
For:billk
Printed on:Thu, Jun 3, 1999 14:33:55
From book:dino_ers
Document:rev
Last saved on:Thu, Jun 3, 1999 14:14:00
Document:cover_page
Last saved on:Thu, Jun 3, 1999 14:31:06
Document:Contents
Last saved on:Thu, Jun 3, 1999 14:30:30
Document:Figures
Last saved on:Thu, Jun 3, 1999 14:29:58
Document:Tables
Last saved on:Thu, Jun 3, 1999 14:29:28
Document:intro
Last saved on:Thu, Jun 3, 1999 14:28:58
Document:overview
Last saved on:Thu, Jun 3, 1999 14:28:25
Document:registers
Last saved on:Thu, Jun 3, 1999 14:27:53
Document:bridge_regs
Last saved on:Thu, Jun 3, 1999 14:26:54
Document:operation_
Last saved on:Thu, Jun 3, 1999 14:25:34
Document:GSC
Last saved on:Thu, Jun 3, 1999 14:25:03
(...)

���� ��"� ��� �

�

����� ���� � ��!� ��� �������� ��� ��	

���	�	��� �	������
���

���� ���	�	��� �����	
�	�� ���� 	�	�	�
�

����� ������������ �����
	

��� ������������ ��
�
	

��� ������������ ���
�
	

��� ������������ �����

��� �������� �����

��� �������� �����
�

��� �������� ����
�

��� ��������
��
�
�

�������� 	�� �

	

����� ���� � ���� ��� �������� ��� ���

���������� �	�� �		�

���� �
�� �
��� ��� �������� ��� ���

DINO ERS

A GSC–to–PCI Bridge

Systems Technology Division

Fort Collins Systems Lab

Revision 3.1
September 19, 1997

���������� �	�� �		�

���� �
�� �
��� ��� �������� ��� ���

Notice
The information contained in this document is subject to change without notice.

HEWLETT–PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
MATERIAL. INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett–Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett–Packard sassumes no responsibility for the use or reliability of its software on equipment
that is not furnished by Hewlett–Packard.

This document contains proprietary information that is protected by copyright. ALl rights are re-
served. No part of this document may be photocopied, reproduced, or translated to another language
without the prior written consent of the Hewlett–Packard Company.

Copyright � 1994–1999 by HEWLETT–PACKARD COMPANY All RIghts Reserved.

&0;?08-0=� ���� ����

�49:� �%&� � %0A� �	� $,20���� :1� ���

CONTENTS

���	��	� � � ��� ��

 4>?� :1� 142@=0> � � �	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

 4>?� :1� ',-70> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�� �"'%#�(�'�#" � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� #-50.?4A0> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	
� �0,?@=0� &@88,=D � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

� #)�%)��* � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

	�� 'D;4.,7� &D>?08� �C,8;70 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

	
� �49:� �34;� �7:.6� �4,2=,8 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�� �49:� %���&'�%� #A0=A40B � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� #A0=A40B � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	
� �49:� �=:,/.,>?� $3D>4.,7� �//=0>>� ��$��� %024>?0=> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� %024>?0=> � �
�	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�� �=4/20� %024>?0=> � �
�	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �=4/20� �,=/� $3D>4.,7� �//=0>>� ��$��� %024>?0=> � �
�	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�	�� �$�� &@;0=A4>:=D� %024>?0=� &0?� �&%&� %024>?0=>� � �
�	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�	
� �$�� �@C474,=D� %024>?0=� &0?� ��%&� %024>?0=>� � �
�	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�	�� �$�� �@>��&��� &;0.414.��0;09/09?� %02	� &0?� ��&%&� %024>?0=>� � � ��	� 	� 	� 	� 	� 	� 	�

�	�	�� �$�� � �)�%&�#"��49:���0;09/09?� %02	� &0?� ��)%&� %024>?0=>� � � ��	� 	� 	� 	� 	�

�� �%����� #$�%�'�#"� �"�� �#"���(%�'�#" � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �9?=:/@.?4:9 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	
� #A0=A40B � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� *3,?� 4>� 170C� � � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �� >48;74140/� �49:� >?,=?�@;� 0C,8;70 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �&�� �9?0=1,.0� #;?484E,?4:9� %024>?0=> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�	�� %0,/� #;?484E,?4:9� %024>?0= � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�	
� *=4?0� #;?484E,?4:9� %024>?0= � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�	�� �0,?@=0� �9,-70� %024>?0= � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�� �&�� �9?0=1,.0 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �9?=:/@.?4:9 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	
� #A0=A40B � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �0,?@=0> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �49:�>� �&�� ?=,9>,.?4:9� ?D;0� >@;;:=? � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �� ��� !�E� � �&�� :;0=,?4:9 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �,>?� -,.6� ?:� -,.6� >49270� B:=/� B=4?0> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� $:B0=�:9� ,9/� �&� � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� &:80� �&��� �� �&�
+� /0?,47> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�� $�� � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �9?=:/@.?4:9 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	
� �0,?@=0> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� (9>@;;:=?0/� �@9.?4:9,74?D � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� $��� �>>@8;?4:9> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� (>492� $��� ,?� 1=0<@09.40>� 34230=� ?3,9� ��� !�E � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� $��� &429,7> � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�	�� �..0>>492� $��� �:9142@=,?4:9� &;,.0� ?3=@� $�� �
#� &;,.0 � � ��	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	� 	�

�)36)0&)4� ���� ���

�-12� ���� � �)8� 	�� �%+)���� 2*� ��

�
��� �)1)4%6-1+� ���� �3)'-%/� �;'/)5� 6,47� ��� ���� �3%') � � ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�
��� �75� #%/.-1+ � � ���� ��

�
�	� �21*-+74%6-21� �'')55� �1(-%11)55 � � ���� ��

�
�
� �:%03/)� 2*� %� �21*-+74%6-21� �)%(� %1(� �21*-+74%6-21� #4-6) � � ���� �� �� �� �� �� �� �� �� �� �� ��

��� �'')55-1+� ���� ���� �3%')� 6,47� ��� ���� �3%') � � ���� ��

��� �'')55-1+� ���� �)024;� �3%')� 6,47� ��� ���� �3%') � � �	�� ��

���� �'')55-1+� ��� ���� �3%')� 6,47� ���� �)024;� �3%') � � �
�� ��

���� �'')55-1+� ��� �)024;� �3%')� 6,47� ���� �)024;� �3%') � � ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

���� �'')55-1+� ��� �3%')� 6,47� ���� ���� �3%') � � ���� ��

��	� �'')55-1+� �-12� ���� �21*-+74%6-21� �3%')� �420� ��� � � ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��
� �)5321(-1+� 62� ���� �3)'-%/� �;'/)5 � � ���� ��

�� �)4*240%1') � � �
�� ��

���� �)4*240%1')� �700%4; � � �
�� ��

���� �)4*240%1')� �)%674)5 � � �
�� ��

������ ���� �%56� &%'.� 62� &%'.� ���� 94-6)5 � � ���� ��

������ �2%/)5'-1+� ���� 94-6)5 � � ���� ��

����	� "%4-%&/)� /)1+6,� ���� 94-6)� 64%15%'6-215 � � ���� ��

����
� ���� 4)%(� 34)*)6',-1+ � � ���� ��

������ �)1()(� ���� %1(� ���� 4)%(� 64%15%'6-215 � � ���� ��

������ ���� �%56� �%'.� 62� �%'.� #4-6)5 � � ���� ��

��	� �4-(+)� �%6)1'; � � ���� ��

�� �1(-%1� �557)5 � � ���� ��

���� �42&/)0 � � ���� ��

���� �-12� �03/)0)16%6-21 � � ���� ��

��	� �;56)0� �:%03/)5 � � �
�� ��

��
� �42+4%00-1+� ���� �)8-')5 � � ���� ��

��
��� �-66/)� �1(-%1� �2() � � ���� ��

��
��� �-+� �1(-%1� �2() � � ���� ��

��� �-12� ������� %1(� ��������� ����� ���� � � �
�� ��

����� �-12� �4424� �%1(/-1+� �8)48-)9 � � �
�� ��

����� �%6%/� �2() � � �
�� ��

���	� �)55� ,%1� �%6%/� �2() � � ���� ��

���
� �4)8)16-1+� 6,)� 3423%+%6-21� 2*� &%(� (%6% � � ���� ��

����� �-12�)4424� 4)3246-1+� %1(� /2++-1+ � � ���� ��

������� �44245� %1(� 6,)� ��$�6%675� 4)+-56)4 � � ���� ��

������� �4424� %((4)55� -1*240%6-21 � � ���� ��

����� �%4-6;� �44245 � �
��� ��

���
� �75� #%/.-1+ � �
��� ��

����� �21��)5321(-1+� �((4)55)5 � �
��� ��

����� �03423)4� ���� 64%15%'6-215 � �
��� ��

������ �4424� &),%8-24�):%03/)5 � �
��� ��

��� �� ���!� � � �
��� ��

����� �8)48-)9 � �
��� ��

����� �)+-56)4� �)*-1-6-215 � �
��� ��

���	� �16)44736� �3)4%6-21 � �
��� ��

���
� �16)44736� �)+-56)4� �-6� �55-+10)165 � �
��� ��

��� ���� �� ��� � � ���� ��

����� �-12� �4&-64%6-21� �8)48-)9 � � ���� ��

����� ���� �4&-64%6-21� �21642/ � � ���� ��

������� ���� �4&-64%6-21� �%5.� �)+-56)4 � � ���� ��

�*47*1'*5� 	��� 	���

�.23� ���� � �*9� ��	 �&,*���� 3+� 	��

	
��� ���� �5'.75&7.32� �327530 � � �	�� ��

	
���	� ���� �5'.75&7.32� �&6/� �*,.67*5 � � �
�� ��

	
���
� ���� �5'.7*5� �5.35.7<� �32+.,85&7.32 � � �
�� ��

	
����� �.6&'0.2,� 7-*� ���� �5'.7*5 � � ���� ��

	
����� �;4&26.32� �3)*� �5'.75&7.32 � � ���� ��

	
���
� �.23� �5'.75&7.32� �3)*� �*,.67*5 � � ���� ��

	�� �03(/6� &2)� �*6*7 � � �
�� ��

	��	� �2753)8(7.32 � � �
�� ��

	��
� �*&785*6 � � �
�� ��

	���� �.23� �03(/.2,� &2)� �*6*7� �03(/� �.&,5&1 � � ���� ��

	���� ���� &2)� ���� �03(/� �*0&7.326-.4 � � ���� ��

	��
� �53&)(&67� �*6*7 � � ���� ��

	�� �.23��2����&5)� �3)* � � ���� ��

	��	� �2753)8(7.32 � � ���� ��

	��
� �3:� 73� �2&'0*� �&5)��3)* � � ���� ��

	���� �*77.2,� 84� �.23� +35� ���� �*135<� �*9.(*6� .2� �&5)��3)* � � ���� �� �� �� �� �� �� �� �� �� �� �� �� ��

	���� �((*66.2,� ���� �*135<� �4&(*� 7-58� ���%���%�� � � � ���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

	
� ���
�
� �*5.&0� �27*5+&(* � � �	�� ��

	
�	� �2753)8(7.32 � � �	�� ��

	
�
� �*&785*� �811&5< � � �	�� ��

	
��� �*,.67*5� �*+.2.7.326 � � �	�� ��

	
���	� �*7&.0*)� �*,.67*5� �*6(5.47.326 � � �
�� ��

	
���	�	� � �27*55847� ��� �*,.67*5 � � �
�� ��

	
���	�
� � !�� %���� � �*,.67*5 � � ���� ��

	
���	��� � !�� % �� � �*,.67*5 � � ���� ��

	
���	��� � ����� �*,.67*56 � � ���� ��

	
���	�
� � �� ���� � �*,.67*5 � � ���� ��

	
��� �&5):&5*� �&2)6-&/.2,� �327530 � � ���� ��

	
���	� �9*59.*: � � ���� ��

	
���
� �3:� 73� �2&'0* � � ���� ��

	
����� �&5):&5*� �&7.2, � � ���� ��

	
����� �#��$� �*-&9.35 � � ���� ��

	
���
� �&9*&76 � � �
�� ��

	
�
� �3+7:&5*� �.++*5*2(*6��0&5.+.(&7.32 � � �
�� ��

	�� ��
� �27*5+&(*� +35� /*<'3&5)�1386* � � ���� ��

	��	� �2753)8(7.32 � � ���� ��

	��
� �*,.67*56 � � ���� ��

	���� ����� �*,.67*56 � � 	���� ��

	���� ��� �*,.67*5 � � 	���� ��

	��
� �*6*7� �*,.67*5 � � 	���� ��

	���� �(9)&7&� �*,.67*5 � � 	���� ��

	���� #17)&7&� �*,.67*5 � � 	�	�� ��

	���� �327530� �*,.67*5� ���"� � � 	�	�� ��

	���� �7&786� �*,.67*5� ��*&)� 320<� � � 	�
�� ��

	��	�� �))5*66.2, � � 	�
�� ��

	��		� �27*55847� 453(*66.2, � � 	�
�� ��

	��	
� .1.2, � � 	���� ��

�",/")�"-� ���� ����

�&*+� ���� � �"1� ��� ��$"���� +#� ��	

LIST OF FIGURES

�&$0-"� ��� �2�),("� ���� �0�.3./")� �(+ '� �&�$-�) � � ���� ��

�&$0-"� ��� �&*+� �*/"-*�(� �(+ '� �&�$-�) � � �
�� ��

�&$0-"� ��� �"�!� �,/&)&4�/&+*� �"$&./"- � � ���� ��

�&$0-"� 	�� �-&/"� �,/&)&4�/&+*� �"$&./"- � � �
�� ��

�&$0-"�
�� �3/"� �� '&*$ � � ���� ��

�&$0-"� ��� �&$� �*!&�*� �+!" � � �	�� ��

�&$0-"� ��� �&//("� �*!&�*� �+!" � � �
�� ��

�&$0-"�
�� �*/"--0,/� �!!-"..� �"$&./"-. � � �
�� ��

�&$0-"� ��� �*/"--0,/� �!!-".. � � �
�� ��

�&$0-"� ���� �*/"--0,/� ��/� � � ���� ��

�&$0-"� ���� �&*+� �(+ '&*$� �*!� �"."/. � �
��� ��

�&$0-"� ���� �+..&�("� �������� �(+ '� �"(�/&+*.%&, � �
��� ��

�%/2%,"%0� ���� ����

�)-.� ���� � �%4� ��� �!'%����� .&� ��	

LIST OF TABLES

�!"+%� ��� ���� �%')12%01 � � ���� ��

�!"+%� ��� �)-.�1� �%')12%0� �)12)-' � � ���� ��

�!"+%� ��� ���� ���� �%')12%01 � � �	�� ��

�!"+%� 	�� �2!231� �%')12%0� �)2� �%&)-)2).- � � ���� ��

�!"+%�
�� ���� ���� �%')12%01 � � �
�� ��

�!"+%� ��� ���� ����� �%')12%01 � � ���� ��

�!"+%� ��� ���� �.,,!-$� �%')12%0� �)2� �%&)-)2).- � � ���� ��

�!"+%�
�� ���� �2!231� �%')12%0� �)2� �%&)-)2).- � � ���� ��

�!"+%� ��� �%')12%01� 2(!2� #.-20.+� ���� 2.� ���� "%(!4).0 � � ���� ��

�!"+%� ���� �%!$� �/2),)6!2).-� �%')12%0� �%&)-)2).- � � ���� ��

�!"+%� ���� �%!$� �/2),)6!2).-� �)%+$� �-#.$)-'1 � � ���� ��

�!"+%� ���� 0)2%� �/2),)6!2).-� �%')12%0� �%&)-)2).- � � ���� ��

�!"+%� ���� 0)2%� �/2),)6!2).-� �%-'2(� �-#.$)-' � � ���� ��

�!"+%� �	�� �0)$'%� �%!230%� �-!"+%� �%')12%0� �%1#0)/2).- � � 	��� ��

�!"+%� �
�� ���� �0!-1!#2).-� �3//.02 � � 		�� ��

�!"+%� ���� ���� �0!-1!#2).-� �3//.02 � � 	
�� ��

�!"+%� ���� ���� �.-&)'30!2).-� �/!#%� �%!$%0 � �
��� ��

�!"+%� �
�� �%0&.0,!-#%� 13,,!05� &.0� �)-.�1� ���� 2.� ���� "0)$'%� � �
��� �� �� �� �� �� �� �� �� �� �� �� ��

�!"+%� ���� �-$)!-� �.,/!0)1.- � � ���� ��

�!"+%� ���� �2!231� �%')12%0� �)2� �%&)-)2).- � � ���� ��

�!"+%� ���� �0)$'%� �00.0� �.-$)2).-� �%&%0%-#%� �!"+% � � �	�� ��

�!"+%� ���� �-2%003/2� �%')12%01 � � ���� ��

�!"+%� ���� ����� ����� ����� ����� ����� !-$� ����� �)2� �%&)-)2).- � � �
�� �� �� �� �� �� �� �� �� �� �� �� �� ��

�!"+%� �	�� ���� �0")20!2).-� �!1*� �%')12%0 � �
��� ��

�!"+%� �
�� ���� �31� �!12%01 � �
��� ��

�!"+%� ���� ���� �0")20!2).-� �!1*� �%')12%0 � �
��� ��

�!"+%� ���� ���� �0")20!2).-� �0).0)25� �%')12%0 � �
��� ��

�!"+%� �
�� �)-.� �0")20!2).-� �.$%� �%')12%0 � �
	�� ��

�!"+%� ���� ������ �%')12%0� �%&)-)2).-1 � � ���� ��

�!"+%� ���� ���� �-2%0&!#%� �%')12%01 � � ����� ��

�!"+%� ���� ���� ��� �%')12%0 � � ����� ��

�!"+%� ���� ���� �.-20.+� �%')12%0 � � ����� ��

�!"+%� ���� ���� �2!231� �%')12%0 � � ����� ��

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

1
1 INTRODUCTION

1.1 Objectives
The primary objective for the Dino chip is to provide a bridge between GSC and PCI. Dino’s
throughput is high enough to support state of the art graphics and I/O functions on the PCI bus seg-
ment. Also, PCI and GSC do not need to be synchronized, making the system clock design simpler
and more flexible, while maximizing the performance of both buses.

The primary design center for the Dino chip are the B132 , B180, C180, C200, and C240 desktop
workstations. Dino provides access to industry standard PCI technology, giving customers the wid-
est range of possible I/O options.

Additional functionality has been added to Dino for potential use in a future system. This functional-
ity includes an RS–232 port, and PS2 support.

The primary objective for this document is to describe the software interface to the Dino chip with
enough detail to allow driver development. This document (along with referenced documents) con-
tains enough detail to ascertain the intended functionality of each block on the Dino chip down to the
register level.

This version of the document represents the state of the chip as of the 3.1 tape release, which corre-
sponds to the part number 1FC3–0004.

1.2 Feature Summary
The following is a list of the functionality provided by the Dino chip:

� Supports high speed graphics

� Implements GSC+ features

� Relocatable HPA

� Mapping register with 8MB resolution

� Integrated PCI Arbitration

� Integrated Interrupt Register

� Coalesced DIO writes

� Implements GSC type “F” transaction

� Package: 208–PQFP

� >40MHz GSC operation (in limited configuration)

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

� >33MHz PCI operation (in limited configuration)

� PS2 interface (not used in Raven or Merlin)

� RS–232 port

� 3.3 V / 5.0 V PCI

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

�������� ��� �		�

���� ���� � ���� ���
���� ����� ��� ���

2
2 OVERVIEW

2.1 Typical System Example
Dino is designed to work with a HP’s newest family of CPUs and IOAs as a GSC guest, providing
connectivity to PCI and some other miscellaneous functions.

