Rates
Unlike the NCR 53C700, the 53C710 has separate clocks for the Host Bus Interface and the SCSI
Bus Interface. The host–side Bus Clock (BCLK) operates up to 33MHz. Lasi has a fixed 1/2 ratio
between its internal C710’s BCLK and the system clock, allowing system clock frequencies up to 66
MHz.

The SCSI Clock (SCLK) will operate at a fixed 40MHz.

3.8 NCR 710 Mode Bits
The NCR 710 Bus Mode Select (BS_L) signal will be hardwired to logic 0 (Synchronous
(68040–like) host bus mode). The Big/Little Endian Select (BIG_LIT_L) signal will be hardwired
to logic 1 (Big endian byte order).

3.9 NCR 710 Revision Code
The LASI chip NCR 710 Macrocell implementation is based on NCR 53C710 Rev. D (Rev. 4). The
chip revision field reported by the chip should be ”2”.

��� #� &� ���� ���	

�%�� ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
� ��� ��

3.10 Interrupts
LASI implements the Running Interrupt (or Interrupt–on–the–Fly Interrupt) in addition to the nor-
mal NCR 710 IRQ line. The logic equation for the NCR 710 Macrocell interrupt is:

NCR710_IRQ_L ==> IPR[9] (”normal” interrupt)
NCR710_SC[1]_L ==> IPR[21] (Interrupt–on–the–Fly)

IRQ is enabled through the NCR710 SIEN register.

3.11 Register Set
The SCSI Register Set as viewed from the GSC Bus is shown in Table 1.

All addresses in the memory map are specified relative to the relocatable Lasi base address. Byte
addresses are ”Big Endian” byte numbering mode (Byte 0 is most significant and on the left). Note
that this byte numbering is NOT consistent with the ”Little Endian” byte addressing used in the
EISA SCSI Host Adapter card (25525A) using the NCR 53C710. Bit numbering is ”Little Endian”
(bit 0 is least significant and on the right).

The GSC may access registers using byte or 32 bit word addresses. LASI does not require byte swap-
ping for registers which have more than one byte; the ASP chip used in the 720/730/750 systems did.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ���� �� ��

Table 1. SCSI Register Set

Address (Hex) 31 Bit Numbering 0Address (Hex)

Byte 0 Byte 1 Byte 2 Byte 3

000 SCSI Reset (W)

004 RESERVED

�

0FF RESERVED

100 SIEN (R/W) SDID (R/W) SCNTL1 (R/W) SCNTL0 (R/W)

104 SOCL (R/W) SODL (R/W) SXFER (R/W) SCID (R/W)

108 SBCL (R) SBDL (R) SIDL (R) SFBR (R)

10C SSTAT2 (R) SSTAT1 (R) SSTAT0 (R) DSTAT (R)

110 DSA (R/W)

114 CTEST3 (R) CTEST2 (R) CTEST1 (R/W) CTEST0 (R/W)

118 CTEST7 (R) CTEST6 (R) CTEST5 (R) CTEST4 (R)

11C TEMP (R/W)

120 LCRC (R/W) CTEST8 (R/W) ISTAT (R/W) DFIFO (R/W)

124 DCMD (R/W) DBC (R/W)

128 DNAD (R/W)

12C DSP (R/W)

130 DSPS (R/W)

134 SCRATCH (R/W)

138 DCNTL (R/W) DWT (R/W) DIEN (R/W) DMODE (R/W)

13C ADDER (R)

�

1FF RESERVED

3.11.1 SCSI Reset Register

Name: SCSI Reset
Address: Word 000, Byte 0
Access: Write Only

A write to this register causes a directed reset to the SCSI subsystem.

��� #� &� ���� ���	

�%�� ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���� ��� ��

3.11.2 NCR 710 Internal Registers

Name: See table.
Address: Words 100 to 13C
Access: See table.

Registers 100 to 13F are implemented inside the NCR53C710. See the NCR 53C710 Data Manual
for the definitions of each field within each register.

��� #� &� ���� ���	

�%�� ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ��

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� �� �
�

4
4 LAN

4.1 Introduction
The712 I/O Subsystem implements a local area network (LAN) to the 802.3/Ethernet standard.
Ethernet is a 10 Mbit/s packet–switched serial interface employing Carrier Sense Multiple Access/
Collision Detection (CSMA/CD).

4.2 References
� Intel 82596CA High–Performance 32–Bit Local Area Network Coprocessor

� Intel 82596 User’s Manual (Order Number: 296443–0001)

� Intel 82596 Data Sheet Supplement November 1989

� Intel Microcommunications Applications, vol. 1 & 2 (Order Number: 231658)

4.3 Nomenclature and Conventions
Note than an Intel “word” is 16 bits, and a PA–RISC word is 32 bits. For both Intel and GSC, bits are
numbered 31 (most significant) to 0 (least significant) from left to right.

4.4 Overview
The 712 built–in LAN is divided into two main physical blocks: the 82596 controller megacell and
the 82C503 (or equivalent) interface. The controller is a megacell implementation of the stand–
alone 82C596CA LAN controller from Intel. Please refer to the 82C596 documentation for detailed
explanations of megacell functionality.

Lasi will typically be used with the 82C503, an intelligent LAN interface transceiver which provides
both the MAU interface for conventional coaxial Ethernet and a direct interface to a twisted pair
10BASE-T network. This device will automatically detect whether a connection has been made to
the MAU or twisted pair port and auto–configure to talk only to that port. No programmable inter-
face will be provided in 712 to override the automatic selection. The automatic port selection capa-
bility will require the hub to be fully IEEE 802.3i–1990 compliant, providing the link integrity func-
tion as defined in the spec.

The LAN is also divided into two main functional blocks: the backplane interface to GSC and the
frontplane interface to the network cable. The 82596 megacell depends on the Lasi GSC Interface to
provide a proper backplane interface between the 32 bit multiplexed GSC bus and the non–multi-
plexed address and data busses on the megacell. The frontplane interface to the MAU and

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� �� �
�

10BASE-T connectors is provided by the 82C503. We advise the reader to consult the specification
for this device for further information.

The 82596CA has a four channel DMA controller which allows it to communicate directly with the
main memory via the Lasi internal bus and the GSC interface. The four channels are: CU (transmit
header), TXD (transmit data), RU (receive header) and RXD (receive data). Following is a brief
description of the shared memory model, repeated without permission from the Intel 82596 User’s
Manual, section 2.4.3. We strongly encourage the reader to consult this book for information about
the chip:

“To off–load the CPU the 82596 implements a shared memory communication sys-
tem with the host CPU. The 82596 and CPU do not communicate directly, but rather
through a shared system memory ’mailbox.’ This allows the CPU to place com-
mands in the mailbox, activate Channel Attention to notify the 82596 of delivery,
and return to its other processing chores. The 82596 checks its mailbox in response,
retrieves and interprets the commands, and executes them without further CPU inter-
action. After the 82596 completes its tasks it places the results in system memory and
updates the mailbox. Then the 82596 uses its interrupt line to notify the CPU of the
presence of return mail...”

For normal DMA operations, the Lasi GSC interface arbitrates for GSC on the 82596 megacell’s
behalf, manages the address valid/ready handshake, and synchronizes the address and data buses via
the transceivers.

4.5 Transaction Types
Apart from normal communication via shared memory, a limited number of operations directly to
the megacell are available:

Note: all addresses are stated relative to the relocatable Lasi base address.

4.5.1 Channel Attention

To issue a Channel Attention to the 82596CA, do a word write to the LAN Channel Attention Regis-
ter, at 008. No data is associated with this operation.

4.5.2 Port Access

The 82596CA’s “CPU Port” provides 4 functions:

� alternate System Configuration Pointer (SCP) address

� Dump command

� software reset

� self–test

Even though the megacell is in CA mode, the port accesses look like the part is in DX mode: the data
needs to be on the lower 16 bits of the data bus for both port accesses. This change should be suffi-

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���	� �� �
�

cient to make the CA mode look like DX mode to software, maintaining software compatibility with
previous 700 implementations.

The port is memory mapped. It is accessed via two consecutive 32–bit word writes to 004. This is
due to the fact that only 16 bits are read at a time on this port when operating in big endian mode. See
the 82596 User’s Manual, pp. 5–18:5–20 for instructions on how to encode the data.

4.6 Reset
The 82596 has a hardware reset, CPU Port reset (see Port Access section above), and a software re-
set. In addition, software can control the lan bit in the IO_RESET register at address offset
0x10C00C to force a hard reset of the LAN.

4.6.1 Consequences

Resetting the megacell does NOT trigger self–test.

4.6.1.1 Hardware Reset

The hardware reset causes the megacell to immediately cease all activity; the CU and RU become
IDLE and clear all internal requests.

4.6.1.2 CPU Port Reset

The CPU Port reset causes the megacell to immediately cease all activity and execute a software
reset.

4.6.1.3 Software Reset

The CU performs the following on recognition of a software reset:

� Terminates DMA activity.

� Writes zeros to the SCB Command word.

� Triggers a hardware reset.

4.6.2 Protocol

4.6.2.1 Hardware Reset

After power up, the 82596 requires a hardware reset. Lasi will automatically perform the reset as a
result of the PON signal (for a primary Lasi) or the GSC RESETL signal (for a secondary Lasi),
which by definition is asserted on power up. Code must wait for 10 system clocks and 5 transmit
clocks (20 processor clocks + 0.5 microseconds for 10 Mbit/sec LAN) before doing a Channel Atten-
tion after a hardware reset. The LAN subsystem hardware will not check for the proper interval.
Code can cause a hardware reset by writing to 000. This must be implemented by the Lasi GSC
Interface block. A Channel Attention following a hardware reset will cause the 82596 to access the

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� �� �
�

SCP, which is located by default at 0x00FFFFF4 (or at an alternative address selected via the CPU
Port). After Channel Attention the 82596 will read the sysbus byte and begin the initialization pro-
cess.

4.6.2.2 CPU Port Reset

For information on CPU Port operations, see Port Access section above. A Channel Attention fol-
lowing a CPU Port reset will cause the 82596 to access the SCP, which is located at 0x00FFFFF4 (or
at an alternative address selected via the CPU Port). After Channel Attention the 82596 will read the
sysbus byte and begin the initialization process. The CPU must wait for 10 system clocks and 5
transmit clocks (20 processor clocks + 0.5 microseconds for 10 Mbit/sec LAN) before issuing anoth-
er Channel Attention to the 82596. The LAN subsystem hardware will not check for the proper inter-
val.

4.6.2.3 Software Reset

A software reset is available through bit 7 of the control command word in the SCB. It can be used
after the 82596 has been initialized and has the ISCP and SCP addresses.

4.7 Interrupts
Lasi provides a uniform interface for all I/O interrupts, including LAN (see interrupt section of this
document). Interrupts are generated by one or more of the following events (from page 3–46 of the
User’s Manual):

� Execution of a Command Block with its I bit set (CX interrupt).

� Reception of a frame (RU interrupt).

� The CU becoming not active (CNA interrupt).

� The RU becoming not ready (RNR interrupt).

For more information about what these actually mean, consult section 5.3 of the User’s Manual.

For compatibility with existing drivers, LASI assumes that the interrupt line driven by the megacell
will be active low. It follows that the interrupt bit in the SYSBUS byte should be a 1. Also, since the
default for the interrupt line is active high after reset, interrupts should be disabled via the LASI in-
terrupt mask register during reset. They should be enabled only after the LAN has a chance to read
the SYSBUS byte in response to a CA. Otherwise, a spurious interrupt may be generated.

4.8 Programming Considerations
Note: Several errata have been discovered in the Intel chip and documentation. Some are mentioned
below, but firmware, driver and software writers are strongly encouraged to consult the errata sheet.

Note: the 82596 megacell will be utilized in CA mode within Lasi, as opposed to the DX mode opera-
tion for 720/730/750. Utilization of CA mode was chosen to allow access to the data burst mode
supported by the 82596 in CA mode only.

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� �� �
�

4.8.1 Endian Mode

The 82596 will be set to operate in big endian mode to be compatible with GSC. Programmers
should take care to consult the big endian sections of the various references.

4.8.2 Bus Size

The Lasi GSC Interface provides a 32 bit data bus to the LAN controller.

4.8.3 System Configuration Pointer

The SCP defaults to 0x00FFFFF4. If this is unacceptable given memory configuration and other
system parameters, firmware/software must write an acceptable value to the LAN Port Select (see
above) between reset and first Channel Attention. The reader is reminded that alternate SCP ad-
dresses must be divisible by 16. In addition, the SCP must reside in system memory. The Intel book
suggests putting the SCP in ROM, but in the 712, the ROM is on the Flash EPROM bus, and this bus
is only readable by the host. All data structures must reside in main memory.

Please make sure that any bits marked “x” in the SCP description are set to 0. Intel informs us that
the chip will not work otherwise.

As always, see the manual for more information.

4.8.4 Sysbus Byte

The sysbus byte must be located at 0x00FFFFF7, or at location n+1 if an alternative SCP is used.
Following is a discussion of the sysbus configuration byte. Please refer to section 5.4 of the manual.

4.8.4.1 Mode

Presumably, the 82596CA will be used in the linear mode. Set the bits accordingly.

4.8.4.2 Bus Throttle and Arbitration

In brief, this is how arbitration works: When the LAN needs the bus, it pulls its HOLD line. Based on
the core I/O priority scheme, Lasi arbitrates for GSC on the LAN’s behalf, then grants it the bus by
asserting HLDA. The 82596 then has the bus for as long as it wants, which in general should be less
than 5 �s.

By default, we will not use the bus throttle features. To do this, set the TRG bit of the sysbus byte to
1 for external bus release triggering. The external trigger is hard wired inactive. These two measures
in tandem with the Lasi arbitration mechanism allow the 596 to have the bus for as long as it needs to
finish all pending work. However, if during system testing it is discovered that the 596 hangs onto
the bus to the extent that it degrades system performance, it would be desirable to have an easy (i.e.
run–time) way of (1) enabling the internal bus throttle trigger by setting the TRG bit to 0 and (2)
configuring the 596 throttle registers.

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� �� �
�

4.8.4.3 Locked Cycles

The LOCK bit of the sysbus byte should be set to 0 to enable “semaphore” operations on UP-
DATE_ERR_CNTRS and RCV_RBD_PREFETCH.

4.8.4.4 Interrupt Pin Polarity

The INT bit of the sysbus byte should be set to 1 to force the INT pin to be active low.

4.8.4.5 Channel Switch Algorithm

Intel informs us that the CSW bit of the sysbus byte must be set to 1 for correct chip operation.

4.8.5 Performance Considerations

4.8.5.1 FIFO Vector

Although the 82596CA has large FIFOs, 128 bytes on receive and 64 on transmit, certain system
configurations may impose long bus access latencies on the LAN. The FIFO has a programmable
threshold. If the FIFO vector (note this is not the same as the threshold value) is set too high, the
megacell will frequently request the bus, thus causing inefficiency due to arbitration overhead. Re-
fer to section 7.3, Setting the FIFO Thresholds, in the User’s Manual. If it is set too low, the FIFO
may overrun or underrun before getting the bus. It is probable that some tuning will be required to
fully optimize performance.

4.8.5.2 Memory Organization

In general, simplified, linear memory structures aligned on 4 byte boundaries, and larger size for data
buffers, will tend to help LAN hardware performance, but at a cost to efficient memory utilization.

4.9 Station Nodal Address
A permanent copy of the LAN Station Nodal Address is kept in Flash EPROM.

4.10 LAN Memory Map
The memory map below does not include the address block referenced by the System Configuration
Pointer (SCP).

All addresses in the memory map are Write Only, are are specified relative to the relocatable Lasi
base address. To read internal state, execute the Dump command.

31 Bit Numbering 0

Address (Hex) Byte 0 Byte 1 Byte 2 Byte 3

000 Reset (no data)

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� �� �
�

004 CPU PORT_L Access – see sec. 5.4 of the 82596 User Manual

008 Channel Attention (no data)

�$ �� �
�� ����

�&�� �!�� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� !�� �
�

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���
� ��� ��

5
5 PARALLEL INTERFACE

5.1 Introduction
The Parallel Interface is an 8 bit parallel, synchronous interface commonly used for printers. The
712 hardware implementation has bidirectional capabilities compatible with PS2 standards, also
known to the world as Centronics(tm). The 712 hardware is also capable of interfacing to BiTronics
type printers which transmit status information back to the workstation. The Apollo CP300 (alias
Tektronics 4693D) raster copier (printer) is also supported. The HP Scanjet parallel port interface is
NOT supported on the 712 and cannot be supported, even through software handshaking.

This chapter is divided into two sections: the first covers the parallel port slave interface and the se-
cond describes the DMA controller used by the parallel port.

5.2 Overview
The PS2 and AT compatible features are controlled through Lasi. Lasi emulates most of the function-
ality of the WD16C522 parallel to provide a 720/730 compatible device driver/receiver interface.
Handshaking functionality required by CP300 products is provided by special hardware built into
Lasi. Lasi drives and receives all signals to/from the parallel port connector without intermediate
buffers.

5.3 Features
� Supports outbound host DMA

� Bidirectional non–DMA interface

� Supports Bitronics interface through software.

� Supports Apollo CP300 (aka Tektronics 4693) raster copier.

� 25–pin female DB25 connector (same as IBM PS/2)

� Recognizes both NACK and BUSY handshakes, independently or together

� Pull–up resistors on all lines

5.4 Addressing
All addresses within this chapter are offsets from the base address for each 4K block. The Parallel
slave registers, the DMA registers, and the DMA reset register each have a separate 4K block. The

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ��

abbreviations listed in the following table show the base address to be used for a given register.
Please note that the 4K base addresses listed in the table need to be OR’d with the Lasi Base Address
determined by the SPACE[1:0] bits.

Abbreviation 4K Base Address

dma 10_1000

slv 10_2000

drst 10_3000

Addresses in this document are always byte addresses. All addresses should be accessed with byte
transactions from the host. This allows backwards compatability with previous interfaces which
supported only byte accesses and also prevents unintended register modification. Lasi’s parallel in-
terface will properly handle 16-bit and 32-bit writes and reads but, because sparse decoding is used,
unintended actions could result.

For example, a 32-bit write to address slv+0x800 would put byte 0 data out on the parallel data lines
(and potentially start a full handshake depending on the mode selected), write byte 1 data to the status
register (this would be ignored), write byte 2 data to the Parallel Device Control register, and byte 3
data would be ignored. However, a 32-bit write to dma+0x400 would put byte 1 data into the Current
Count High Byte register as expected, but would also write to three other registers because many
registers have multiple addresses. In this case, byte 0 data would be written to the Current Address
register, byte 2 data would be written to the DMA Interrupt Logging register, and byte 3 data would
be written to the Current Address High Page register.

5.5 Power Up Reset
The following conditions are set during power up reset:

� All parallel interface state machine controllers in Lasi are reset.

� NSTB is High.

� NAFD (alias WRnRD, WR/nRd) is High.

� NINIT (alias NRESET, nRESET) is Low.

� NSLIN (alias NSLCT_IN, NSLCTIN) is Low.

� All Parallel Port Interrupts will be disabled.

� TDC1 is loaded with 1 �s count value.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ��

5.6 Quick Reference for Parallel Slave Registers

Register
Bit 7 6 5 4 3 2 1 0

Register
Abrev.
Name

Bit Val-
ue $80 $40 $20 $10 $8 $4 $2 $1Name

Address
$80 $40 $20 $10 $8 $4 $2 $1

ParReset slv+000 Reset (data value ignored).

ParData slv+800 DATA

ParStatus slv+801 Nbusy Nack pe slct Nerr Nint 1 1

ParDevCtl slv+802 1 1 NwrRd IrqEnb NSlin Ninit Autofd Strobe

— slv+803 Not Used (undefined)

ModeCtl slv+804 Mode[2] Mode[1] Mode[0] Biden fNstb 0 0 0

IECtlStat slv+805 dmaInt 0 NbsyInt Nack-
Int

ack-
Nbsy

peInt slctInt errInt

TDC0 slv+806 Timing Delay Value 0 (obsolete)

TDC1 slv+807 Timing Delay Value 1

5.7 Slave Register Descriptions

5.7.1 Directed Master Reset (Address slv+0x000)

Bit
Field

Name Write Effect Value on Read

7–0 Reset This has the same effect on the Parallel
Interface as the power up reset described
before except that the NSTB, NAFD, NI-
NIT, and NSLIN lines are not affected.
Software must initialize those outputs by
writing the appropriate bits in ParDevCtl
(slv+0x802) after a directed reset is in-
voked.

May be any value.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ��

5.7.2 Write/Read Data (Address slv+0x800)

Bit
Field

Name Write Effect Value on Read

7–0 ParData Write data direct to parallel port accord-
ing to handshake mode selected. There
are two ways of setting the port to write
mode:

1) Set the direction bit, Biden
(slv+0x804 bit 4), to 0.

2) Set slv+0x804 bit 4 to 1 and
slv+0x802 bit 5 to 0.

Note: Write to this address only when in
handshake Mode 0, 1, or 2.

Read data direct from parallel port. Biden
(slv+0x804 bit 4) must = 1 and NwrRd
(slv+0x802 bit 5) must = 1.

Note: Read used only when in handshake
Mode 0

NOTE: Writes to this register while DMA is in progress will be ignored, but reads will work
properly.

5.7.3 Parallel Port Status (Address slv+0x801)

Bit
Field

Name Write Effect Value on Read

7 Nbusy Ignored. returns 0 if the BUSY signal is asserted (high).

6 Nack Ignored. returns 0 if the NACK signal is asserted (low).

5 pe Ignored. returns 1 if the PE signal is asserted (high).

4 slct Ignored. returns 1 if the SLCT signal is asserted (high).

3 error Ignored. returns 0 if the NERR signal is asserted (low).

2 NINT Ignored. Returns 1.

1 Ignored. Returns 1.

0 Ignored. Returns 1.

���

Bit 2 was defined as NINT in the 720/730 documentation. With 720/730 this bit returns
a 0 if NACK had a low to high (trailing edge) transition, and reading the status register
will set this bit to 1. However, on 720/730 products this bit cannot generate a system
interrupt to the processor. A complete set of interrupt choices, including a NACK inter-
rupt with this functionality, is available in the “IE Control/Interrupt Status” register
(Byte Address slv+0x805), so this function is redundant. Furthermore, the “IE Control/
Interrupt Status” can be used to generate a system interrupt.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���	� ��� ��

5.7.4 Parallel Device Control (Address slv+0x802)

Bit
Field

Name Write Effect Value on Read

7,6 Ignored. Returns 1 for both bits.

5 NwrRd Direction control. Only significant if bi-
den = 1 (see Byte Address 4, bit 4). If 1,
direction is “input from device”. If 0,
direction is “output to device”.

Returns 1.

4 IrqEnb Ignored. (See note under status register
definition.)

Returns 0.

3 NSlin If 1, NSLIN = H. If 0, NSLIN = L. If signal at connector is high, returns 1.
Otherwise returns 0.

2 Ninit If 1, NINIT = H. If 0, NINIT = L. If signal at connector is high, returns 1.
Otherwise returns 0.

1 Autofd If 1, NAFD = L. If 0, NAFD = H. If signal at connector is low, returns 1.
Otherwise returns 0.0 Strobe If 1, NSTB = L. If 0, NSTB = H

If signal at connector is low, returns 1.
Otherwise returns 0.

���

With ASP, this register exists on a separate WD16C522 part. When ASP is in mode 1,
2,3, or 4, it writes to the WD part to change NSTB. This write forces NwrRd to 0, IrqEnb
to 0, Nslin to 0, Ninit to 1, Nafd to 1. At the end of the transfer, Nstb is 1. With Lasi,
NwrRd, IrqEnb, Nslin, Ninit, and Nafd will not change if an automatic handshake mode
is being used: their value will change only by writing this register. Nstb will be depen-
dent on the mode selected in the Mode Control register. If the mode is 1, 2, or 4, Nstb will
be high when no transfer is in progress. If mode 0 is used, Nstb will be dependent on this
register. Care should be taken to insure NSTB=H (bit 0=0) when the mode value is
changed, so no stray pulses occur on NSTB.

5.7.5 Mode Control (Address slv+0x804)

Hardware supports both DMA and non–DMA transfers for automatic handshake modes 1, 2, and 4.
Mode 3—the Scanjet automatic handshake mode—is not implemented in Lasi.

CAUTION: Changing modes before a previous parallel data transaction is complete may cause
unpredictable results. Software must always make sure previous transactions are
complete before changing modes.

�#��� �
�� ����

�%�� � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� �� ���

Bit
Field

Name Write Effect Value on Read

7–5 Mode Sets current mode. See the next table for
mode encodings.

Returns value written

4 Biden Bidirectional enable. If 1, data buffers
will accept data from device. If 0, data
buffers will drive data to the device.

Returns value written
3 Fstb Force NSTB pulse. When 1, forces

NSTB pulse to be low for the pro-
grammed delay period, i.e. NSTB H to L
transition is not conditional on BUSY=H.
Prevents deadlock condition for devices
which only return BUSY=1 when NSTB
makes a L to H transition (such as the
CP300 device in non–stream mode).

Returns value written

2–0 Ignored. May return either a 0 or 1.

Mode Reg Bits
Handshake Mode Mode Description

Bit 7 Bit 6 Bit 5
Handshake Mode Mode Description

0 0 0 Mode 0 No automatic hardware handshake.
Handshaking is under software con-
trol.

0 0 1 Mode 1 NACK pulse with not BUSY hand-
shake. Handshake is complete if
NACK pulse has completed and then
BUSY=L. DMA or non–DMA trans-
fers are allowed.

0 1 0 Mode 2 BUSY only handshake

0 1 1 Mode 3 Reserved

1 0 0 Mode 4 Stream mode. Automatic NSTB gen-
eration with no NACK or BUSY
handshakes. Hardware will make the
data setup, strobe duration, and data
hold times the same as determined by
the delay value programmed via
TDC1 (address slv+0x807).

1 0 1 Mode 0 see above

1 1 0 Mode 0 see above

1 1 1 Mode 0 see above

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���
� ��� ��

5.7.6 IE Control/Interrupt Status (Address slv+0x805)

Bit
Field

Name Write Effect (Interrupt Enables) Read (Interrupt Requests)

7 DMA
done

Enable interrupts for when DMA com-
pletes its block transfer. (Interrupt when the
whole pipeline is empty.)

DMA done has made a 0 to 1 transition, so
DMA has completed its block transfer.
This bit is cleared only by writing a zero
into it.

6 No effect. Returns 0.

5 Nbusy
Intr

Enable interrupts on BUSY trailing edge H
to L transition.

Busy H to L transition (not busy). This bit
is cleared only by writing a zero into it.

4 Nack
Intr

Enable interrupts on NACK trailing edge L
to H transition.

NACK L to H transition occurred. This bit
is cleared by writing a zero into it.

3 ack-
Nbusy

Intr

Enable interrupts when NACK transitions
from L to H and BUSY = L (not busy).

NACK L to H transition occurred and
BUSY = L. This bit is cleared only by writ-
ing a zero into it.

2 PE Intr Enable interrupts on any PE transition. The PE line has made any transition. This
bit is cleared only by writing a zero into it.

1 Select
Intr

Enable interrupts on any SLCT transition. The SLCT line has made any transition.
This bit is cleared only by writing a zero
into it.

0 Error
Intr

Enable interrupts on any NERR transition. The NERR line has made any transition.
This bit is cleared only by writing a zero
into it.

Logic exists to prevent losing interrupts. The following sequence demonstrates the interrupt logic
behavior:

1. Two or more bits of this register are set.

2. Two or more interrupts which are enabled in this register become pending.

3. The enabled Lasi global parallel interrupt register bit becomes active causing the inter-
rupt to be serviced by the host.

4. The host reads this register, clears the Lasi global parallel interrupt bit, and then chooses
to clear only one of the pending interrupts by writing that bit to zero in this register and
writing one(s) for the other pending interrupt bit(s).

5. Another interrupt edge for the other pending and enabled interrupt(s) will be generated to
the global parallel pending interrupt bit in Lasi immediately following the write to this
register.

Also, if an interrupt was pending but not enabled, and then the host enables that pending interrupt, an
interrupt edge will be sent to the Lasi global parallel interrupt register bit.

5.7.7 Timing Delay Counter 0 (Address slv+0x806)

This register provides backwards compatibility with products using the Asp chip. On these prod-
ucts, a bug fix required loading this register with a value based on the bus speed. For compatibility

�$ �� ���� �

�

�&�� �!�� ������	���
���	����� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� !�� ��

with kernel I/O drivers written for these systems, this register exists in the register map, but doesn’t
have any function.

Bit
Field

Name Write Effect Value on Read

7–0 TDC0 Ignored. May return any value.

5.7.8 Timing Delay Counter 1 (Address slv+0x807)

����

���� ���
	�����

�� �� ��

���
	����� ���
	�����

Figure 2. Parallel Data Timing

Bit
Field

Name Write Effect Value on Read

7–0 TDC1 A count value which establishes the mini-
mum data setup (T1) and NSTB pulse
(T2) times. Also establishes the data
hold time (T3) when in mode 4 (stream
mode). The same count value is used for
the T1, T2, and T3 periods.

Note: The NSTB pulse will be low for
the delay time programmed or the
time it takes for BUSY to become
true, whichever comes last.

Returns value written.

To compute the count value for this register, use the following formula:

<count_value> = (<desired_delay> – 200ns) / 50 ns

The “standard” for desired delay is typically equal to or greater than 1 x 10E–6 second (1 �s). How-
ever, other values may be chosen depending on peripheral/cable restrictions. Be sure to round up to
the next higher integer value to ensure that the timing is not under the minimum delay time required.
Some examples follow:

 calculated value = 8.6 ... round up to 9
 calculated value = 8.3 ... round up to 9
 calculated value = 8.0 ... use 8

At power up, the register will have a value necessary to insure a delay of at least 1 �s for each period
(T1, T2, and T3).

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ��

5.8 Parallel Port DMA Controller
The 712’s parallel port DMA controller emulates an EISA DMA controller by providing the same
register map and counter behavior. To simplify system verification and minimize area, the 712’s
parallel port DMA reads one 32–bit word from memory at a time and then releases the bus.

5.9 Parallel DMA Register Map

DMA Controller Register Map

Address Type Size
(Bytes)

Description

drst+000 write only 1 DMA Reset Register

dma+000 read/write 1 Current Address Register

dma+001 read/write 1 Current Count register

dma+008 read only 1 Status Register

dma+00A write only 1 Write single mask bit

dma+00B write only 1 Mode register

dma+00C write only 1 Clear byte pointer

dma+00D write only 1 Master Clear

dma+00E write only 1 Clear Mask register

dma+00F read/write 1 Mask register

dma+010 read/write 1 Fifo limit register (not used)

dma+087 read/write 1 Current Address low page register

dma+401 read/write 1 High Current Count register

dma+40A read/write 1 Interrupt Pending register

dma+487 read/write 1 Current Address High Page register

5.10 How Parallel Port DMA Works
The 712’s Parallel Port DMA controller transfers data from memory to the parallel port without dis-
turbing the CPU until the transfer sequence is complete. To start a sequence the DMA channel needs
to have a beginning address and byte count placed into the proper registers. Given that the mode
(read or write) is set up properly, DMA will start once the mask bit is reset. After the sequence is
complete, an interrupt will happen, the mask bit will be set, and the address and count registers will
be at their final value. This controller does not support chaining, so after each sequence the count and
address registers need to be reinitialized to their starting values.

The DMA controller does transactions by arbitrating for the bus, reading one 32-bit word, giving up
the bus, and then handshaking each needed byte out to the parallel device. The DMA controller nev-
er produces multi–word GSC transactions or writes to memory.

�#��� ���� ����

�%�� � �� ������	���
���	����� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� �� ��

5.11 Parity Errors and Bus Timeouts
If the 712’s Parallel Port DMA controller gets a parity error or bus timeout while mastering a transac-
tion, the transaction causing the error will be completed normally, but arbitration will be disabled so
no more DMA can be done. The Current Address register will point to the next address to be read
after the error. All of the data in the error transaction will be handshaked to the parallel device and the
Current Count register will have the value indicating the data just read had been processed; this
should help in the debug process.

5.12 Detailed Register Descriptions

5.12.1 Parallel DMA Reset Register

drst+000 (DMA_Reset) wo

This reset will reset all DMA state machines and clear all DMA registers to their “init” value. The
value written doesn’t matter: all that needs to happen is a byte write to this address. This register is on
a separate 4K page so the Current Address register can have an offset of zero in the “dma” page.

5.12.2 Current Address Registers

dma+000 (Current_Address) rw init: 0

This is a 16 bit register. The byte pointer indicates which byte is accessed on a read or write. On the
first access after reset, the byte pointer indicates to access the low byte. On subsequent accesses, the
byte pointer indicates to access the high byte. The byte pointer is reset by power on, by a write to
dma+00C (Clear_Byte_Pointer), or by a write to dma+00D (Master_Clear).

dma+087 (Current_Address_Low_Page) rw init: 0
8 bit read/write

dma+487 (Current_Address_High_Page) rw init: 0
8 bit read/write

The DMA current address is a 32–bit physical address constructed as follows:

32–bit Current Address Register

High Page– 8 bits Low Page– 8 bits Current Address– 16 bits

Each EISA DMA channel also has a 32–bit read–only Current Address register. The DMA controller
automatically increments the address after each transfer. The intermediate values of the address are
stored in the Current Address register during the transfer. This register is cleared (set to
0x00000000) after reset.

In EISA, the way to access the Base or Current Address register is very cumbersome. The address
register includes a 16 bit 8237 compatible segment (address 0000) which combines with the low
page segment (address 0087) and the high page segment (address 0487) to provide a 32–bit EISA
DMA address. Listed below is the procedure to access the address register:

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���
� ��� ��

1. CPU performs a write to the Clear Byte Pointer register (00C).

2. CPU performs an 8 bit read/write to the least significant byte (bit 7–0) of the register
000.

3. CPU performs an 8 bit read/write to the most significant byte (bit 15–8) of the register
000.

4. CPU performs a bit read/write to the low page segment (address 087) for Address regis-
ter bits [23:16].

5. CPU performs a bit read/write to the high page segment (address 487) for Address regis-
ter bit [31:24].

5.12.3 Byte Count Registers

dma+001 (Current_Count) rw init: FFFF

This is a 16 bit register. The byte pointer indicates which byte is accessed on a read or write. On the
first access after reset, the byte pointer indicates to access the low byte. On subsequent accesses, the
byte pointer indicates to access the high byte. The byte pointer is reset by power on, a write to
dma+00C (Clear_Byte_Pointer), or a write to dma+00D (Master_Clear).

Note that this register counts down to –1, so (Current_Count + 1) bytes are transferred during a DMA
transfer.

dma+401 (Current_Count_High_Byte) rw init:FF
DMA transfer length is specified by a 24 bit register:

24–bit Current Count Register

High Count– 8 bits Low Count– 16 bits

As a DMA transfer progresses, the transfer length is decremented by the number of bytes transferred
so far, and the physical address increments by the number of bytes transferred so far.

For the same reason as in the case of the Base and Current Address register, we fold the Base and
Current Word Count register into a single Byte Count register. This register is cleared (set to
0x000000) after reset.

The Byte Count register consists of two parts, the 16–bit 8237 compatible segment, and the 8–bit
high byte count segment. The two segments are mapped at different I/O address and must be pro-
grammed separately. Listed below is the procedure to access the Byte Count register:

1. CPU performs a write to the Clear Byte Pointer register. (000C)

2. CPU performs an 8 bit read/write to the least significant byte (bit 7–0) of the register
001.

3. CPU performs an 8 bit read/write to the most significant byte (bit 15–8) of the register
001.

4. CPU performs an bit read/write to the high byte count segment (address 401) for Byte
Count register bit 23–16.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��	�� ��� ��

5.12.4 DMA Status register

dma+008 (Status_Register) ro init: 00000001
Bit 0 is set whenever the terminal count is reached.
Bit 4 is set whenever the DMA channel is requesting servicing
the other bits are hardwired to zero.
Simulator notes: bit 4 can be wired to zero for simulation.

The DMA Status register contains status information about the DMA channels that may be read by
the CPU. The information includes which channels have reached a terminal count and which chan-
nels have pending DMA requests. In Lasi, we only support one DMA channel, thus only the status
bits corresponding to channel 0 will be reported.

bit 0 – This bit is set every time terminal count is reached. It is set whenever
the current–count register is FFFFFF. The reset state for bit 0
is 1.

bit 4 – This bit is set whenever the DMA channel is requesting
servicing. This bit will be zero when the requesting unit
(the parallel port) is reset.

bits 1, 2, 3, 5, 6, and 7 are hardwired to zero.

5.12.5 DMA Write single mask bit

dma+00A (Write_Single_Mask) wo init: 04

This register may be used to set or clear any mask register bit.
bit[1:0] – must both be zero to write this bit.
bit[2] – 0: Clear DMA mask bit

1: Set DMA mask bit (STATE AFTER RESET IS BIT 2 IS SET)

Examples:
A write of XXXXX000 clears the dma_mask_bit.
A write of XXXXX100 sets the dma_mask_bit and starts DMA transaction.
A write of XXXXXX10 has no effect.
A write of XXXXXX01 has no effect.
A write of XXXXXX11 has no effect.

5.12.6 DMA Mode register

dma+00B (Mode_Register) wo init: 01
bit[1:0] – must both be zero to write these bits.

 For example, 00001000 sets read transfer mode
 00001011 changes nothing

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��	�� ��� ��

bit[3:2] – Data Transfer Type
 00 No transfer DMA Disabled
 01 Write transfer
 10 No transfer DMA Disabled
 11 No transfer DMA Disabled

bit 4 – Lasi hardwired to 0: Disable Auto–initialization

bit 5 – Lasi hardwired to 0: Address increment select.

bit[7:6] – Lasi hardwired to 00: Demand Mode DMA transfer.

State after reset is 0x01: DMA is in write mode.

Examples:
A write of XXXX0000 disables DMA.
A write of XXXX0100 sets transfer type to write (Gecko to peripheral).
A write of XXXX1100 disables DMA.
A write of XXXXXX01 has no effect.
A write of XXXXXX10 has no effect.
A write of XXXXXX11 has no effect.
Bits 7–4 always read as zeros.

5.12.7 DMA Interrupt Logging Register

dma+40A (Interrupt_Log_Bit) rw init: 0

���

This single bit register is not implemented. Writes to this register will be ignored and
reads will return data from another register.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��	�� ��� ��

5.12.8 DMA Mask Register

dma+00F (Mask_Register) rw init: 00001111

This register is similar to DMA write single mask bit since we only have one DMA channel on Lasi.

Bit
Field

Name Write Effect Value on Read

7–4 – Ignored. Always read 0.

3–1 – Ignored. Always read 1 because that’s what EISA
would do if only DMA channel zero were
being used.

0 dma
mask

bit

0: Clear DMA mask bit. This will
start a pending DMA transaction.

1: Set DMA mask bit (after reset this
bit is set). Writing a one will stop
an ongoing DMA transaction.

Reads current mask value.

5.12.9 FIFO Limit Register

dma+010 (FIFO_Limit_Register) rw

���

Writes to this register are ignored and reads may return any value on the 712. This regis-
ter is defined but not implemented, allowing compatibility with the 720/730 and with
any future products that use a FIFO.

5.12.10 DMA Clear byte pointer

dma+00C (Clear_byte_Pointer) wo init: byte pointer = 0.

The Clear Byte Pointer command clears the internal latch used to address the upper or lower byte of
the 16–bit address and word count register. The latch is also cleared at power–on and by DMA con-
troller Master Clear command. For details, please reference to EISA spec 3.1.8. The value written
doesn’t matter: all that needs to happen is a byte write to this address.

5.12.11 DMA Master Clear

dma+00D (Master_Clear) wo init: no value

A write to this address clears the byte_pointer and sets the dma_mask_bit.

The Master Clear instruction clears the command, Status, and Request registers, sets the Mask regis-
ter to disable DMA requests and executes a Clear Byte Pointer command. The value written doesn’t
matter: all that needs to happen is a byte write to this address.

5.12.12 Clear Mask register

dma+00E (Clear_Mask_Register) wo init: mask register = 1.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��		� ��� ��

A write to this address clears the dma_mask_bit. The clear mask register command enables the DMA
channel by clearing the mask bit. The value written doesn’t matter: all that needs to happen is a byte
write to this address.

5.13 Typical DMA Sequence
This is what needs to be done to start a DMA sequence. Remember all the writes are byte writes to
DMA control registers in I/O space.

;
; Assemble 32 bit physical address for base of transfer
;
Write Clear_Byte_Pointer
Write Current_Address (low eight bits)
Write Current_Address (high eight bits)
Write Page_Low
Write Page_High
;
; Assemble 24 bit transfer length
;
Write Clear_Byte_Pointer
Write Current_Count (low eight bits)
Write Current_Count (high eight bits)
Write High_Count
;
; Set DMA direction
;
Write Mode_Register
;
; Clear DMA mask bit
;
Write Mask_Register

When the DMA mask bit is cleared, dma+008{0} is set to 1. If the parallel port DMA enable bit is set,
DMA transfer starts. If the parallel port DMA enable bit is clear, the DMA transfer waits for the
parallel port DMA enable bit to be set before starting.

Once the DMA transfer is complete:

� dma+008{0} is cleared to 0 (DMA in progress)

� dma+40A{0} is set to 1 (DMA mask bit)

� dma+40A{0} is set to 1 (DMA interrupt bit)

� dma+805{7} is set to 1 (parallel DMA terminal count)

� If dma+008{7} is clear, dma+008{7} is set and an external interrupt request is forwarded
from Lasi to Bigbird.

Also, the parallel port handshake interrupt bits (BUSY, Nack 0–>1, etc) may be set as appropriate for
the current handshake.

�#��� �
�� ����

�%� � � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��	
� �� ���

5.14 EISA Compatibility
The 712’s DMA controller used the EISA specification as a guide for its original definition. This
DMA controller acts like DMA channel zero of an EISA system. Using this model results in an indi-
rect register model for directed reads and writes to control ports. An example is the byte pointer used
to access the most significant byte of the address and count registers: the byte pointer allows 8–bit
reads and writes to access a 16–bit register from one byte address. EISA is uses this scheme because
the 8–bit Intel 8237 DMA controller was popular in the evolution of the PC–AT. Unsupported reads
will return junk data with correctly set parity, while unsupported writes may do unpredictable things.

Here is a summary of known differences between the EISA specification and Gecko’s internal DMA
controller:

The FIFO:
THe 712’s DMA channel does not have a FIFO integrated with the DMA controller.
However, for compatibility, a FIFO limit register is placed onto the same 4K page as
the EISA like registers of the DMA controller. Because this register exists on this
page, the register address map is not exactly the same as that of an EISA system.

No Chaining:
To support DMA buffer chaining and autoinitialization, each EISA DMA channel
has a 32–bit write–only Base Address register that is programmed with the base ad-
dress for DMA transfer. The register does not decrement or increment.

In order to simplify the design, no attempt will be made to support the DMA buffer
chaining and autoinitialization for Parallel Printer Interface DMA due to its low data
transfer rate (maximum at ∼400Kbytes/sec). Thus, inside Lasi, the Base Address
register and the Current Address register are folded into a single address register.

The write–only Base Address register and the read–only Current Address register are
accessed through the same address. When you write to the combined Current/Base
address, you write to the base address register. When you read from that address, the
value you get is the Current Address register. The same holds for the Current Count
registers.

No Auto–reset of Address/Count registers:
Writing to the less significant Address/Count register bytes automatically clears the
high bytes on an EISA system. Gecko’s DMA controller doesn’t do this; it’s address
and count registers are straight read and write registers.

Read/Write mode:
For the 712’s parallel port, “write mode” is defined as writing to the parallel port and
reading from memory. In an EISA DMA controller, “write mode” means write to
memory, and “read mode” means read from memory.

5.15 Testing
Testing the Parallel Printer Interface can be accomplished by attaching a Centronics Test Hood Box.

�0*#� 	��� 	��

�2%� �+�� ���

��

�	���	�	
� ���� �0".3./#)� ���� � �#1� 	�� �!%#� ����� +$� 		�

5.16 Timing Examples
The below diagram shows output to the peripheral. This wave pattern could have been generated by
host writes or by DMA.

�������+./��-��

����������+./��-��

����������

��� ���#-',&#-!(��-��

�������#-',&#-!(��-��

Start of next xfer.

End of Last xfer (NACK pulse finished and Not BUSY) .

Start of current xfer. (DATA setup time will be the same as
NSTROBE pulse width time).

NSTROBE standard min. width
1�s, handshakes with BUSY.

End of current xfer.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��	�� ��� ��

����"��%� ���� �

	

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��	�� ��� ���

6
6 AUDIO/TELEPHONE

6.1 Introduction
Harmony is a Time Domain Multiplexed (TDM) subsystem that communicates with the audio and
telephony circuitry of the 712. Audio for the 712 is similar to, and software compatible, with the
audio circuitry of early 715s. Therefore, the driver and API developed for past products will be le-
veraged in the development of the Harmony driver and API.

6.1.1 Audio Description

Although the audio for the 712 is similar to the features of other products, the 712 is the first to incor-
porate telephony into the workstation. This option allows the user complete and simultaneous access
to two telephone lines for the purpose of voice or data applications. Harmony is designed to support
both analog as well as ISDN telephone. Analog telephone is supported through the use of a character
channel TTY interface, and ISDN is enabled with the addition of an ISDN DMA channel. The heart
of the audio system is the CODEC (coder–decoder). The 712 will be able to use either the CS4215 or
the AD1849. Both of these CODECs are similar in functionality, but not identical. However, Har-
mony is designed to work with either interchangably. One of the main points of difference between
the two parts is in the CODEC loopback mode (not to be confused with either audio loopback mode,
ISDN loopback mode or any one of the three TTY loopback modes available). This is a feature that
will be avoidable through software fixes.

The CODEC combines CD and DAT quality stereo A/D converters for microphone and line input
levels, as well as D/A converters for driving headset and line outputs. The input sampling rate and
format are programmable, as are the input gain control (used for software control of recording lev-
els) and output attenuation. The output attenuation is suitable for headset volume control. It is also
possible to mix incoming audio with the outputs, thus allowing the user to monitor whatever in-
formation they may be recording. In terms of the physical audio connections, Harmony supports the
following audio inputs and outputs, but the user must recognize that only one input may be used at a
time:

� Mono microphone input

� Stereo line input

� Mono speaker output (not externally available)

� Stereo headphone output

There will be a single output jack provided with this product that provides headset output. Although
this output is capable of driving 8 Ohms, it can also be used for higher impedance devices with little
or no additional distortion, thus a line level input can be driven by the headset output. Playback and

��� #� &� ���� ���	

�%� � ���� ������	���
���	����� ���� �#�!&!"��� ���� � ��$� ��� ����� ��	
� ��� ���

recording of audio are real-time processes, and they must operate at a constant rate. They are some-
times described as isochronous, which means they are constant with respect to time. Most processes
running on workstations need not be isochronous, and if the system is more heavily loaded they will
run slower. That can not be allowed to happen to audio, because users will not tolerate random
pauses (or stutters) in audio. To guarantee that audio will get data in an uninterrupted flow, Harmony
uses DMA to get data to and from memory. The audio driver will lock a portion of physical memory
as a buffer for audio data and then inform Harmony where to get and store the data. Harmony will
only receive one physical page address at a time for both playback and record, so an interrupt driven
process is used to ensure that the driver will provide a new page address when Harmony needs it.
Harmony initiates the interrupt in advance so the new address will become available before the data
from the current page has been exhausted, therefore, Harmony has a register for the current page as
well as one for the next page. The driver will always write the new page address in the register that
contains the address for the next page.

Harmony is designed so that playback and record function simultaneously. Unless the DMA inter-
rupts are turned off entirely, the system is continuously sourcing and sinking data for the audio. If
audio is being used in only one direction, say to record, the driver will be written so it preprocesses
data and gives Harmony an address of memory that contains null information so that known data is
being sent to the CODEC.

6.1.2 Telephony Description

The telephony subsystem will be composed of two complete telephone interfaces that could possi-
bly be configured with one being devoted to voice applications, and the other could be equipped with
V.32bis data modem and fax. A separate card will be available that offers the user basic-rate ISDN.
In addition to the previously features mentioned, the released version of Teleshare will include

� Caller ID

� Call Waiting

� Call Forwarding

� Conference Calling

� Data Rate Conversion and mixing

� Call Recording and Voice Mail

� A multitude of DTMF–based applications

The flexibility and robustness of this system are based upon a Digital Signal Processor (DSP) archi-
tecture. Each phone channel is equipped with an AD2105 fixed-point DSP and SRAM, which lends
to such flexibility. If both phone channels are loaded with sufficient memory, they will both be en-
abled to perform the data modem applications. The majority of software that will be used by the
telephony card is tightly coupled with the audio, in fact, all audio data will pass through the telepho-
ny data path before it is presented to the CS4215.

Communication between Harmony and the audio/telephony subsystem will take place over a modi-
fied Concentration Highway (CHI) bus whose basic structure is defined in the CS4215 data sheet.
Essentially, this bus is composed of a transmit wire, receive wire, frame clock, bit clock and data/

����"��%� ���� �

	

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��	
� ��� ���

ncontrol wire. When the telephony card is not inserted into the system the sole communication is
between Harmony and the CS4215, however, once Teleshare is in place, data flows to both Teleshare
and the CS4215 depending upon the mode of operation. During the time when control information is
being sent to the CS4215, Harmony sends information directly to the CODEC and Teleshare is tem-
porarily disabled. When the mode of operation changes from control to data, Teleshare becomes the
sole communicator with Harmony and the CS4215 receives all of its data indirectly through Tele-
share. This multi–mode operation is necessary and implies that the audio server always maintains
control over the CODEC and does not allow the telephony subsystem to arbitrarily change the sam-
ple rate and width on its own. The reason Teleshare is not allowed to have independent control over
the CODEC due to the fact that Lasi generates the two primary clock frequencies that are sent to the
CODEC. If the correct frequency is not provided to the CODEC, unexpected results may occur. The
only way to guarantee proper operation is to force the audio server to alter the control information
held by the CODEC. In addition, the multi–mode operation also forces buffers to be inserted be-
tween Lasi and the CODEC that always connect the two paths together during control mode and that
conditionally disconnect the paths during data mode when Teleshare is present.

6.2 CHI Communication
Viewing Harmony as a software model, the audio section is composed of two DMA channels, one
going to and one coming from the CODEC. This portion of the circuitry provides the real-time audio
data. The telephony portions of Harmony are seen as two TTY ports and two DMA channels that are
similar to the audio DMA channels. The TTY channels independently send and receive data and
commands to and from Teleshare. The TTY ports emulate the majority of the functions present in
the description of a WD16552, except for a few line status functions (i.e. parity error, framing error
and overrun error), but the TTY ports are complete with dual 16–byte fifos. Contrary to the audio
DMA channels, the two character channels are NOT isochronous connections but are interrupt driv-
en, indicating much system overhead is required to service every TTY–generated interrupt. The
ISDN DMA channels are similar to the audio DMA channels in that they utilize two addresses simul-
taneously in addition to storing the next input and output addresses for future use. The ISDN DMA
channels do not have fifos associated with them but rely on the fact that a DMA must be completed
within 125uSec within the time it is requested.

As described in the previous section, the CHI bus operation depends on the mode of the CODEC and
the presence of Teleshare. If it is in control mode the CHI bus operates as defined in the CS4215 data
sheet. If the CODEC is in data mode and Teleshare is not present the same holds true. However, once
Teleshare is inserted in the system and the CODEC is in data mode the CHI bus seen by the CODEC
is directly connected to Teleshare and disconnected from Harmony, and the CHI bus seen by Harmo-
ny is also a separate connection to Teleshare and disconnected from Harmony. This allows com-
pletely independent operation of the two busses.

A description of the CHI bus seen by Harmony is given in this section for data mode when Teleshare
is inserted in the system. The CHI bus is composed of a frame clock, bit clock, transmit wire and
receive wire. The transmit and receive data is time multiplexed onto their appropriate wires based on
the occurrence of a frame sync. The frame sync rate is equal to the sample rate of the CODEC and the
bit clock is independent and sourced by Teleshare. The redefinition of the CHI bus seen by Harmony
is as follows:

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��
�� �� ���

� The first 64-bits immediately following a frame sync is as defined
in the CS4215 specification; it contains information for the
CS4215.

� All subsequent information preceding the next frame sync is either
TTY or ISDN related and is transmitted in groups of 16 bits that
are referred to from here on as Tframes. Each Tframe is specified
by an address and a type field that indicates its purpose and
destination.

� During data mode Teleshare generates the frame sync and clock
signals seen by Harmony. The CS4215 receives its data directly
from Teleshare and not from Harmony, consequently, it may operate
at an independent clock rate from that of Harmony.

� In order to alleviate extra crystal requirements for Teleshare,
the frequency of the bit clock that is sourced by Teleshare and
seen by Harmony will be 13.824 MHz because it has this frequency
already available to it, however the bit clock used for communica-
tion between the CODEC and Teleshare will be strictly determined
by the sampling rate and is sourced by the CODEC.

� Since the data rate of the CHI bus and the CODEC will not coin-
cide, a frame sync does not have to be issued at prespecified
intervals but is issued based on the data demand of the CODEC.
Therefore, fewer frame clocks are seen while the CODEC is operat-
ing at 8KHz than while it is operating at 48KHz.

� Tframes are continuously transmitted until data is required by the
CODEC. At this time a frame sync is issued and CODEC data is
transmitted.

� The Tframes are sent most significant bit first and their makeup
is as follows:

TTY Frame Format

�	 ��

����

��

��
	

��

���

�

�����������

���

��

� addr: Three address bits indicate which port is sourcing the forthcoming data/control byte.

� type: Three bits of type indicate what type of data is being sent for the current address.

� RDL: Active low Ready for Data. One bit is sent by each end of the CHI bus indicating
if it is able to accept data for the address previously sent. Recall that a frame is being re-
ceived at the same time this frame is being transmitted. Consequently, Harmony will re-
ceive a bit indicating if it can continue to send the frame shown above. Harmony also trans-
mits a bit to Teleshare indicating whether or not it is able to accept the byte being sent by
Teleshare.

� Data: Eight bits of data or control compose this field whose definition is determined by
the first two fields sent in the transaction.

List of CHI addresses supported by Harmony

Address Data Src/Dest

000 TTY Port 0

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��
�� �� ���

001 TTY Port 1

010 ISDN Byte

111 Telebyte

List of CHI types supported by Harmony

Type Function

000 TTY Control
Telebyte LSB

001 TTY Data
Telebyte MSB

010 Divisor LSB

011 Divisor MSB

111 Idle

CHI Address Desciptions

� TTY Ports 0 and 1: Information sourced or sunk and can be either data or control type.
The information is in reference to one of the two TTY ports resident inside of Harmony.

� ISDN Byte: A bidirectional character that originates from or is going to system memory.
An ISDN transaction is always originated by Teleshare. Harmony transmits one ISDN byte
in response to every ISDN byte received.

� Telebyte: This transmitted byte of data is for use by Teleshare. The definition of these bits
is not known by Harmony and does not affect its design. These two bytes of data are ac-
cessed by writing to the location defined as the scratch pad register in a 16C552 data sheet.

CHI Type Descriptions

� TTY Control / Telebyte LSB: This type applies to addresses 0, 1, and 7. In the context
of a TTYaddress it is control information as described in a paragraph below. When this type
is associated with address 7, it is originated by TTY port zero.

� TTY Data /Telebyte MSB: Similar to the above definition only it refers to data for TTY
channels and indicates a Telebyte from TTY port one.

� Divisor LSB: Least significant divisor byte from either TTY address 0 or 1.

� Divisor MSB: Most significant divisor byte from either TTY address 0 or 1

� Idle: Transaction is invalid but does contain a code identifying the version of the installed
telephony card.

Makeup of Control Byte Sourced by Teleshare

�
� 	�

��
�

�� �

	��

	�
���
	� ��� �	���� ���

� CTSL: Active low Clear To Send bit received from Teleshare.

� DSRL: Active low Data Set Ready bit received from Teleshare.

� RIL: Active low Ring Indicator bit received from Teleshare.

� RLSDL: Active low Received Line Signal Detect received from Teleshare.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��
�� �� ���

� BRK: Break Signal received from Teleshare.

Format of Control Information Sourced by Harmony

� 	
 ���

��

�
�	 ���

�

�
�	
��
�� ��
�����
	

� RING_ASRTL: Ring Assert is sent to Teleshare, sourced by Modem Control Register.

� DTRL: Data Transmit Ready sent to Teleshare, sourced by Modem Control Register.

� RTSL: Request To Send sent to Teleshare, sourced by Modem Control Register.

� BRK: Break Interrupt signal sent to Teleshare. sourced by the Line Control Register.

The CHI bus definition has been reorganized to take full advantage of the bandwidth that is available
on the CHI bus. If a data addressing scheme were not used, the definition would have to revert back
to time slot addressing where one device has a predefined time slot for communication. This is a
viable alternative and conforms to the true definition of the CHI bus as defined by AT&T, but it also
potentially wastes a large portion of the bandwidth that is available on the bus. A data addressing
scheme theoretically can utilize all of the available bandwidth if either none of the other devices have
information to provide or if their information is not needed.

6.3 Harmony Architecture
The following block diagram gives the reader a clearer picture of the Harmony architecture. This
diagram details the internals of Lasi and does not include any description of the telephony subsys-
tem. There are two DMA channels and two TTY channels. All data intended for the Audio DMA
channel flows through the CODEC control block, FIFO, DMA-channel pathway, while all TTY and
ISDN DMA related data is parsed by each individual TTY/ISDN block in conjunction with the TTY
Serial Output Control section.

6.4 Audio Software Interface

6.4.1 Base_Offset

Since Harmony uses DMA to transfer data, it masters the Lasi internal bus for that operation. How-
ever, it must be initialized in slave mode. In slave mode, Harmony is hard wired to the following
address range:

0xF010 4000 – 0xF010 4FFF

In the rest of this document, the start of that address range will be referred to as Base_Offset. All
addresses pertaining to Harmony in slave mode will be relative to this Base_Offset, even if that is not
explicitly specified.

In this document, the term word will mean a 32 bit quantity. A half word is 16 bits and a byte, as
always, is 8 bits. All registers in Harmony are 32 bits wide, although some of the bits may be unused.
Byte and half word accesses to all registers are supported by Harmony.

�# +.�+1� ���� ���	

�0%� �*�� ������	�������	�
��� ���� �. ,1,-#(� ���� � �#/� ��� ��%#� ��
	� *$� ���

�."&*
���

�#%&,-#+�
�)-#+$�!#

����,

���� ����

�����
�)"�
���

�*)-+*'

�����.,

�."&*

Figure 3. Harmony Block Diagram

�����
���

����

Serial Output Control

6.4.2 ID register (Address: 0x000)

This register allows software to distinguish Harmony from other audio sub--systems, specifically
the voice quality audio subsystem on the 710. The 710 only implements a single byte ID at address
0x001, so it is recommended that the driver should distinguish between the two audio devices using
that byte alone. Byte 2 is read back as the Teleshare identification. These bits will become valid
following the completion of the first audio frame generated by the CODEC after powerup.

ID register
	� �

����� ��

� ID: Reads 0x0014 0000 when Teleshare is not installed. Writes are ignored.

� ID: Reads 0x0015 X000 when Teleshare is installed. Where X are Teleshare identification
bits sent across the CHI bus on every idle transaction following the first audio frame. In
order to obtain the Teleshare identification bits one must first write a control word to offset
address 0x008 and then wait for control mode to complete and for the first audio frame to
be transmitted. At this time the identification bits are transmitted by Teleshare.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��

� �� ���

6.4.3 Initializing the CODEC

The CS4215 CODEC requires a 50 ms reset once after power up to guarantee proper operation.
Since the Gecko reset signal is not nearly this long, help from software is required to create a 50 ms
reset, using the RESET register. At power up, the LSB of the RESET register will be 1, which as-
serts reset to the CODEC. When at least 50 ms have elapsed since power up, software must write a 0
to this bit. Obviously, no audio can be played until this time. Reading any register and writing RE-
SET and GAINCTL registers are the only legal operations while the reset bit is 1. If it is necessary to
reset the CODEC at any other time, software can write a 1 to the RESET bit, wait 50 ms, and then
write a 0 to the RESET bit. Note that it is best to initialize GAINCTL register before clearing the
RESET register.

RESET register
	� �

����� �����

�

������

� RESET: Powers up as 1, which resets the CODEC. Writing a 0 brings the CODEC out
of reset. This bit can be read back.

� Unused: Writes to these bits are ignored. Always read back as 0s.

The next step is to put the CODEC in the control mode to setup operating parameters such as the
sampling rate and the data format by writing the desired parameters into the control (CNTL) register.
A write to this register will automatically put the CODEC in control mode. The part indicates that
condition by setting the MSB of this register, which is a status bit. It will remain set as long as the
CODEC needs to stay in control mode for proper initialization. This status bit will be cleared by the
hardware when the CODEC gets out of control mode and is ready to record and playback. Software
may write to this register as often as necessary, but playback and recording must be stopped be-
fore this register is written. This means that PC and RC bits of DSTATUS register must be 0s
when this register is written. (DSTATUS register is defined later in this document.) Also, to
avoid creating any pops or clicks, it is best to reduce the volume of the audio outputs to the minimum.

CNTL (Control) register

0x008
	� �

��

	

��	

�

����

�

	
�

�
��

��

	� ��

�����

��

��

���	

��������������

�� �
�����

��������������

�� �

� C: Control status bit. Indicates that the CODEC is still in control mode, and not ready for
data. A write to any portion of this register will always set this bit, regardless of the data.
It will be cleared when the CODEC is ready for data. When this bit is set, register reads
are the only legal operation on Harmony. In other words, after you write this register
(thus setting this bit), you must wait for this bit to be cleared before you start playback
/ record or even write any register. Power up value: 0.

� Rev[7:0]: Revision number of the CODEC that is being used. These bits are read only.

� Unused: Writes to these bits are ignored. They always read back as 0s.

� Exp[3:0]: Used for future definition expansion of the CODEC and correspond to control
bits 17, 9, 8, and 3 respectively.

�# .1�.4� 	
�� 	���

�3%� �,�� ���

�����
	���	�	
� ���� �1 /4/0#*� ���� � �#2� 	�	 ��%#� ���
� ,$� 		�

� nAC: Inverted value of this bit sent to CODEC to establish compatibility with AD1849
CODEC. This bit induces automatic calibration immediately following positive assertion
of dnc bit.

� nAD: Inverted value of this bit sent to CODEC to establish compatibility with AD1849
CODEC. This part requires this bit of the control word to be high.

� OLB: Output Level Bit. When set reduces headphone full scale output to 2.0 Vpp.

� ITS: The Immediate Tristate Bit forces the CODEC to immediately tri–state its clock
lines when dnc goes low.

� LS: Loopback select. Used for diagnostics only. The table below describes the types of
loopback possible. Recall the loopback functionality varies between the two CODECs

�� ���	�

� �

�����

� �,�),,- �!(

	 �,,- �!(� 3'0&'+� ��.*,+4

 �'%'0�)�),,- �!(� '+� 0&#� �����

� �+�),%�),,- �!(� '+� 0&#� �����

� DF: Selects one of three data format listed below.

�� $,.*�0� /#)#!0#"

� 	�� '0�)'+#�.

	 �� '0� �5)�3

 �� '0� �5)�3

� �#/#.2#"� � �+#2#.� 1/#� 0&'/� 2�)1#�

� ST: Stereo select. A 1 selects stereo, a 0 selects mono. In mono mode playback, both chan-
nels will be driven with the same data. For mono mode recording, the signal on the left
channel will be recorded. When recording from the microphone in stereo mode, both chan-
nels will contain similar data since the microphone is monophonic.

� XS: Crystal select. The only valid values for these bits are 01 and 10. This field, in con-
junction with the next field, determines the sampling rate.The least significant XS bit is sent
to the Lasi phase–locked loops for determining the CODEC crystal frequency.

� SR: Sampling rate. The following table shows which sampling rate (in kHz) is selected
for a given 5 bit value of XS and SR. Remember that values beginning with 00 or 11 are
illegal. Values 01100 and 01101 are also illegal. That leaves 14 valid sampling rates how-
ever, software is strongly discouraged from supporting them all. For future hardware com-
patibility, only the rates that are required by our customers should be made available
through the API.

���$'�$*� ���� ���	

�)�� �#�� ������	�������	�
��� ���� �'�%*%&�"� ���� � ��(� ��� ����� ��
�� #�� ���

���� �� �	���
� �	�
 ���� �� �	���
� �	�

����� �� �+ ����� ������� �+

����� ��� �+ ����� ������� �+

����� �
�
���
� �+ ����� ����� �+

����� 	�� �+ ����� ������ �+

����� �!!���! ����� 	
��� �+

����� �!!���! �����

��� �+

�����
�� �+ ����� 		��
�� �+

����� ���� �+ ����� ������ �+

6.4.4 Playback and Recording

The basic idea is that the driver will start the audio hardware on one physical page and chain to new
pages as the hardware goes along. The chaining will be accomplished by hardware interrupts. To
guarantee that the hardware does not run out of pages of memory, the software must provide the ad-
dress of the next page ahead of time. Therefore, the hardware will keep two physical page addresses,
one for the current page, and another for the next page. Every time the hardware finishes a page, it
will jump to the next page address and interrupt the host so that it can provide a new next page. When
hardware jumps to the next page, its address will be transferred from the next page register to the
current page register. Thus, the driver will only write to the next page register. The current page
register will be read only. When the circuit is inactive, interrupts will be disabled. To start the audio
process from that state, software will first enable interrupts. An interrupt will occur immediately
since the next page address register does not contain a valid address. The interrupt service routine
will write the next page address, which will immediately be transferred to the current page address
register. Another interrupt will immediately take place, because the next page address needs to be
setup again. When that interrupt is serviced, everything will be in steady state and things will prog-
ress normally. To end this process, software will simply disable interrupts after the addresses for the
last page of playback data and the last page of recorded data have been supplied to Harmony.

The above discussion applies to both playback and recording. The only distinction between the two
is that in playback the pages supplied to the hardware will have been initialized with data to be
played, whereas in recording the pages will not be initialized by software. The hardware will write
the recorded data in these pages and software will read them later. Of course, there are two pairs of
address registers, one for playback and one for recording.

The format of the DMA data in memory will depend on the values chosen in the Control register.
The specific formats will be described later in the document.

������ ��	�
	��� 	��� �
�������� 	�
� �����������

To minimize complexity in hardware, playback and recording are synchronous in Harmony. How-
ever, the software interface is designed to allow a future design in which playback and recording are
asynchronous. In this context, synchronous means that the DMAs for playback and recording will be
started and stopped simultaneously. Also, when Harmony masters the bus, it will usually transfer the

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��

� ��� ���

data for playback as well as recording in the same mastership. To initiate DMAs in Harmony,
software must write the address for playback first, and then the address for recording. The
second transaction will initiate DMA for both playback and recording. On an interrupt, the DMA
status register (described later) should be checked to see if a new address is required for playback or
record or both. In Harmony, since playback and recording are synchronous, both will require a new
address at nearly the same time, however, it is recommended that software check the bits individual-
ly and provide data only for the bit that is asserted. This will ensure that existing software will be
compatible with any future hardware that allows playback and recording to be asynchronous. Such
hardware would start each DMA independently when the associated address is written. Obviously,
the old software can not use the extra flexibility, but new software could then be written to do so. In
the meanwhile, the old software would still run on the new hardware.

������ �
�
�
��

The system software for audio will implement a metering function for audio that is being recorded.
The purpose of this function is to allow the user to adjust the recording level. Metering works well
only if the latency for the entire system, from the analog input to the actual display, is small. Other-
wise, users will notice that metering is out of sync. Ordinarily, in a DMA based approach, when
software asks hardware to write data into a page of memory, the software can not read from it until
hardware is done with that page. Any software accesses to that page would normally run into coher-
ency problems. Therefore, the latency for metering will include the latency of filling one page of
data. At low sampling rates the delay will be excessive.

To solve that problem, the current address register is defined as a pointer to the next memory address
that hardware will write to, or read from. Reading this register will allow software to tell exactly how
far the hardware has progressed in that page. Since that address is always incremented, not decrem-
ented, software can be guaranteed that no coherency problems will occur if it reads the data before
that address in that page. Caution: The location pointed to by the current address register
should not be accessed by software. The previous word (located at current address – 4) is the
last word guaranteed to contain fresh data. There is a corner case to worry about. If the cur-
rent address register points to the first word of a page, that page has not been written at all, but
the previous page has been written completely. However, (current address – 4) does not neces-
sarily give you the last word of the previous page, since pages need not be allocated sequentially
in memory.

Even though metering is a concern for recording only, playback implements the same protocol for
consistency.

������ �
�
��
��
��
���	

The current and next address registers for playback are shown below. Under normal operation, soft-
ware should only write to the next address register. The current address should be treated as a read
only register. Actually, the current address register is writable for test purposes, but software is not
allowed to write it. Also remember that the value in the current address register can change dynami-
cally. To get coherent data, the current address register must be read in a single, 32-bit word
operation. Hardware designers please note: If Harmony is interfaced to a bus where word accesses
are broken up into half word or byte accesses, you will break this feature.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��
�� �� ���

PNXTADD (playback next address) register
	� �

�����
����		 �����

��� � ��

� PNXTADD: Full 32 bit physical address for the next page of playback data. That page
must be locked. Since this address points to the first location of a 4K byte page, the 12 LSBs
must be 0s. This does not mean that any bit shifting is required on the address. During a
write, the 12 LSBs of address are ignored by Harmony and the value for these bits is forced
to 0. This means that Harmony is hard wired for 4K pages.

PCURADD (playback current address) register
	� �

�����
����		

� PCURADD: Full 32 bit physical address for the next location to be read for playback data.
Writes are legal for test purposes only. This register must be read with a single 32 bit
operation to get coherent data.

The current and next address registers for recording are shown below. The caveats regarding PCU-
RADD apply to RCURADD as well.

RNXTADD (recording next address) register
	� �

����� �����		 �����

��� � ��

� RNXTADD: Full 32 bit physical address of the next page for recorded data. That page
must be locked. Since this address points to the first location of a 4K byte page, the 12 LSBs
must be 0s. This does not mean that any bit shifting is required on the address. During a
write, the 12 LSBs of address are ignored by Harmony and the value for these bits is forced
to 0.

RCURADD (recording current address) register
	� �

����� �����		

� RCURADD: Full 32 bit physical address for the next location to be written with recorded
data. Writes are legal for test purposes only. This register must be read with a single 32
bit operation to get coherent data.

Note that PNXTADD must be written before RNXTADD.

������ 	��� ����
��������� ������

This status register allows software to determine whether a DMA is in progress or not, and whether
playback and record processes need new page addresses. It also lets software enable or disable inter-
rupts. The data in this register is dynamic, in that it can change spontaneously. If that is not taken into
account by software, some race conditions might be created.

DSTATUS (DMA status) register

� IE: A 1 in this bit enables DMA–based interrupts, a 0 disables them. This bit does not clear
an interrupt; a DMA–based interrupt is cleared by writing the PNXTADD and RNXTADD
registers. Powers up as 0.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��
�� �� ���

	�� � � � 	� �

����� ������ ����
�
�

��
����

�	

� PN: Playback New address request. It is set when a new value for PNXTADD is needed,
and reset when PNXTADD is written. This bit is read only, writes are ignored. Powers
up as 1.

� PC: Playback DMA currently active. This bit is set when DMA is started, cleared when
DMA finishes. This bit is read only, writes are ignored. Powers up as 0.

� RN: Recording New address request. It is set when a new value for RNXTADD is needed,
and reset when RNXTADD is written. This bit is read only, writes are ignored. Powers
up as 1.

� RC: Recording DMA currently active. Set when DMA is started, cleared when DMA fi-
nishes. This bit is read only, writes are ignored. Powers up as 0.

In Harmony, since playback and record are synchronous, PN and PC simply duplicate the function
of RN and RC. Generally, PN and RN will be in the same state, and PC and RC will be in the same
state. However, they don’t transition at exactly the same time. This redundancy allows a future im-
plementation to provide asynchronous playback and record. To allow compatibility between soft-
ware for Harmony and future hardware, software should write PNXTADD only when PN is true,
and write RNXTADD only when RN is true (even though checking just one bit would be sufficient).

The interrupt line is asserted when IE is true and both PN and RN are true. In Harmony, PN and RN
will be asserted at almost the same time, so the interrupt line will be asserted when both playback and
record need new addresses. In future hardware, PN and RN could change asynchronously. In such
hardware, an interrupt must be issued when either PN or RN is true. For example, the interrupt could
be caused by the assertion of RN, so the software will read PN as false. However, right after the read,
PN could go true, before the interrupt has been serviced. This would keep the interrupt line constant-
ly asserted, even after software is done servicing the interrupt. In many systems, the CPU hardware
for interrupts is edge sensitive. Therefore, in the case just outlined, no interrupt would take place
from the assertion of PN, so that event would go un–serviced. To avoid such a problem, it is recom-
mended that the interrupt service routine should first disable interrupts, and then write new addresses
as necessary. The interrupt should be re–enabled at the end of the routine. This re–enabling will
ensure that a new edge will be created if another cause of interrupt had just shown up. The re–enab-
ling also helps avoid a potential problem in Harmony itself, so it is essential to follow this guideline.

Note that PN is asserted somewhat earlier than RN. Assertion of either signal will cause an interrupt,
so the CPU will see an interrupt as soon as PN is asserted. If the CPU responds to the interrupt very
quickly, RN may not be asserted when the CPU reads DSTATUS. In that case, the CPU should write
PNXTADD only. Another interrupt is guaranteed to occur when RN eventually becomes true, as
long as the software follows the protocol of writing 0 to IE during the interrupt service routine.

������ �����
������

If stereo mode is on, twice as much data will be needed on every sample as in mono mode. Similarly,
16 bit linear mode requires twice as much data as 8 bit A-law or �-law modes. There are four possible
combinations of these modes, requiring anywhere from 8 to 32 bits per sample. The four modes are
shown below, with a diagram showing how the data is packed within a word of memory. Remember,
these are not register definitions. Note that Harmony can only operate on word aligned data. If

���'*�'-� �	�� ���

�,�� �%�� ���		

�

����
���	� ���� �*�(-()�#� ���� � ��+� ��� ����� ����� %�� ��

you offset the format shown below with 1, 2 or 3 bytes, the results will be very disconcerting.
Also note, negative numbers will be in 2’s complement format.

8 bit A-law or �-law, mono

� ��� � � ��
� � � ��	�� � � 	

(�#&"�� $ (�#&"�� $� �� � (�#&"�� $� �� 	 (�#&"�� $� ��

Each sample is byte sized, and these bytes are packed into a word with the first sample in the most
significant byte.

8 bit A-law or �-law, stereo

� ��� � � ��
� � � ��	�� � � 	

(�#&"�� $�� "��) (�#&"�� $�� '!�) (�#&"�� $���� "��) (�#&"�� $���� '!�)

Each sample contains a byte for the left channel and a byte for the right channel. The byte for left data
is more significant than the byte for right data. The resulting half word samples are packed into a
word with the earlier sample occupying the more significant half word.

16 bit linear, mono

� ��
� � � ��

(�#&"�� $ (�#&"�� $��

Each sample is a half word. The half word samples are packed into a word with the earlier sample
occupying the more significant half word.

16 bit linear, stereo

� ��
� � � ��

(�#&"�� $�� "��) (�#&"�� $�� '!�)

Each sample contains a half word for the left channel and a half word for the right channel. They are
packed into a word with the half word for left data in more significant position than the half word for
right data.

6.4.5 Gain Control

The CODEC provides control over gain (or attenuation) of each analog channel. It also provides
on/off control over each type of input and output. All of these parameters are controlled through the
Gain Control register.

GAINCTL (Gain Control) register

� �

�����
	�	

� � �

�

�	� ���
� ��

����

	�� ��	

��������

	� 	
 	� 	�

�����

	�

� HE: Headphones output enable. A 1 turns on headphones, 0 turns them off.

� LE: Line output enable. A 1 turns on line outputs.

� SE: Speaker enable. A 1 turns on the speaker.

� IS: Input select. A 0 selects line inputs, while a 1 selects microphone inputs. Both line
and microphone inputs can not be active simultaneously.

����"��%� ���� �

	

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��
�� ��� ���

� MA: Monitor attenuation. This 4 bit value selects the amount of attenuation applied to
the input signal before it is mixed with the output. A value of 0 provides no attenuation,
resulting in maximum level. Each step in the value increases the attenuation by 6 dB. The
maximum value, 0xF, attenuates by 90 dB, which effectively turns off the monitor function.

� LI: Input gain for the left channel (applies to either microphone or line input, whichever
has been selected). Gain is adjusted in steps of 1.5 dB, ranging from 0 dB for 0x0 to 22.5
dB for 0xF.

� RI: Analogous to LI, but applies to the right channel.

� LO: Left output attenuation (applies to headphones, speaker and line outputs). Attenua-
tion is adjusted in steps of 1.5 dB, ranging from 0 dB for 0x00 to 94.5 dB for 0x3F.

� RO: Right output attenuation. Analogous to LO, but applies to the right channel.

Warning: LI and RI are gain numbers, i.e., the largest value results in the highest level. On the
contrary, MA, LO and RO are attenuation values. For these, the largest value results in the
lowest level.

������ ����������� ���� ��������� ����
��� ���������

When the control register is written, the analog outputs of the CODEC may produce a spike, which is
an artifact perceived by the user as a click or a pop. To avoid such an artifact, write GAINCTL regis-
ter with maximum attenuation value in LO and RO fields. While this practice is not required for
proper operation of Harmony, it is strongly recommended. Also, when first initializing Harmony
after power-up, it is best to write GAINCTL first, with maximum attenuation in LO and RO. This
will help avoid any artifacts when the CODEC is brought out of reset.

6.4.6 Over�range Indication

If the amplitude of the input signal is too large, an over-range condition will occur. This is communi-
cated to software with the OV register.

OV (Over-range) register
	� �

����� 	�
�����

�

� OV: Indicates that an input over-range condition took place. After such an event, this bit
will remain set until software clears it by writing a 0 to it. Software should never write a
1 to this bit. Clearing OV via software takes precedence over setting it in hardware, so it
is possible that as software clears this bit it may miss another over-range condition that took
place simultaneously. Power up value: 0.

6.4.7 PIO register

The PI and PO fields of the control register are used to communicate with the PIO lines of the CO-
DEC. Currently, no use for these bits has been identified, however, a mechanism to use them exists in
Harmony. The PIO register is used for that purpose. It is suggested that software initialize this regis-
ter with 0x0000000f so that a future use is identified for these lines, the hardware can count on these
lines starting in a known state.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ���

PIO register
	� �� � � �

����� ��	
����

	� � � � �

��

� PO: Parallel output. Used to communicate with PIO lines of the CODEC.

� PI: Parallel input. Read only, the write data is ignored. Used to communicate with PIO
lines of the CODEC.

There are 2 PIO lines, and 2 bits each in PI and PO registers. If a given PIO bit is to be used as an
output, the value to be output should be written in the corresponding bit of the PO register. If a bit is
to be used as an input, the corresponding bit in PO must be set to 1. Then, the corresponding bit in PI
will reflect the state of that input. Even if a bit is being used as an output, the PI bit will reflect the
state of that line, i.e., it will simply mirror the state of PO bit, but with some delay. Note that the
hardware connected to the a PIO line will be designed to use it either as an input or an output, so that
is what determines what protocol to use.

6.4.8 DIAG register

The DIAG register is used for diagnostics only and is of limited use. It essentially reads the signal
that is present on the CHI bit clock and depending on the mode, will yield a one on all consecutive
reads. However, if the CODEC is in data mode consecutive reads will provide different values at
random times. This bit definition is different from that of Vivace for Lasi was not able to support one
more pin for this purpose. However, if the CODEC is in data mode, this bit will provide a good
indication of whether or not it is alive for the signal should be evidently toggling.

DIAG register
	� � � �

����
 ��	
����

�

� CO: SCLK from the CODEC. Toggles when the CODEC has been initialized properly
and is in data mode.

����"��%� ���� �

	

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ��
	� ��� ���

6.5 TTY Software Interface
The following table is a concise description of the TTY registers contained in each character channel
used in communication with the telephony subsystem. These register descriptions correspond to
those in the WD16552 data sheet.

Description R/W D7 D6 D5 D4 D3 D2 D1 D0

Receiver Buffer
Register (RBR)

R Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Transmitter Hold-
ing Register (THR)

W Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Interrupt Enable
Register (IER)

R/W 0 0 0 0 Enable
MSI

Enable
RLSI

Enable
THREI

Enable
RDAI

Interrupt Ident
Register (IIR)

R Fifos
Enabled

Fifos
Enabled

0 0 Int ID
Bit 2

Int ID
Bit 1

Int ID
Bit 0

Int Not
Pending

Fifo Control
Register (FCR)

W Rx Trig
MSB

Rx Trig
LSB

X X DMA
Mode

Tx Fifo
Reset

Rx Fifo
Reset

Fifo
Enable

Line Control
Register (LCR)

R/W DLAB
Bit

Set
Break

0 0 0 0 0 0

Modem Control
Register (MCR)

R/W TBRdy RingAsrt Rsrvd Loop
Back

Unused See Note
1

RTS DTR

Line Status
Register (LSR)

R 0 Txmitter
Empty

Tx Hold
Reg Emp

Break
Interrupt

0 0 0 Rx Data
Avail

Modem Status
Register (MSR)

R/W RLSD RI DSR CTS Delta
RLSD

Trail
Edge RI

Delta
DSR

Delta
CTS

Divisor Latch Reg
LSB (DLL)

R/W Divisor
Bit 7

Divisor
Bit 6

Divisor
Bit 5

Divisor
Bit 4

Divisor
Bit 3

Divisor
Bit 2

Divisor
Bit 1

Divisor
Bit 0

Divisor Latch Reg
MSB (DLM)

R/W Divisor
Bit 15

Divisor
Bit 14

Divisor
Bit 13

Divisor
Bit 12

Divisor
Bit 11

Divisor
Bit 10

Divisor
Bit 9

Divisor
Bit 8

TeleByte Register R/W Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Note 1 – Bit 2 of the MCR is involved in Hardware Handshaking control.

6.5.1 Receive Buffer and Transmit Hold Register

The Receive Buffer Register (RBR) is a temporary buffer used to hold incoming data previously
transferred to it from the Receive Buffer Shift Register (RBSR). The RBSR, as well as all other
TTY-related registers, is byte-wide and this particular byte is accessible in byte lane 0. If the TTY
channel is operating in character mode, whenever a new word is transferred into the RBR an inter-
rupt is generated and is not cleared until the RBR is read by the CPU. However, an interrupt is gener-
ated during fifo mode only after the number of received bytes has met a predetermined trigger level.

The Transmit Holding Register (THR) is located at the same address as is the RBR, but is for use in
the transmit direction instead of the receive direction. In character mode when a byte is accepted by
the THR it is transferred into the Transmit Shift Register (TSR)and sent to Teleshare serially via the
CHI bus. An interrupt is generated when the THR is empty. This interrupt is cleared once either the

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ���
� �� ���

THR is written, or the Interrupt Identification Register (IIR) is read. The transmit fifo resides at the
same location as does the THR and during fifo mode the fifo accepts any incoming bytes which auto-
matically transfers its contents to the THR when the THR is able to accept data. A system interrupt
is generated once the transmit fifo is empty and this interrupt is cleared when at least one byte is
written into the transmit fifo.

Notice the fifos are placed in series with the transmit and receive holding registers, consequently, the
effective fifo depth is eighteen bytes and not sixteen bytes as stated in the WD16552 data sheet.
These registers may be accessed only when bit 7 of the LCR (DLAB) is zero.

RBR0
	� � �

�����
�
�

RBR1
	� � � �

�����
�
�

� RBR0, RBR1: Software accessible register used to read received data from corresponding
TTY port. If fifo mode is enabled, a read from this address will pull data from the receive
fifo.

THR0
	� � � �

����� �	
�

THR1
	� � � �

����� �	
�

� THR0, THR1: Software accessible register used to write transmit data to corresponding
TTY port. If fifo mode is enabled, a write to this address will insert data into the transmit
fifo.

6.5.2 Interrupt Enable Register

The Interrupt Enable Register (IER) is able to selectively enable or disable each of the interrupts. A
logical one written to a given bit enables the corresponding interrupt, while a zero disables the inter-
rupt from alerting the CPU to its status. This register must be accessed with bit 7 of the LCR
(DLAB) is zero.

IER0
�	 � � ��

�����
����	
��
�����
�

� � �
������

�

�%"03!06� ���� ���	

�5' � �.�� ������	�������	�
��� ���� �3"1612%,� ���� � �%4� ��� �!'%� ����� .&� ���

IER1
�	 � � ��

����� �	�����
�������
�

� � �
������

�

� RDA0, RDA1: Enables Received Data Available Interrupt or Character Time out Interrupt
when set to logic one. In fifo mode, RDA is asserted when the fifo reaches its trigger level.

� THRE0, THRE1: Enables Transmit Holding Register Empty Interrupt when set to logic
one. The THRE interrupt is activated when the transmit holding register is empty and every
time this interrupt bit is taken from a zero to a one. During fifo mode it is asserted when
the transmit fifo is empty.

� RLS0, RLS1: Enables the highest priority interrupts, Overrun Error and Break Interrupt,
when set to a logic one.

� MSI0, MSI1: Enables Modem Status Interrupts of CTS, DSR, RI and RLSD when set to
a logic one.

6.5.3 Interrupt Identification Register

The Interrupt Identification Register (IIR) is a read only register that returns a value indicating
which prioritized interrupt is pending. During the time the IIR is addressed, the highest priority
pending interrupt is frozen and no other interrupts are acknowledged until the particular interrupt is
serviced by the CPU. Each IIR resides in byte lane 2. The following Interrupt Identification Table
describes which interrupt is pending based upon the contents of the IIR.

IIR0
�� � � �

����� ����������������

� � ���

�

��

������� �������

�
 �	 ��

IIR1
�� � � �

����� ����������������

� � ���

�

��

������� �������

�
 �	 ��

�-2%003/2� �$%-2)&)#!2).-� �%')12%0� �-2%003/2� �%2� !-$� �%1%2� �3-#2).-1

�)2� 	 �)2� � �)2� � �)2� � �0).0)26
�%4%+

�-2%003/2
�+!'

�-2%003/2� �.30#% �-2%003/2� �%1%2� �.-20.+

� � � � � �.-% �.-% �

� � � � ��'(%12 �%#%)4%0
�)-%� �2!231

�0%!*� �-2%003/2 �%!$)-'� �)-%� �2!231

� � � � �%#.-$ �%#%)4%$
�!2!
�4!)+!"+%

�%#%)4%0� �!2!
�4!)+!"+%�� �(!0!#7
2%0� �),%� �32

�%!$)-'� 2(%� �%#%)4%0
�3&&%0� �%')12%0

� � � � �()0$ ����
�,/26

�0!-1,)22%0
�.+$)-'� �%')12%0

�,/26

�%!$)-'� ���� .0� 0)2)-'� 2.
�0!-1,)22%0� �.+$)-'

�%')12%0

� � � � �.302(�.$%,
�2!231

���� .0� ���� .0� ��
.0� ����

�%!$)-'� 2(%� �.$%,
�2!231� �%')12%0

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ���

6.5.4 Fifo Control Register

The Fifo Control Register controls the activity of both the transmit and receive fifos. It is a write only
register located in the same address space as the IIR. Software is able to determine whether or not
fifo mode is currently active, for the FifoEn bit is read back as the upper two bits of the IIR.

FCR0
�� � � �

����� 	��������������������
�

� � ���

�

��

����������� �����������

�
 �	 ��

FCR1
�� � � �

����� 	��������������������
�

� � ���

�

��
����������� �����������

�
 �	 ��

� Trigger0, Trigger1: Determines the trigger level of the receive fifo. In progressive order
the levels are 1, 4, 8, 14.

� DMS0, DMS1: DMA Mode Select together with the trigger level determine the value of
RxrdyL which is transported to the peripheral through RTS if it enabled to do so in the Mo-
dem Control Register.

� TxRst0, TxRst1: Resets the transmit fifo counters and clears THRE and TEMT. Contrary
to what is stated in WD16552 data sheet, this bit does not clear the contents of the transmit
fifo to zero.

� RxRst0, RxRst1: Resets the receive fifo counters, RDR and Rdy4data state machine sig-
nals as well as all Break signals stored in the receive fifos. Similar to TxRst, RxRst does
not clear the contents of the receive fifo.

� FifoEn0, FifoEn1: This signal enables the operation of the fifos. This bit must be set be-
fore any of the other bits in this register may be written. Consequently, in order to set the
trigger level it will take a minimum of two writes to this register; the first to enable the fifo
and the second to set the trigger level.

6.5.5 Line Control Register

The Line Control Register is used for sending a Break signal to the telelphony subsystem and for
enabling a write to the divisor latch bytes. The other bits normally defined by the line control register
dealing with parity information are not used and are read back as zero.

LCR0

 � � �

�����
������

�

�

��

�
���

LCR1

 � � �

�����
������

�

�

��

�
���

� DLAB0, DLAB1: Divisor Latch Access Bit enables the CPU to perform writes to the upper
and lower bytes of the Divisor Latch.

� SetBrk0, SetBrk1: Set Break forces the TTY channel to transmit a Break to the telephony
subsystem the entire time this bit is set. It takes precedence over all other data or control
that may need to be sent.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ���
� �� ���

6.5.6 Modem Control Register

The Modem Control Register (MCR) controls the interface with the modem and is used to either
initiate a modem connection, for flow control, to enable interrupts, or for loopback testing. In the
case of loopback testing, all interrupts are disabled. When the loopback bit is set the following occur:

� Transmit Shift Register is connected to the Receiver Shift Regis-
ter’s input.

� Four modem status inputs (CTS, DSR, RLSD, RI) are disconnected and
the four Modem Control bits are connected to the Modem Status
inputs. These signals are inverted from what is stored in the
MCR. Therefore, to assert each one as active low as seen by
Teleshare, the corresponding bit in the register should be written
as a one.

� The interrupt output pin is disabled, but the receiver and trans-
mitter interrupts are still fully operational and controlled by
the Interrupt Enable Register. However, during diagnostics, the
interrupt sources are now the lower four bits of the Modem Control
Register.

MCR0
	� � � �

����� 	������������

� � �����

�

��

��

��
������

��	�

���������������

MCR1
	� � � �

����� 	������������

� � �����

�

��

��

��
������

��

���������

	�

������

� DTR0, DTR1: Data Terminal Ready (DTR) informs the associated modem that TTY port
has data to send.

� RTS0, RTS1: Request to Send (RTS) output informs the associated modem it is able to
receive data. This bit incorporates the function of RxRdyL if Hw_Hs is zero, which allows
hardware handshake to control data flow.

� Hw_Hs0, Hw_Hs1: Used in conjunction with RTS and RxrdyL to generate a hardware
flow control version of RTS. RxrdyL is defined in the WD16552 data sheet. The flow
control version of RTS is dictated by the following equation:

RTS’ = !(Hw_Hs | RxrdyL) | RTS
Essentially Hw_Hs either enables or masks the operation of RxrdyL as does RTS. If RTS
and Hw_Hs are both zero, RTS’ will be seen as the inverted form of RxrdyL. Under these
conditions if RxrdyL is asserted, it will inform the peripheral device to cease from sourcing
data. In loopback mode this bit is connected to bit 6 of the MSR.

� N/C0, N/C1: No connect. In loopback mode this bit is connected to bit 7 of the MSR.

� LOOP0, LOOP1: This bit provides a loopback feature for diagnostic testing of the TTY.
It is important to note that in order to insure proper operation the LOOP bits must be set
before data is sent to either channel. In addition, contiguous back to back writes are not
guaranteed to function properly while the TTY port is in character mode and the CODEC
is in control mode. For best results always operate the TTY port in loopback mode. This
loopback mode is contained inside of Harmony and does not require the assistance of Tele-
share.

� Rsrvd: These bits are for reserved usage.

��� #� &� ���� ���	

�%� � ���� ������	���
���	����� ���� �#�!&!"��� ���� � ��$� ��� ����� ��

� ��� ���

� RingAsrt0, RingAsrt1: These bits are intended to be used for TTY driver testing where
the output from one TTY port is routed back to the input of the other TTY port inside of
Teleshare. This particular bit will be connected to the RI bit in the Modem Status Register
and will simulate a ring being detected.

� TBRdy0, TBRdy1: These bits indicate when a telephony byte has been written but not
yet sent to Teleshare.

6.5.7 Line Status Register

This 8-bit register provides status information to the CPU concerning the data transfer. Departing
from the definition of the WD16552, Harmony does not provide the status of Parity Error, Framing
Error and LSR7, for they are not deemed to be necessary for this application.

LSR0
�	 � � ��

�
��� ����

� � ����

� ��
��

����

�

� � �
� � ��

��	������ �

LSR1
�	 � � ��

�
��� ����

� � ����

� ��
��

����

�

� � �
� � ��

��	������ �

� RDR0, RDR1: Receive Data Ready indicator. Set to logic one whenever a complete in-
coming character has been received and transferred into the Receiver Buffer Register or
the receive fifo. This bit will be reset to logic 0 when either the CPU has either read the
Receive Buffer Register in character mode, or when the receive fifo is empty, or when a
zero has been written into this bit position.

� BI0, BI1: Break Interrupt indicates that a break character has been received in the corre-
sponding TTY channel. The reception of this character forces the creation of the highest
priority interrupt. This bit is cleared when the Line Status Register is read. In fifo mode
BI is written to the fifo and is not seen by the system until it is located at the top of the fifo.
During fifo mode it is required that immediately following the transmission of a Break bit,
Teleshare transmit a valid word, preferably a null character, which provides the necessary
write for the Break bit to be inserted into the fifo. Otherwise the Break signal may not be
seen by the system for an indefinite period of time.

� THRE0, THRE1: Transmit Holding Register Empty indicates that the Transmit Holding
Register is able to accept a new character for transmission during character mode and it
indicates when the transmit fifo is empty during fifo mode.

� TEMT0, TEMT1: Transmitter Empty indicates that both the Transmit Holding Register
or the transmit fifo as well as the Transmit Shift Register are empty, and that both can accept
a new character. It is reset to 0 upon loading of the Transmit Holding Register.

6.5.8 Modem Status Register

The Modem Status Register provides the current state of the Modem Control Lines. The four least
significant bits provide change information and are set to logic one whenever a control input from the
modem changes. They are reset to logic 0 whenever the CPU reads the Modem Status Register.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ���

MSR0
�� � � �

����� ���
�

� � ����	�
 ����

��
���	�
����
����
��
���
���
��

MSR1
�� � � �

����� ���
�

� � ����	�
 ����

��
���	�
����
����
��
���
���
��

� DCST0, DCTS1: Delta Clear To Send indicates that CTS on corresponding TTY has
changed states since the last time it was read by the CPU.

� DDSR0, DDSR1: Delta Data Set Ready indicates that DSR on corresponding TTY has
changed states since the last time it was read by the CPU.

� TERI0, TERI1: Trailing Edge Ring Indicator informs the CPU that the RI input on the
corresponding TTY has changed from a logic 1 to a logic 0.

� DRLSD0, DRLSD1: Delta Received Line Signal Detect indicates that the RLSD on the
corresponding TTY has changed state.

� CTS0, CTS1: Clear To Send is the complement of the active low Clear To Send input of
the corresponding TTY which indicates the receiving end of the TTY is ready to accept
data. This bit becomes equivalent to RTS during loopback testing.

� DSR0, DSR1: Data Set Ready is the complement of the active low Data Set Ready input
of the corresponding TTY and indicates that the other end of this TTY is ready to send data.
This bit becomes equivalent to DTR during loopback testing.

� RI0, RI1: Ring Indicator is the complement of the active low Ring Indicator input of the
corresponding TTY and indicates that a ringing signal is being received by this TTY port.
 This bit becomes equivalent to bit 2 of the Modem Control Register during loopback test-
ing.

� RLSD0, RLSD1: Received Line Signal Detect is the complement of the active low Re-
ceive Line Signal Detect input of the corresponding TTY and indicates that the TTY port
is receiving a signal which meets its signal quality conditions. This bit becomes equivalent
to bit 4 of the Modem Control Register during loopback testing.

6.5.9 Divisor Latch Register LSB

The LSB Divisor Latch Register is used to hold the least significant byte of divisor information that
is sent to Teleshare. This register may be written only when DLAB (bit 7 of the Line Control Regis-
ter) is set. It resides in the same address space as transmit and receive registers.

DLL0
	� � � �

����� ���������

DLL1
	� � � �

����� ���������

� DLL0, DLL1: Least significant byte of Divisor Latch Register. In order to access this reg-
ister DLAB must be set. The information contained by this register is sent to Teleshare
every time a write to this location occurs.

����"��%� ���� �

	

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ���

6.5.10 Divisor Latch Register MSB

The MSB Divisor Latch Register is used to hold the most significant byte of divisor information that
is sent to Teleshare. This register may be written only when DLAB (bit 7 of the Line Control Regis-
ter) is set. It resides in the same address space as interrupt enable register.

DLM0
�	 � � ��

����� �
�������

DLM1
�	 � � ��

����� �
�������

� DLM0, DLM1: Most significant byte of Divisor Latch Register. In order to access this
register DLAB must be set. The information contained by this register is sent to Teleshare
every time a write to this location occurs.

6.5.11 Telephony Information Byte

The telephony information bytes are accessed by writing and reading the Telebyte registers. Each
channel has an independent register whose information is passed directly to Teleshare whenever this
register is written. The content of this register has no effect on Harmony but is used by Teleshare to
inform it of various modes of operation such as when it is to load code into the DSP’s memory and
where to direct data from various sources. Another key function that one of these bits enables is a
special loopback mode that will be used for one TTY to communicate with the other TTY. The basic
need for this loopback mode is for driver development and is available only when Teleshare is pres-
ent.

The telephony bits are a convenient method of enabling flexibility within Teleshare. A note for soft-
ware accessibility, bit seven in each modem control register indicates when the telebyte has been
written and waiting to be sent to Teleshare. DO NOT write another byte of information into the
telebyte register until bit seven of the corresponding MCR is clear.

TELEBYTE0
� � � �

����� �	
	�
�	������

TELEBYTE1
� � � �

����� �	
	�
�	������

6.6 ISDN Interface
The ISDN DMA circuitry is valued as being a high bandwidth connection to the telephony interface
and may be used for ISDN as well as analog telephone applications. It is initiated by clearing the
ISDN reset bit in the ISDN control register, setting the ISDN interrupt enable signal and writing to
both of the Next Address registers. This will immediately invoke a single word Output ISDN DMA

����"��%� ���� �

	

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ���

transaction from memory into Harmony. However, all further transactions are triggered off the ac-
tions of Teleshare. Teleshare initiates all ISDN transactions across the CHI bus by first sending an
ISDN byte, waiting until Harmony responds with an ISDN byte and the process is repeated. If the
order is ever interrupted, the whole process will be hung and the ISDN system will have to be reset in
order to regain synch. There is not a fifo provided by Harmony for the purpose of ISDN for it does
not need one. The protocol for Basic Rate ISDN (BRI) indicates a new byte is required every
125uSec, which is plenty of time for a DMA transaction to be completed. For a 712 system Harmony
is guaranteed to obtain bus ownership every 20uS. As with the Audio DMA interface the ISDN
channels utilize 4KByte page sizes of memory, however, it operates a little bit differently. If the
system had to wait for an entire 4K buffer to be filled up before it could be informed there is new data
available, this would be a real time delay of approximately .5 Sec. In order to shorten this delay, the
ISDN DMA will interrupt the system every 1K of buffer space, which drops the delay to approxi-
mately .1 Sec and will be reasonably acceptable for real time applications that retransmit or reutilize
this captured data for voice–related ISDN applications. The interrupt is removed when the ISDN
Status register is read.

The ISDN DMA Software interface is very much similar to the Audio DMA interface and the con-
cept of operation is comparable. It is composed of four address registers and a Status/Control regis-
ter. System software should only access the Next address registers during normal operation, and the
system will be interrupted when a new address is required. For a more detailed explanation please
refer back to the Audio DMA register section.

OUTNXTADD (ISDN output next address) register
	� �

�����

�	����� �����

��� � ��

� OUTNXTADD: Full 32 bit physical address of the next page for input ISDN data. That
page must be locked. Since this address points to the first location of a 4K byte page, the
12 LSBs must be 0s. This does not mean that any bit shifting is required on the address.
During a write, the 12 LSBs of address are ignored by Harmony and the value for these bits
is forced to 0.

OUTCURADD (output ISDN current address) register
	� �

�����

��
����

� OUTCURADD: Full 32 bit physical address for the next location to be written with re-
corded data. Writes are legal for test purposes only. This register must be read with a
single 32 bit operation to get coherent data.

INNXTADD (ISDN input next address) register
	� �

����� �		����� �����

��� � ��

� INNXTADD: Full 32 bit physical address of the next page for input ISDN data. That page
must be locked. Since this address points to the first location of a 4K byte page, the 12 LSBs
must be 0s. This does not mean that any bit shifting is required on the address. During a
write, the 12 LSBs of address are ignored by Harmony and the value for these bits is forced
to 0.

��� #� &� ���� ���	

�%� � ���� ������	���
���	����� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ���

INCURADD (input ISDN current address) register
	� �

����� ������		

� INCURADD: Full 32 bit physical address for the next location to be written with recorded
data. Writes are legal for test purposes only. This register must be read with a single 32
bit operation to get coherent data.

ISDN_STATUS / CONTROL register
	� �

����� � ��������������

���
���

�
 ������

	� ��

������
���

�
�����

������

� IE: A 1 in this bit enables ISDN DMA–based interrupts, a 0 disables them. This bit does
not clear an interrupt; an ISDN DMA–based interrupt is cleared by either writing the
OUTNXTADD and INNXTADD registers or by reading the ISDN Status register. Powers
up as 0.

� 1K_INT: Is active after every 1K bytes of ISDN data have been transferred to memory.
It is cleared upon reading this register.

� LOOP: Induces ISDN loopback mode. During this time all data that is transferred from
memory will be sent back to the INCURADD of memory. This loopback takes place within
Harmony. It is important to note that in order to guarantee valid results the LOOP bit must
be asserted before the ISDN DMA is initiated. This loopback mode is also totally contained
inside of Harmony.

� RST: Resets the ISDN portion of Harmony.

� OUTN: ISDN Output New address request. It is set when a new value for OUTNXTADD
is needed, and reset when OUTNXTADD is written. This bit is read only, writes are ig-
nored. Powers up as 1.

� OUTC: ISDN Output DMA currently active. This bit is set when DMA is started, cleared
when DMA finishes. This bit is read only, writes are ignored. Powers up as 0.

� INN: ISDN Input New address request. It is set when a new value for INNXTADD is need-
ed, and reset when INNXTADD is written. This bit is read only, writes are ignored. Powers
up as 1.

� INC: ISDN Input DMA currently active. This bit is set when DMA is started, cleared when
DMA finishes. This bit is read only, writes are ignored. Powers up as 0.

�%!�� ���� �

�

�'�� �"�� ������	���
���	����� ���� �%�#(#$� � ���� � ��&� ��� ����� ���	� "�� ���

7
7 RS–232 SERIAL INTERFACE

7.1 Introduction
The Serial interface emulates the National Semiconductor NS16550A device with some updates.
The 712 implementation is based on a design done for the Stiletto chip used in the 742 VME comput-
er

7.2 Feature Summary
This implementation includes all of the features of a standard NS16550A. See a commercial data
sheet for detailed information. Virtually all of the interactions for the part are the same, so there is no
need to rewrite already existing software. This implementation will have Receive and Transmit FI-
FOs each 16 bytes deep. Supported baud rates range from 50 to 454k. The hardware handshaking
option will allow data input at up to 227k baud.

7.3 Register Definitions

Description Offset R/W D7 D6 D5 D4 D3 D2 D1 D0

Reset Register 0x000 W X X X X X X X X

Undefined 0x001–
0x7FF

Receiver Buffer
Register (RBR)

0x800
����� �� �

R Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Transmitter Hold-
ing Register (THR)

0x800
����� �� �

W Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Interrupt Enable
Register (IER)

0x801 R/W 0 0 0 0 Enable
MSI

Enable
LSI

Enable
THREI

Enable
RDAI

Interrupt Ident
Register (IIR)

0x802 R Fifos
Enabled

Fifos
Enabled

0 0 Int ID
Bit 2

Int ID
Bit 1

Int ID
Bit 0

Int Not
Pending

Fifo Control
Register (FCR)

0x802 W Rx Trig
MSB

Rx Trig
LSB

X X DMA
Mode

Tx Fifo
Reset

Rx Fifo
Reset

Fifo
Enable

Line Control
Register (LCR)

0x803 R/W DLAB
Bit

Set
Break

Stick
Parity

Even
Parity

Parity
Enable

Num of
Stop Bits

Wrd Len
Bit 1

Wrd Len
Bit 0

Modem Control
Register (MCR)

0x804 R/W 0 0 0 Loop
Back

Unused See Note
1

RTS DTR

Line Status
Register (LSR)

0x805 R Error In
Rx Fifo

Txmitter
Empty

Tx Hold
Reg Emp

Break
Interrupt

Framing
Error

Parity
Error

Overrun
Error

Rx Data
Avail

Modem Status
Register (MSR)

0x806 R/W DCD
(RLSD)

RI DSR CTS Delta
DCD

Trail
Edge RI

Delta
DSR

Delta
CTS

�&"�� �
�� ����

�(� �#�� ������	�������	�
��� ���� �&�$)$%�!� ���� � ��'� ��� �� �� ���
� #�� ���

D0D1D2D3D4D5D6D7R/WOffsetDescription

Scratch Register
(SCR)

0x807 R/W Scratch
Bit 7

Scratch
Bit 6

Scratch
Bit 5

Scratch
Bit 4

Scratch
Bit 3

Scratch
Bit 2

Scratch
Bit 1

Scratch
Bit 0

Divisor Latch Reg
LSB (DLL)

0x800
����� �� �

R/W Divisor
Bit 7

Divisor
Bit 6

Divisor
Bit 5

Divisor
Bit 4

Divisor
Bit 3

Divisor
Bit 2

Divisor
Bit 1

Divisor
Bit 0

Divisor Latch Reg
MSB (DLM)

0x801
����� �� �

R/W Divisor
Bit 15

Divisor
Bit 14

Divisor
Bit 13

Divisor
Bit 12

Divisor
Bit 11

Divisor
Bit 10

Divisor
Bit 9

Divisor
Bit 8

Undefined 0x808–
0xFFF

Table 2. RS232 Register Definitions

Note 1––Bit 2 of the MCR is a read/write bit which is used as the control bit for the Hardware Hand-
shaking functionality, where 1 implies normal RTS operation and 0 implies hardware protocol. Note
that the reset state for bits in this register is 0, which needs to be overridden for normal RTS opera-
tion.

7.4 Differences from NS16550A
The Lasi serial port is intended to function just like the real National NS16550A. This includes
behavior that often seems rather stupid. The National NS16550A was chosen over the WD16C552
because the National part came first, and the WD part is supposed to be compatible. There are a few
minor differences, however, between the NS16550A and this implementation.

Baud clock generation is an area of slight differences from the NS16550A. The baudrate reference
frequency is taken from the 40 MHz IO system clock. The frequency 7.2727 MHz is generated by
dividing 40 MHz by 5.5. This generates a slightly asymmetrical waveform (6:5 :: low:high). When
changing baud rates, the NS16550A will glitch baudclk, but it does update to the new baud rate
immediately. The 712 implementation will never glitch baudclk, but it takes as many as 5 baudrate
reference clock periods for the new baud rate to be reflected on baudclk. The worst case result is that
a transmitter or receiver could see as many as 3 extra, or 3 fewer 16x baudclk pulses than with the real
NS16550A. If the baud rate is changed in the middle of a character transmission, the results are un-
predictable. If the baud rate is changed and then a character is written into the transmitter buffer, the
character will still come out properly, and meet NS16550A specs.

A few clarifications of hardware operations are also in order. The NS16550A supplies 2 status line,
Ntxrdy and Nrxrdy. Ntxrdy is not used at all and will not be generated. Nrxdy is generated and used
internally to qualify rts_L for hardware handshaking.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ���
� ��� ��

8
8 REAL–TIME CLOCK

8.1 Introduction
The Real–Time Clock (RTC) keeps track of time and date information when the system is powered
down. A battery powered crystal oscillator operating at 32.768 kHz is used to keep an accurate re-
cord of elapsed time.

8.2 Feature Summary
The external crystal runs at 32.768 kHz and is divided down to 1 Hz by a 15 bit pre–counter. After
the frequency of the crystal has been divided down to 1 Hz, this signal is then used to increment the
32 bit RTC register which keeps track of elapsed time in seconds. Under UNIX, this number repre-
sents the cumulative seconds that have elapsed since January 1, 1970. The register may be loaded
with a known value representing the current time. This action will reset the 15 bit pre–counter to 0.

The standard Unix system call ’time’ returns the current time as the number of seconds since 1970
and other routines map this number into various formats and national standards for date and time.

8.3 Register Definition
There is one 32–bit read/write register located at address offset 0x000. It does not make sense to reset
the clock (equivalent to writing 0x00000000 to its register), so no means of reset is provided. Since
the external 32 kHz clock is independent of the 712 system clock, it is possible to read or write the
RTC register while it is changing. The write implementation will clear the 15–bit divide chain so that
a full second will pass before the register is updated again. To read the Real_Time register, we sug-
gest that several readings be taken; when 2 successive readings match, use that value.

�"��� ���� �

�

�$�� ���� ������	���
���	����� ���� �"� % !��� ���� � ��#� ��� ����� ����� ��� ��

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� ��� �

9
9 PS2 INTERFACE FOR KEYBOARD/MOUSE

Introduction
LASI implements the keyboard and mouse interfaces as simple serial ports conforming to the de
facto industry standard PS/2 specification. Each user input device has a dedicated serial port of its
own. LASI includes two ports, one for keyboard and one for mouse. The interface ports rely on the
software to provide all of their intelligence, therefore, they do not interpret the characters passing
through them in either direction. The interface to the host processor is through 6 one–byte registers
for each port.

Registers

Register
Label

Register Name Address offset
(word aligned)

Reset
Value

Access

ID ID Register 0x00 note 1 R

RESET Interface reset register 0x00 0xXX W

RCVDATA Received data register 0x04 0xXX R

XMTDATA Transmit data register 0x04 0xXX W

CONTROL Control register––read/write 0x08 0x00
note 2

R/W

STATUS Status register––read only 0x0c 0x00 R

Note 1: Each PS2 device returns a unique hardwired ID code in bits 3:0 of ID.
Note 2: Resetting the block disables it (see Table 6).

Table 3. PS2 Interface Registers

ID Register

Bit Symbol Name Description

3:0 ID ID Code Hardwired physical identification bits. (0=keyboard;1=mouse)

7:4 Reserved

Table 4. PS2 ID Register

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� �

Reset Register
Any write to this register will cause the interface to be reset: all buffers will be emptied and the re-
ceive/transmit state machines will be reset. The value of the data written will be discarded. Note that
this does not cause the external device to be reset; it must be reset explicitly through a command sent
from the host. A reset will leave the interface in the disabled state.

Rcvdata Register
This register provides access to the received data buffer in the interface. Each read operation from
this register removes one character from the received data buffer. Receive Buffer Not Empty (bit 0 of
the STATUS register) is set to 1 whenever there is one or more characters in the receiver buffer and
returns to 0 when the buffer is empty. The port asserts its interrupt line when the receive buffer goes
from empty to not empty. It is the responsibility of the host to read the rcvdata register until the Re-
ceive Buffer Not Empty bit returns to a 0 value. Note that a port does not generate an interrupt for
each received character, only when the first character is placed in an empty buffer. LASI implements
the Received Data Buffer with 4 characters of storage.

Xmtdata Register
This register provides data to the transmitter section of the interface. Since each character trans-
mitted requires an acknowledge character, the transmit buffer is only one character deep. The PS2
protocol allows for outgoing data to interrupt and override any incoming data. LASI will receive any
incoming character before starting the transmit process. The transmitter will assert control as soon
as a received character is finished and send the character in the transmit buffer. Transmit Buffer Not
Empty (bit 1 of STATUS register) is set to 1 when there is a character in the transmit buffer. It is the
responsibility of the host to determine when the buffer is empty by monitoring TBNE, which will go
to 0 when the buffer is empty. A PS2 port will ignore an attempt to write to the Xmtdata register
while TBNE is 1. No interrupts are generated in the transmit process, except for acknowledge char-
acters returned by the external device.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� �

Control Register (R/W)

Bit Symbol Name Description

0 ENBL Enable Set status of interface: 0 = disabled, 1 = enabled.
When disabled, port will neither receive data from external
device nor generate interrupts to host.

1 LPBXR Loopback Xmt/Rcv
mode

Set to 1 for loopback diagnostic mode: transmitter output is
connected to receiver input. In this case, a much faster internal
clock is used to transfer the data (2 MHz).

4:2 Reserved

5 DIAG Diagnostic mode When set to 0, bits 6 and 7 have no effect on the external Data
and Clock lines. When set to 1, bits 6 and 7 directly control the
value of the external Data and Clock lines for diagnostic pur-
poses.

6 DATDIR External data line direct
control

Provides direct control of value of external Data line while in
diagnostic mode.

7 CLKDIR External clock line di-
rect control

Provides direct control of value of external Clock line while in
diagnostic mode.

Table 5. PS2 Control Register

Status Register (Read only)

Bit Symbol Name Description

0 RBNE Receive buffer not
empty

0 = receive buffer empty, 1 = receive buffer not empty

1 TBNE Transmit buffer not
empty

0 = transmit buffer empty, 1 = transmit buffer not empty

2 TERR Timeout Error Normally set to 0. See Note 2

3 PERR Parity Error Normally set to 0. See Note 1

4 CMPINTR Composite interrupt OR of interrupt lines of all PS2 ports

5 Reserved

6 DATSHD Data line shadow Copy of current value of external data line

7 CLKSHD Clock line shadow Copy of current value of external clock line

Table 6. PS2 Status Register

Note 1:
When the receiver detects a parity error, bit 2 of STATUS register is set to 1. The incorrect
character is placed in the receive buffer. Busy is asserted to the external device to halt any
further transmissions. The host must recognize the parity bit and empty the receive buffer
since there may be valid characters in the buffer ahead of the incorrect one. The last character
in the buffer is always the incorrect one. In order to clear the parity error, the interface must be
reset. It is the responsibility of the host to request a resend from the external device if desired.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
�� ��� �

Addressing
One 4Kbyte block of the 712 IO space is allocated for both PS2 interfaces. Each interface is assigned
a 256 byte block of its own. The keyboard port is located a offset 0x000 within the 4K block and the
mouse is located at offset 0x100. There is no logical difference between the keyboard and mouse
interface other than their address and the contents of the ID register. All registers are 1–byte wide
and are aligned on word boundaries. All addresses are multiply–mapped so that a read/write to any
address in the 4k block will access a legitimate register.

Interrupt processing
The LASI interrupt handler supports only one interrupt line for both PS2 ports. The host must poll
both ports to determine which ones have data. Each port asserts its interrupt line until its buffer is
empty. Both of the interrupt lines are OR’d together to make a single interupt signal. An interrupt
will be issued when it sees a positive edge on this signal. Thus there is an interrupt for the first charac-
ter to arrive at either port, but none for following characters until both of the ports have been emptied.
The host must cycle through both ports, emptying the data from each until both are empty, including
data which arrives during the service process. The host determines that both ports are empty by the
Composite Interrupt signal (cmp_intr), which is copied into bit 4 of the STATUS register of both
ports. Since the host must continue to read data from ports until cmp_intr is 0, the next arriving char-
acter forces cmp_intr to 1, which causes an interrupt. It is anticipated that in most cases each arriving
character will cause an interrupt and will be serviced before the next character arrives.

Timing
The PS2 specification maximum transfer rate is about 1 character per millisecond (80 microseconds
per serial bit for 11 bits plus some overhead). The fastest input expected from a keyboard would be
about 16 characters per second. If the keyboard generates 3 characters per keypress (character code
on downstroke, up code on release, followed by character code again), then we can expect characters
about every 20 ms. A mouse is programmable for sample spacing (20 to 200 samples per second,
default 100) and sends 3 characters for each XY sample. Thus a mouse might push close to the 1 ms
character spacing. There should be no problems responding to interrupts at this rate.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
�� ��� ��

10
10 PC FLOPPY

10.1 Introduction
The 712 supports an optional floppy disk drive. This drive is for use with soft PC and allows a means
for transferring data between machines (eg. between a 712 and a portable). The floppy disk drive
(FDD) is controlled by a Western Digital WD37C65C Floppy Disk Controller chip (FDC). The pro-
cessor accesses the FDC registers through Lasi. Lasi provides a restricted form of DMA for moving
data between the FDC and main memory.

10.2 DMA Operation
Floppy data is transferred in the 712 by moving data between a 1 page (4K byte) circular buffer in
main memory and the FDC. The floppy interface in Lasi provides a 4–byte FIFO to deal with latency
associated with accessing main memory without causing data overrun errors in the FDC. The Floppy
DMA address register (FDAR) serves as the ”head pointer” for the circular buffer. The FDAR al-
ways contains the memory address of the next word of data to be moved between main memory and
the FDC. The bits of the FDAR are defined in figure 4. The circular buffer is located in main
memory at a page address specified by the 20 most significant bits of the FDAR. The data in the
buffer is stored as un–packed bytes. Word transactions are used on GSC, but only the most signifi-
cant byte contains floppy data. Therefore, only 1K of data can be stored at a time in the circular
buffer.

31 12 11 2 1

Page Address Page Offset 0 DMA_EN

0

Figure 4. Floppy DMA Address Register

 Bits 11:2 of the FDAR provide the page offset of the head pointer. The page offset will increment
after every data transfer. Bit 0 of the FDAR is the DMA enable bit (DMA_EN). This bit is read only
in the FDAR. Data will only be transferred if the DMA_EN bit is set to 1. The DMA interrupt signal
will be true any time the page offset is 0x3ff or 0x1ff. This signal will cause an interrupt to be issued
if the DMA_IE bit is set to 1 in the Floppy Control Register and bit 20 of the Interrupt Mask Register
(in the interrupt block) is set to 1. The DMA interrupt is cleared by setting the DMA_IE bit to 0 while
the page offset in the FDAR is any value other than 0x3ff or 0x1ff.

The direction of the DMA is determined by the read enable (RE) and write enable (WE) bits in the
Floppy Control Register. When the RE bit is set to 1, data will be moved from the FDC to main
memory (provided DE=1). When the WE bit is set to 1, data will be moved from main memory to the
FDC (provided DE=1). RE and WE should not be set to 1 at the same time.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
�� ��� ��

The DMA controller in Lasi has no indication of how many bytes of data to transfer. It simply at-
tempts to keep the 4 byte FIFO in Lasi’s floppy interface either full (WE=1) or empty (RE=1) de-
pending on the direction of the data transfer.

Note: The FIFO will most likely be full following a DMA operation from main memory to the
FDC. The FIFO can be emptied with slave reads of the FIFO data registers to avoid using the
data on subsequent transfers.

The FDC controls the amount of data that is actually transferred. It can be programmed to move one
or more sectors and will interrupt upon completion. The FDC must be used in a mode that does DMA
(see the WD37C65C for details). When the FDC tells Lasi that it is ready to transfer data, Lasi trans-
fers the data between the FDC and the 4–byte FIFO. Lasi’s floppy DMA mechanism completes the
transfer by moving data between the circular buffer in main memory and the FIFO.

10.2.1 Servicing the Circular Buffer

It is up to software to keep the circular buffer from overflowing or underflowing when transferring
more than 1K bytes of data. This can be accomplished by using the two interrupts that can be gener-
ated by the circular buffer. One interrupt is generated as the page offset rolls over the page boundary
and the other is generated as the page offset rolls over the half–page boundary. This allows software
to fill/empty one half of the page while DMA is working on the other half of the page. This scheme
allows for very long interrupt response times (> 6mS) without data overrun errors. If there should be
a data overrun error, it will be indicated in the FDC and the sector operation will need to be repeated.

10.3 PC Floppy Registers
The PC Floppy contains three types of registers. The FDC registers are byte registers and are physi-
cally located on the WD37C65C. They are accessed through Lasi in the 4K block at address offset
0xa000. The DMA registers are both 32–bit registers that are in the 4K block at address offset
0xd000. The remaining registers are byte registers and are also in the 4K block at address offset
0xa000. Each register is described below.

10.3.1 FDC Registers

All of the FDC registers can be accessed directly with byte reads and writes. Table 7 lists the FDC
registers and their address. See the WD37C65C specification for more detail as to the exact bit defi-
nition and functionality of each register.

FDC Register Address
Offset

R/W

Master Status Register 0xa008 R

 Control Register 0xa020 R/W

 Operations Register 0xa040 W

Data Register 0xa004 R/W

Table 7. Floppy Disk Controller Registers

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
	� ��� ��

Floppy Registers Address
Offset

R/W

Control Register 0xa018 R/W

Status Register 0xa01C R

FIFO Data Register 0xa014 R/W

Table 8. Floppy Registers

DMA Registers Address
Offset

R/W

DMA Address Reg 0xd000 R/W

DMA enable Reg 0xd004 R/W

Table 9. DMA Registers

Bit Symbol Description

0 WE write enable – Setting this bit, establishes the direction of DMA as
from main memory to the FDC1.

1 RE read enable – Setting this bit, establishes the direction of DMA as from
the FDC to main memory.

2 FDC_IE Allows interrupts generated by the FDC to be forwarded to the proces-
sor.

3 DMA_IE Allows the DMA address register to generate an interrupt when rolls–
over the page and half–page boundary.

Table 10. Floppy Control Register bit Definition

Bit Symbol Description

0 FULL Indicates that the FIFO is full.

1 EMPTY Indicates that the FIFO is empty.

2 DMA_IRQ Indicates that the DMA address register generated an interrupt. This
bit can only be cleared by clearing the DMA_IE bit and setting the
PAGE_OFF bits of the DMA address register to a non–interrupting
values (anything but 0.

Table 11. Floppy Status Register bit Definition

1. The write enable bit must be set in order to do slave writes from the processor directly into the
FIFO.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��

� ��� ��

Bit Symbol Description

0 DMA_EN DMA enable bit– Read Only

1 This bit is always 0 – Read Only

11:2 PAGE_OFF These bits specify the word offset within the memory page specified by
PAGE_ADR – R/W

31:12 PAGE_ADR These bits specify the memory page to use for floppy DMA – R/W

Table 12. Floppy DMA Address Register bit Definition

Bit Symbol Description

0 DMA_EN DMA enable bit– R/W

1 This bit is always 0 – Read Only

11:2 PAGE_OFF These bits specify the word offset within the memory page specified by
PAGE_ADR – Read Only

31:12 PAGE_ADR These bits specify the memory page to use for floppy DMA – Read
Only

Table 13. Floppy DMA Enable Register bit Definition

�#��� �
�� ����

�%� � � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
�� �� �

11
11 FLASH EPROM

11.1 Overview
One half of the Lasi address space (1 Mbyte) maps to the 8–bit external bus. The 712 uses this space
only for processor dependent code and the stable–store. Both will be implemented using flash
EPROM technology. Past implementations required two EPROMS with sockets and an EEPROM
to implement PDC and stable–store. The 712 will use two un–socketed Flash EPROM parts instead.
This is a lower cost implementation with additional features such as remote PDC updates and addi-
tional flexibility during turn–on and test.

The Flash EPROM resides on Lasi’s external 8–bit bus. The processor accesses the Flash EPROM
via GSC. Reads from PDC space can be either double–word, word, or byte accesses. All writes to
the Flash EPROM must be byte accesses. Software must provide all the control for erasing and pro-
gramming new data.

11.2 Memory Map
Lasi’s external 8–bit bus provides 1M byte of address
space with 19 address signals and three chip select signals.
One chip select signal decodes the lower half of the 1M ad-
dress space. The second chip select signal decodes the
next 256K bytes of the address space. The third chip select
signal decodes the last 256K bytes. The third chip select
signal is multiplexed with the address latch signal. This
allows up to 1M byte of EPROM space in three different
devices without external decode logic or configuration
bits. External logic could be added to the external 8–bit
bus to support more than three devices. The Gecko imple-
mentation will provide 256K bytes of storage in two Flash
EPROM devices.

The target Flash EPROM device for the 712 is the
AM29F010 from AMD. Using this device, the address
space is segmented into 16 different areas. All of these
segments can be modified by software. Figure 5 is a
memory map for the Flash EPROMs. If other devices are
used, the segment locations will most likely be different.
Notice that the EPROM space in the 712 is not contiguous.

Figure 5. Flash EPROM Memory Map

16K

16K

16K

0x00000

0x08000
0x0C000
0x10000

16K

0x04000

16K

16K

16K
0x18000
0x1C000 16K

0x14000

0x1FFFF

16K

16K

16K

16K

16K

16K

16K

0x9C000 16K0x9FFFF

0x80000

0x88000
0x8C000
0x90000

0x84000

0x98000
0x94000

�#��� �
�� ����

�%� � � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
�� �� �

11.3 Performance

11.3.1 Reading Data

The Flash EPROM devices are relatively slow and are accessed via an 8–bit bus. As a result, the
request for a double word of data from the Flash Eprom will be very slow. Data will be returned to
the processor approximately 75 GSC cycles after it is requested.

11.3.2 Writing Data

Writing data to the Flash EPROM requires the software to erase the entire segment and then write the
data back a byte at a time. The timing required for the writes is built into the the Flash EPROM
device. Software must write a command sequence to the device to get it to erase a sector or program a
byte. The device is thenpolled to determine when the write is complete. Erasing and re–program-
ming the entire Flash EPROM device is a relatively slow process and may take a couple of seconds.
Refer to the Am29F010 specification for more detailed information.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��

� ��� ��

12
12 POWER SYSTEM SUPPORT

12.1 Overview
The 712 I/O system provides support for the power system in two areas.

� The Lasi chip receives the asynchronous PON signal from the power supply and drives that
signal to the other GSC devices as a synchronous RESET signal.

� Lasi provides an interface between the CPU and the power supply allowing a smart power
switch. When the switch is turned off, the CPU will shut the system down gracefully before
power is actually removed.

12.2 Reset
In the 712, the primary Lasi chip receives the asynchronous PON signal directly from the power
supply. The primary Lasi chip then must synchronize the rising edge of this signal to the system
clock and drive the signal as the RESETL signal on GSC. Note that Lasi must drive this signal at the
full processor frequency to insure that all GSC devices are in phase.

12.2.1 RESETL Configurability

The RESETL signal can be configured on Lasi as either an input or an output by setting the
RST_SLAVE bit (bit 0 of the external 8–bit bus) at power–up. If this bit is high, Lasi will use the
RESETL signal as an input. This is necessary if another device in the system is used to control reset
as would be the case for a second Lasi used on the personality card. To make this work without drive
fights, Lasi must always drive the RESETL signal low when its PON input is driven low. The PON
input on the second Lasi must also be tied to PON from the power supply. The RESETL signal will
be an output if the RST_SLAVE bit is low during reset and will be an input if it is high. Both Lasi’s
will try to drive the RESETL signal for a short time during power–up, but they will both be driving it
low. Bit 0 of the external 8–bit bus will be latched in as the RST_SLAVE bit on the rising edges of the
RESETL signal.

12.2.2 I/O Reset

When RESETL is low, the I/O reset register will be cleared and all Lasi internal devices will be reset
(except RTC).

Software can cause a hard reset to any most of the internal I/O devices by writting to the I/O reset
register located at address offset 0x10C00C.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ��
�� �� ��

The I/O reset register will be cleared, (all I/O reset register outputs = ‘‘0”), when RESETL is ‘‘0”.
Before accessing an I/O reset register device, PDC will have set the appropriate I/O reset register
device bit to a ‘‘1”.

Table 14 defines each of the bits in the I/O reset register.

Bit Symbol Description

31–9 Undefined

8 RST_ARTIST_L Reset Artist chip

7 RST_KBD_L Reset keyboard

6 RST_RS232_L Reset RS232

5 RST_EXT Reset FDC, LAN Buf, and tri–stat main memory

4 RST_INTR_L Reset Interrupt

3 RST_AUD_L Reset Audio

2 RST_PAR_L Reset Parallel

1 RST_LAN_L Reset LAN

0 RST_SCSI_L Reset SCSI

Table 14. I/O Reset Register

The RS232, LAN, and parallel I/O devices can also be reset for 15 GSC clock cycles by writing to
address offset 0x000 of their respective 4K page.

The parallel port dma registers will be reset by writing to address offset 0x10300.

12.3 Smart Power Switch
The front panel power switch on Gecko is a logical switch that is qualified by the pwr_on_L signal
from Lasi. The diagram in figure 6 shows the logical representation of the power switch circuit.

Figure 6. Power–down circuit logic

CPU Lasi

OFF

Power Switch

POWER_ON
PFW

GSC pwr_on_L

+v

LED

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ��
�� ��� ��

When the power switch is turned on, the logical POWER_ON signal will activate the primary
switcher in the power supply, causing the DC supplies to come into spec. When the power switch is
turned off, the power fail warning interrupt will be issued to the CPU. This power fail warning inter-
rupt signal will come directly from the switch and will therefore be completely asynchronous to the
system clock. The signal will not be ‘‘de–bounced” before it is sent to the CPU so it will most likely
make several transitions before settling to a low level. The software must be able to handle this situa-
tion.

The CPU will do all the tasks necessary for a clean shut down of the system and will then set the
PWR_ON_L bit to a ”1” ,in the power control register (PCR). The PCR is located at address F010
C000. Table 15 shows the bit definitions for the PCR.

12.4 LED Control
The pwr_on_L signal is used for LED control to indicate possible system conditions. If
PWR_ON_L is ‘‘0” and FLASH_LED is ‘‘0” then the LED is on. If FLASH_LED is ‘‘1” and
PWR_ON_L is ‘‘0” then the LED will flash at 2Hz.

Bit Symbol Description

31–2 Undefined.

1 PWR_ON_L The bit is set by software to shut down the power supply. It is set at
reset to a ‘‘0”.

0 FLASH_LED The bit is set by software to gate a 2Hz signal to the LED. Set to a
‘‘1” at power up.

Table 15. Power Control Register bit Definition

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

13
13 MISCELLANEOUS REGISTERS

13.1 I/O Configuration Registers
The I/O configuration registers are two 8–bit read–only registers provided in Lasi to allow PDC to
identify which I/O devices in the second Lasi are enabled (have connectors). PDC can read these
registers and determine which I/O functionality can be used in the second Lasi. These registers are
only present when there is a second Lasi in the 712 system (SPACE[1:0]=01).

13.2 Setting the Registers
The configuration registers are two read–only byte registers located at address offset 0x7FFFE and
0x7FFFF. The second register is optional. This is in the address space that would normally be occu-
pied by the Flash EPROM devices in Lasi. If only the first register is needed, it can be implemented
by using resistors to bias the signals. If both registers are required, some active logic
is required to implement the second register.

13.2.1 Primary I/O Configuration Register

The first configuration register bits are set by using resistors on Lasi’s 8–bit external bus to pull the
un–driven signal corresponding to each bit either high or low. The resistors on bits 7–4 are only re-
quired on the second Lasi because the primary Lasi will always have a Flash EPROM device on this
bus. The resistors on bits 0–3 are required for both the primary and the secondary Lasi for hardware
configuration at power–up. These resistors will normally be pulled low on the primary Lasi. The
second configuration register (at offset 0x7FFFF) is optional and is defined to exist only when bit 7 is
a one. If bit 7 of the first configuration register is a 0, it can be assumed that all bits in the second
configuration register are 0.

The table 16 defines each of the bits in the primary configuration register.

Bit Symbol Description

7 IO_CONF_REG2 Indicates that there is a second I/O configuration register.

6 LAN Indicates that the secondary LAN can be used.

5 X.25 Indicates that X.25 can be used with the second Lasi.

4 RS232 Indicates that the secondary RS232 can be used.

3 SPACE[1] Indicates Lasi base address.

2 SPACE[0] Indicates Lasi base address.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

1 ARB_SLAVE Disables the arbitration circuit in Lasi and forces it to arbitrate
through the EREQUESTL and EGRANTL pins on Lasi.

0 RST_SLAVE Causes the RESETL to be an input.

Table 16. I/O Configuration Primary Register Bit Definition

13.2.2 Secondary I/O Configuration Register

The secondary I/O configuration register is at address offset 0x7FFFF. This register is a read–only
byte register defined to exist only if bit 7 of the primary I/O configuration register is set. This register
is implemented using a discrete component (such as a simple PAL or a ROM) that lives on the 8–bit
bus.

Table 17 defines each of the bits in the secondary configuration register.

Bit Symbol Description

7–5 Undefined.

4 TOC Indicates that the card is being used for TOC functionality.

3 SCSI Indicates that the secondary SCSI interface can be used.

2 AUDIO Indicates that the secondary audio/phone interface can be used.

1 FLOPPY Indicates that the secondary floppy interface can be used.

0 PAR Indicates that the secondary parallel port can be used.

Table 17. I/O Configuration Secondary Register Bit Definition

13.3 Error Logging Register
The only error detection capability built in to Lasi is GSC parity and time–out. If Lasi detects an
error when some other device is bus master, Lasi will pull the GSC ERRORL line low and no other
action will be taken by Lasi. If the ERRORL signal is pulled low when Lasi is the bus master, an
interrupt will be generated by Lasi.

If a bus error occurs while Lasi is the bus master, a bit is set in the Error Logging Register that corre-
sponds to the Lasi internal device that was active when the data error occurred. Table 18 defines the
bits of the Error Logging Register. This read/write register is at address offset 0x10C004. This regis-
ter must be cleared by software following an error.

The Error Logging Register is accessed as a word register.

Bit Description
31–7 Undefined.

6 Indicates that Floppy was the bus master when the error occurred.

5 Indicates that Parallel was the bus master when the error occurred.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ���	� �� ��

4 Indicates that ISDN was the bus master when the error occurred.

3 Indicates that Audio/Phone was the bus master when the error occurred.

2 Indicates that Interrupt was the bus master when the error occurred.

1 Indicates that LAN was the bus master when the error occurred.

0 Indicates that SCSI was the bus master when the error occurred.

Table 18. Error Logging Resister

13.4 Lasi Version Control Register
The Lasi Version Control Register is a read–only 4bit register, (bits 3–0), at address offset
0x10C008. This register is accessed as a word register.

This register will always return a zero in the initial Lasi chip. The register’s value will be increm-
ented if there are additional revisions of the Lasi chip.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ���
� �� ��

���!$�!'� �
�� ���

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

14
14 INTERRUPTS

14.1 Overview
External interrupts in the 712 are always sent to the processor via a GSC write transaction to the
IO_EIR. The IO_EIR is a five bit register physically located inside the processor. The five bit value
written to the IO_EIR indicates which bit of the EIR (CR23) will be set. The address of the IO_EIR
is fully programmable in Lasi. Either Lasi or the personality card can master the write transaction.
The personality card will contain either a second Lasi chip or a Wax chip (Token Ring).

14.2 Register Definitions
There are five registers in Lasi associated with interrupts. The registers are defined below in table
19.

Register Symbol Address Offset R/W DescriptionRegister Symbol Address Offset R/W Description

Interrupt
Request
Register

IRR 10 0000 R The IRR contains the status of all request-
ing interrupts. A 1 in an IRR bit indicates
that the corresponding interrupt is pending
and enabled. When an IRR bit is set it will
cause Lasi to generate an interrupt transac-
tion.

Interrupt
Mask
Register

IMR 10 0004 R/W The IMR is used to mask pending inter-
rupts. A 1 in an IMR bit enables the corre-
sponding pending interrupt to create an in-
terrupt request.

Interrupt
Pending
Register

IPR 10 0008 R/W The IPR is used to latch incoming inter-
rupts and indicate them as pending. An
active edge on an internal interrupt signal
causes the corresponding IPR bit to be set
to 1. Writes to this register are intended
for diagnostic use only and will cause the
entire register to be cleared.

���!$�!'� �
�� ���

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

Register DescriptionR/WAddress OffsetSymbolRegister DescriptionR/WAddress OffsetSymbol

Interrupt
Control
Register

ICR 10 000C R/W The ICR is used to indicate if the system is
running HP–UX or HP–RT.

Interrupt
Address
Register

IAR 10 0010 R/W Bits 31:5 specify the address of the IO_EIR
register (4:0=0). Bits 4:0 specify the data
to be written. The power–up value is
0xfffbe003.

Table 19. Interrupt Registers

The interrupt registers appear to be 32–bits and are accessed as such. However, not all of the bits are
implemented for each register. The un–implemented bits are not affected by writes and are always
read as zeros.

14.3 Interrupt Operation
The interrupt mechanism in Lasi operates in two different modes. The mode is determined by the RT
bit. The RT bit is set by software writing to the ICR. Both modes will cause at least one write trans-
action to the address specified by bits 31:5 of the IAR when a bit is set in the IRR.

If an interrupt source in Lasi wants to interrupt the processor, the corresponding bit in the IPR will be
set to 1. If that interrupt is enabled (IMR bit=1), the same bit of the IRR will be set to 1 and a write to
the location specified by bits 31:5 of the IAR will be initiated. The data written will be specified by
bits 4:0 of the IAR.The contents of the IRR and unmasked bits (IMR bit=1) of the IPR are cleared on
the clock cycle following a read of the IRR.

NOTE: RT mode is broken in current silicon.

14.4 Interrupt Register Bit Assignments
Table 20 shows the implemented bits for the ICR in Lasi. The interrupt controller will never request
mastership of GSC when the bus_error bit is set. The interrupt controller can effectively be disabled
by setting this bit. Also, this bit must be cleared by software if normal interrupt operation is desired
following a bus error. The TOC bit can be set to turn the external interrupt signal into a TOC signal.
External interrupts must be enabled for a TOC to be issued.

Bit Symbol Description

0 Reserved All writes to this bit location must be a 0

1 TOC This bit re–maps the external interrupt signal to TOC when set. This bit
is write–only and will always return a 0 when read.

8 bus_error Indicates the interrupt controller received a bus error during a write to
the IO_EIR. This bit disables any additional interrupts when set.

Table 20. Interrupt Control Register Bit Definition

���!$�!'� �
�� ���

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ���
� �� ��

Table 21 shows the implemented bits for the IRR, IMR and IPR in Lasi. This table shows GSC bit
definitions. Note that these are not the same bit numbers as are seen in a PA register.

Bit Interrupt Source

5 RS–232

7 Parallel Printer Interface

8 LAN

9 SCSI

13 Audio

14 Bus Error

16 Telephone 0

17 Telephone 1

18 ISDN

19 SCSI Snoop

20 PC Floppy

21 External Interrupt

26 Keyboard/mouse

Table 21. IPR, IMR, and IRR Bit Definition

14.5 Error Handling
If a GSC bus error occurs while Lasi is the bus master and the bus error interrupt is enabled, an inter-
rupt will be issued and the bus error bit will be set in the IRR.

If a bus error occurs while the interrupt block is doing a write to the IO_EIR, the bus_error bit will be
set in the ICR and no further interrupts will be issued. In this case, the CPU is never informed by Lasi
that an error occurred. PCXL will, however, issue an HPMC when it sees the error.

���!$�!'� �
�� ���

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

�$ �� �
�� ����

�&�� �!�� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� !�� �

15
15 GSC INTERFACE

15.1 Interface Overview
Lasi, the PA7100LC CPU, Artist graphics, and an expansion slot all reside on the Gecko System
Connection (GSC). This section describes the hardware Lasi uses to interface to GSC and the con-
nection features Lasi uses.

15.2 Connection Control Path
The Lasi GSC interface can be either a connection master or a slave. When it is a slave it will receive
addresses and respond with a ready signal. When it is a master it generates addresses and receives the
ready signal.

While in slave mode, the GSC interface will derive internal control signals from external GSC sig-
nals using combinational logic and a simple state machine. The interface will assume that all LASI
internal slave devices have a common timing behavior. The number of GSC states needed to do a
slave transaction varies depending on the internal device accessed.

As a master, Lasi’s GSC interface depends heavily on its internal devices for the generation of ad-
dresses and internal control signals. In this mode the interface serves as a means of translating sig-
nals to those used by GSC, generating parity, dealing with bus errors, and providing the correct tim-
ing. The GSC interface will be built to maximize SCSI performance.

15.2.1 Control Simplification Ideas

 In order to simplify the control design Lasi’s GSC interface will not use the GSC LSL signal to split
GSC transactions. Lasi avoids using the split signal by not granting its internal bus before getting the
external bus. Doing this will increase the amount of time between bus grant and the first address
valid of a DMA transaction.

Lasi will run its internal bus at the GCLK frequency to avoid synchronizing to signals on the GSC
interface. All internal Lasi devices must be able to meet the timing requirements imposed by the
internal bus. The GSC interface does not fifo the data going to the GSC bus so internal devices need
to transfer data fast enough to keep up.

15.3 Lasi’s Data /Address Path
As a slave, GSC data and addresses will be separated within the GSC interface. The interface latches
addresses and presents them to the rest of Lasi for decoding. Depending on the GSC transaction
type, the interface generates data cycles for internal slaves. Since Lasi needs to support up to 2–word
GSC slave reads, the interface will provide a two word buffer.

�#��� �
�� ����

�%� � � �� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� �� �

Only byte, word, and double word transactions are currently being considered for internal slave de-
vices, however, Lasi still needs to respond to other transactions, even illegal ones. The interfaces
response to an unsupported transaction will be to generate valid data and data parity, but the data may
not be predictable.

While in master mode, the Lasi GSC interface will support all necessary GSC transactions. Lasi’s
internal bus interface will be synchronous to GSC; this forces all internal master devices to generate
data at a rate equal to the imaginary GCLK frequency.

15.4 LASI GSC Behavior Summary
For writes to which Lasi is a slave READYL will always be asserted, if the address is valid. Since
Lasi is the data sink for this type of transaction it will assert ERRORL if bad data parity is detected.
Lasi properly responds to all types of GSC write transactions for which it receives a valid address

When Lasi is a slave to a read transaction READYL will always be asserted, if the address is valid.
Since Lasi is the data source for this type of transaction it is supposed to look at ERRORL , however,
it doesn’t do anything differently if an error happens. Lasi properly responds to all types of GSC read
transactions for which it receives a valid address.

As a bus master for write transactions data Lasi needs to watch for READYL and ERRORL while
writing data to the slave. Since the slave is the data receiver it will signal data parity errors using
ERRORL , and the CPU will generate ERRORL if no devices respond with READYL within the
timeout period. Lasi distinguishes between timeouts and data parity errors by knowing when to
expect a data parity error for each data word written. In the case of a timeout Lasi uses ERRORL as a
ready indication, this gets the state machine unstuck. In either case Lasi goes through the motions of
transferring data as if the error had not occurred.

When Lasi is the bus master for read transactions it looks for the assertion of READYL as an indica-
tion that valid data is on the bus. If READYL does not happen (because of a timeout) the CPU will
assert ERRORL which in this case is a substitute for READYL, and the transaction will complete by
pretending to transfer the correct amount of data. Bus–holders in the CPU keep valid data and parity
on the GSC interface.

Lasi’s GSC interface looks at the ERRORL signal much the way it looks at READY. Timed–out
transactions complete normally except that an error is logged. Transactions with data parity errors
also complete normally except that an error is logged. ERRORL is only asserted by Lasi as the result
of a data parity error when Lasi is the data sink (Master Reads & Slave Writes). To summarize,
errors help get the GSC interface unstuck if there is a timeout but do not directly affect interface
operation, rather they affect the internal devices attached to the interface and the processor.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ��

16
16 ARBITRATION

16.1 712 Arbitration Overview
The 712 System Connection (GSC) uses a central arbitration scheme. The arbitration controller is
located inside the Lasi chip for the 712. There are eight potential bus masters in the 712. Six of the
eight are internal to the Lasi chip. All devices serviced by the arbitration controller are given equal
priority. The CPU is the only device that will be granted the bus without having requested it. Table
22 identifies the potential bus masters in the 712.

Device Location Signal Sense

CPU outside Lasi negative true

Expansion Slot outside Lasi negative true

SCSI inside Lasi negative true

LAN inside Lasi positive true

Parallel inside Lasi positive true

Audio inside Lasi positive true

Interrupts inside Lasi positive true

floppy inside Lasi positive true

Table 22. 712 Bus Masters

16.2 Arbitration Mask Register
The arbitration mask register (AMR) is a read/write register located at address offset 0x10C010. The
AMR provides a means to prevent a device from being granted the bus. Table 23 defines the AMR
bits. If a bit in the AMR is set to a 1, the request is disabled and the associated device(s) will never be
granted the bus. All of the internal Lasi devices (except interrupts) are masked with the IRM bit. The
CPU’s bus request signal can never be masked. Interrupt request signals are not masked because the
interrupts can be masked by writing to the interrupt mask register (IMR).

Bit Symbol Description

31–2 Undefined

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ��

1 ERM External request mask – if ERM=1, the expansion slot will never be
granted the bus.

0 IRM Internal request mask – if IRM=1, none of the devices internal to the
Lasi chip will be granted the bus (except interrupts).

Table 23. Arbitration Mask Register

All non–CPU devices power–up with arbitration disabled. Software must clear the AMR bits before
any other device can request the bus.

The IRM bit will be set by Lasi if a bus error occurs on GSC when Lasi is the bus master. No addition-
al internal bus grants will be issued after the IRM bit is set. Devices that already own the bus may
issue new transactions after the bit is set if they already are the bus master.

16.3 Disabling the Arbitration Controller
The Lasi chip can be configured to work on a GSC bus when it is not the arbitration controller. The
configuration bit ARB_SLAVE can be set high if Lasi is not the controller. The ARB_SLAVE bit
must be 1 on the second Lasi in a 712 system.

When Lasi is not the arbitration controller, the CGRANTL signal becomes the GSC bus request sig-
nal and the CREQUESTL signal becomes the GSC grant signal. In this mode, Lasi will only grant its
internal bus to a device if Lasi has been granted the bus via its GSC grant signal. All internal devices
will have equal priority when Lasi is not the arbitration controller. If all devices in both Lasi chips
requested the bus at the same time, all devices would get the bus exactly once before any device re-
ceived it twice.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���	� ��� ��

17
17 CLOCKS

Introduction
The LASI Clock Block generates clocks for: the GSC Interface, all the built–in I/O modules, and the
reference clocks for the external LAN Transceiver, Artist graphics interface and CD Audio Inter-
face. LASI uses Phase Lock Loops (PLLs) to generate or synthesize the required clock frequencies
from a single input reference (the GECKO system clock reference, clksys). This on–chip clock gen-
eration reduces system cost by reducing the number of crystals or crystal oscillators in the system.

A block diagram of the LASI clock system is shown in Figure 7.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� ��� ��

Figure 7. LASI Clock Diagram

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ��

Overview
LASI generates 6 internal and 5 external reference clocks, as shown in Table 24.

Table 24. LASI Internal and External Clocks

Clock Name Target
Frequency

Use

clk_sysb,
clk_sysb_L

clksys Internal Processor clock.

clk_gclk,
clk_ngclk

clksys � 2 Internal GSC clock.

clk_40 40 MHz
via one of the following:
 clk_40 PLL
 clksys
 clksys� � 2
 clkio pad

Internal NCR 710 SCLK and RS–232.

clk_20 20 MHz
via one of the following:
 clk_40 � 2
 clksys � 2
 clksys � 3
 clksys �� 4

Internal Centronics,
External clklan, clkartist.

clklan 20 MHz External LAN Transceiver Chip.

clkartist 20 MHz External Artist Graphics Chip.

clkflp clksys � 2 Not used in Gecko.

clkaud Freq0 = 16.9344 MHz
or
Freq1 = 24.576 MHz
selectable–on–the–fly,
PLL generated

External Audio Chip.

clkio 40 MHz Optional output from clk_40.

The inputs are : clksys 712 system clock in the 40–80 MHz range
clkio Optional 40 MHz fixed clock when clk_40 PLL is disabled.

clkio is an optional 40 MHz input reference in the event that the clk_40 PLL jitter is greater than can
be tolerated, but at a higher processor board cost. When the clk_40 PLL is disabled, clkio is the
reference input for clk_40. When the clk_40 PLL is enabled, clkio is an output and drives the clk_40
PLL output off–chip.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ��

Registers
Register addresses are offsets from the LASI Clock Configuration Registers base address.

Address (HEX) Bits: 31–24 Bits: 23–16 Bits: 15–8 Bits: 7–0

000 clk_40_cntl clk_40_n clk_40_m1 clk_40_m2

004 clk_20_cntl

008 clk_aud_cntl clk_aud0_n clk_aud0_m1

00C clk_aud1_n clk_aud1_m1 clk_aud1_m2

Each of the above registers are Read/Write and word–accessible only.

The PLL coefficient registers for clk_40 and clkaud are defined as:

n = PLL Multiplier – 1
m1 = PLL Pre–Divisor – 1
m2 = PLL Post–Divisor – 1
div = PLL Internal Divisor, used at power up

such that Freq. Out = clksys �� (n+1)
 ((m1+1)�(m2+1))

17.1 Register: clk_40

Bit(s) Name Definition Pwr On Default
clk_40[31] PLL40 reset_L 0 = PLL reset 1’b1

1 = PLL run
clk_40[30:28] PLL40 div PLL40 Internal Divisor 3’d3
clk_40[27:26] Select clk_40 source: 00 = PLL40 output 2’b11

 01 = clksys
 10 = clksys � 2
 11 = clkio.

clk_40[25] PLL40 enable: 0 = PLL bypassed and 1’b0
 PLL40=clksys/(m2+1)
1 = PLL enabled.

clk_40[24] PLL40 sync enable: 0 = PLL free run 1’b0
1 = PLL synchronous operation.

clk_40[23:16] PLL40 n PLL40 Multplier – 1 8’d3
clk_40[15:8] PLL40 m1 PLL40 Pre–Divisor – 1 8’d7
clk_40[3:0] PLL40 m2 PLL40 Post–Divisor – 1 4’d0

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ���
� ��� ��

17.1.1 Register: clk_20

Bit(s) Name Definition Pwr On Default
clk_20[25:24] Select clk_20 source: 00 = clk_40 � 2 2’b00

 01 = clksys � 2
 10 = clksys � 3
 11 = clksys � 4.

17.1.2 Register: clk_aud0 = 16.9344 MHz Target Frequency

Bit(s) Name Definition Pwr On Default
clk_aud0[31] PLLaud reset_L 0 = PLL reset 1’b1

1 = PLL run
clk_aud0[30:28] PLLaud div PLLaud Internal Divisor 3’d3
clk_aud0[25] PLLaud enable: 0 = PLL bypassed and 1’b0

 PLLaud=clksys/(m2+1)
1 = PLL enabled.

clk_aud0[24] PLLaud sync enable 0 = PLL free run 1’b0
1 = PLL synchronous operation.

clk_aud0[23:16] PLLaud0 n PLLaud0 Multiplier – 1 8’d46
clk_aud0[15:8] PLLaud0 m1 PLLaud0 Pre–Divisor – 1 8’d36

The clk_aud0[31:24] bits are the control bits for PLLaud.

The clk_aud1[3:0] bits are the m2 PLLaud Post–Divisor for PLLaud.

There are two sets of audio n and m1 PLL coefficients (PLLaud0 n/m1 and PLLaud1 n/m1) which
are selected by the clkaud_sel signal from the audio interface:

clkaud_sel = 0: Use PLLaud0 n/m1
clkaud_sel = 1: Use PLLaud1 n/m1.

17.1.3 Register: clk_aud1 = 24.576 MHz Target Frequency

Bit(s) Name Definition Pwr On Default
clk_aud1[23:16] PLLaud1 n PLLaud1 Multiplier – 1 8’d46
clk_aud1[15:8] PLLaud1 m1 PLLaud1 Pre–Divisor – 1 8’d50
clk_aud1[3:0] PLLaud1 m2 PLLaud1 Post–Divisor – 1 4’d5

PLL Coefficients
Table 25 below shows the PLL Coefficients required for clksys frequencies being considered and the
the frequency error for cases where the exact frequency can not be generated.

���!$�!'� ���� ���	

�&�� � �� ������	�������	�
��� ���� �$�"'"#��� ���� � ��%� ��� ����� ����� �� ��

Table 25. LASI PLL Coefficients

Clock Frequencies

40 48 60 64 75

Target Freq.

 clk_40=40 n 7 9 5 4 7

m1 7 11 8 7 14

m2 0 0 0 0 0

div 3 3 3 3 3

%error 0 0 0 0 0

aud0=16.9344 n 46 11 34 49 6

m1 110 16 123 188 30

div 2 3 3 2 3

%error 0.0150 0.0400 .0064 –0.0188 .0064

aud1=24.576 n 50 42 33 47 38

m1 82 41 82 124 118

m2 0 1 0 0 0

div 3 2 3 3 3

%error 0.0094 –0.0186 0.0094 0 0.0156

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����� ��� ��

18
18 APPENDIX A: 712 I/O MEMORY MAP

The Lasi chip always responds to a contiguous 2M byte address space. This address space is relocat-
able at power–up to one of four locations. This relocation allows multiple Lasi chips to be used in the
same system. Table 26 shows the address offset used for each I/O device in the 712. Lasi will re-
spond to accesses in the unassigned areas of the address space, but the results of such accesses are
undefined.

Address Offset Block Size
(bytes)

I/O Device

starting ending

Block Size
(bytes)

I/O Device

00 0000 0F FFFF 1M External 8–bit Bus

00 0000 Lasi 2 Primary I/O Config Reg

80 0000 Lasi 2 Secondary I/O Config Reg

10 0000 10 0FFF 4K Interrupt Registers

10 0000 Request Register

10 0004 Mask Register

10 0008 Pending Register

10 000C Control Register

10 0010 Interrupt Address Register

10 1000 10 1FFF 4K Parallel Port DMA Registers

10 1000 Current Address Register

10 1001 Current Count Register

10 1008 Status Register

10 100A Write Single Mask Bit

10 100B Mode Register

10 100C Clear Byte Pointer

10 100D Master Clear

10 100E Clear Mask Register

10 100F Mask Register

10 1010 Fifo Limit Register (not used)

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ������ ��� ��

Address Offset I/O DeviceBlock Size
(bytes)starting

I/O DeviceBlock Size
(bytes)ending

10 1087 Current Address Low Page Register

10 1401 High Current Count Register

10 140A Interrupt Pending Register

10 1487 Current Address High Page Register

10 2000 10 2FFF 4K Parallel Interface Registers

10 2000 Parallel Slave Reset

10 2800 ParData Register

10 2801 ParStatus Register

10 2802 ParDevCtl Register

10 2803 Undefined

10 2804 ModeCtl Register

10 2805 IECtlStat Register

10 2806 TDC0 Register

10 2807 TDC1 Register

10 3000 10 3FFF 4K Parallel Port DMA Reset Registers

10 4000 10 4FFF 4K Audio

10 4000 Audio ID Register

10 4004 Audio Reset

10 4008 Control Register

10 400C Gain Control Register

10 4010 Playback Next Address Register

10 4014 Playback Current Address Register

10 4018 Recording Next Address Register

10 401C Recording Current Address Register

10 4020 DMA Status Register

10 4024 Over Range Register

10 4028 PIO Register

10 403C DIAG Register

10 4040 Receiver Buffer Register

10 4040 Transmitter Holding Register

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ������ ��� ��

Address Offset I/O DeviceBlock Size
(bytes)starting

I/O DeviceBlock Size
(bytes)ending

10 4040 Divisor Latch Reg LSB (DLAB=1)

10 4041 Interrupt Enable Register

10 4041 Divsior Latch Reg MSB (DLAB=1)

10 4042 Interrupt Ident Register

10 4042 Fifo Control Register

10 4043 Line Control Register

10 4044 Modem Control Register

10 4045 Line Status Register

10 4046 Modem Status Register

10 4047 10 405F Undefined

10 4060 Receiver Buffer Register

10 4060 Transmitter Holding Register

10 4060 Divisor Latch Reg LSB (DLAB=1)

10 4061 Interrupt Enable Register

10 4061 Divsior Latch Reg MSB (DLAB=1)

10 4062 Interrupt Ident Register

10 4062 Fifo Control Register

10 4063 Line Control Register

10 4064 Modem Control Register

10 4065 Line Status Register

10 4066 Modem Status Register

10 4067 10 4FFF Undefined

10 5000 10 5FFF 4K RS232

10 5000 RS232 Reset

10 5001 10 57FF Undefined

10 5800 Receiver Buffer Register

10 5800 Transmitter Holding Register

10 5800 Divisor Latch Reg LSB (DLAB=1)

10 5801 Interrupt Enable Register

10 5801 Divsior Latch Reg MSB (DLAB=1)

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ������ ��� ��

Address Offset I/O DeviceBlock Size
(bytes)starting

I/O DeviceBlock Size
(bytes)ending

10 5802 Interrupt Ident Register

10 5802 Fifo Control Register

10 5803 Line Control Register

10 5804 Modem Control Register

10 5805 Line Status Register

10 5806 Modem Status Register

10 5807 Scratch Register

10 5808 10 5FFF Undefined

10 6000 10 6FFF 4K SCSI

10 6000 SCSI Reset

10 6004 10 60FF Reserved

10 6100 SIEN, SDID, SCNTL1,0

10 6104 SOCL, SODL, SXFER, SCID

10 6108 SBCL, SBDL, SIDL, SFBR

10 610C SSTAT2, SSTAT1, SSTAT0, DSTAT

10 6110 DSA

10 6114 CTEST3, 2, 1, 0

10 6118 CTEST7, 6, 5, 4

10 611C TEMP

10 6120 LCRC, CTEST8, ISTAT, DFIFO

10 6124 DCMD, DBC

10 6128 DNAD

10 612C DSP

10 6130 DSPS

10 6134 SCRATCH

10 6138 DCNTL, DWT, DIEN, DMODE

10 613C 10 61FE ADDER

10 61FF Reserved

10 7000 10 7FFF 4K LAN

10 7000 LAN Reset

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����	� ��� ��

Address Offset I/O DeviceBlock Size
(bytes)starting

I/O DeviceBlock Size
(bytes)ending

10 7004 CPU PORT_L Access

10 7008 Channel Attention (no data)

10 8000 10 8FFF 4K PS/2 Keyboard/Mouse Controller

10 8000 Reset

10 8000 Keyboard ID

10 8004 Data

10 8008 Control

10 9000 10 9FFF 4K Real Time Clock

10 9000 Data

10 A000 10 AFFF 4K Floppy Disk Controller

10 A000 FDC Reset

10 A004 FDC Data Register

10 A008 FDC Master Status Register

10 A014 FIFO Data Register

10 A018 FIFO Control Register

10 A01C FIFO Status Register

10 A020 FDC Control Register

10 A040 FDC Operations Register

10 B000 10 BFFF 4K Clock Configuration Registers

10 B000 40MHz Clock Control Register

10 B004 20MHz Clock Control Register

10 B008 Audio Clock Control Register 0

10 B00C Audio Clock Control Register 1

10 C000 10 CFFF 4K Misc. Lasi Registers (reset, version, error)

10 C000 Power Control Register

10 C004 Error Logging Register

10 C008 Version Control Register

10 C00C I/O Reset Register

10 C010 Arbitration Mask Register

10 D000 10 FFFF 972K Unassigned

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ����
� ��� ��

Table 26. Address offsets for712 I/O

The SPACE[1:0] bits are used by Lasi to determine the base address for the 2M byte address block.
The value for the SPACE bits is set using resistors to pull bits[1:0] of the extrenal 8–bit bus either
high or low during reset. These bits are then latched into Lasi on the rising edge of the RESETL
signal as the SPACE[1:0] bits.

Table 27 shows the Lasi base address as a function of the SPACE bits.

SPACE[1:0] Base Address

00 F000 0000

01 F040 0000

10 FF80 0000

11 FFC0 0000

Table 27. Lasi Base Addresses

The primary Lasi in a 712 system will always have SPACE[1:0]=00. If there is a second Lasi chip in
712, the SPACE[1:0] bits will be set to 01. The 10 and 11 values of SPACE[1:0] will not be used in
the 712 product, however they are used in some servers, and in later B and C class workstations.

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ������ ��� ��

19
19 APPENDIX B: 712 SYSTEM MEMORY MAP

Address Description Notes

0000 0000
EFFF FFFF

Memory Space

F000 0000
F00F FFFF

LASI ROM Space

F010 0000
F01F FFFF

LASI I/O Space

F020 0000
F020 7FFF

WAX I/O Space Also used by Token RIng card in the 712.

F040 0000
F05F FFFF

Second LASI

F100 0000
F3FF FFFF

Reserved for
Future I/O

PDC will look here for IODC.

F400 0000
F5FF FFFF

Second ARTIST

F800 0000
F9FF FFFF

ARTIST

FC00 0000
FFBF FFFF

WAX EISA Space Also used by token ring card in the 712.

FFFB 0000
FFFB AFFF

Unused Central Bus
Modules

FFFB B000
FFFB BFFF

Reserved for 712
PDC

Accesses to this page must always cause bus errors.

FFFB C000
FFFB DFFF

Reserved for CPU This is where Venom used to be.

FFFB E000
FFFB EFFF

CPU

FFFB F000
FFFB FFFF

MIOC (PA7100LC Memory Control)

FFFC 0000
FFFF FFFF

Local/Global
Broadcast

(READYL driven by PA7100LC)

��� #� &� ���� ���	

�%� � ���� ������	�������	�
��� ���� �#�!&!"��� ���� � ��$� ��� ����� ������ ��� ��

