

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 1 of 20

1 Error Strategy
1.1 Purpose:

This is a rough error strategy focused at the Runway interface and how it needs to communicate
between the processor, the MC (memory controller) and the IOC (I/O controller). In particular,
errors detected and logged in the IOC or in Elroy without need for participation by the RBIB
(Runway bus interface block) are not covered in detail here. Various Elroy documents are a
better source for that information.

1.2 Philosoph y:

The priorities for our error strategy are:
• Error containment
• FRU (field replaceable unit) identification once the system has crashed

If there is a hardware error in the core electronics (not I/O cards or I/O bus), we will HPMC the
system as soon as possible to contain the error. An example of this philosophy is in the handling
of Runway data parity errors. Even though we could distinguish data destined for an I/O card as
a potentiall y non-criti cal error, we take the approach that our hardware must be very sick for us to
get a Runway data parity error. As a result, we HPMC the machine in all cases of a Runway data
parity error. The Runway bus wasn’ t designed to be error tolerant. However, if our handling of
certain error conditions is deemed too severe, software can turn off the signaling aspect of each
error individually. Status for the error can still be kept, but the prescribed affect on the system
will not occur.

Errors are grouped together consistent with what logging resources they require. The first error in
a group will use the logging resource and set a status bit, while additional errors will set overflow
status bits, but will not overwrite the logging information. Runway parity errors (address or
control or data) share logging resources with Runway cycles that are to memory address that are
out-of-range. Correctable memory errors have their own logging resources, as do uncorrectable
memory errors. The observance of a BROAD_ERROR on Runway doesn’ t require logging
resources, nor does a memory buffer address/control parity error. All other error conditions only
use IOC or Elroy logging resources.

1.3 Assumptions

1. The processor will never issue a DIR_ERROR.
2. The processor will never cause a path error (simultaneous assertion of ADDR_VALID and

DATA_VALID).
3. There is no useful information in any fields when the processor does a BROAD_ERROR,

except the MID. It is only the fact that a BROAD_ERROR was done (by a processor) that is
meaningful to Astro.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 2 of 20

4. Processors are timing their data returns (programmable value). This establishes a set limit on
how long it can take for data to come back from memory or I/O. However, the processor
only logs the address of a timed out return for reads to I/O space (in RS_LOG). A timed out
return from memory space doesn't get an address logged in the processor since many of these
transactions may be in flight at a given time.

5. For purposes of this error handling section, assume the IOC is configured to return a hard fail
response on error, rather than returning -1.

6. The IOC is not timing its data returns - the PCI master, or more li kely the driver associated
with that master (software timeout), will eventually detect the error condition in a case where
a return is never received.

7. Elroy never manufactures bad parity to send to Astro. A PIO read may generate a hard fail
response, or -1s, but always with good parity. An inbound write that has bad parity on the
PCI bus is thrown away by Elroy. What this means is that if there is ever bad parity for
inbound data at the Runway output bus level, the error occurred inside Astro, inside Elroy, or
on the rope between the two.

1.4 All poss ible errors/cond itions we care abou t

The IOC/Elroy specific errors are glossed over big-time. Read the Elroy error handling document
for more details. Below is a table summarizing the Runway/memory errors we detect, how we
signal them, what we log, and what status bits we set. A more detailed description of the error
conditions and how we handle them follows the summary table.

Table 1: Error Summary

Error Condition

Astro
Signaling

Astro
Info logged

Astro
ERROR_STATUS bit

Processor or IOC reads
from memory
w/uncorrectable error

Assert ADDR_VALID and
DATA_VALID (path
error) on Runway with the
incorrect data, send
BROAD_ERROR and put
the IOC in fatal mode.

Address, MID, TID,
syndrome.
The IOC and Elroy may
also log some information.

mem_uncorr_stat

Processor or IOC reads
from memory
w/correctable error

Send BROAD_ERROR
and put the IOC in fatal
mode. Astro will normally
not signal memory
correctable errors.
Signaling is provided for
debug purposes.

Address, MID, TID,
syndrome

mem_corr_stat

Processor or IOC reads
from memory with
memory buffer addr/cntrl
parity error

Send BROAD_ERROR
and put the IOC in fatal
mode.

None. Logging of the
DIMM in error can be done
at the board level.

mem_addr_par_stat

Astro detects control parity
error on Runway

Send BROAD_ERROR
and put the IOC in fatal
mode.

State of Runway
ADDR_DATA bus and
control signals during
control parity error
assertion

run_ctrl_par_err_stat

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 3 of 20

Error Condition

Astro
Signaling

Astro
Info logged

Astro
ERROR_STATUS bit

Astro detects address parity
error on Runway

Send BROAD_ERROR
and put the IOC in fatal
mode.

State of Runway
ADDR_DATA bus and
control signals during
address parity error
assertion

run_addr_par_err_stat

Astro detects data parity
error on Runway (All
Runway data cycles are
assumed to be for Astro.)

Send BROAD_ERROR
and put the IOC in fatal
mode. ECC is poisoned if
the data is written to
memory.

State of Runway
ADDR_DATA bus and
control signals during data
parity error assertion

run_data_par_err_stat

Observe BROAD_ERROR
transaction on Runway

Put the IOC in fatal mode. None run_broad_err_stat

Observe a Runway path
error

Send BROAD_ERROR
and put the IOC in fatal
mode.

State of Runway
ADDR_DATA bus and
control signals during path
error assertion

run_path_err_stat

Processor (or IOC for a
transaction that didn’ t go
through the TLB) reads
from or writes to memory
space that is out-of-range

Send BROAD_ERROR
and put the IOC in fatal
mode.

State of Runway
ADDR_DATA bus and
control signals during
ADDR_VALID assertion

run_mem_range_err_stat

Processor reads from PA
IO space in Astro, things
don’ t go well and the IOC
is setup to return hard fail
response (rather than –1)

None – processor will
timeout.
See detail writeup on when
a rope goes fatal, Elroy
goes fatal, or neither

The IOC and/or Elroy is
responsible for logging

None

Proc. writes to PA IO
space in Astro and things
don’ t go well

None – data is bit-
bucketed.
See detail writeup on when
Elroy goes fatal, or nothing
happens

The IOC and/or Elroy is
responsible for logging

None

1.4.1 Errors detected by the memory subsystem

1) A processor or the IOC reads from memory and we have an uncorrectable error. (If the data
is supplied via a cache-to-cache copy and there is an uncorrectable error this falls under the
Runway data parity error case).
• Assert both ADDR_VALID and DATA_VALID on Runway for the return cycles that

have bad data.
• Send a BROAD_ERROR transaction on Runway.
• Put the IOC in fatal mode.
• Set mem_uncorr_stat in the ERROR_STATUS register.
• Log the address, MID, and TID in MEM_ADDR, and the syndrome in MEM_SYND.
• The IOC rope interface and Elroy will l og some information.
• The processor will do an HPMC as a result of the BROAD_ERROR.

2) A processor or the IOC reads from memory and we have a correctable error.
• Set mem_corr_stat in the Astro ERROR_STATUS register.
• Log the address, MID, and TID in MEM_ADDR_CORR, and the syndrome in

MEM_SYND_CORR. Note that the syndrome allows the bit in error to be uniquely
identified for correctable errors.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 4 of 20

• The memory controller will correct the error. Hardware scrubbing of the error is NOT
done.

• No other signaling will normally occur. However, the generation of a BROAD_ERROR
and placing the IOC in fatal mode can be enabled for debug purposes and/or for firmware
testing.

3) A processor or the IOC reads from memory and we have a memory buffer address/control
parity error.
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set mem_addr_par_stat in the Astro ERROR_STATUS register.
• Nothing is logged in Astro. A board-level implementation can be done to identify which

DIMM had the buffer that detected the address/control parity error

1.4.2 Errors detected by the Runway bus interface

1) Detect a control parity error on the Runway bus (transaction could have been initiated by a
processor, or by the IOC).
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set run_ctrl_par_err_stat in ERROR_STATUS.
• Log the state of the ADDR_DATA bus in the RUN_ADDR or RUN_DATA register (as

appropriate) and the control state in the RUN_CTRL register.
• Complete the transaction internally normally.
• The processor will do an HPMC as a result of the BROAD_ERROR.

2) Detect an address parity error on the Runway bus.
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set run_addr_par_err_stat in ERROR_STATUS.
• Log the state of the ADDR_DATA bus in the RUN_ADDR register and the control state

in the RUN_CTRL register.
• Ignore the transaction in all respects except that we will still participate in snooping to

keep the coherency response FIFOs in sync. The transaction will go into the RBIB’s
coherency response FIFO and will go into the read coherency map as a NOP.

3) Detect a data parity error on the Runway bus. (We assume that we are always a sink for data.)
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set run_data_par_err_stat in ERROR_STATUS.
• Log the state of the ADDR_DATA bus in the RUN_DATA register and the control state

in the RUN_CTRL register. In some cases, the address may still be in RUN_ADDR as
well .

• Complete the transaction internally normally.
• If main memory is the destination we will write bad ECC into the DRAMs.

4) Observe a BROAD_ERROR transaction on Runway generated by a processor or by
ourselves.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 5 of 20

• Put the IOC in fatal mode.
• Don't log anything except the fact that we saw a BROAD_ERROR (set run_broad_err

in ERROR_STATUS).

5) Detect a path error on the Runway bus.
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set run_path_err_stat in ERROR_STATUS.
• Log the state of the ADDR_DATA bus in the RUN_DATA register and the control state

in the RUN_CTRL register.
• Complete the transaction internally normally.

6) A processor reads (or does any other coherent transaction) from memory space that is out-of-
range, or the IOC sends a similar bad address out on Runway. This may be due to a bad
driver for an I/O card that didn’ t use the TLB, an incorrectly setup TLB entry, or some
hardware failure.
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set run_mem_range_err_stat in ERROR_STATUS.
• Log the state of the ADDR_DATA bus in the RUN_ADDR register and the control state

in the RUN_CTRL register.
• Ignore the transaction in all respects except that we will still participate in snooping to

keep the coherency response FIFOs in sync. The transaction will go into the RBIB’s
coherency response FIFO and will go into the read coherency map as a NOP.

• The processor will do an HPMC as a result of the BROAD_ERROR.

7) A processor writes (or does any other non-coherent transaction) to memory space that is out-
of-range, or the IOC sends a similar bad address out on Runway. This may be due to a bad
driver for an I/O card that didn’ t use the TLB, an incorrectly setup TLB entry, or some
hardware failure.
• Send a BROAD_ERROR transaction.
• Put the IOC in fatal mode.
• Set run_mem_range_err_stat in ERROR_STATUS.
• Log the state of the ADDR_DATA bus in the RUN_ADD register and the control state in

the RUN_CTRL register.
• The write data will go into the bit bucket.
• The processor will do an HPMC as a result of the BROAD_ERROR.

1.4.3 Errors detected by the IOC or Elroy

1) A processor reads from IO space in Astro and things don’ t go well or the IOC is already in

fatal mode. (Assume the IOC is set to generate a hard fail response rather than return -1).
• If the only problem is that data gets corrupted inside Astro:

• The transaction completes normally, but with bad parity propagated to the Runway
bus.

• The processor will detect the parity error and will send a BROAD_ERROR and will
HPMC.

• For all other cases:

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 6 of 20

• The Elroy or Astro (depending on where things didn’ t go well) will return a hard fail
response.

• The Elroy or the rope may go fatal depending on what bad things happened on the
PCI bus, or to the data as it traveled toward the processor. The whole smart/dumb
PCI card thing may factor into the choice of fatal mode as well .

• The IOC or Elroy are responsible for logging in these cases.
• The processor will ti meout since it didn’ t get a return. This will cause the processor

to do a BROAD_ERROR, and HPMC.
• The processor will have logged the address in RS_LOG.

2) A processor writes to IO space in Astro and things don’ t go well or the IOC is already in fatal

mode.
• The write will be discarded at the point in Elroy that something is observed as corrupt if

address (on the rope) or data (parity kept along the entire path) get corrupted before they
reach the PCI bus. The intent will be to never issue the write on PCI if the corruption is
noticed soon enough.

• The IOC or Elroy are responsible for logging.
• Certain faili ng conditions will cause the Elroy to go into PCI fatal mode.

3) A processor writes to a card that does infinite retries or a non-existent Elroy or an Elroy that

has died.
• The write transactions will stack up in the command/data FIFO in the IOC rope interface

and can begin to flow control the processors.
• The IOC has a forward progress timer that will eventually trip and drain (throw away) all

the transactions for the stalled rope.
• The rope is put in fatal mode.

1.5 Undetected errors

1) If the IOC receives an unexpected response (a return for a transaction it didn't issue) we will
not detect this. With control parity giving us some good protection here, we don't feel li ke
this is an area for concern.

2) We don't flag transactions that we don't support, we just ignore them (but still t rack
coherency for coherent transactions). The belief is that these transactions can't be generated
by the hardware (control parity protects us here as well), or we don't need to worry about
them.

1.6 Error Registers

1.6.1 Error status and control registers

There are a number of memory and Runway error conditions. Each condition has a bit to
represent it. The control, enable, and status registers associated with these conditions are defined
below. The error-clearing scheme in ERROR_CONTROL may seem overly complex, but it is
intended to provide a bomb-proof way for error information to be logged without ever being lost.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 7 of 20

Most other schemes for clearing error status and logging registers have holes for when errors can
come in at the “wrong” time and be missed. The algorithm described can probably be
implemented in hardware such that there are still holes, so we’re assuming the hardware
implementation will be done carefully such that no holes exist.

1.6.1.1 Error Control Register
M
S
B

ERROR_CONTROL Register
(address: 0xFF_FED0_8010)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

reserved C
E

C
L

reserved

Power On Initialization
X 0 0 0 0 0 0 0 0 0

Size: 64-bit only

Field Access Description
CL W Clear logging information.
CE R/W Clear enable.

Register 1: ERROR_CONTROL Register

The ERROR_CONTROL register controls the clearing of “stat” and “over” bits in
ERROR_STATUS, as well as clearing (or re-enabling the updating of) error logging registers.
See the error logging register section to see which registers get cleared versus which ones just get
re-enabled for updating. There are two bits in this register, CE (clear enable) and CL (clear log).
CE (bit 5 of the register) is a read/write bit. CL (bit 4 of the register) is a write-only bit that
always returns “0” on reads. The behavior of writing to these bits is only defined for the patterns
“1,0” and “0,1” . Writing “1’s” to both bits, or “0’s” to both bits, is unwise. When software
desires to read log information (for instance an HPMC occurred and a monarch processor was
selected), the following steps are taken:
• Software should set the CE bit by writing a “1” to it. After this has been done, hardware will

sneak in and clear CE if any enabled errors (log_en is set) come in. This ensures no errors
are missed.

• Software should read ERROR_STATUS and then all of the logging registers that would be
meaningful. Reads of these registers are non-destructive, so they may be read multiple times
if desired.

• Software should attempt to clear the ERROR_STATUS register and clear or re-enable for
updating the error logging registers by writing a “1” to the CL bit. If the hardware has
cleared the CE bit since software set it, the write to the CL bit won’ t cause any error info to
be cleared. Hardware looks at the current state of the CE bit as the write to the CL bit occurs
to make this determination.

• Software should re-read the ERROR_STATUS to see if the clear was successful. If not,
software must start over with setting the CE bit, reading ERROR_STATUS and log registers,

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 8 of 20

etc. If the write of “1” to the CL bit did work, all of the status and logging information was
current and valid, and li fe is wonderful. It is left as an exercise for the reader to figure out
what “ the clear was successful” really means.

• Software is now finished.

1.6.1.2 Error Enable Register
M
S
B

ERROR_ENABLE Register
(address: 0xFF_FED0_8018)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

reserved

ru
n_

pa
th

_e
rr

_s
ig

_e
n

m
em

_a
dd

r_
pa

r_
si

g_
en

m
em

_c
or

r_
si

g_
en

m
em

_u
nc

or
r_

si
g_

en

ru
n_

br
oa

d_
er

r_
si

g_
en

ru
n_

m
em

_r
an

ge
_e

rr
_s

ig
_e

n

ru
n_

da
ta

_p
ar

_e
rr

_s
ig

_e
n

ru
n_

ad
dr

_p
ar

_e
rr

_s
ig

_e
n

ru
n_

ct
rl

_p
ar

_e
rr

_s
ig

_e
n

reserved

ru
n_

pa
th

_e
rr

_l
og

_e
n

m
em

_a
dd

r_
pa

r_
lo

g_
en

m
em

_c
or

r_
lo

g_
en

m
em

_u
nc

or
r_

lo
g_

en

ru
n_

br
oa

d_
er

r_
lo

g_
en

ru
n_

m
em

_r
an

ge
_e

rr
_l

og
_e

n

ru
n_

da
ta

_p
ar

_e
rr

_l
og

_e
n

ru
n_

ad
dr

_p
ar

_e
rr

_l
og

_e
n

ru
n_

ct
rl

_p
ar

_e
rr

_l
og

_e
n

Power On Initialization
X X X X X X X X 0 0 0 0 0 0 0 0 X X X X X X X X 0 0 0 0 0 0 0 0

Size: 64-bit only

Field Access Description
run_path_err_sig_en R/W Enable signaling for Runway path errors. The signaling for

this error is generating a BROAD_ERROR transaction on
Runway and placing the IOC in fatal mode. The containment
of corrupt data is tied to signaling being enabled.

mem_addr_par_sig_en R/W Enable signaling for memory buffer address/control parity
errors. The signaling for this error is generating a
BROAD_ERROR transaction on Runway and placing the IOC
in fatal mode.

mem_corr_sig_en R/W Enable signaling for correctable memory errors. The signaling
for this error is generating a BROAD_ERROR transaction on
Runway and placing the IOC in fatal mode. This is expected
to only be used for debug or firmware test purposes.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 9 of 20

Size: 64-bit only
Field Access Description
mem_uncorr_sig_en R/W Enable signaling for uncorrectable memory errors. The

signaling for this error is generating a BROAD_ERROR
transaction on Runway and placing the IOC in fatal mode.
Astro will also signal a path error (simultaneous assertion of
ADDR_VALID and DATA_VALID) on RUNWAY for the
data cycles in error. The containment of corrupt data is tied to
signaling being enabled.

run_broad_err_sig_en R/W Enable signaling for the observance of a BROAD_ERROR on
the Runway bus. The signaling for this error is placing the
IOC in fatal mode.

run_mem_range_err_sig_en R/W Enable signaling for Runway memory address out-of-range
errors. The signaling for this error is generating a
BROAD_ERROR transaction on Runway and placing the IOC
in fatal mode.

run_data_par_err_sig_en R/W Enable signaling for Runway data parity errors. The signaling
for this error is generating a BROAD_ERROR transaction on
Runway and placing the IOC in fatal mode. In addition, bad
ECC will be written to memory for memory writes. The
containment of corrupt data is tied to signaling being enabled.

run_addr_par_err_sig_en R/W Enable signaling for Runway address parity errors. The
signaling for this error is generating a BROAD_ERROR
transaction on Runway and placing the IOC in fatal mode.

run_ctrl_par_err_sig_en R/W Enable signaling for Runway control parity errors. The
signaling for this error is generating a BROAD_ERROR
transaction on Runway and placing the IOC in fatal mode.

run_path_err_log_en R/W Enable logging for Runway path errors. The information that
is logged for this error is the state of the Runway
ADDR_DATA bus in the RUN_DATA register and the
Runway control state in the RUN_CTRL register.

mem_addr_par_log_en R/W Enable logging for memory buffer address/control parity
errors. Only the ERROR_STATUS bit gets set, no other
logging is performed.

mem_corr_log_en R/W Enable logging for correctable memory errors. The
information that is logged is the address, MID, and TID in
MEM_ADDR_CORR, and the syndrome in
MEM_SYND_CORR. In addition, this bit is the enable for
single-bit detection and correction. Error detection and
correction are not performed unless mem_corr_log_en is set.

mem_uncorr_log_en R/W Enable logging for uncorrectable memory errors. The
information that is logged is the address, MID, and TID in
MEM_ADDR, and the syndrome in MEM_SYND.

run_broad_err_log_en R/W Enable the logging of the observance of a BROAD_ERROR
on Runway. Only the ERROR_STATUS bit gets set, no other
logging is performed.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 10 of 20

Size: 64-bit only
Field Access Description
run_mem_range_err_log_en R/W Enable logging for Runway access to memory that is out-of-

range errors. The information that is logged for this error is
the state of the Runway ADDR_DATA bus in the
RUN_ADDR register and the Runway control state in the
RUN_CTRL register.

run_data_par_err_log_en R/W Enable logging for Runway data parity errors. The
information that is logged for this error is the state of the
Runway ADDR_DATA bus in the RUN_DATA register and
the Runway control state in the RUN_CTRL register.

run_addr_par_err_log_en R/W Enable logging for Runway address parity errors. The
information that is logged for this error is the state of the
Runway ADDR_DATA bus in the RUN_