RS–232 Expansion I/O

PS2

Figure 1. Example I/O Subsystem Block Diagram

PA7300LC

U2

Expansion I/O

devices

U–Turn

PA7100

Other GSC

device device

CPU/IOA

planar PCI

PCIGSC
Dino

planar PCI

GSC–to–PCI

2.2 Dino Chip Block Diagram
Dino’s internal data path consists of one downstream address and data FIFO, one downstream data
FIFO, one upstream address and data FIFO, one upstream data FIFO, and one upstream control
FIFO. The downstream FIFOs hold addresses and data going from GSC to PCI, and the upstream
FIFO moves addresses and data from PCI to GSC. The upstream control FIFO transfers transaction
codes from the PCI to the GSC interface. These FIFO’s bridge between the PCI and GSC clock do-
mains allowing these busses to run at different frequencies. When enough data from PCI appears in
the upstream FIFO a transaction is started on GSC. The same is true for transactions going in the
other direction.

Arbitration controllers for GSC and PCI are independent, meaning that a transaction can be started
on either bus without disturbing the other. The PCI and GSC interfaces arbitrate with their respective
busses when data needs to be transferred. These interfaces communicate with each other by
constantly watching FIFO status signals through synchronizers.

������� ��� �

�

����� ���� � ���� ��� ����� ���	� ��� ���

The miscellaneous register block contains bridge configuration and control bits and can only be ac-
cessed by word transactions from GSC. The interrupt block provides a convenient way of signalling
GSC and PCI interrupts to the host CPU/IOA by way of GSC. Interrupt registers are part of Dino’s
HPA space.

Misc &

16x6

32x38

32x33

Config

64x37

Interrupt

FIFOs

PCI

Registers

GSC

PCI Arbitration

GSC

Intfc.

DINO
PC

I Pads

G
SC

 Pads

PCI

Intfc.

Figure 2. Dino Internal Block Diagram

LxW

16x32

PS2

RS–232

���������� �	�� �		�

���� �
�� �
��� ��� �������	� ��� ���

3
3 DINO REGISTER OVERVIEW

3.1 Overview
Dino requires I/O address space for control and status registers for the GSC to PCI bridge, PS2 con-
troller and RS–232 interface. Dino uses I/O device control (IODC) submodules to implement all of
the above functionality under one IODC header. (See the Precision I/O Architecture Reference Spec-
ification for more details on IODC.) Bridge registers live in IODC submodule 0, PS2 registers live in
IODC submodule 1, and RS–232 registers live in IODC submodule 3.

For PCI related registers, Dino will use the HVERSION Dependent Register Set registers (HVRSes)
of its hard physical address (HPA) space.

Note that the GSC bus and the Dino hardware model use little–endian bit ordering, which is the op-
posite of the PA I/O architecture descriptions that use big–endian bit ordering. This document will
provide both bit orderings for all registers, which will hopefully help clarify the situation!

3.2 Dino Broadcast Physical Address (BPA) Registers
Dino implements two registers within the BPA space. One register (IO_FLEX) provides a flexible
bus identification and address space configuration mechanism as well as a universal DMA enable/
disable function. The second register (IO_COMMAND) provides for a global reset capability. The
Dino BPA register addresses are given in Table 1. The following subsections describe each of the
BPA registers.

Register Symbol I/O Address R/W DescriptionRegister Symbol I/O Address R/W Description

IO Flex (Bus
ID)

IO_FLEX FFFC0020 W The IO_FLEX register provides a flexible re-
location mechanism for Dino’s GSC address
space, and controls the enabling and disable of
Dino’s GSC bus mastership.

IO Command IO_COM-
MAND

FFFE0030 W The IO_COMMAND register allows Dino to
respond to global resets on GSC.

Table 1. BPA Registers

NOTE: Do not assert gscready_L on broadcast transactions.

�� #����!� �
�� �

�

����� ���� � ��%� ��� ��������� ��� ���

IO_FLEX (IOFlex (BusID) Register)

�

���������� �����	
�

�� � ��

����

��� �� ��

��� ����� ����� ����� ���

��� ���� ��� � �� ��

� BUS_ID: At power on the EN bit will be set to 0 and the bus host will broadcast IO_FLEX.
Neither BUS_ID nor EN are affected by command reset.

� EN: The EN bit can be used to enable or disable Dino from arbitrating for bus mastership.
To enable Dino bus mastership of the GSC bus, the EN bit must be asserted and Dino’s mask
bit in the GSC Arbitration Mask register must be cleared.

Until the the host broadcasts IO_FLEX , Dino’s HPA page is not reachable, and no transac-
tions will be forwarded to PCI.

The BUS_ID field is combined with Dino’s GSC OFFSET[0:3] and a sub–module ID (always 00 for
Dino’s control HPA) to determine the address of Dino’s 4kB control and status register page (the
HPA registers). Dino determines the address of its HPA registers based on the following address
structure:

��

��� ���� ����� �����	 ���� ����� ���"�#

��� �� �

����

��� ��

����
������

��� ��
"$����

��� ��

Note: OFFSET[0:3] is the same as the slot address for the GSC device (gscsl[0:3]). BUS_ID is
sometimes called “FLEX”.

IO_COMMAND (IO Command Register)
� ��

�����
���� ��	

��� ��� �	�	� �

�������� ���	�	
�

�� �� �� � � � �� �
�	� �	

� CMD: Dino recognizes two commands: CMD_RESET (CMD=5) and CMD_CLEAR
(CMD=3). All other fields are ignored. Dino will set its IO_CONTROL register to OFF
mode upon receipt of a CMD_RESET. CMD_RESET will reset the state of the bridge’s
GSC interface and be forwarded to the PCI bus. Dino transactions within 16 states of
CMD_RESET are not allowed. CMD_CLEAR clears all the se and estat bits of the
IO_STATUS register.

3.3 Registers
The following Table is a list of Dino’s registers, this includes registers in the RS232 and PS2 sub
modules.

Sub
Module Offset Read/

Write
Name Description

0 0x004 R/W IAR0 Interrupt Address Register 0

0 0x008 R/W IODC IODC Address and Data

0 0x00c R IRR0 Interrupt Request Register 0

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

Sub
Module

DescriptionNameRead/
WriteOffset

0 0x010 R/W IAR1 Interrupt Address Register 1

0 0x014 R IRR1 Interrupt Request Register 1

0 0x018 R/W IMR Interrupt Mask Register

0 0x01c R/W IPR Interrupt Pending Register

0 0x020 R/W TOC_ADDR Transfer Of Control Address Regis-
ter, not used.

0 0x024 R/W ICR Interrupt Control Register

0 0x028 R ILR Interrupt Level Register

0 0x030 W IO_COMMAND Command Register

0 0x034 R IO_STATUS Status Register

0 0x038 R/W IO_CONTROL Control Register

0 0x040 R IO_GSC_ERR_RESP GSC Error Address

0 0x044 R IO_ERR_INFO Error Information

0 0x048 R IO_PCI_ERR_RESP PCI Error Address

0 0x05c R/W IO_FBB_EN Enables Fast back to back for GSC

0 0x060 R/W IO_ADDR_EN Address Enable Register

0 0x064 R/W PCI_CONFIG_ADDR PCI Configuration Register

0 0x068 R/W PCI_CONFIG_DATA PCI Configuration Data Port

0 0x06c R/W PCI_IO_DATA PCI IO DATA Port

0 0x070 R/W PCI_MEM_DATA PCI Memory DATA Port

0 0x7B4 R GSC2X_CONFIG GSC2X Configuration Register

0 0x800 R/W GMASK GSC Arbitration Mask

0 0x804 R/W PAMR PCI Arbitration Mask

0 0x808 R/W PAPR PCI Arbitration Priority

0 0x80c R/W DAMODE PCI Arbitration Mode

0 0x810 R/W PCICMD PCI Command Register

0 0x814 R/WC PCISTS PCI Status Register

0 0x81c R/W MLTIM Master Latency Timer

0 0x820 R/W BRDG_FEAT Bridge Feature Enable

0 0x824 R/W PCIROR PCI Read Optimization Register

0 0x828 R/W PCIWOR PCI Write Optimization Register

0 0x830 R/W TLTIM PCI Target Latency Timer

1 0x008 R/W IODC PS2 IODC Address and Data

1 0x800 R ID Keyboard ID

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

Sub
Module

DescriptionNameRead/
WriteOffset

1 0x800 W RESET Keyboard Reset

1 0x804 R RCVDATA Keyboard Received data

1 0x804 W XMTDATA Keyboard Transmit data

1 0x808 R/W CONTROL Keyboard Control Register

1 0x80c R STATUS Keyboard Status Register

1 0x900 R ID Mouse ID

1 0x900 W RESET Mouse Reset

1 0x904 R RCVDATA Mouse Received Data

1 0x904 W XMTDATA Mouse Transmit Data

1 0x908 R/W CONTROL Mouse Control Register

1 0x90c R STATUS Mouse Status Register

3 0x000 R/W RESET RS232 Reset. Resets on write OR
read.

3 0x004 W TEST RS232 Test Register

3 0x008 R/W IODC RS232 IODC Address and Data

3 0x060 R/W DITHER Controls RS232 clock frequency
generator

3 0x800 R RBR Receiver Buffer Register (DLAB=0)

3 0x800 W THR Transmitter Holding Register
(DLAB=0)

3 0x800 R/W DLL Divisor Latch Register LSB
(DLAB=1)

3 0x801 R/W IER Interrupt Enable Register (DLAB=0)

3 0x801 R/W DML Divisor Latch Register MSB
(DLAB=1)

3 0x802 R IIR Interrupt Ident Register

3 0x802 W FCR Fifo Control Register

3 0x803 R/W LCR Line Control Register

3 0x804 R/W MCR Modem Control Register

3 0x805 R LSR Line Status Register

3 0x806 R/W MSR Modem Status Register

3 0x807 R/W SCR Scratch Register

Table 2. Dino’s Register Listing

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

4
4 BRIDGE REGISTERS

4.1 Bridge Hard Physical Address (HPA) Registers
The HPA for a bus converter is split into a Supervisory Register Set (SRS), an Auxiliary Register Set
(ARS), a Bus Specific Register Set (BSRS), and an HVERSION–Dependent Register Set (HVRS).
Please see the Precision I/O Architecture Reference Specification for more details.

Dino implements the required SRS and ARS registers. Dino also implements several optional SRS
registers (for the Interrupt Controller), a couple optional ARS registers (for address mapping), sev-
eral BSRS registers (for EGSC and GSC+ control), and several HVRS registers (control and status
specific to the Dino chip). The subsections below detail each of the SRS, ARS, BSRS, and HVRS
register set implementations for Dino.

4.1.1 HPA Supervisory Register Set (SRS Registers)

Dino’s SRS register addresses are given in Table NO TAG. The following subsections describe each
of the SRS registers.

Register Symbol HPA Register
Offset

R/W DescriptionRegister Symbol HPA Register
Offset

R/W Description

Interrupt Ad-
dress Reg. 0

IAR0 0x004 R/W Interrupt address to be used when a
device mapped to int0 by the ICR is-
sues an interrupt.

IODC Ad-
dress Register

IODC_ADDR 0x008 W Allows for selection between multiple
IODC DATA words.

IODC Data
Register 0

IODC_DATA_0 0x008 R The first IODC_DATA word.

IODC Data
Register 1

IODC_DATA_1 0x008 R The second IODC_DATA word

Interrupt Re-
quest Reg. 0

IRR0 0x00C R The IRRO contains the status of all
requesting interrupts that are mapped
to int0.

Interrupt Ad-
dress Reg. 1

IAR1 0x010 R/W Interrupt address to be used when a
device mapped to int0 by the ICR is-
sues an interrupt.

Interrupt Re-
quest Reg. 1

IRR1 0x014 R The IRR1 contains the status of all re-
questing interrupts that are mapped to
int1.

���������� ���� ����

���� ���� � ���� ��� ��������� ��� ���

Register DescriptionR/WHPA Register
Offset

SymbolRegister DescriptionR/WHPA Register
Offset

Symbol

Interrupt
Mask Register

IMR 0x018 R/W The IMR is used to mask pending in-
terrupts.

Interrupt
Pending Reg.

IPR 0x01C R/W The IPR is used to latch incoming in-
terrupts and indicate them as pending.

TOC Address
Register

TOC_ADDR 0x020 R/W The address used to issue a CMD_RE-
SET when TOC is asserted. Not used.

Interrupt Con-
trol Reg.

ICR 0x024 R/W The ICR is used to control whether an
interrupt source is mapped to int0 or
int1.

Interrupt Lev-
el Register

ILR 0x028 R The ILR register indicates the state of
the interrupt lines.

Command
Register

IO_COMMAND 0x030 W The IO_COMMAND register allows
Dino to respond to directed resets on
GSC.

Status Regis-
ter

IO_STATUS 0x034 R Dino reports its overall status to sys-
tem software via the IO_STATUS reg-
ister.

Control Reg-
ister

IO_CONTROL 0x038 R/W The forwarding of transactions by a
the Dino bridge is regulated by writ-
ing to the IO_CONTROL register.

Table 3. HPA SRS Registers

IODC_ADDR (IODC Address Register)

This is a one bit register that points to either IODC_DATA_0 or IODC_DATA_1. If all zeros are
written to IODC_ADDR then IODC_DATA_0 will be read. If 32’h0000_0004 is written to
IODC_ADDR then IODC_DATA_1 will be read.

IODC_DATA_0 (IODC Data Register 0)
� �	� �

����� �
�������
�
	

��

�� �
� �	 �

�
���
��

��� ��

�
�������

8 7

For Dino 2.0 (1FC3–0001) IODC_DATA_0 will read 0x6800_004d

For Dino 2.1 (1FC3–0002) IODC_DATA_0 will read 0x6801_004d

For Dino 3.0 (1FC3–0003) Bridge Mode IODC_DATA_0 will read 0x6802_004d

For Dino 3.0 (1FC3–0003) Card Mode IODC_DATA_0 will read 0x0040_0044

For Dino 3.1 (1FC3–0004) Bridge Mode IODC_DATA_0 will read 0x6803_004d

For Dino 3.1 (1FC3–0004) Card Mode IODC_DATA_0 will read 0x0040_0044

� IODC_HVERSION: Hardware version number. The HVERSION field is 16 bits in
length,IODC_DATA_0[31:16]. The HVERSION has two internal fields, model and revi-

���������� ���� ���

�����
��� � ���� ��� �������	� ��� ���

sion. The model field, IODC_DATA_0[31:20] will be set to 0x680 for Dino. This signifies
that Dino is a GSC++ bus bridge. The the revision field,IODC_DATA_0[19:16], is set
to 0x0 for Dino 2.0, set to 0x1 for Dino 2.1, set to 0x2 for Dino 3.0, and set to 0x3 for
Dino 3.1.

� IODC_SPA: Soft physical address capabilities. IODC_SPA,IODC_DATA_0[15:8] is set
to 0x00 for Dino, since Dino does not require SPA space.

� IODC_TYPE: Identify module type. IODC_TYPE is made up of four internal fields,mr
bit,wd bit, R bit, and type field. The mr ”more” bit, IODC_DATA_0[7], will be set to 0 for
Dino. Dino will have no more than 8 bytes of IODC. The wd “word”
bit,IODC_DATA_0[6], will be set to 1 for Dino. Dino will provide a full word of data for
IODC. The R bit, IODC_DATA_0[5], is reserved and will be set to zero in Dino. The type
field,IODC_DATA_0[4:0], will be set to 0xD. This indicates that Dino is a bus bridge.

IODC_DATA_1 (IODC Data Register 1)
�

�
��� �����
��	
���

��

�� �

For Dino in Bridge Mode IODC_DATA_1 will read 0x0000_0a00

For Dino in Card Mode IODC_DATA_1 will read 0x0000_9d80

NOTE: IODC_SVERION is incorrect for DINO 1.0 parts. The correct value for
IODC_SVERION is 0x0000_0A00. This will be corrected in the second tape release.

� IODC_SVERSION: SVERSION is made up of three internal fields, revision field,model
field and opt field. The opt field,IODC_DATA_1[7:0], will have a value of 0x00,software
coherence, for Dino. The model field,IODC_DATA_1[27:8], will have a value of
0x0000a. This indicates that the bus bridge is to PCI. The revision
field,IODC_DATA_1[31:28], will have an initial value of 0x0 and will be incremented if
there are additional revisions of the Dino chip that effect software.

IAR0 (Interrupt Address Register 0)

This register contains the address of the IO_EIR and the group code that will be used when a device
mapped to int0 by the ICR issues an interrupt. Please see the Interrupts chapter of this ERS for more
details.

IRR0 (Interrupt Request Register 0)

The IRR0 contains the status of all requesting interrupts that are mapped to int0. Please see the Inter-
rupts chapter of this ERS for more details.

IAR1 (Interrupt Address Register 1)

This register contains the address of the IO_EIR and the group code that will be used when a device
mapped to int1 by the ICR issues an interrupt. Please see the Interrupts chapter of this ERS for more
details.

IRR1 (Interrupt Request Register 1)

The IRR0 contains the status of all requesting interrupts that are mapped to int1. Please see the Inter-
rupts chapter of this ERS for more details.

��"%����#� �
�� �

�

�� !� ���� � ��&� ��� �������
� !�� ���

IMR (Interrupt Mask Register)

The IMR is used to mask pending interrupts. A 1 in an IMR bit enables the corresponding pending
interrupt to create an interrupt request. The IMR is cleared at reset. Please see the Interrupts chapter
of this ERS for more details.

IPR (Interrupt Pending Register)

The IPR is used to latch incoming interrupts and indicate them as pending. The assertion of an inter-
nal interrupt signal causes the corresponding IPR bit to be set to 1. Please see the Interrupts chapter
of this ERS for more details.

TOC_ADDR (TOC Address Register)

The TOC_ADDR register contains the address of the processor’s IO_COMMAND register. A
CMD_RESET will be sent to to this address when TOC is asserted. Note that since there is no TOC
pin this register does not do anything.

� ��
����� #�������

��� �
� ����� ��� �	
���'� �� ���������� �

�� ���� ��� ����� ��� �

����
� �

��� � ��

���� %��� � #��$�%� �� ������ ��
�
� ���	� �

�� �
� 	

� client id: This four bit value corresponds to the fixed field of the monarch processor and
is concatenated between the hardwired flex field and register information to form the ad-
dress of the monarch processor’s IO_COMMAND register. On power on the client id will
be set to zero, causing a register value of 0xFFFA0030. This register is not effected by
CMD_RESET or CMD_CLEAR.

ICR (Interrupt Control Register)

The ICR is used to control whether an interrupt source is mapped to int0 or int1. Please see the Inter-
rupts chapter of this ERS for more details.

ILR (Interrupt Level Register)

The ILR register indicates the state of all interrupt lines. Please see the Interrupts chapter of this ERS
for more details.

IO_COMMAND (IO Command Register)
� ��

����� ���

��� ��� �	�	� �

� ���� �� ����
��	

�� �� �� � � � �� �
�
� �	

� CMD: Dino recognizes two commands: CMD_RESET (CMD=5) and CMD_CLEAR
(CMD=3). All other fields are ignored. Dino will set its IO_CONTROL register to OFF
mode upon receipt of a CMD_RESET. CMD_RESET will reset the state of the bridge’s
GSC interface and be forwarded to the PCI bus. Dino transactions within 16 states of
CMD_RESET are not allowed. CMD_CLEAR is used to clear the se and estat bits of the
IO_STATUS register.

� For more details about CMD_RESET forwarding to PCI see the “PCI Command Register”
description.

���!������ �
�� �

�

����� ���� � ��"� ��� ��������� ��� ���

IO_STATUS (Status Register)
� ��

���� ���������

�	� �

����	�	
�

�� �
� �	 �

PA Bit Symbol IO_STATUS Description GSC Bit

0–15 Undefined 31–16

16–21 estat Contains an error status code corresponding to the most se-
vere error currently logged. Dino will only have 3 possible
vectors stored in this field: 1) 6’b000000 –clear, 2)
6’b000001 – less than fatal, 3) 6’b000011 –fatal. See the
“Dino Errors and Abnormal Conditions” section.

15–10

22 se This bit is always zero unless Dino is in “Less Than Fatal
Mode”.

9

23 he Hardwired to 0 because Dino does not distinguish this type
of ERROR. See the “Dino Errors and Abnormal Conditions”
section.

8

24 fe When set, indicates that a fatal error was detected by Dino. 7

25 ry When set, indicates that Dino is ready to accept commands.
Probably will be hardwired to 1.

6

26–27 Reserved 5–4

28 lp Set if this status register applies to lower bridge port. This
bit is hardwired to 0 in Dino (this is an upper bridge port sta-
tus register).

3

29–31 pwrstat Remote bus power status. Hardwired to 000 in Dino. 2–0

Table 4. Status Register Bit Definition

Please see the “Dino Errors and Abnormal Conditions” section in this document for more details on
the error related bits.

IO_CONTROL (Control Register)
� ��

����� ���

��� � ��� � � ��� ��� � �	�	� �

��������� �� ��"�� ���� �� ��"��

�� ���� � �
� � � � � �� � �� � � �
�
� �	

� mode: Dino only implements two control modes. Mode 01 (INCLUDE) indicates that all
addresses enabled in the register IO_ADDR_EN should be forwarded. Any other value of
Mode will not enable Dino to forward the transaction to PCI.

4.1.2 HPA Auxiliary Register Set (ARS Registers)

Dino’s ARS register addresses are given in Table NO TAG. The following subsections describe each
of the SRS registers.

���������� ���� ���	

�����
��� � ���� ��� �������
� ��� ���

Register Symbol HPA Register
Offset

R/W DescriptionRegister Symbol HPA Register
Offset

R/W Description

IO Error Re-
sponder

IO_GSC_ERR_RESP 0x040 R Logs the address of the GSC respond-
er in an erroneous GSC operation.

IO Error Info IO_ERR_INFO 0x044 R Provides extended error logging infor-
mation about an erroneous GSC or
PCI operation.

IO Error Re-
questor

IO_PCI_ERR_RESP 0x048 R Logs the requestor (could be on GSC
or originate from PCI) of the erro-
neous GSC operation.

IO Fast Back–
to–Back En-

able

I0_FBB_EN 0x05c R/W The IO_FBB_EN register enables fast
back–to–back programmed IO writes
on the GSC bus.

IO Address
Enable

IO_ADDR_EN 0x060 R/W The IO_ADDR_EN register defines
which 8MB windows to decode within
the 256MB of PA IO space.

PCI Configu-
ration Ad-
dress Port

PCI_CON-
FIG_ADDR

0x064 R/W The address port for PCI I/O and Con-
figuration space.

PCI Configu-
ration Data

Port

PCI_CONFIG_DATA 0x068 R/W The data port for PCI Configuration
space.

PCI IO Data
Port

PCI_IO_DATA 0x06c R/W The data port for PCI I/O space.

PCI Memory
Data Port

PCI_MEM_DATA 0x070 R/W The data port for PCI Memory space.

Table 5. HPA ARS Registers

IO_GSC_ERR_RESP (GSC Error Responder Address)
� ��

����� ��������

�
��	

�� �

� IO_GSC_ERR_RESP: This register logs the 32–bit address sent from Dino to a GSC target
when an error is signalled. This value is only valid when the vag bit in the
IO_ERR_INFO register is set.

IO_ERR_INFO (Error Logging Information)

3

28
epci �
�

� ��

����� �
�

�� � � � ���

��� � ��
��������� �egsc

� IO_ERR_INFO: When vag is 1, the contents of the IO_GSC_ERR_RESP register is valid.
When vap is 1, the contents of the IO_PCI_ERR_RESP register is valid. When egsc is 1,
an error happened on GSC while Dino was not the master. When epci is 1, an error hap-
pened on PCI when Dino was not the master.

���������� �
�� �

	

����� ���� � ���� ���
������
� ��� ���

IO_PCI_ERR_RESP (PCI Error Responder Address)
� ��

�����
����
�
����
��

�� �

� IO_PCI_ERR_RESP: This register logs the 32–bit address sent from Dino to a PCI target
when an error is signalled. This value is only valid when the vap bit in the
IO_ERR_INFO register is set.

IO_FBB_EN (IO Fast back to back Enable)
�

�����
������
�

��� ��

�� �� �

0

� IO_FBB_EN: Writing 32’h0000_0001 to this register will enable fast back to back transac-
tions on the GSC bus. IO_FBB_EN is disabled at power on.

IO_ADDR_EN (IO Address Enable)
�� � � � �

����� �
���		��
�

��� � � � ��

��� � �� �� � � � �

�

� IO_ADDR_EN: The IO Address Enable register is used to enable address chunks to be
forwarded from the GSC bus to the PCI bus. There are 32 x 8MB chunks of address space
in PA I/O space. Each bit in IO_ADDR_EN can be set to enable one 8MB chunk of PA
I/O space. The MSB is hardwired to zero because the highest 8MB chunk is used by the
CPU and cannot be forwarded to PCI. The LSB is hardwired to zero because the lowest
8MB chunk of PA I/O space is used by the boot ROM. See the PCI Chapter of this ERS
for more details.

PCI_CONFIG_ADDR (PCI Configuration Address Port)
� ��

����� ��
�����
���		�

�� �

� PCI_CONFIG_ADDR: PCI_CONFIG_ADDR is the address port for PCI I/O and Configu-
ration space. Please see the PCI chapter of this ERS for more details.

PCI_CONFIG_DATA (PCI Configuration Data Port)
� ��

����� ��
�����
��	���

�� �

� PCI_CONFIG_DATA: PCI_CONFIG_DATA is the data port for PCI Configuration space.
Please see the PCI chapter of this ERS for more details.

PCI_IO_DATA (PCI IO Data Port)
� ��

����� ��
�
��	���

�� �

� PCI_IO_DATA: PCI_IO_DATA is the data port for PCI I/O space. Please see the PCI chap-
ter of this ERS for more details.

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

PCI_MEM_DATA (PCI IO Data Port)
� ��

����� 	���������
�

�� �

� PCI_MEM_DATA: PCI_MEM_DATA is the data port for PCI memory space. Please see
the PCI chapter of this ERS for more details.

Please see the PCI chapter of this ERS for more details on mapping address space between GSC and
PCI.

4.1.3 HPA Bus(GSC) Specific–Dependent Reg. Set (BSRS Registers)

Register Symbol HPA Register
Offset

R/W DescriptionRegister Symbol HPA Register
Offset

R/W Description

GSC2X Con-
figuration
Register

GSC2X_CONFIG 0x07B4 R Used to tell which GSC2X features
are enabled.

Reading this register on Dino always returns 0x0000_0001 to indicate that the type “F” transaction is
implemented. No other GSC2SX features are implemented.

4.1.4 HPA HVERSION(Dino)–Dependent Reg. Set (HVRS Registers)

Dino’s HVRS register addresses are given in Table NO TAG. These registers are specific to Dino,
and include the registers required for control/status of Dino’s downstream (PCI) port. The following
subsections describe each of the HVRS registers.

Register Symbol HPA Register
Offset

R/W DescriptionRegister Symbol HPA Register
Offset

R/W Description

GSC Arbitra-
tion Mask

GMASK 0x800 R/W GSC Arbitration Mask register.

PCI Arbitra-
tion Mask

PAMR 0x804 R/W PCI Arbitration Mask register.

PCI Arbitra-
tion Priority

PAPR 0x808 R/W Controls PCI arbiter priority scheme.

Dino Arbitra-
tion Mode

DAMODE 0x80C R/W Controls the mode of the PCI arbitration lines.

PCI Com-
mand Register

PCICMD 0x810 R/W Provides coarse control of Dino’s PCI interface

PCI Status
Register

PCISTS 0x814 R/
WC

Records status info for PCI bus related events.

Writes to this register clears it.

Undefined 0x818

PCI Mast. La-
tency Timer

MLTIM 0x81C R/W Specifies, in units of PCI clocks, the values of
the latency timer for the Dino PCI master.

��� ������ �
�� �

�

����� ���� � ��!� ��� ��������� ��� ���

Register DescriptionR/WHPA Register
Offset

SymbolRegister DescriptionR/WHPA Register
Offset

Symbol

Bridge Fea-
ture Enable

BRDG_FE
AT

0x820 R/W Enable/disable bridge features.

PCI Read
Opt. Regist.

PCIROR 0x824 R/W Defines the Dino read–hints.

PCI Write
Opt. Regist.

PCIWOR 0x828 R/W Defines the Dino write–hints.

PCI Target
Latency Tim-

er

TLTIM 0x830 R/W Number of cycles for target subsequent latency
timer.

Table 6. HPA HVRS Registers

GMASK (GSC Request Mask)
�

����� �
��	

��

���

���������

� GMASK: This register provides a means of masking the request line of the GSC block.
Please see the Arbitration chapter of this ERS for more details.

PAMR (PCI Arbitration Mask)
�

����� ��

���	� �

���
��

���������

� PAMR: This register provides a means of masking the request line of PCI devices using
the Dino PCI arbiter. Please see the Arbitration chapter of this ERS for more details.

PAPR (PCI Arbitration Priority)
�

����� ���

���	� �

���
��

���������

� PAPR: This register provides a means of controlling the Dino PCI arbiter priority scheme.
Please see the Arbitration chapter of this ERS for more details.

DAMODE (Dino Arbitration Mode)
�

����� ��
���

����� �	

��� ���

���������

� DAMODE: DAMODE is a two bit register used to set or clear Performance mode arbitra-
tion for the PCI arbiter device PCID. Please see the Arbitration chapter of this ERS for
more details.

���������� ���� ����

���� ���� � �� � ��� ��������� ��� ���

PCICMD (PCI Command Register)
� ��

�	��� ������

��� �	

���������

���
��

PA Bit Symbol PCICMD Description GSC Bit

0–24 Undefined 31–7

25 SEC_RESET This bit is cleared at power on and after a CMD_RESET,
causing the PCI RST# signal to be asserted (low). Writing a
1 to this bit deasserts RST# on PCI, bringing the PCI bus
and the bridge’s PCI interface out of reset.

6

26 FBBE Fast back–to–back Enable. Controls ability of Dino to gen-
erate fast back to back transactions to different devices on
PCI.

5

27 MWI Memory write and invalidate enable. Dino will not generate
MWI transactions, so this bit will be hardwired to 0. (Dino
does respond to MWI commands as a slave.)

4

28 SERR_EN Controls enable of Dino’s SERR# driver. 3

29 PER Parity error response. When PER is set, Dino will check for
address and data parity errors. When PER is clear, Dino will
not check for address or data parity errors. The PER bit
does not affect how Dino reacts to PERR# being asserted.

2

30 LOW_DEC This bit must be set to a 1 to enable upstream transactions in
address range $0000_0000 – $EFFF_FFFF to pass from PCI
to GSC.

1

31 NEG_DEC The NEG_DEC bit must be set to a 1 to enable Dino to per-
form negative–decode of upstream PCI memory transac-
tions. Negative decode is used in the address range from
$F000_0000 – $FFFF_FFFF. Please see the PCI chapter of
this ERS for more details.

0

Table 7. PCI Command Register Bit Definition

� PCICMD: Note, some of the bits may not be implemented.

���������� ���� ���

���� ���� � �� � ��� ��������� ��� ���

Note: IF the NEG_DEC bit is set, caution should be taken when addressing PA Space above
F000_0000. If a transaction starts in one 8Mb chunk and finishes in the next 8Mb chunk it is
assumed that the second chunk is not enabled in the IO_ADDR_EN register.

PCISTS (PCI Status Register)
� ��

����� 	��
�

��� � ��

���������

�� ��� � �

PA Bit Symbol PCISTS Description GSC Bit

0–22 Undefined 31–9

23 FBBC Fast back–to–back capable. Returns a 1 to indicate Dino
supports back–to–back accesses.

8

24 DPD Data parity detected. Set when these three conditions are all
true: Dino is the bus master, Dino signaled or received
PERR#, and the PER bit in PCICMD is set.

7

25–26 DEVSEL DEVSEL timing. Returns 2’b01 for Dino. 6–5

27 STA Signaled target abort. Set whenever Dino target target–
aborts.

4

28 RTA Received target abort. Set whenever Dino master receives
target–abort.

3

29 RMA Received master abort. Set whenever Dino master master–
aborts.

2

30 SSE Signaled system error. Set whenever Dino asserts SERR#. 1

31 DPE Detected parity error. Set whenever Dino detects a PCI par-
ity error and is the data sink, regardless of the PER bit in the
PCICMD register.

0

Table 8. PCI Status Register Bit Definition

� PCISTS: Several of these bits may not be needed for Dino.

NOTE: All bits that are not hardwired will be cleared by a CMD_CLEAR in the IO_COM-
MAND register.

The RMA bit (Received Master Abort) is handled differently for configuration space reads and
writes.

MLTIM (Master Latency Timer)
� ��

����� ��������� �����

��� � ��

�� ��� �

� MLTIM: This register contains the programmable value of the Master Latency Timer for
use when Dino is a master on the PCI Bus. The granularity of the timer is 8 PCI clocks.
Thus, the 3 LSBs are hardwired to zero.

���������� �
�� �

�

����� ���� � ���� ��� ��������� ��� ���

BRDG_FEAT (Bridge Feature Enable)
�

����� ��

�����

��

�� �

�� � � �

��� � �

� BRDG_FEAT: This register is used to enable/disable bridge features. Please see the
“Bridge Operation and Configuration” section of this document for more information.

PCIROR (PCI Read Optimization Register)
� ��

����� �	����

�� �

�� � � �

��� � ��

� PCIROR: This register is used for PCI read performance optimization. Please see the
“Bridge Operation and Configuration” section of this document for more information.

PCIWOR (PCI Write Optimization Register)
� ��

����� �	����

�� �

�� � � � �

��� � ��

� PCIWOR: This register is used for PCI write performance optimization. Please see the
“Bridge Operation and Configuration” section of this document for more information.

TLTIM (PCI Target Latency Timer)
� ��

����� �����

�� �

��� �	

� �� �
� �

� ��

� ��

� EN: If the EN bit is set the PCI block uses the value of TLTIM as the count value for target
subsequent latency. If the EN is NOT set the PCI block uses the value 8 as the count for
target subsequent latency.

� TLTIM: This is the seven bit count value for the target subsequent latency. The lower two
bits of this field are hardwire to zero.

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

5
5 BRIDGE OPERATION AND CONFIGURATION

5.1 Introduction
This section discusses how HPA registers are accessed, how DMA and DIO transactions work, and
the effect of configuration register settings on bridge operation.

5.2 Overview
Before Dino will do anything its flex register needs to be programmed. Once the flex register is
initialized Dino will respond to programmed I/O transactions to its GSC resident HPA registers.
Dino’s HPA registers completely define GSC to PCI bridge behavior.

Dino maps a fixed transaction length bus (GSC) to a variable transaction length bus (PCI). In order
to do this efficiently transactions bound for GSC need to be cast into the optimum size. Each device
Dino arbitrates for has a unique set of hint vectors, so to maximize DMA performance, the system
designer needs to understand the type of bus traffic typically generated by these devices. Once the
nature and arbitration position of these devices is understood a good set of hint vectors can be de-
rived. Hint vectors are part of Dino’s HPA register set. DIO transactions don’t require hint vectors
because they come from GSC and start out as fixed length transactions.

5.3 What is flex ?
One natural and often asked question is: What is flex? Flex is essentially a 10–bit bus identification
number that is broadcast to all devices on a given bus segment. Upon receiving the broadcast flex
transaction all the devices (on the segment receiving the broadcast) are programmed with the same
bus identification number and enabled to respond to DIO (direct I/O transaction.) The 10–bit bus
identification number, along with a 4–bit slot address, and a 2–bit submodule identification fully
decodes 4K bytes of HPA space for an HPPA device. Dino compares all GSC addresses it receives to
see if they match to the fully decoded HPA address as defined above: if so, then the register is ac-
cessed.

It is useful to remember that bus–ids are only used for accessing Dino’s HPA registers and do not
determine which addresses are forwarded to PCI.

5.4 A simplified Dino start–up example
In order to better explain how to use Dino’s HPA registers a basic start–up example, based upon a real
Verilog simulation test case, follows:

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

m01 ghost_em write1 0xfffc0020 0xff000001 /* Set Flex */
m02 ghost_em write1 0xff000038 0x00000080 /* Set IO_CONTROL */
m03 ghost_em write1 0xff000804 0x00000000 /* Set PAMR */
m04 ghost_em write1 0xff000808 0x00000000 /* Set PAPR */
m05 ghost_em write1 0xff00005c 0x00000001 /* Set IO_FBB_EN */
m06 ghost_em write1 0xff000060 0x0000fffe /* Set IO_ADDR_EN */
m07 ghost_em write1 0xff00080c 0x00000000 /* Set DAMODE */
m08 ghost_em write1 0xff000824 0x00000000 /* Set PCIROR read hint=1 */
m09 ghost_em write1 0xff000828 0x00000000 /* Set PCIWOR write hint=1 */
m10 ghost_em write1 0xff000810 0x0000006f /* Set PCICMD reset PCI */

5.5 GSC Interface Optimization Registers
In order to improve bridge performance Dino provides several registers to fine–tune transaction
mapping between PCI and GSC. These registers also give means of removing complicated operat-
ing modes, thus helping system turn–on efforts. Also, the feature enable register provides a means of
enabling and disabling some of the more general behaviors of the bridge.

Dino’s miscellaneous register page contains two registers that provide hints to the bridge on the be-
half of the bus masters it arbitrates for. Specifically Dino arbitrates for 6 general PCI devices, all of
which can have unique hint vectors.

Register Symbol Address Offset R/W DescriptionRegister Symbol Address Offset R/W Description

Read Opti-
mization
Register

ROR 0x824 R/W The contents of ROR determine the read pre-
fetch length under a variety of conditions. This
register provides the flexibility to individually
optimize read prefetch length PCI bus masters.

Write Op-
timization

register

WOR 0x828 R/W The contents of the WOR determine the num-
ber of words PCI write transactions are broken
into for GSC. This register provides the flexi-

bility to individually optimize writes onto GSC
for each bus master.

Feature
enable
register

BRDG_F
EAT

0x820 R/W This register provides bits that enable various
GSC/PCI bridge performance enhancement fea-

tures.

Table 9. Registers that control GSC to PCI behavior

5.5.1 Read Optimization Register

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

Figure 3. Read Optimization Register

31

PCIROR

24 23 0

0x824

Bit Symbol Value after Reset Description

3:0 RORA 4’b0000 Encoded prefetch algorithm for PCI master
reads from PCI device A.

7:4 RORB 4’b0000 Encoded prefetch algorithm for PCI master
reads from PCI device B.

11:8 RORC 4’b0000 Encoded prefetch algorithm for PCI master
reads from PCI device C.

15:12 RORD 4’b0000 Encoded prefetch algorithm for PCI master
reads from PCI device D.

19:16 RORE 4’b0000 Encoded prefetch algorithm for PCI master
reads from PCI device E.

23:20 RORF 4’b0000 Encoded prefetch algorithm for PCI master
reads from PCI device F.

31:24 SPARE 8’b0000_0000 Unused bits.

Note: All devices can be configured to connect to an external arbiter.

Table 10. Read Optimization Register Definition

Prefetch Algorithm Encodings for RORA, RORB, RORC, RORD, RORE, and RORF

Encoded Field Prefetch Algorithm XQL asserted

4’b0000 1 word prefetch No

4’b0001 2 word prefetch No

4’b0010 4 word prefetch No

4’b0011 8 word prefetch No

4’b0100 16 word prefetch Yes, if enabled

4’b0101 24 word prefetch Yes, if enabled

4’b1011 Keep FIFO 1/2 full Yes, if enabled

4’b1111 Keep FIFO full Yes, if enabled

Table 11. Read Optimization Field Encodings

When a PCI master starts a read transaction directed to GSC, the length of the transaction is unknown
to the bridge. The GSC side of the bridge needs to pick a transaction size, so it must anticipate the
actual size of the variable length PCI transaction. If it picks a prefetch size that is too small, too many
small GSC transactions will be used. If it picks an unnecessarily large prefetch size, it will generate a

���������� �
�� �

�

����� ���� � ���� ���
������	� ��� ���

large GSC transaction that transfers more data than necessary. It is best to understand the needs of the
mastering device and choose the prefetch constant accordingly. To add flexibility, prefetch algo-
rithms are also selectable.

Note: The PCI memory read line transaction , if properly enabled, forces the ROR field for the trans-
action to effectively be mapped to 4’b0101, meaning that 24 words will be prefetched regardless of
the actual value in the ROR for that device.

Note: The PCI memory read multiple transaction , if properly enabled, forces the ROR field for the
transaction to effectively be mapped to 4’b1111, meaning that bridge will try to keep the read pre-
fetch fifo as full as possible regardless of the actual value in the ROR for that device.

5.5.2 Write Optimization Register

Figure 4. Write Optimization Register

31

PCIWOR

22 21 0

0x828

Bit Symbol Value after Reset Description

1:0 WPCIA 2’b00 Encoded length constant for PCI memory
write from Dino’s PCI device A.

3:2 SPARE 2’b00 Unused bits always read as zero

5:4 WPCIB 2’b00 Encoded length constant for PCI memory
write from Dino’s PCI device B.

7:6 SPARE 2’b00 Unused bits always read as zero

9:8 WPCIC 2’b00 Encoded length constant for PCI memory
write from Dino’s PCI device C.

11:10 SPARE 2’b00 Unused bits always read zero

13:12 WPCID 2’b00 Encoded length constant for PCI memory
write from Dino’s PCI device D. This is the
device that can be configured to connect to
an external arbiter.

15:14 SPARE 2’b00 Unused bits always read zero

17:16 WPCIE 2’b00 Encoded length constant for PCI memory
write from Dino’s PCI device E.

19:18 SPARE 2’b00 Unused bits always read zero

���������� �	�� �		�

���� �
�� �
��� ��� �������	� ��� ���

Bit DescriptionValue after ResetSymbol

21:20 WPCIF 2’b00 Encoded length constant for PCI memory
write from Dino’s PCI device F.

31:22 SPARE 10’b00_0000_0000 Unused bits always read zero

Table 12. Write Optimization Register Definition

Encoded field Behavior

2’b00 The GSC interface uses only single word writes when trans-
forming a variable length PCI transaction.

2’b01 The GSC interface uses double and single word transactions to
transform a variable length PCI transaction.

2’b10 The GSC interface uses only quad word and single word
writes to transform a variable length PCI transaction.

2’b11 The GSC interface uses only eight word and single word
writes to transform a variable length PCI transaction.

Table 13. Write Optimization Length Encoding

A variable length write from a PCI master needs to be properly decomposed into fixed length GSC
write transactions. Bridge efficiency can be improved by tuning the variables in the write optimiza-
tion register for each potential master device.

Note: If properly enabled, the PCI memory write and invalidate transaction type will map to a GSC
write 8 regardless of the WOR settings. See the “Feature Enable Register” description.

5.5.3 Feature Enable Register

Dino contains a number of performance enhancing features that can be enabled and disabled by do-
ing direct I/O transactions. These features are disabled at power up and must be enabled via DIO
writes to this register.

3031

BRDG_FEAT

029

0x820

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

Bit Symbol
Value
after
Reset

Description

29 PUSPLIT 1’b0 Prefetch Under Split: When PUSPLIT = 1, Dino will allow
up to a 24 word DMA read prefetch under a SPLIT DIO
transaction. When PUSPLIT = 0, Dino will only allow up to
an 8 word DMA read prefetch under a SPLIT DIO transac-
tion. If DMA reads are being starved by lots of DIO write
transactions, setting PUSPLIT = 1 may help balance perfor-
mance.

28 PARB_REL_
GNT_MD

1’b0 PCI ARB Mode: When PARB_REL_GNT_MD = 0, Dino
will keep the current PCI BUS Master GNT line asserted if
that Device deasserts it REQ and their are no other Device
REQ’s asserted. If PARB_REL_GNT_MD = 1, Dino will
deassert a Device GNT line if that Device deasserts it’s REQ.

27 DPCIBACK-
OFF

1’b0 Disable PCI Backoff: When DPCIBACKOFF = 1, Dino will
not back DMA traffic off of the PCI bus during GSC splits or
GSC pended DIO read transactions. Doing this can cause
long splits and timeouts on pended DIO reads. DPCIBACK-
OFF should always be 0.

26 DPCIHIT 1’b0 Disable PCI Hit: When DPCIHIT = 1, Dino will ignore GSC
transactions to PA I/O addresses corresponding to address
ranges enabled in the IO_ADDR_EN register. DPCIHIT
should only be set when Dino is used on GSC add–in–cards.
See the Dino–on–a–Card Mode Chapter for more information.

25 DABORT 1’b0 Discard Aborts: When DABORT = 1, PCI master and target
aborts will cause writes to be discarded and reads to return
with data of –1. When DABORT = 0, PCI master and target
aborts will cause the data to be trapped in Dino and retried
indefinitely. This feature is not officially supported. It
may or may not work as expected.

24 reserved

23 DPERR_CHK 1’b0 When set this disables data parity checking on the GSC bus.

22–

16

WATCH_DO
G

7’b0 This is the timer referred to in the GOOD_DOG and
AUTO_DOG descriptions below. The three lowest bits of the
field are always zero.

15 reserved

14 GOOD_DOG 1’b0 Set this bit when connecting Dino to a system that does not
take away GRANT. When another device wants the bus.
Dino will get off the bus after GRANTL goes away OR the
counter expires.

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

Bit Description
Value
after
Reset

Symbol

13 AUTO_DOG 1’b0 Set the GOOD_DOG and AUTO_DOG when Dino is con-
nected to a system that gives a pulsed GRANTL. Dino will
get off the bus only when the counter expires. This mode will
not turn on unless the GOO_DOG bit is turned on also.

12 DCOMP 1’b0 Delayed Completion Enable. DCOMP = 1 will enable the
PCI side to perform delayed completion for upstream reads
whose initial latency is more than 2*TLTIM PCI clocks.
(Where TLTIM is the value in the TLTIM register.) Setting
this bit to 1 is necessary for the bridge to be fully PCI Rev 2.1
compliant. Performance for DMA reads will be lower with
DCOMP = 1. This feature is not officially supported. It
may or may not work as expected.

11 PMWI 1’b1 PCI Memory Write and Invalidate Command Enable. If
cleared to 0, the bridge as a PCI target will treat PCI com-
mand 4’b1111 as exactly equivalent to normal Memory
Writes—no special write optimizations.

10 PMRM 1’b1 PCI Memory Read Multiple Enable. If cleared to 0, the
bridge as a PCI target will treat PCI command 4’b1100 as ex-
actly equivalent to normal Memory Reads—no special read
optimizations.

9 PMRL 1’b1 PCI Memory Read Line Enable. If cleared to 0, the bridge as
a PCI target will treat PCI command 4’b1110 as exactly
equivalent to normal Memory Reads—no special read opti-
mizations.

8 COAL_ON 1’b0 Enable coalescing of DIO writes.

5–7 reserved

4 LTFM 1’b0 Enable “Less Than Fatal Mode”. This may help some sys-
tems go down more gracefully, but increases the chances of
propagating bad data.

3 reserved

2 UXQL 1’b0 Use XQL. When set, this bit will map memory PCI read line
and memory read multiple commands to GSC transactions
that assert XQL. It may (haven’t decided yet) also turn on
XQL for some read prefetch algorithms.

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

Bit Description
Value
after
Reset

Symbol

1 ESGSC+ 1’b1 Enable Slave GSC+ features. If this bit is set the bridge will
respond to slave transactions using the GSC+ features if the
gsc_L pin = 1’b1.

0 EMGSC+ 1’b1 Enable Master GSC+ features. If this bit is set the bridge will
master transactions using the GSC+ features if the gsc_L pin
= 1’b1.

Table 14. Bridge Feature Enable Register Description

�������� 	�� �		�

���� ���� � ���� ���
�������� ��� ���

6
6 GSC INTERFACE

6.1 Introduction
Dino connects to the system CPU using HP’s proprietary GSC (General System Connection). Sys-
tem firmware and software will not be directly affected by the operation of this interface. This sec-
tion describes the capabilities and physical characteristics Dino’s connection to GSC.

6.2 Overview
The GSC interface supports both slave and master transactions. These transactions appear on or are
mastered from Dino’s external PCI bus. When a device on the PCI bus acquires PCI and masters a
transaction, it provides an address and transfers a variable number of data words; these arbitrary
length transactions are converted to a number of properly sized fixed length GSC transactions. CPU
mastered transactions are of fixed length and are presented to PCI as transactions of the same length,
except when coalesced. The GSC and PCI devices are assumed to operate from different asynchro-
nous clocks.

6.3 Features
� Converts variable length PCI transactions into fixed length GSC transactions
� Supports the new GSC type ”1111” transaction
� Configurable conversion thresholds
� Coalesces DIO writes
� Supports fast back to back single word writes (under some conditions)
� Operates between asynchronous clock domains
� Supports simultaneous bus mastership on PCI and GSC
� GSC+ compatible
� High speed GSC 66MHz operation

�������� 	�� �		�

���� ���� � ���� ���
�������� ��� ���

6.4 Dino’s GSC transaction type support

Type[0:3] Transaction Type Functional-
ity level

Dino
Supportedbinary hex

Transaction Type Functional-
ity level

Dino
Supported

0000 0x0 Single/partial–word read core yes

0001 0x1 Double–word read core yes

0010 0x2 Four–word read core yes

0011 0x3 Eight –word read core yes

0100 0x4 Single/partial–word write core yes

0101 0x5 Double–word write core yes

0110 0x6 Four–word write core yes

0111 0x7 Eight–word write core yes

1000 0x8 Single word DIO read return GSC+ yes

1001 0x9 Double–word DIO read return GSC+ yes

1010 0xA Four–word DIO read return GSC+ yes

1011 0xB Eight–word DIO read return GSC+ yes

1100 0xC Reserved undefined n/a

1101 0xD Error event indicator GSC+ no

1110 0xE Clear (four word read with clear) GSC+ no

1111 0xF Write Variable (one to eight words) GSC–1.5X yes

Note: Dino also supports the pended DMA read return transaction described in the GSC+ specifica-
tion.

Table 15. GSC Transaction Support

6.5 > 40 MHz GSC operation
In order to further improve system performance, Dino takes advantage of a point–to–point GSC bus
topology that supports GCLK frequencies higher than 40MHz. Higher GSC frequencies will break
some critical timing paths in Dino’s GSC interface, making the use of an external delay line neces-
sary. Also, at these higher frequencies fast back–to–back writes will not work and therefore
can not be enabled.

6.6 Fast back to back single word writes
Fast back–to–back writes can be enabled by writing a one to the LSB in the IO_FBB_EN register.
Fast back–to–back writes are disabled at power on.

�������
�� �

	

����� ���� � ���� ��� ��������� ��� ���

6.7 Power–on and GSC
At power on (while PON = 1’b0) the Dino’s GSC pads provide a weak pull–up to logic1 for all GSC
control and data lines. It is assumed that the CPU/IOA contains bus holders that hold bus state for
proper GSC operation. A command reset will not reactivate these weak pull–ups.

6.8 Some GSC+ & GSC2X details
Dino implements a full set of GSC+ features and also the Type “F” transaction from GSC2X, so we
call Dino a GSC1.5X+ device. As a GSC1.5X+ guest Dino receives the gsc_L signal to indicate
whether to use extended GSC transactions. On Dino HPA BSRS 30, register 13, bit 31 is hardwired
set to indicate to the host that the Type “F” transaction is allowed. The Type “F” transaction is the
only GSC core feature enhancement in GSC1.5.

Once a pended read, DIO/DMA, is outstanding dino will retry any downstream transaction, thus re-
moving the possibility of a deadlock condition. In light of U–turn not allowing type “F” transaction
to be retried, type “F” transactions and pended reads must be mutually exclusive. Type “F”
transaction can be turned off in U–turn or pended reads can be turned off in Dino.

�������
�� �

	

����� ���� � ���� ��� ��������� ��� ���

���������� �	�� �		�

���� �
�� �
��� ��� ��������� ��� ���

7
7 PCI

7.1 Introduction
Dino’s PCI interface is the PCI end of a bridge between HP’s proprietary GSC (General System Con-
nect) local bus and the industry standard PCI (Peripheral Component Interconnect) local bus. Nu-
merous computer systems today support this high speed local bus, which offers access to standard
industry I/O hardware components.

7.2 Features
� Clock domain of PCI is independent of GSC
� Graphics support
� Arbitration for 6 PCI devices (see “Arbitration” section).
� Maximum latency of 30us
� Average latency of 3us
� HPPA configurable PCI address space
� Bridge FIFO behavior is configurable for performance optimization
� PCI and GSC can have independent bus ownership
� Generation of configuration space, I/O space, and memory space cycles.
� Recognition and use of Memory Read Multiple, Memory Read Line, and Memory

Write and Invalidate PCI commands.

7.3 Unsupported Functionality
� Dual Address Cycles (C/BE[3:0]#==1101) cannot be generated by Dino. Dual Ad-

dress Cycles generated by another master will be ignored by Dino. Absolutely no
logging will be performed within Dino.

PCI Command Command
Encoding

Dino Gen-
erates

Dino Re-
sponds

Interrupt Acknowledge 0000 No No

Special Cycle 0001 Yes No

I/O Read 0010 Yes No

I/O Write 0011 Yes No

Reserved4 0100 No No

Reserved5 0101 No No

Memory Read 0110 Yes Yes

���������� �
�� �

�

����� ���� � ���� ���
������	� ��� ���

PCI Command Dino Re-
sponds

Dino Gen-
erates

Command
Encoding

Memory Write 0111 Yes Yes

Reserved8 1000 No No

Reserved9 1001 No No

Configuration Read 1010 Yes No

Configuration Write 1011 Yes No

Memory Read Multiple 1100 No Yes

Dual Address Cycle 1101 No No

Memory Read Line 1110 Yes Yes

Memory Write and Invalidate 1111 No Yes

Table 16. PCI Transaction Support

7.4 PCI Assumptions
It is assumed that Dino is only a host bridge. Dino does not support the registers and other func-
tions needed to be a non–host device on PCI. This means that Dino can not, for example, be used to
build a device that lives on a PCI bus and provides access to GSC resources.

Also, it is assumed that any PCI transaction that is not directed to another PCI device (i.e. must go
through the bridge to GSC) is a transaction directed to memory. This means that read prefetching for
a PCI mastered transaction can be done without regard to side effects. In addition, upstream (DMA)
reads on PCI without all byte enables asserted will turn into reads on GSC with all byte enables as-
serted.

7.5 Using PCI at frequencies higher than 33 MHz
Dino’s PCI bus can run at frequencies higher than 33MHz when used with PCI Rev. 2.1 66MHz de-
vices and a point to point bus topology. Dino does not support any architected PCI status registers so
there is no 66Mhz Capable bit. However, the clock generation circuitry needs to look at the M66EN
signal to generate the correct clock frequency for the higher than 33MHz frequency bus segment.
Use of PCI higher than 33MHz is intended to be for very restricted configurations. See the “PCI
Local Bus Specification” Rev. 2.1, Chapter 7 for more details.

7.6 PCI Signals
As a PCI Bridge Dino makes use of all the required and optional PCI signals listed in the “PCI Local
Bus Specification Revision 2.0, except:

� AD[63:32], C/BE[7:4]#,PAR64,REQ64#,ACK64# ––> Dino is a 32–bit PCI
bridge.

���������� �
�� �

�

����� ���� � ���� ��� �������
� ��� ���

� LOCK# ––> The industry is moving away from using lock.
� SBO#, SDONE ––> Cache support is not needed.

7.7 Accessing PCI Configuration Space thru PA I/O Space
PCI Configuration space will be accessed through two 32–bit HPA registers: PCI_CON-
FIG_ADDR (HPA offset 0x064) and PCI_CONFIG_DATA (HPA offset 0x068). Accessing the
PCI Configuration Space is a two step process:

� Write the bus number, physical device number, function number and register num-
ber to the PCI_CONFIG_ADDR register.

� Perform a read or write to the PCI_CONFIG_DATA register.

Note: The contents of the PCI_CONFIG_DATA register will be byte swapped between GSC
and PCI.

DINO’s PCI bus number is 8’h00.

PCI_CONFIG_ADDR (PCI Configuration Address)

����� ������

�� � � � � � � � � � � �

��	���

�� � ���� � ��

������

�
� � �	��� � ��

��
���
��������

GSC Bit Symbol PCI_CONFIG_ADDR Description

31–24 Reserved

23–16 BUS_NUM Identifies the PCI bus number the configuration access is intended
for. This field is only needed if Type=01.

15–11 DEV_NUM Identifies the physical PCI device number the configuration access
is intended for.

10–8 Function Identifies the function number within a physical PCI device.

7–0 REG_NUM Identifies the word address of the target function’s configuration
register. The two LSB will always read back 2’b0

When the BUS_NUM field is equal to DINO’s Bus number, 8’h00, a configuration cycle will be
started on Dino’s bus with the following address, this is called a type 0 transaction.

������

�� �� � � �� � �

��	���

�� � ���� � ��

0 0Only one “1”

The one address bit that is set in the range [31:11] is determined by the DEV_NUM field. A
DEV_NUM value of 0 to 15 maps to bit 16 to bit 31 respectively and a value of 16 to 20 maps to bit 11
to 15 respectively. No bit is set for a DEV_NUM value in the range 21 to 31.

If the BUS_NUM field is not equal to DINO’s bus number, 8’h00, the contents of the PCI_CON-
FIG_ADDR[31:2] register is copied on to PCI_AD[31:2] lines with PCI_AD[0:1] set to 2’b01. This
is a type 1 transaction. Type 1 transactions are ignored by all targets expect PCI to PCI bridges.

The following table is the PCI Configuration Space Header, Figure6–1 of the PCI 2.1 spec. This
table has PCI byte ordering.

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

Offset 31 0

00h Device ID Vendor ID

04h Status Command

08h Class Code Revision ID

0Ch BIST Header Type Latency Timer Cache Line Size

10h Base Address Register 0

14h Base Address Register 1

18h Base Address Register 2

1Ch Base Address Register 3

20h Base Address Register 4

24h Base Address Register 5

28h Cardbus CIS Pointer

2Ch Subsystem ID Subsystem Vendor ID

30h Expansion ROM Base Address

34h Reserved

38h Reserved

3Ch Max_Lat Min_Gnt Interrupt Pin Interrupt Line

Table 17. PCI Configuration Space Header

7.7.1 Generating PCI Special Cycles thru PA I/O Space

When the PCI_CONFIG_ADDR registers BUS_NUM is the equal to the DINO’s bus number,
8’h00, DEV_NUM and Function fields are all ones, and the REG_NUM field is all zeros the next
write to PCI_CONFIG_DATA register will generate a special cycle on DINO’s PCI bus. If the
BUS_NUM field does not equal DINO bus number then a type 1 transaction will be forwarded to
PCI as described above.

Note: Dino is using a legal PCI configuration address to generate a PCI special cycle. System firm-
ware and software should not attempt to read or write to this configuration address when walking the
PCI bus through configuration address space.

7.7.2 Bus Walking

When performing bus walking, the PCI specification requires that firmware test for the presence of a
device at each of the 32 possible bus numbers. If a device does not respond to a configuration cycle,
Dino will terminate the cycle on PCI with a Master–Abort. If the cycle without a response was a
configuration read, Dino will return a data value of 0xFFFF_FFFF. However, Dino will not go into
Fatal Mode as a result of any Master–Abort during a configuration cycle.

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

7.7.3 Configuration Access Endianness

The PCI configuration registers are little–endian, and thus the contents of the PCI_CONFIG_DATA
register will be swapped. The byte–enables will also be swapped between GSC and PCI. Note that
the contents of the PCI_CONFIG_ADDR register will NOT be swapped, Dino will generate the ap-
propriate PCI Configuration address based on the PCI_CONFIG_ADDR register format defined
above.

7.7.4 Example of a Configuration Read and Configuration Write

The following examples show how a Configuration Read and Write can be executed on a typical
system.

A) Configuration Read of Configuration Register at offset 0x10(Base Address Register #0) for
Device #4 (bottom slot of a Raven).

The following assumptions have been made for this example:

There is a PCI card in Slot 4

System = Raven U

Dino HPA = 0xF160_0000 (This value can be found with the following BCH command:
“db sim”).

Firmware = Rev. 2.7 (with debug commands enabled)

PCI SLOT #4

PCI Function Number = 0

PCI Configuration Register = 0x10

Procedure:

1) Boot system to BCH

2) Change int the Manufacturing Menu by typing “mfg”.

3) Calculate the correct value for the PCI_CONFIG_ADDR register:

Device # = 0x4 = 00100b

Function # = 0x0 = 000b

Register # = 0x10 = 00010000b

PCI_CONFIG_ADDR = 00100 000 00010000b = 0x2010

4) Write the PCI Configuration Address to Dino’s PCI_CONFIG_ADDR register (HPA
+ 0x64) by typing “mw 0xf1600064 0x2010”.

5) Now read one word (32 bits) from offset 0x10 of device #4 PCI Configuration Space
Header via the PCI_CONFIG_DATA register (HPA + 0x68) by typing

“mr 0xf1600068 1”.

���������� ���� ���

�����
��� � ���� ��� ������	�� ��� ���

B) Configuration Write of Configuration Register at offset 0x4 (Command and Status Regis-
ter) for Device #2 (bottom slot of a Merlin).

The following assumptions have been made for this example:

There is a PCI card in Slot 2

System = Merlin L2

Dino HPA = 0xFFF8_0000 (This value can be found with the following BCH command:
“db sim”).

Firmware = Rev. 2.7 (with debug commands enabled)

PCI SLOT #2

PCI Function Number = 0

PCI Configuration Register = 0x04

Data to be written to PCI Register = 0x12345678

Procedure:

1) Boot system to BCH

2) Change int the Manufacturing Menu by typing “mfg”.

3) Calculate the correct value for the PCI_CONFIG_ADDR register:

Device # = 0x4 = 00010b

Function # = 0x0 = 000b

Register # = 0x10 = 00000100b

PCI_CONFIG_ADDR = 00010 000 00000100b = 0x1004

4) Write the PCI Configuration Address to Dino’s PCI_CONFIG_ADDR register (HPA
+ 0x64) by typing “mw 0xfff80064 0x1004”.

5) Convert the write data to Big Endian format from Little Endian:

Big = 0x78563412

Little = 0x12345678

6) Now write one Big Endian word (32 bits) to offset 0x04 of device #2 PCI Configura
tion Space Header via the PCI_CONFIG_DATA register (HPA + 0x68) by typing

“mw 0xfff80068 0x78563412”.

7.8 Accessing PCI I/O Space thru PA I/O Space
PCI I/O space will also be accessed through two 32–bit HPA registers: PCI_CONFIG_ADDR (HPA
offset 0x064) and PCI_IO_DATA (HPA offset 0x06c). Accessing the PCI I/O Space is a two step
process:

� Write of the target I/O byte address to the PCI_CONFIG_ADDR register.
� Perform a read or write to the PCI_IO_DATA register.

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

The lower half word written to this register,PCI_CONFIG_ADDR[15:0] will be the I/O address
used for the PCI I/O transaction (no byte swapping will occur on the PCI_CONFIG_ADDR regis-
ter). Note that this mechanism only allows single–word and sub–word accesses, and only to the first
64kB of PCI I/O space. Note, as is the case with PCI Configuration space accesses, the contents of
the PCI_IO_DATA register will be swapped between GSC and PCI.

PCI I/O cycles provide full byte address, AD[1:0] contain the byte address. Use the following table
when generating sub word transactions.

PCI_CONFIG_ADDR[0:1] Byte Enable on Read/Write to PCI_IO_DATA
register

32 Bit Word–––2’b00 4’b0000

Upper 16 Bit Word –– 2’10 4’b1100

Lower 16 Bit Word –– 2’00 4’b0011

Byte Zero –– 2’b00 4’b0111

Byte One –– 2’b01 4’b1011

Byte Two –– 2’b10 4’b1101

Byte Three –– 2’b11 4’b1110

7.9 Accessing PCI Memory Space thru PA I/O Space
Dino provides a way to access dispersed ranges of PCI memory space from the fragmented avail-
able PA I/O space. There are 32–8MB chunks in PA I/O Space, and all but the first (used by boot
ROM) and the last (used by CPU) can potentially be used for PCI.

Dino’s IO_ADDR_EN register, located in Dino’s HPA, is used to enable 8MB chunks of GSC I/O
space to be used for accesses to PCI Memory Space. Any transaction whose address falls within an
enabled chunk will be directly forwarded to the PCI bus. For example, assuming the 8MB chunk
beginning at 0xF100_0000 has been enabled, a GSC read to address 0xF101_2340 will result in a
PCI read to PCI memory space address 0xF101_2340.

IO_ADDR_EN (IO Address Enable)

����� � ��
���	
�� �

��� � �� �� � � � �

GSC Bit GSC Address Range Enabled

31 FF80_0000 thru FFFF_FFFF. This address space is reserved for the CPU and
thus this bit is hardwired to zero.

30 FF00_0000 thru FF7F_FFFF

29 FE80_0000 thru FEFF_FFFF

28 FE00_0000 thru FE7F_FFFF

27 FD80_0000 thru FDFF_FFFF

26 FD00_0000 thru FD7F_FFFF

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

25 FC80_0000 thru FCFF_FFFF

24 FC00_0000 thru FC7F_FFFF

23 FB80_0000 thru FBFF_FFFF

22 FB00_0000 thru FB7F_FFFF

21 FA80_0000 thru FAFF_FFFF

20 FA00_0000 thru FA7F_FFFF

19 F980_0000 thru F9FF_FFFF

18 F900_0000 thru F97F_FFFF

17 F880_0000 thru F8FF_FFFF

16 F800_0000 thru F87F_FFFF

15 F780_0000 thru F7FF_FFFF

14 F700_0000 thru F77F_FFFF

13 F680_0000 thru F6FF_FFFF

12 F600_0000 thru F67F_FFFF

11 F580_0000 thru F5FF_FFFF

10 F500_0000 thru F57F_FFFF

9 F480_0000 thru F4FF_FFFF

8 F400_0000 thru F47F_FFFF

7 F380_0000 thru F3FF_FFFF

6 F300_0000 thru F37F_FFFF

5 F280_0000 thru F2FF_FFFF

4 F200_0000 thru F27F_FFFF

3 F180_0000 thru F1FF_FFFF

2 F100_0000 thru F17F_FFFF

1 F080_0000 thru F0FF_FFFF

0 F000_0000 thru F07F_FFFF.

7.10 Accessing PA I/O Space thru PCI Memory Space
Dino implements negative decoding for accesses to PA Space above F000_0000. Any PCI Memory
transaction directed to a memory location not enabled by the IO_ADDR_EN registers, will be di-
rectly forwarded upstream to PA Space. The NEG_DEC bit in Dino’s PCICMD (HPA offset 0x810)
register must be set to enable Dino to perform negative decoding. In this address range, Dino will be a
MEDIUM speed device as defined in the PCI spec. Caution should be taken when addressing PA
Space above F000_0000. If a transaction starts in one 8Mb chunk and finishes in the next 8Mb
chunk it is assumed that the second chunk is not enabled in the IO_ADDR_EN register.

���������� �
�� �

	

����� ���� � ���� ���
�������� ��� ���

7.11 Accessing PA Memory Space thru PCI Memory Space
Dino assumes that all addresses from 0x0000_0000 to 0xEFFF_FFFF are DMA transactions to PA
memory space. All PCI memory transactions to these addresses are forwarded to the same address
on the GSC bus provided the NEG_DEC bit in Dino’s PCICMD (HPA offset 0x810) register is set to
1. Dino will be a FAST device for writes and a MEDIUM device for reads, where FAST and ME-
DIUM are defined in the PCI specification. Because of the special nature of address 0x0000_0000 to
0xEFFF_FFFF in HPPA, PCI devices should not be mapped into this range.

7.12 Accessing PA Space thru PCI I/O Space
Dino will not allow any PA Space to map to PCI I/O Space. Dino will simply not respond to any PCI
transaction directed to PCI I/O Space. More specifically, Dino will not assert or drive DEVSEL#,
STOP#, or TRDY#, if the PCI command is an “I/O Read” or “I/O Write”

7.13 Accessing Dino PCI Configuration Space From PCI
Dino’s Configuration and Status registers will be accessed through Dino’s HPA space, which can
only be accessed through Dino’s GSC interface. Dino’s Configuration and Status registers can not
be accessed through PCI Configuration transactions (Dino does not have a IDSEL input).

7.14 Responding to PCI Special Cycles
Though Dino has a mechanism for generating PCI Special Cycles, Dino will not respond to any PCI
Special Cycles.

���������� ���� ���

�����
��� � ���� ��� �������	� ��� ���

�������
�� �

	

����� ���� � ���� ��� �������	� ��� ���

8
8 PERFORMANCE

8.1 Performance Summary
Dino is designed to achieve the highest level of performance that makes sense for a GSC to PCI
bridge. Performance can, however, be degraded by programming the bridge incorrectly or using
non–optimum PCI transactions. For example, multiword transactions on PCI that do not have all
byte lanes enabled on each word will not map well between PCI and GSC thus generating numerous
word/sub–word transactions, resulting in lost performance. Bridge hardware properly handles all
legal PCI transactions, but using transactions that can be converted efficiently will result in better
performance.

NOTE: U–Turn is the I/O adapter used with the PA7200, PA8000, and PA8200 processors.

Operation PA7100 PA7300L U–turn Assumptions

DMA Write 128MB/s 128MB/s 100MB/s 40MHz GCLK

Using 8–Word write transactions packed by the
bridge. No memory contention.

DMA Read 85MB/s 85MB/s

24MB/s

40MB/s

40MHz GCLK

Assumes XQL is not used.

Assumes XQL is used.

Direct I/O
Write

70MB/s 100MB/s 100MB/s 40 MHz GCLK

PA7100:

1 double word GSC write every 4 states

PA7300LC:

1 8 word type “F” transaction every 10

states.

Direct I/O
Read

14MB/s 14MB/s 10MB/s 40 MHz GCLK

One single word read every 8 GSC states.

Table 18. Performance summary for Dino’s PCI to GSC bridge.

8.2 Performance Features
Dino’s performance enhancing features are described and analyzed in this section.

�������� ��� ���	

�����
��� � ���� ��� �������
� ��� ���

8.2.1 GSC Fast back to back DIO writes
In order to improve DIO write performance on GSC Dino implements fast back to back READYL
response. This gives a peak DIO write bandwidth of (N/N+1)*160MB/Sec where N is the transac-
tion size in words. It is important to note that single word write performance is maximized when the
same Dino is accessed consecutively.

8.2.2 Coalescing DIO writes
The efficiency of DIO writes on PCI is maximized by coalescing GSC writes to consecutive address-
es into long multiword writes on PCI. If GSC is running at 40MHz and PCI is running at 33MH, the
host needs to use back to back 4 word writes in order use all the available PCI throughput, with co-
alescing turned on. If coalescing is disabled PCI bandwidth will always limit throughput at 40 and 33
MHz.

8.2.3 Variable length DIO write transactions
A new feature of GSC1.5 is the availability of a variable length write transaction. This transaction
lets the host generate transactions with lengths between 1 and 8 words, providing a means of using
the GSC bus more efficiently. The peak bandwidth of writes using this transaction is still
(N/N+1)*160MB/Sec where N is the transaction size in words, however, using this transaction re-
duces the number of GSC transactions needed.

8.2.4 DMA read prefetching
In order to improve DMA read performance Dino prefetches data. The ROR register provides a
means of selecting between four different read algorithms. These algorithms are implemented to
provide different levels of speculative prefetching. Choosing the correct algorithm can have a very
significant effect on performance. These algorithms also enable the use of the GSC XQL signal
which provides a prefetch hint to GSC IOAs like U2.

8.2.5 Pended DIO and DMA read transactions
GSC+ pended transactions help improve bus efficiency in heavily loaded systems. These transac-
tions release the bus while waiting for read data to return. It is useful to note that pended transactions
hurt performance if the bus is not busy.

8.2.6 PCI Fast Back to Back Writes
Fast back to back transactions are implemented on PCI. Fast back–to–back writes can only be en-
abled if all of the devices on PCI are capable of supporting fast back–to–back writes.

8.3 Bridge Latency
Because Dino allows the GSC and the PCI clocks run totally independently, operations crossing the
bridge incur a significant amount of latency. Because the implementation of Dino isn’t complete, its
not possible to specify exact numbers for these latencies that won’t change. For example, there may

�������
�� �

	

����� ���� � ���� ��� �������
� ��� ���

be some opportunity to improve latency or certain design realities may cause latency to increase.
With these caveats in mind, simulations have shown that average DIO write latency is currently in
the neighborhood of 175 ns, measured from ADDVL assertion on GSC to FRAME# assertion on
PCI. Average DIO read latency is currently in the neighborhood of 415 ns, measured from ADDVL
assertion on GSC to READYL assertion on GSC.

The above times assume that GSC is running at 40 MHz and PCI is running at 33 MHz. The read time
assumes the PCI target is as fast as possible (fast or medium decode speed and TRDY# low 2 clocks
after FRAME#). Please note because of synchronization windows, the write latency for a given
cycle could be about 16 ns more or less than the average, and the read latency for a given cycle could
be 29 ns more or less than the average. The read number could be worse if GSC uses pended reads or
if the read is a multi–word read. In the former case, arbitrating for the bus and starting a new transac-
tion adds overhead. In the later case, all words of a multi–word read must be complete on PCI before
the first word can be returned on GSC.

�������
�� �

	

����� ���� � ���� ��� ��������� ��� ���

������� 	�� �

	

����� ���� � ���� ��� ����� ����� ��� ���

9
9 ENDIAN ISSUES

9.1 Problem
The byte–wise endian problem emanates from the need to access data information as 8–bit bytes
some of the time and as 16–bit, 32–bit, or larger words some of the time. This problem wouldn’t
exist at the hardware level if a system was exclusively byte oriented or if a system was exclusively
word oriented. Of course, because performance demands wider than 8–bit data operations and be-
cause byte oriented data types remain important, our systems must deal with both 8–bit and larger
than 8–bit quantities.

There are two commonly used ways of packing sequential bytes into a larger data quantities: little
endian byte ordering and big endian byte ordering. These are illustrated in Figure 5.

Figure 5. Byte Packing

1 2 30

123 0

Big Endian Byte Ordering

Little Endian Byte Ordering

Most
Significant

Bit

Most
Significant

Bit

Least
Significant

Bit

Least
Significant

Bit

Devices on the GSC bus conform to the big endian byte ordering convention, and devices on the PCI
bus conform to the little endian byte ordering convention. The problem is how to move data between
the GSC bus and the PCI bus. One option is to map the most significant bit on GSC to the most
significant bit on PCI and the least significant bit on GSC to the least significant bit on PCI. This
works well for 32–bit word oriented data but changes the way 8–bit and 16–bit data is accessed with-
in a word. A second option is to map byte 0 on GSC to byte 0 on PCI and byte 3 on GSC to byte
3 on PCI. This works well for byte oriented accesses, but changes the way 16–bit and 32–bit data
is viewed.

��������
�� ���

�����
��� � ���� ��� ����� ��	�� ��� ���

9.2 Dino Implementation
The second option of mapping byte 0 to byte 0 is the approach taken on Dino. This means that data on
the most significant byte lane on GSC will be routed to the least significant byte lane on PCI. It has
the benefit of working transparently for I/O drivers running with the PSW E–bit set.

To understand endianness fully, it is necessary to understand how the CPU behaves when it is in little
endian or big endian mode. The PA–RISC1.1 Instruction Manual, Third Edition can be consulted for
more information. Table 19 is intended to be a summary.

Item
CPU’s PSW E–bit

Item
Big Endian Mode Little Endian Mode

Data in system memory Stored as big endian. Stored as big endian

Instructions in system memory Stored as big endian. Stored as little endian.

Instruction Fetches No swap. Processor swaps as they are
brought in.

Loads/stores of halfwords,
words, and double words

No swap. Swap takes place as the data is
read from or written to system
memory or I/O.

Loads/stores of bytes. No swap. No swap.Loads/stores of bytes.

Note: Since data in a register is always flush right, and data in
memory or on the GSC bus is always big endian, there is no
difference in byte operations between the two modes.

STBYS instruction
(STORE BYTES SHORT)

See the PA–RISC 1.1 Instruction Manual. The details of this in-
struction are not important to this discussion.

Data on GSC

Least Significant
0 1 2 3

Most Significant

Data on PCI

Least Significant
3 2 1 0

Most Significant

DMA Address Pointers for PCI
devices as viewed in a CPU reg-
ister Least Significant

A[7:0] A[15:8] A[23:16]A[31:24]
Most Significant Least Significant

A[31:24]A[23:16] A[15:8] A[7:0]
Most Significant

32–bit DMA Commands for PCI
devices as viewed in a CPU reg-
ister Least Significant

C[7:0] C[15:8] C[23:16]C[31:24]
Most Significant Least Significant

C[31:24]C[23:16] C[15:8] C[7:0]
Most Significant

PA Code generating program
(e.g. compiler)

Compiles instructions as words
or double words with no swap-
ping.

Compiles instructions as words
or double words with no swap-
ping.

Table 19. Endian Comparison

Note that instructions are inherently word oriented, so in order to have the words appear the same in
both big endian and little endian mode, the bytes of an instruction are swapped in little endian mode

������� 	�� �

	

����� ���� � ���� ��� ����� ����� ��� ���

but not in big endian mode. As long as the process generating code and the process executing code
run under the same E–bit mode this presents a consistent model. Only if a program is compiled under
one endian mode and executed under the other does software byte swapping need to occur.

Figures 6 and 7 show the major data flows in the system in both processor modes. Word (32–bit)
oriented data is shown for this illustration, but the data flows would be the same for halfword and
doubleword data as well.

������� 	�� �

	

����� ���� � ���� ��� ����� ����� ��� ���

9.3 System Examples

Figure 6. Big Endian Mode

0 1 2 3

GSC/PCI Bridge

0 1 2 3

0 1 2 3

CPU

0 1 2 3

GSC Bus

3 2 1 0

3 2 1 0

PCI Bus

PCI Device

4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27

System Memory

Memory/IO
Controller

0 1 2 3

With the processor’s E–bit cleared (i.e. Big Endian Mode), byte wide accesses from the host to PCI
devices will access the correct numbered byte on the PCI device.

��������
�� ���

�����
��� � ���� ��� ����� ��	�� ��� ���

Figure 7. Little Endian Mode

0 1 2 3

GSC/PCI Bridge

3 2 1 0

0 1 2 3

CPU

0 1 2 3

GSC Bus

3 2 1 0

3 2 1 0

PCI Bus

PCI Device

4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27

System Memory

Memory/IO
Controller

0 1 2 3

With the processor’s E–bit set (i.e. Little Endian Mode), byte wide accesses from the host to PCI
devices will access the correct numbered byte on the PCI device, and 16–bit and 32–bit quantities
will look the same to both the software running on the CPU and the PCI device.

Note that memory is consistently big endian for data regardless of whether the E–bit is set or cleared.
This means that a data buffer with byte oriented data can be passed between a process running under
little endian mode and a process running under big endian mode.

However, byte locations do get swapped for instruction storage depending on the state of the E–bit.

������� 	�� �

	

����� ���� � ���� ��� ����� ����� ��� ���

9.4 Programming PCI Devices
The programming model for PCI devices is different depending on whether the CPU is in big endian
or little endian mode. The exceptions are generating PCI configuration and IO cycles. For informa-
tion on these cycles, see the section defining the registers for configuration cycles.

When writing PCI drivers, using the CPU in Little Endian Mode is strongly recommended. This
provides a consistent interface to software and obviates the need for the driver to do byte swapping.

9.4.1 Little Endian Mode

In little endian mode, the endian model for programming PCI I/O devices is the same as the model on
an Intel X86 machine. Words, halfwords, and bytes can be constructed and sent to or received from
the device as though the entire machine were little endian. If the documentation for a PCI peripheral
lists a word (32–bit) register, it can be written to/read from as a word without byte swapping. If the
documentation for a PCI peripheral lists a byte register, no modification to the address offset is need-
ed to read/write it as a byte. Likewise, when using DMA, data structures can be constructed or refer-
enced in memory just as though the whole system was little endian. DMA data structures should
appear exactly like the PCI device documentation specifies.

9.4.2 Big Endian Mode

In big endian mode, if a software driver isn’t restricted to using only byte accesses to a PCI device,
the driver must be written with the intricacies of byte swapping in mind. The byte swapping model
should be the same as for EISA devices. This means that for byte oriented data no swapping is need-
ed, but for 32–bit or 16–bit oriented data (e.g. command words) each byte needs to be swapped. This
is true for both DMA data structures in memory and direct I/O operations from the CPU.

������� 	�� �

	

����� ���� � ���� ��� ����� ���	� ��� ���

10
10 DINO ERRORS AND ABNORMAL CONDITIONS

10.1 Dino Error Handling Overview
As a bridge between two busses, Dino must properly accommodate a number of abnormal condi-
tions like data parity errors, time–outs, and incorrectly sized transactions. Dino also posts transac-
tions, improving performance but making it difficult to contain errors. Non–contained errors on
Dino happen when a posted transaction eventually completes in some sort of error on its target bus
and the transaction on the initiating bus has long since completed without an error. In general, all
non–contained errors on Dino are fatal and will put the bridge into Fatal Mode. Similarly, asserting
ERRORL on GSC or asserting ������ or ����� on PCI will put Dino into Fatal Mode. In all
error cases the correct GSC and PCI bus protocol will be followed.

10.2 Fatal Mode
Dino enters Fatal Mode in response to a number of different error conditions that require processor
intervention. When in Fatal Mode Dino will not communicate in any way with PCI devices and only
some HPA registers will be accessible. The processor will eventually attempt to access a disabled
Dino resource, an action that will result in a bus error: in this way Dino passively signals a bridge
error condition. Fatal Mode also keeps potentially bad data from propagating further.

In Fatal Mode DIO writes to disabled addresses on PCI or registers inside Dino will complete but the
data will not transfer. DIO Reads of disabled registers or PCI will result in a GSC timeout. DMA
from PCI is disabled. Interrupt transactions are also disabled.

The following registers are the only ones that can be accessed in the normal way during Fatal Mode:

� IO_COMMAND

� IO_STATUS

� IO_GSC_ERR_RESP

� IO_PCI_ERR_RESP

� IO_ERR_INFO

Fatal Mode modifies as little of Dino’s state as possible, making it easier to analyze the error condi-
tion. The state of the following registers will not be modified by going into fatal mode:

� SRS Registers except IO_CONTROL, IO_STATUS

� ARS Registers except IO_GSC_ERR_RESP, IO_PCI_ERR_RESP, IO_ERR_INFO

� BSRS Registers

� HVRS Registers except PCISTS, PCICMD

�������� 	�� ���	

�����
��� � ���� ��� ����� ���
� ��� ���

As far as error logging is concerned, Fatal Mode logs the errant address and sets the proper bits in the
IO_ERR_INFO and IO_STATUS registers. To get Dino out of Fatal Mode a command reset
needs to be issued on GSC.

10.3 Less Than Fatal Mode
Less Than Fatal Mode is designed to help systems that do not wish to shut down with something as
drastic as Fatal Mode. Less Than Fatal Mode generates an interrupt after the error occurs, keeps the
errant address and logs the error as a soft error in the IO_STATUS HPA register. Less Than Fatal
Mode also does not block access to any HPA registers and does not force parity errors on outgoing
data. Less than Fatal Mode allows bad data to flow through Dino.

10.4 Preventing the propagation of bad data
In order to maximize bus efficiency and improve performance Dino posts transactions. Posting of
transactions means that data parity errors on the requesting bus are no longer tied to the transac-
tion—they are uncontained. Once the error is detected Dino enters Fatal Mode (as discussed above).
In Fatal Mode the Dino forces parity errors on all data leaving the bridge on both the PCI and GSC
sides, except the data coming from the HPA registers. In this way both the GSC based CPU gets and
the PCI connected peripherals should detect parity errors, signalling a need to shut down their data
paths or risk further propagation of bad data.

If the LTFM (Less Than Fatal Mode) bit is turned on, Dino simply generates an interrupt but does not
force parity errors. In this way a system that is not too worried about bad data can perhaps recover
more gracefully.

10.5 Dino error reporting and logging
Dino reports errors to help contain bad data and logs errors to help system diagnostics and error re-
covery. If the LTFM bit = 1’b0 bridge errors are reported by forcing parity errors and blocking trans-
actions. If the LTFM bit = 1’b1 bridge errors are reported by generating an interrupt. Errant address-
es from PCI and GSC, when Dino is a master, are logged in separate registers. When Dino is a target
on either bus two separate bits log GSC and PCI error status.

10.5.1 Errors and the IO_Status register
The IO_Status register contains general error status. The LTFM (Less Than Fatal Mode) bit in the
BRDG_FEAT register changes the way bits are set in the IO_Status register. If the LTFM= 1’b0 any
kind of error will put Dino into Fatal Mode, setting the fe bit and putting the proper vector into the
estat register. While the same errors with LTFM= 1’b1 will set the se bit and log a different code into
the estat fields. CMD_CLEAR clears the se and estat fields.

��������
�� ���

�����
��� � ���� ��� ����� ��	�� ��� ���

IO_STATUS (Status Register)
� ��

����� ���������

��� �	

�	��
�
��

�� �	� �� �

PA Bit Symbol IO_STATUS Description GSC Bit

0–15 Undefined 31–16

16–21 estat Contains an error status code corresponding to the most se-
vere error currently logged. Dino will only have 3 possible
vectors stored in this field: 1) 5’b00000 –clear, 2) 5’b00001
– less than fatal, 3) 5’b00011 –fatal. See the “Dino Errors
and Abnormal Conditions” section.

15–10

22 se This bit is always zero unless Dino is in “Less Than Fatal
Mode”.

9

23 he Hardwired to 0 because Dino does not distinguish this type
of ERROR. See the “Dino Errors and Abnormal Conditions”
section.

8

24 fe When set, indicates that a fatal error was detected by Dino. 7

25 ry When set, indicates that Dino is ready to accept commands.
Probably will be hardwired to 1.

6

26–27 Reserved 5–4

28 lp Set if this status register applies to lower bridge port. This
bit is hardwired to 0 in Dino (this is an upper bridge port sta-
tus register).

3

29–31 pwrstat Remote bus power status. Hardwired to 000 in Dino. 2–0

Table 20. Status Register Bit Definition

10.5.2 Error address information
Dino posts transactions to and from two busses, meaning that it is possible for two addresses to si-
multaneously have an associated error. For this reason Dino keeps a separate PCI error responder
and GSC error responder register in the HPA SRS (Supervisory Register Set). Here is a summary of
how the HPA registers that log errant transaction information work.

IO_GSC_ERR_RESP (GSC Error Responder Address)
� ��

����� �	������������

�� �

� IO_GSC_ERR_RESP: This register logs the 32–bit address sent from Dino to a GSC target
when an error is signalled. This value is only valid when the vag bit in the
IO_ERR_INFO register is set.

������� 	�� �

	

����� ���� � ���� ��� ����� ��	�� ��� ���

If data parity error occurs on a DIO read return the value of IO_GSC_ERR_RESP register will be
32’h0000_0000.

IO_PCI_ERR_RESP (PCI Error Responder Address)

� ��

����� ���	����

�
��	

�� �

� IO_PCI_ERR_RESP: This register logs the 32–bit address sent from Dino to a PCI target
when an error is signalled. This value is only valid when the vap bit in the
IO_ERR_INFO register is set.

IO_ERR_INFO (Error Logging Information)

3

28
epci �
�

� ��

����� �
�

�� � � � ���

�
� � ��
��������� �egsc

� IO_ERR_INFO: When vag is 1, the contents of the IO_GSC_ERR_RESP register are val-
id. When vap is 1, the contents of the IO_PCI_ERR_RESP register is valid. When egsc
is 1, an error happened on GSC while Dino was not the master. When epci is 1, an error
happened on PCI when Dino was not the master.

10.6 Parity Errors
Parity is generated and checked on both PCI and GSC. On PCI data parity errors are signaled with
����� and address parity errors are signaled with �����. Asserting either of these signals on
the PCI side of the bridge will put Dino into Fatal Mode. On GSC both address parity errors and data
parity errors result in the assertion of ERRORL. Dino will enter Fatal Mode if it sees ERRORL
asserted.

10.7 Bus Walking
The existence or non–existence of I/O devices is often determined by testing their expected I/O ad-
dress locations. If the device is not present a time–out or bus error will happen, thus signalling a
missing device. With PCI, however, only configuration space is enabled for PCI devices after a PCI
reset. Furthermore, non–responding addresses in configuration space do not cause GSC time–outs.
For this reason, the presence of a time–out cannot be used to indicate a non–existent device. Instead,
the read data needs to be compared to a data value of all 1’s (0xFFFF_FFFF for a 32–bit read). See
the PCI section of this ERS for more details.

10.8 Non–Responding Addresses
Any time–out on GSC with DINO as the target will put DINO into fatal mode. The system
time–out value needs to be set so that data is returned before a time–out occurs.

At a given time, a read of a given PCI address may not generate a response from a PCI target. This
may happen if there is no device at that address, if that particular address within the devices address

�������� ��� �		�

���� ���� � ���� ���
���� ����� ��� ���

map is not implemented, or if the address range is not currently enabled (PCI devices power up with
all memory and IO space addresses disabled). A read directed to a non–responding addresses when
not in PCI Configuration space will result in a time–out on GSC and the ERRORL signal will be
asserted. This will put Dino into Fatal Mode, meaning that the CPU needs to do a directed reset to
restart DINO.

It is important to note that a directed reset to Dino alters the Dino’s state as little as possible. More
specifically, directed resets to Dino will not alter the following registers:

� SRS Registers except IO_CONTROL, IO_STATUS

� ARS Registers except IO_ERR_RESP, IO_ERR_INFO, IO_ERR_REQ

� BSRS Registers

� HVRS Registers except PCISTS, PCICMD

������� 	�� �

	

����� ���� � ���� ��� ����� ��	�� ��� ���

10.9 Improper DIO transactions
Improper DIO transactions happen when the processor tries to do a legal DIO transaction to a device
that doesn’t support this type of transaction. This usually happens because of a programming error
and may cause an HPMC (High Priority Machine Check).

If a PCI device asserts DEVSEL#, then it owns the starting address of a DIO transaction initiated by
the CPU. The PCI device may terminate the transaction if it is not entirely supported by the device.
Terminating the transaction on PCI will eventually result in an HPMC, unless Dino is in less–than–
fatal” mode. In the DIO read case an HPMC will happen almost immediately. DIO writes may take
some time to HPMC because of transaction posting. Remember: doing improperly formed down-
stream transactions may crash the computer.

10.10 Error behavior examples
This section illustrates Dino’s error behavior through a table of examples. Table 21 shows how
some error conditions are dealt with on GSC and PCI. In the “Dino Register Fields Affected” col-
umn, a register name is given, then optionally followed by a dash with one or more register fields.
All fatal error modes affect the IO_STATUS register, fields “estat” and “fe”

Initia-
tor

(Trans
Type)

Bus
where
Error

Occurs

Condition GSC Action PCI Action

Dino
Register
Fields

 Affected

Error

Mode

GSC
(DIO)

GSC Data
Parity
Error.

The host (which
mastered the trans-
action) will see or
generate ERRORL
and take an HPMC.

Reads finish nor-
mally.

Writes will not pass
bad data. May or
may not start on
PCI.

IO_ERR_IN
FO–egsc

Fatal

GSC
(DIO)

PCI Data
Parity
Error.

The currently in
progress GSC
transaction com-
pletes and no fur-
ther transactions
are processed.

PCI transaction
causes the PERR#
signal to be asserted
as described in the
PCI specification.

PCISTS–
DPD, DPE,
SSE;
IO_PCI_ER
R_RESP;
IO_ERR_IN
FO–vap

Fatal

PCI
(DMA)

PCI Data
Parity
Error

The currently in
progress GSC
transaction com-
pletes and no fur-
ther transactions
are processed.

PCI transaction
causes the PERR#
signal to be asserted
as described in the
PCI specification.

PCISTS–
DPE, SSE;
IO_ERR_IN
FO–epci

Fatal

�������� ��� �		�

���� ���� � ���� ���
���� ����� ��� ���

Initia-
tor

(Trans
Type)

Error

Mode

Dino
Register
Fields

 Affected

PCI ActionGSC ActionCondition

Bus
where
Error

Occurs

PCI
(DMA)

GSC Data
Parity
Error.

ERRORL is pulled
by the data “sink”
and the error is
logged. GSC ar-
bitration to the
bridge is disabled.

PCI transaction is
posted normally.

IO_ERR_IN
FO–vag;
IO_GSC_E
RR_RESP;
PCISTS–
SSE

Fatal

GSC
(DIO)

PCI PCI Tar-
get sig-
nals Tar-
get–
abort.

Any GSC transac-
tion involving Dino
completes and no
further transactions
are processed.

PCI transaction
causes the PERR#
signal to be asserted
as described in the
PCI specification.

PCISTS–
RTA;
IO_PCI_ER
R_RESP;
IO_ERR_IN
FO–vap

Fatal

GSC
(DIO)

PCI PCI Tar-
get as-
serts
DEV-
SEL#
normally
and then
fails to
eventual-
ly assert
TRDY#
or
STOP#
as re-
quired.

Dino will continue
to process transac-
tions normally until
its FIFOs fill up or
a DIO read is at-
tempted. Once ei-
ther happens Dino
will not assert
READYL and a
GSC timeout will
occur.

PCI will hang mid
cycle as long as the
target doesn’t as-
sert TRDY# or
STOP#.

None at
first.

None

GSC
(DIO)

GSC Timeout
Error or
Address
Parity
Error.

The processor as-
serts ERRORL and
takes an HPMC be-
cause of the timeout
on GSC.

PCI never saw a
transaction get
started. Nothing
happens on PCI.

None. Fatal

PCI
(DMA)

PCI Address
parity
error.

Dino’s GSC inter-
face does nothing.

Results in an
SERR#. This is the
only case where dino
will drive SERR#

PCISTS–
SSE

Nor-
mal

�������� ��� �		�

���� ���� � ���� ���
���� ����� ��� ���

Initia-
tor

(Trans
Type)

Error

Mode

Dino
Register
Fields

 Affected

PCI ActionGSC ActionCondition

Bus
where
Error

Occurs

GSC
(DIO)

PCI Timeout
error
(DEV-
SEL#
isn’t as-
serted on
time).
This as-
sumes
the
bridge
decode
was val-
id.

On a write transac-
tion READYL is as-
serted (writes are
posted) but data is
lost. On a read
READYL is not as-
serted resulting in a
time–out.

Transaction com-
pletes with a Mas-
ter–abort. If not a
Configuration or
Special cycle, the
RMA bit in the
PCISTS register
will be set. If a con-
figuration read,
data of
0xFFFF_FFFF will
be returned.

PCISTS–
RMA;
IO_PCI_ER
R_RESP;
IO_ERR_IN
FO–vap

Fatal

PCI
(DMA)

GSC Timeout
error or
Address
Parity
Error.

GSC ERRORL is
asserted by the
processor as a result
of the time–out.

SERR# is asserted
when the GSC
timeout is detected.

PCISTS–
SSE

Fatal

PCI
(DMA)

PCI Timeout
error.
(DEV-
SEL#
isn’t as-
serted on
time.)

Any available data
is transferred to
GSC. If no data is
transferred a GSC
transaction MUST
not be started.

This is a master ter-
minated transaction
on PCI. This is a
more or less normal
condition.

None. Nor-
mal

Table 21. Bridge Error Condition Reference Table

�������
�� �

	

����� ���� � ���� ��� ������	�� ��� ���

11
11 INTERRUPTS

11.1 Overview
Dino will serve as the interrupt controller for both PCI and GSC. Dino has two independent interrupt
controllers (int0 and int1). Each interrupt source can be programmed to use either of the controllers.
There are two independent interrupt address registers which allow two separate IO_EIR addresses
and group codes. Dino does not swap bytes when reading or writing these registers so they should be
accessed in big–endian mode.

11.2 Register Definitions
There are 7 registers in Dino associated with interrupts. The registers are defined below in table 22.

Register Symbol Address Offset R/W DescriptionRegister Symbol Address Offset R/W Description

Interrupt
Request

Register 0

IRR0 0x00C R The IRR0 contains the status of all requesting inter-
rupts that are mapped to int0. A 1 in an IRR0 bit
indicates that the corresponding interrupt is pend-
ing and enabled. When an IRR0 bit is set it will
cause Dino to generate an interrupt transaction to
the address and group codes stored in IAR0.

Interrupt
Address

Register 0

IAR0 0x004 R/W This register contains the address of the IO_EIR
and the group code that will be used when a device
mapped to int0 by the ICR issues an interrupt.

Interrupt
Request

Register 1

IRR1 0x014 R IRR1 is identical to IRR0 except that it is for inter-
rupts that are mapped to int1 in the ICR

Interrupt
Address

Register 1

IAR1 0x010 R/W This register contains the address of the IO_EIR
and the group code that will be used when a device
mapped to int1 by the ICR issues an interrupt.

Interrupt
Mask Reg-

ister

IMR 0x018 R/W The IMR is used to mask pending interrupts. A 1
in an IMR bit enables the corresponding pending
interrupt to create an interrupt request. The IMR is
cleared at reset.

�������
�� �

	

����� ���� � ���� ��� ������	�� ��� ���

Register DescriptionR/WAddress OffsetSymbolRegister DescriptionR/WAddress OffsetSymbol

Interrupt
Pending
Register

IPR 0x01C R/W The IPR is used to latch incoming interrupts and
indicate them as pending. The assertion of an in-
ternal interrupt signal causes the corresponding IPR
bit to be set to 1. Writes to this register are in-
tended for diagnostic use only and will cause the
entire register to be cleared

Bts in this register are only set when there is a inac-
tive to active transition on corresponding interrupt
lines.

Interrupt
Control
Register

ICR 0x024 R/W The ICR is used to control whether an interrupt
source is mapped to int0 or int1. This register is
cleared at reset.

Interrupt
Level

Register

ILR 0x028 R Bits in the ILR monitor the level of incoming inter-
rupt lines. Asserted interrupt lines are always indi-
cated by a 1.

Table 22. Interrupt Registers

The interrupt registers appear to be 32–bits and are accessed as such. However, most of the bits are
not implemented for each register. The un–implemented bits are not affected by writes and are unde-
fined for reads.

11.3 Interrupt Operation
If an interrupt source in Dino generates an inactive to active transition on its interrupt line, a corre-
sponding bit in the IPR will be set to 1. If that interrupt is enabled (IMR bit=1) then the same bit in the
ICR will determine if the corresponding bit will be set in IRR0 or IRR1. If the ICR bit is 0, the same
bit of the IRR0 will be set and Dino will do a write transaction using the data and address specified in
the IAR0. The contents of the IRR0 and the corresponding bits of the IPR are cleared on the clock
cycle following a read of the IRR0. If the ICR bit is set, then IRR1 and IAR1 will be used instead of
IRR0 and IAR0.

The ILR is used to monitor the state of interrupt inputs and is always assumed active high, regardless
of whether the interrupt state is negative of positive true.

Note: The ICR register should not be modified unless all interrupts have been masked. (That
is IMR set to all zeros.)

The following figure shows the connection of all the interrupt registers.

�������� 	�� �		�

���� ���� � ���� ���
�������� ��� ���

�������
�� �

�

����� ���� � ���� ��� �������	� ��� ���

11.4 Interrupt Register Bit Assignments
Table 23 shows the implemented bits for the IRR0, IRR1, IMR, ICR and IPR in Dino. This table
shows both big and little endian bit numbering.

Bit number Interrupt Source

Big Little

Interrupt Source

31 0 PCI INTA

30 1 PCI INTB

29 2 PCI INTC

28 3 PCI INTD

27 4 PCI INTE

 26 5 PCI INTF

 25 6 GSC External Interrupt

 24 7 Bus Error for “Less Than
Fatal Mode”

 23 8 PS2

 22 9 Unused

 21 10 RS232

Table 23. ILR, IPR, IMR, ICR, IRR0 and IRR1 Bit Definition

The format for the IAR0 and IAR1 registers is shown below in figure 8.

0 26 27

IO_EIR Address Group code

31

Figure 8. Interrupt Address Registers

45 031

big endian

little endian

If there is an interrupt request Dino will master the follow one word write on the GSC bus.

Address

0 26 27

IO_EIR Address 5’b0

31

Figure 9. Interrupt Address

45 031

big endian

little endian

�������� 	�� �		�

���� ���� � ���� ���
������	� ��� ���

Data

0 26 27

27’b0 Group Code

31

Figure 10. Interrupt Data

45 031

big endian

little endian

�������
�� �

�

����� ���� � ���� ��� ������	�� ��� ���

������� ��� �

�

����� ���� � ���� ��� ����� ��	�� ��� ���

12
12 ARBITRATION

12.1 Dino Arbitration Overview
GSC and PCI use a central arbitration scheme. A PCI arbitration controller is located inside the Dino
chip. A GSC arbitration controller is not included in the Dino chip.

12.2 GSC Arbitration Control
The original definition of Dino included a GSC Arbiter. This functionality has been eliminated, and
is assumed to exist elsewhere (e.g. the Clark chip).

12.2.1 GSC Arbitration Mask Register

The GSC arbitration mask register (GMASK) is a read/write register located in Dino’s HPA space
(offset 0x800). The GMASK provides a means to prevent Dino from requesting the GSC bus.

Bit Symbol Description

0 GMASK GSC Request mask – if GMASK=1’b1, the Dino Bridge will never re-
quest the GSC bus.

Table 24. GSC Arbitration Mask Register

Software must clear the GMASK bits before any other device can request the bus.

12.3 PCI Arbitration Control
The PCI Arbiter can support seven devices. Six of the seven are external to the Dino chip. Dino will
support a simple arbitration priority scheme. If no other device is requesting the bus, the PCI bus will
be parked on Dino. Table 25 identifies the potential PCI bus masters.

Device Location Signal SenseDevice Location Signal Sense

PCIA outside Dino negative true

PCIB outside Dino negative true

PCIC outside Dino negative true

PCID outside Dino negative true

PCIE outside Dino negative true

�������� 	�� ���	

�����
��� � ���� ��� ����� ��
�� ��� ���

Device Signal SenseLocationDevice Signal SenseLocation

PCIF outside Dino negative true

Dino Bridge inside Dino negative true

Table 25. PCI Bus Masters

12.3.1 PCI Arbitration Mask Register

The PCI arbitration mask register (PAMR) is a read/write register located in Dino’s HPA space (off-
set 0x804). The PAMR provides a means to prevent a PCI device from being granted the bus. Table
26 defines the PAMR bits. If a bit in the PAMR is set to a 1, the request is disabled and the associated
device(s) will never be granted the PCI bus.

Bit Symbol Description

31–7 Undefined

 6 PERMF PCI ext. request mask F – if PERMF=1, the devices connected to the
PCIF arbitration lines will never be granted the bus.

 5 PERME PCI ext. request mask E – if PERME=1, the devices connected to the
PCIE arbitration lines will never be granted the bus.

4 PERMD PCI ext. request mask D – if PERMD=1, the devices connected to the
PCID arbitration lines will never be granted the bus.

3 PERMC PCI ext. request mask C – if PERMC=1, the devices connected to the
PCIC arbitration lines will never be granted the bus.

2 PERMB PCI ext. request mask B – if PERMB=1, the devices connected to the
PCIB arbitration lines will never be granted the bus.

1 PERMA PCI ext. request mask A – if PERMA=1, the devices connected to the
PCIA arbitration lines will never be granted the bus.

0 PIRM PCI int. request mask – if PIRM=1, the Dino bridge will never be
granted the bus. This bit is hardwired to 0.

Table 26. PCI Arbitration Mask Register

Dino’s bridge will always be enabled for arbitration. For more information on disabling Dino please
refer to the IO_CONTROL register in the Bridge Registers Chapter.

All external PCI devices power–up with arbitration disabled. Software must clear the PAMR bits
before any external device can request the bus.

12.3.2 PCI Arbiter Priority Configuration

Dino will support a dual round–robin arbitration scheme, allowing each device to be software con-
figured as high priority or low priority. For each low priority device the Dino PCI Arbiter services,
each of the high priority devices are serviced.

������� ��� �

�

����� ���� � ���� ��� ����� ��	�� ��� ���

The PCI arbitration priority register (PAPR) is a read/write register located in Dino’s HPA space
(offset 0x808). The PAPR allows the PCI devices to be configured as a high or low priority arbitra-
tion device. Table 27 defines the PAPR bits. If a bit in the PAPR is set to a 1, the request is a high
priority request.

Bit Symbol Description

31–7 Undefined

6 PCIPF PCI priority F – if PCIPF=1, the external request line PCIF will be set
to high–priority.

5 PCIPE PCI priority E – if PCIPE=1, the external request line PCIE will be set

to high–priority.

4 PCIPD PCI priority D – if PCIPD=1, the external request line PCID will be set
to high–priority.

3 PCIPC PCI priority C – if PCIPC=1, the external request line PCIC will be set
to high–priority.

2 PCIPB PCI priority B – if PCIPB=1, the external request line PCIB will be set
to high–priority.

1 PCIPA PCI priority A – if PCIPA=1, the external request line PCIA will be set
to high–priority.

0 BRDGP Bridge priority – if BRDGP=1, the PCI Bridge request line will be set
to high–priority.

Table 27. PCI Arbitration Priority Register

The PCI Arbitration Priority Register will power–up cleared, with all devices receiving equal prior-
ity. Software can set the appropriate bits depending on which devices require arbitration priority.
Note, with this scheme, high–priority devices collectively share n/(n+1) of the bus bandwidth, where
n is the number of high priority devices. Thus, as more devices are assigned high priority the band-
width available to each decreases.

12.3.3 Disabling the PCI Arbiter

The Dino chip can be configured to work on a PCI bus when it is not the PCI arbiter. The bit
PARB_SLAVE in the DAMODE register must be set high if Dino is not the PCI arbiter.

When Dino is not the PCI arbiter, the pcigntd_L signal becomes Dino’s PCI bus request signal and
the pcireqd_L signal becomes Dino’s PCI grant signal.

Note, when Dino is in PARB_SLAVE mode, it is an arbitration slave–only and Dino will not ever
assert its pcignt[a,b,c,e,f]_L signals.

Note: If Dino is in external arbitration mode, then Dino may incorrectly assume that it owns
the PCI bus one clock after GNT# goes away. If the arbiter deasserts Dino’s GNT# coincident
with another GNT# on the last cycle of a frame, then Dino may drive fight with the other PCI

������� ��� �

�

����� ���� � ���� ��� ����� ��	�� ��� ���

device. Although it is possible to design an external arbiter that works around this problem in
Dino, FSL does not plan to support external arbitration mode in Dino.

12.3.4 Expansion Mode Arbitration

Each arbitration pair is programmable for expansion mode, bits 7–1 of the DAMODE register. If the
corresponding bit is set in the DAMODE register, that device is in expansion mode. In expansion
mode once a device is granted the bus that device will keep the bus until request is deasserted.

12.3.5 Dino Arbitration Mode Register

The Dino arbitration mode register (DAMODE) is a read/write register located in Dino’s HPA space
(offset 0x80C). The DAMODE register is a eight bit register used to control PCI arbiter Expansion
Mode and PCI arbiter slave mode. Table 28 defines the DAMODE bits.

Bit Symbol Description

31–8 Undefined

 7 EMODEF if EMODEF=1, the devices connected to PCIF lines will be in Expan-
sion mode.

 6 EMODEE if EMODEE=1, the devices connected to PCIE lines will be in Expan-
sion mode.

 5 EMODED if EMODED=1, the devices connected to PCID lines will be in Expan-
sion mode.

 4 EMODEC if EMODEC=1, the devices connected to PCIF lines will be in Expan-
sion mode.

 3 EMODEB if EMODEB=1, the devices connected to PCIF will be in Expansion
mode.

 2 EMODEA if EMODEA=1, the devices connected to PCIF will be in Expansion
mode.

 1 EBRD if EBRD=1, Dino’s bridge will be in Expansion mode.

0 PARB_SLAV
E

PCI Arbitration Slave – if PARB_SLAVE=1, then Dino will become an
arbitration slave. (See Disabling the PCI Arbiter section above).

Table 28. Dino Arbitration Mode Register

Note, if software wishes to change PAPR, Expansion Mode settings or PARB_SLAVE, this
change should only be made while all bits in the PAMR register are set (we don’t want to drive
grant signals while it’s arbitration mode is being changed!).

Note that the Expansion Mode bits makes no difference if the PARB_SLAVE bit is set (Expansion
mode only applies when Dino is the PCI arbiter).

�������� ��� ���	

�����
��� � ���� ��� ������
�� ��� ���

13
13 CLOCKS AND RESET

13.1 Introduction
Dino receives clock signals for GSC and PCI; both of these clocks can run at different frequencies,
On the GSC side, Dino receives a synchronous GSC reset signal. The system power supply gener-
ates an asynchronous “glitch–free” power–on (PON) signal that puts the bridge I/O pads into the
proper state for system power on. PCI reset is generated by Dino by program control via an HPA
register or as a result of the GSC reset signal.

Electrically, clock signals for GSC are differential ECL running at PECL levels, while the PCI clock
is point to point TTL. All the reset signals are assumed to use TTL levels.

13.2 Features
� GSC clock 0 – 80MHz ––> GCLK is 0–40MHz
� Dino receives synchronous reset from the CPU.
� Dino responds to broadcast reset.
� Supports PCI clock rates up to 33MHz.
� PCI reset can be activated via program control through the GSC HPA registers
� Asserting PON activates a weak pull–up on GSC signals.

�������� ��� ���	

�����
��� � ���� ��� ������
�� ��� ���

13.3 Dino Clocking and Reset Block Diagram
A block diagram showing how clocks and resets are connected to and from Dino is shown in Fig-
ure11.

GSC

pciclk

pciclk

Generation

pciclk

pcirst_L

Generator

gsccpurst

to

I/O Clock

clksys,clksys_L

PCI
Bridge

System Clock

PCI
Device

PCI

CPU

Device

PCI
Device

DINO

pciclkPON

Figure 11. Dino Clocking and Resets

13.4 PCI and GSC Clock Relationship
PCI and GSC DO NOT require a fixed clock relationship under normal conditions. These two clocks
can be generated by completely different oscillators. However, in the event that there is a bridge
synchronization problem the clocks will be verified to operate with GSC and PCI running at the same
frequency (33MHz). The relationship between the two clocks and reset for this contingency is
shown in Figure 12.

gsccpurst

pciclk

GCLK

clksys_L

clksys

�������
�� �

�

����� ���� � ���� ��� ������	�� ��� ���

Figure 12. Possible PCI/GSC Clock Relationship

13.5 Broadcast Reset
Upon receiving broadcast reset Dino will reset itself and generate a PCI reset of the proper length.
Software will need to wait 1.5ms after a broadcast reset before using PCI. As defined in the PA archi-
tecture broadcast commands do not generate a READYL on the GSC bus (just a reminder).

�������
�� �

�

����� ���� � ���� ��� ������		� ��� ���

���������� �
�� �

�

����� ���� � ���� ���
�����	
� ��� ���

14
14 DINO–ON–A–CARD MODE

14.1 Introduction
HP plans to develop GSC add–in cards that use Dino along with PCI chip sets to allow PCI I/O func-
tionality (such as 100BT LAN) to be added to legacy HP systems that do not have a PCI bus. Dino
Revision 3.0 has a new mode, called card–mode, to support this effort. Dino in card–mode behaves
identically to Dino in built–in bridge–mode with the following exceptions:

� The IODC header changes from reporting that Dino is a “Bus Bridge to a Foreign
Bus” to reporting that Dino is a “Type A DMA Device.” (Needed to get firmware
on legacy HP systems to boot.)

� IODC submodules 1, 2, and 3 are disabled. This means that RS–232 and PS2 func-
tionality is not available in card–mode. (Needed to get firmware on legacy HP sys-
tems to boot.)

� The “gsc_sl[3:0]” signals are tristated after GSC RESETL is deasserted. No diag-
nostic information will be sent to the “gsc_sl[0:3]” signals. (Needed to prevent false
GSC bus requests from occurring in some HP systems.)

� Added a new register, called “PCI_MEM_DATA,” to allow access to PCI memory
space using only the bridge hard physical address (HPA) Registers in Dino’s IODC
register space. (Needed since legacy firmware would not know how to allocate PCI
memory addresses in PA I/O address space.)

14.2 How to Enable Card–Mode
The “rclk_dli” pin on Dino was redefined to the “brdg_mode” pin on Dino Revision 3.0. To put Dino
in card–mode, the brdg_mode pin must be tied to 0. To put Dino into built–in bridge–mode, the
brdg_mode pin must be connected to 1, or the “rclk_dlo” pin, or be a no–connect.

14.3 Setting up Dino for PCI Memory Devices in Card–Mode
PCI memory devices should be mapped to addresses in the 0xF000_0000 to 0xFFFF_FFFF range.
The corresponding bits in the IO_ADDR_EN register should be set to tell Dino which addresses are
owned by PCI vs. GSC. The “DPCIHIT” bit of the BRDG_FEAT register should be set to 1, so GSC
transactions to Dino’s PCI memory addresses are not intercepted by Dino.

14.4 Accessing PCI Memory Space thru PCI_MEM_DATA
In card–mode, PCI memory space is accessed through two 32–bit HPA registers: PCI_CON-
FIG_ADDR (HPA offset 0x064) and PCI_MEM_DATA (HPA offset 0x070). Accessing the PCI
memory Space is a two step process:

���������� �	�� �		�

���� �
�� �
��� ��� ������	�� ��� ���

� Write of the target memory word address to the PCI_CONFIG_ADDR register.
� Perform a read or write to the PCI_MEM_DATA register.

The 32–bit PCI memory address is written to PCI_CONFIG_ADDR. The two LSBs of PCI_CON-
FIG_ADDR must be 2’b00. Sub–word or single–word GSC reads or writes to the
PCI_MEM_DATA register are translated to the equivalent PCI memory transaction. (Note that this
mechanism only allows single–word and sub–word accesses.) No byte swapping will occur on the
PCI_CONFIG_ADDR register. The contents of the PCI_MEM_DATA register will be byte
swapped between GSC and PCI.

���������� �	�� �		�

���� ���� � ���� ��� ������	�� ��� ���

15
15 RS–232 SERIAL INTERFACE

15.1 Introduction
The Serial interface emulates the National Semiconductor NS16550A device with some updates.

15.2 Feature Summary
This implementation includes all of the features of a standard NS16550A. See a commercial data
sheet for detailed information. Virtually all of the interactions for the part are the same, so there is no
need to rewrite already existing software. This implementation will have Receive and Transmit FI-
FOs each 16 bytes deep. Supported baud rates range from 50 to 454k. The hardware handshaking
option will allow data input at up to 227k baud.

15.3 Register Definitions
The registers used for RS232 reside in HPA submodule 3.

Description Offset R/W D7 D6 D5 D4 D3 D2 D1 D0

Reset Register 0x000 R/W X X X X X X X X

TEST 0x004 W X X X X X X CLK_SE
L

PAR_LO
OP

IODC_ADDR 0x008 W

IODC_DATA0 0x008 R HVERSION

IODC_DATA1 0x008 R SVERSION

Undefined 0x00c–
0x05F

RS232 clock freq.
control (DITHER)

0x060 R/W Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Undefined 0x064–
0x7FF

Receiver Buffer
Register (RBR)

0x800

����
� �

R Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Transmitter Hold-
ing Register (THR)

0x800

����
� �

W Data Bit
7

Data Bit
6

Data Bit
5

Data Bit
4

Data Bit
3

Data Bit
2

Data Bit
1

Data Bit
0

Interrupt Enable
Register (IER)

0x801 R/W 0 0 0 0 Enable
MSI

Enable
LSI

Enable
THREI

Enable
RDAI

Interrupt Ident
Register (IIR)

0x802 R Fifos
Enabled

Fifos
Enabled

0 0 Int ID
Bit 2

Int ID
Bit 1

Int ID
Bit 0

Int Not
Pending

���������� �
�� �

	

����� ���� � �� � ��� ������
�� ��� ���

D0D1D2D3D4D5D6D7R/WOffsetDescription

Fifo Control
Register (FCR)

0x802 W Rx Trig
MSB

Rx Trig
LSB

X X DMA
Mode

Tx Fifo
Reset

Rx Fifo
Reset

Fifo
Enable

Line Control
Register (LCR)

0x803 R/W DLAB
Bit

Set
Break

Stick
Parity

Even
Parity

Parity
Enable

Num of
Stop Bits

Wrd Len
Bit 1

Wrd Len
Bit 0

Modem Control
Register (MCR)

0x804 R/W 0 0 0 Loop
Back

Unused See Note
1

RTS DTR

Line Status
Register (LSR)

0x805 R Error In
Rx Fifo

Txmitter
Empty

Tx Hold
Reg Emp

Break
Interrupt

Framing
Error

Parity
Error

Overrun
Error

Rx Data
Avail

Modem Status
Register (MSR)

0x806 R/W DCD
(RLSD)

RI DSR CTS Delta
DCD

Trail
Edge RI

Delta
DSR

Delta
CTS

Scratch Register
(SCR)

0x807 R/W Scratch
Bit 7

Scratch
Bit 6

Scratch
Bit 5

Scratch
Bit 4

Scratch
Bit 3

Scratch
Bit 2

Scratch
Bit 1

Scratch
Bit 0

Divisor Latch Reg
LSB (DLL)

0x800
���
� �� �

R/W Divisor
Bit 7

Divisor
Bit 6

Divisor
Bit 5

Divisor
Bit 4

Divisor
Bit 3

Divisor
Bit 2

Divisor
Bit 1

Divisor
Bit 0

Divisor Latch Reg
MSB (DLM)

0x801
���
� �� �

R/W Divisor
Bit 15

Divisor
Bit 14

Divisor
Bit 13

Divisor
Bit 12

Divisor
Bit 11

Divisor
Bit 10

Divisor
Bit 9

Divisor
Bit 8

Undefined 0x808–
0xFFF

Table 29. RS232 Register Definitions

Note 1––Bit 2 of the MCR is a read/write bit which is used as the control bit for the Hardware Hand-
shaking functionality, where 1 implies normal RTS operation and 0 implies hardware protocol. Note
that the reset state for bits in this register is 0, which needs to be overridden for normal RTS opera-
tion.

15.3.1 Detailed Register Descriptions

See The National NS16550A data sheet for a detailed description of all of the registers
except the UART_RESET and UART_TEST registers. All registers except UART_RESET
and UART_TEST are byte accessible only.

 A cheat sheet for the Interrupt ID Register is shown below.

15.3.1.1 Interrupt ID Register

The upper nibble (bits 7–4) of the IIR register will return 0xC in fifo mode, and 0x0 in
non–fifo mode.

The lower nibble (bits 3–0) will return the following interrupt IDs, in priority order.
First Priority Receiver Line Status 0x6
Second Priority Character Timeout Indication 0xC
Second Priority Receiver Data Available 0x4
Third Priority Transmitter Holding Register Empty 0x2
Fourth Priority Modem Status 0x0
No Interrupt No Interrupt 0x1

���������� �	�� �		�

���� �
�� �
��� ��� ������	�� ��� ���

15.3.1.2 UART_RESET Register

Writing to the UART_RESET register will reset the Serial Interface. This resetting of
the Serial Interface causes all of its registers except the divisor latches to return to their pow-
er–up state.

15.3.1.3 UART_TEST Register

Writing a 1 to the lsb of the UART_TEST register will set par_loop. Par_loop allows
for parallel loopback testing of the UART FIFOs. This is primarily of benefit for chip level
testing where the excessive time to perform serial loopback is a problem. If par_loop and
fifo_en (FCR) are set, reading from the scratch register will actually read from the transmit-
ter FIFO. Writing to the scratch register will actually write into the receiver FIFO. In other
words, the transmitter FIFO would be tested by writing into the transmitter holding register
and reading from the scratch register. The receiver FIFO would be tested by writing into the
scratch register and reading from the receiver buffer register.

Writing a 1 to bit 1 of the UART_TEST register will select the GSC clock to generate
the baud clock. This will result in a frequency of 7.2727Mhz. Writing a 0 to bit 1 of of the
UART_TEST register will select the PCI clock to generate the baud clock, 7.407Mhz. Both
methods are within 1.5% of the 7.3728Mhz used in Snakes such that the existing divisors
will work fine. This bit needs to be a 0 to enable the DITHER clock generation feature.

15.3.1.4 IODC Registers

Writing all zero’s to this register will select IODC_DATA0 as the register that is going
to be read. By writing 32’b0000_0004 to this register, IODC_DATA1 will be the register
that is going to be read. The contents of IODC_DATA0 will be 0x0070_804A and the con-
tents of IODC_DATA1 will be 0x0000_8C00.

15.3.1.5 DITHER Register

Some users of Dino expressed an interest in using the RS232 function in systems with-
out a 40MHz GSC clock or 33.33MHz PCI clock. In this situation, the existing RS232 clock
generation circuitry does not work. A new method was designed which can work with any
reasonable GSC clock speed to produce a output frequency of:

CLK_RATE = GSC_FREQUENCY*DITHER/512. (ideal = 7.3728MHz)

If the DITHER register is 0x0 (the reset value), this feature is disabled. A ’0’ must
be written to bit 1 of the UART_TEST register. This register is written to as a 32 bit word
with the active bits in the LSByte of the word. A sample calculation example with a 30MHz
GSC clock is:

DITHER = int(7.3728*512/30 + .5) = 126. The error compared to the 7.3728MHz
is 0.14%, with +/– 33ns (i.e. one GSC clock period) of jitter.

���������� �	�� �		�

���� �
�� �
��� ��� ������	�� ��� ���

15.4 Hardware Handshaking Control

15.4.1 Overview

The hardware handshaking implemented here is basically what has been done in the
375/380, and the various 700’s since that time. The power up state is intended to be compat-
ible with the Gecko implementation.

15.4.2 How to Enable

For hardware handshaking to be enabled, two bits in the Modem Control Register
(MCR) need to be affected. Bit 2 is the hardware handshaking disable bit (normRTS), and
should be set to a 0. This is its power up state. Note that the power up state for this bit in
Snakes/Scorpio/PACE was 1. The power up state of 0 is consistent with the Gecko imple-
mentation. The RTS bit (bit 1) must also be set to a 1 for hardware handshaking to be enabled.
It powers up cleared (0). A write of 0x02 to the MCR would be the correct way to enable
hardware handshaking. To disable hardware handshaking, bit 2 should be set, and bit 1
should be cleared unless there is a need to keep RTS asserted for some other reason.

15.4.3 Hardware Gating

For those who want to know what the hardware is really doing to combine RXRDY,
RTS, and normRTS, here’s the scoop. RXRDY is an active low signal. It is low when the
receiver has reached the trigger level. RTS is active low when used by the hardware outside
of the register. For example, writing a 1 to the RTS bit to assert RTS will drive a logic 0
externally. The logic then looks like: !(normRTS | RXRDY) | RTS. These means that unless
normRTS is cleared, RXRDY will be blocked, and unless RTS is asserted, RXRDY qualified
by normRTS will be blocked. This is why normRTS must be cleared and RTS must be set
to enable hardware handshaking. The final result when hardware handshaking is enabled
is that RXRDY will appear inverted on the RTS line.

15.4.4 RXRDY Behavior

The National NS16550A data sheet gives a reasonable description of the operation of
RXRDY, but I will run through one example here. Let’s assume we have set up a receiver
trigger level of 8 bytes, and have chosen DMA mode 1. To do this, we would have written
0x89 to the FCR after having enabled the fifos. Initially, RXRDY will be deasserted, so with
hardware handshaking enabled, RTS will be asserted. This tells the transmitting device that
it is okay to send data. RXRDY will stay deasserted until the trigger level (8 bytes in this
case) has been reached in the receive fifo. Once RXRDY asserts and hence RTS deasserts,
RXRDY will stay asserted until the receive fifo is empty. In other words, the transmitting
device will continue to be told not to send data until the receive fifo is completely empty.

���������� �
�� �

	

����� ���� � ���� ���
�����
�� ��� ���

15.4.5 Caveats

The biggest source of confusion has typically been the assumption that the prevention
of hardware overflow eliminates the possibility of data overrun. Unfortunately this is not
true. Memory buffers can also overflow, so in many cases, Software handshaking (XON/
XOFF) is still required. It is my understanding that work is underway with the HP–UX driver
to eliminate this shortcoming, so that RTS can temporarily be forced deasserted to halt the
further transmission of data and hence prevent the overflow of Software buffers.

15.5 Software Differences/Clarification
The 16550 megacell is intended to function just like the real National NS16550A. This

includes behavior that often seems rather stupid. The National NS16550A was chosen as
the model over the WD16C552 because the National part came first, and the WD part is sup-
posed to be compatible. There are a few minor differences between the NS16550A and the
Stiletto megacell.

There is a bug in the Stiletto megacell that has not been fixed in Dino. The bug is that
the receive data available interrupt indication does not get updated when the receiver FIFO
is reset. What this means is that if a receive data available interrupt is indicated when the
receiver FIFO is reset, the interrupt will continue to be indicated even though there is no data
in the receiver FIFO. The current HP–UX workaround is to not reset the receiver FIFO.

Unlike the ASP serial implementation which uses the WD16C552 externally, there is
no need for the software to worry about minimum cycle time requirements with the Stiletto
megacell. The hardware will guarantee no violation of minimum cycle time specifications
for register accesses.

The NS16550A data sheet never really says what happens if a divisor value of 0x0000
is loaded for baud rate generation. As it turns out, the NS16550A treats the ”0” as if a divisor
value of 0x0020 were loaded. The Stiletto megacell treats it as if a 0x0001 were loaded, since
this is the smallest meaningful value.

The NS16550A data sheet does not say if the Modem Status Register is writable, or
what should happen if it is written to. The lower 4 bits (3:0) are indeed writable, and they
will set or clear the modem ”delta” bits (and the interrupt if enabled) just like real changes
in the modem control lines. The Stiletto megacell has duplicated this operation.

The table in the NS16550A data sheet indicates that bit 4 (loopback) of the Modem
Control Register will always return a 0 on reads. This is not true. It will return the value
that was written into this bit. The Stiletto megacell has duplicated this operation.

If the THRE (transmitter holding register empty) interrupt is currently enabled, and
there is no THRE interrupt pending, and the THRE interrupt is disabled and re–enabled, the
NS16550A will generate a new THRE interrupt. The Stiletto megacell has duplicated this
operation. However, if the THRE interrupt is already enabled, and the Interrupt Enable

���������� �
�� �

	

����� ���� � ���� ���
�����
�� ��� ���

Register is written so as to keep the THRE interrupt enabled (no change on that bit), the
NS16550A will cause a THRE interrupt. The Stiletto megacell will not.

If the transmitter fifo and the transmitter buffer are both empty, one would not expect
changing to/from fifo mode to cause a THRE interrupt. The UART is transitioning from
empty to empty, so there is no edge which should cause an interrupt. However, a THRE inter-
rupt is generated whenever going to/from fifo mode. In addition, clearing the transmitter
fifo via bit 2 of the Fifo Control Register also causes the THRE interrupt (regardless of
whether it was already empty). The Stiletto megacell has duplicated this operation.

The Line Status Register is writable in the NS16550A for factory testing. The Line
Status Register in the Stiletto megacell is not writable. With scan testing employed at the
IC level, this was not necessary.

For the TEMT bit (transmitter empty) in the Line Status Register, it is never really de-
fined when the transmitter shift register should be considered empty. The Stiletto megacell
waits until all of the data bits AND all of the stop bits have been sent out before considering
the transmitter empty. This is probably the desired behavior if this bit is being checked to
see if it is okay to change baud rates. However, if in loopback mode and data is transmitted,
receive data available will be indicated before TEMT, because only the detection of the first
stop bit is required for receiving data. This isn’t necessarily a problem, but it may be unex-
pected. I don’t really know what the real NS16550A does.

The NS16550A clears the receive fifo registers when it reads from them. The Stiletto
megacell does not. When the fifo empties, the NS16550A will always return 0’s on reads.
The Stiletto megacell will return the value that was previously in that fifo location. It seems
unwise to rely on a fifo value when receive data available (line status) indicates it is an empty
fifo location. I don’t want to hear any whining about this.

The NS16550A data sheet says that a break is defined as received data being 0 for one
full character time (start + data + parity + stop bits). However, it really calls something a
break if received data is 0 for start + data + parity + 1/2 first stop bit. Basically, the
NS16550A indicates all of the receiver line status interrupts (and receive data available) half
way through the first stop bit. The Stiletto megacell has duplicated this operation.

The NS16550A says that on a framing error, it considers the 0 stop bit to really be a start
bit, so it samples it twice and then starts looking for the next data bit. Who knows what they
are trying to say. The operation of the NS16550A is non–deterministic in this case. Normal-
ly, the NS16550A will behave as if the 0 stop bit is a start bit, and it will take the next bit
as data. However, sometimes it treats the next bit as a start bit rather than data. The Stiletto
megacell always treats the next bit as data. Additionally, the Stiletto megacell does a 2 out
of 3 sample on that stop bit anyway, so it shouldn’t falsely be seen as a 0.

The NS16550A data sheet lies about the line status interrupts for the receiver and when
they are cleared. It says that reading the Line Status Register is the only way to clear a break
indication, an overrun error, a parity error, or a framing error. This is true in non–fifo mode,

���������� �	�� �		�

���� �
�� �
��� ��� ������	�� ��� ���

but in fifo mode, if the Line Status Register is not read, but the receive data is read, the Line
Status Register will be updated with the info from the next fifo location. If the next location
doesn’t have any errors, the receiver line status errors have effectively been cleared, while
never having read the Line Status Register. The Stiletto megacell has duplicated this opera-
tion.

From looking at the ordering of the interrupts in the table for the Interrupt ID Register
in the NS16550A data sheet, it would appear that a receiver data available interrupt would
have priority over a character timeout interrupt. Both are considered ”second” priority, but
the receiver data available interrupt is listed first. In reality, the character timeout interrupt
has priority. With the fifo trigger level set at 1 byte, an interrupt caused by receiver data being
available will turn into an indication of a character timeout interrupt if the receiver is not read
soon enough.

���������� �
�� �

�

����� ���� � ���� ���
�����
	� ��� ���

�������� 	�� �		�

���� ���� � ���� ���
�����		� ��� ���

16
16 PS2 INTERFACE FOR KEYBOARD/MOUSE

16.1 Introduction
Dino supports two PS2 ports. The registers used for PS2 reside in HPA submodule 1. This submo-
dule provides 1 page (4KBytes) of register space so that the register offset of the PS2 support regis-
ters will exactly match the requirements of existing drivers. Dino implements the keyboard and
mouse interfaces as simple serial ports conforming to the de facto industry standard PS/2 specifica-
tion. Each user input device has a dedicated serial port of its own. The interface ports rely on the
software to provide all of their intelligence, therefore, they do not interpret the characters passing
through them in either direction. The interface to the host processor is through 6 one–byte registers
for each port.

16.2 Registers

Register
Label

Register Name Address offset
(word aligned)

Reset
Value

Access

IODC_ADDR IODC Adress 0x008 note 1 R

IODC_DATA
0

IODC HVERSION 0x008 note 1 R

IODC_DATA
1

IODC SVERSION 0x008 note 1 R

ID Keyboard ID Register 0x800 note 1 R

RESET Keyboard Interface reset register 0x800 0xXX W

RCVDATA Keyboard Received data register 0x804 0xXX R

XMTDATA Keyboard Transmit data register 0x804 0xXX W

CONTROL Keyboard Control register––read/
write

0x808 0x00
note 2

R/W

STATUS Keyboard Status register––read
only

0x80c 0x00 R

ID Mouse ID Register 0x900 note 1 R

RESET Mouse Interface reset register 0x900 0xXX W

RCVDATA Mouse Received data register 0x904 0xXX R

XMTDATA Mouse Transmit data register 0x904 0xXX W

��&+�(/�
�� �

�

�$&' � ���� � � ,� ��� ��" ������ '!� ��	

CONTROL Mouse Control register––read/
write

0x908 0x00
note 2

R/W

STATUS Mouse Status register––read only 0x90c 0x00 R

Note 1: Each PS2 device returns a unique hardwired ID code in bits 3:0 of ID.
Note 2: Resetting the block disables it (see Table 26).

To address the Keyboard registers AD[11:8] = 4’b1xx0. To address the Mouse registers AD[11:8] =
4’b1xx1.

Table 30. PS2 Interface Registers

16.3 IODC Registers
�($*$&"� �%%� 0 ('�)� *'� *#$)� ("$)* (� -$%%�) % �*� ����������� �)� *# � ("$) * (� *#�*� $)� "'$&"� *'� �
(���� � �/� -($*$&"� ������������	� *'� *#$)� ("$)* (�� ����������� -$%%� � � *# � ("$)* (� *#�*� $)� "'$&"
'� � � (���� � �# � �'& &*)� '!� ����������� -$%%� � � �.�������	�� �&�� *# � �'&* &*)� '!
����������� -$%%� � � �.�����

���

16.4 ID Register

Bit Symbol Name Description

3:0 ID ID Code Hardwired physical identification bits. (0=key-
board;1=mouse)

7:4 Reserved

Table 31. PS2 ID Register

16.5 Reset Register
Any write to this register will cause the interface to be reset: all buffers will be emptied and the re-
ceive/transmit state machines will be reset. The value of the data written will be discarded. Note that
this does not cause the external device to be reset; it must be reset explicitly through a command sent
from the host. A reset will leave the interface in the disabled state.

16.6 Rcvdata Register
This register provides access to the received data buffer in the interface. Each read operation from
this register removes one character from the received data buffer. Receive Buffer Not Empty (bit 0 of
the STATUS register) is set to 1 whenever there is one or more characters in the receiver buffer and
returns to 0 when the buffer is empty. The port asserts its interrupt line when the receive buffer goes
from empty to not empty. It is the responsibility of the host to read the rcvdata register until the Re-
ceive Buffer Not Empty bit returns to a 0 value. Note that a port does not generate an interrupt for

�������� 	�� �		�

���� ���� � ���� ���
��������� ��� ���

each received character, only when the first character is placed in an empty buffer. Dino implements
the Received Data Buffer with 4 characters of storage.

16.7 Xmtdata Register
This register provides data to the transmitter section of the interface. Since each character trans-
mitted requires an acknowledge character, the transmit buffer is only one character deep. The PS2
protocol allows for outgoing data to interrupt and override any incoming data. Dino will receive any
incoming character before starting the transmit process. The transmitter will assert control as soon
as a received character is finished and send the character in the transmit buffer. Transmit Buffer Not
Empty (bit 1 of STATUS register) is set to 1 when there is a character in the transmit buffer. It is the
responsibility of the host to determine when the buffer is empty by monitoring TBNE, which will go
to 0 when the buffer is empty. A PS2 port will ignore an attempt to write to the Xmtdata register
while TBNE is 1. No interrupts are generated in the transmit process, except for acknowledge char-
acters returned by the external device.

16.8 Control Register (R/W)

Bit Symbol Name Description

0 ENBL Enable Set status of interface: 0 = disabled, 1 = enabled.
When disabled, port will neither receive data from exter-

nal device nor generate interrupts to host.

1 LPBXR Loopback Xmt/Rcv
mode

Set to 1 for loopback diagnostic mode: transmitter output
is connected to receiver input. In this case, a much faster

internal clock is used to transfer the data (2 MHz).

4:2 Reserved

5 DIAG Diagnostic mode When set to 0, bits 6 and 7 have no effect on the external
Data and Clock lines. When set to 1, bits 6 and 7 directly
control the value of the external Data and Clock lines for

diagnostic purposes.

6 DATDIR External data line di-
rect control

Provides direct control of value of external Data line while
in diagnostic mode.

7 CLKDIR External clock line di-
rect control

Provides direct control of value of external Clock line
while in diagnostic mode.

Table 32. PS2 Control Register

�������
�� �

	

����� ���� � ���� ��� ���������� ��� ���

16.9 Status Register (Read only)

Bit Symbol Name Description

0 RBNE Receive buffer not
empty

0 = receive buffer empty, 1 = receive buffer not empty

1 TBNE Transmit buffer not
empty

0 = transmit buffer empty, 1 = transmit buffer not empty

2 TERR Timeout Error Normally set to 0. See Note 2

3 PERR Parity Error Normally set to 0. See Note 1

4 CMPINT
R

Composite interrupt OR of interrupt lines of all PS2 ports

5 Reserved

6 DATSHD Data line shadow Copy of current value of external data line

7 CLKSHD Clock line shadow Copy of current value of external clock line

Table 33. PS2 Status Register

Note 1:
When the receiver detects a parity error, bit 2 of STATUS register is set to 1. The incorrect
character is placed in the receive buffer. Busy is asserted to the external device to halt any
further transmissions. The host must recognize the parity bit and empty the receive buffer
since there may be valid characters in the buffer ahead of the incorrect one. The last character
in the buffer is always the incorrect one. In order to clear the parity error, the interface must be
reset. It is the responsibility of the host to request a resend from the external device if desired.

16.10 Addressing
One 4Kbyte block of Gecko IO space is allocated for both PS2 interfaces. Each interface is assigned
a 256 byte block of its own. The keyboard port is located a offset 0x000 within the 4K block and the
mouse is located at offset 0x100. There is no logical difference between the keyboard and mouse
interface other than their address and the contents of the ID register. All registers are 1–byte wide
and are aligned on word boundaries. All addresses are multiply–mapped so that a read/write to any
address in the 4k block will access a legitimate register.

16.11 Interrupt processing
The Dino interrupt handler supports only one interrupt line for both PS2 ports. The host must poll
both ports to determine which ones have data. Each port asserts its interrupt line until its buffer is
empty. Both of the interrupt lines are OR’d together to make a single interrupt signal. An interrupt
will be issued when it sees a positive edge on this signal. Thus there is an interrupt for the first charac-
ter to arrive at either port, but none for following characters until both of the ports have been emptied.
The host must cycle through both ports, emptying the data from each until both are empty, including
data which arrives during the service process. The host determines that both ports are empty by the
Composite Interrupt signal (cmp_intr), which is copied into bit 4 of the STATUS register of both

�������� 	�� �		�

���� ���� � ���� ���
��������� ��� ���

ports. Since the host must continue to read data from ports until cmp_intr is 0, the next arriving char-
acter forces cmp_intr to 1, which causes an interrupt. It is anticipated that in most cases each arriving
character will cause an interrupt and will be serviced before the next character arrives.

16.12 Timing
The PS2 specification maximum transfer rate is about 1 character per millisecond (80 microseconds
per serial bit for 11 bits plus some overhead). The fastest input expected from a keyboard would be
about 16 characters per second. If the keyboard generates 3 characters per keypress (character code
on downstroke, up code on release, followed by character code again), then we can expect characters
about every 20 ms. A mouse is programmable for sample spacing (20 to 200 samples per second,
default 100) and sends 3 characters for each XY sample. Thus a mouse might push close to the 1 ms
character spacing. There should be no problems responding to interrupts at this rate.

�������� 	�� �		�

���� ���� � ���� ���
��������� ��� ���

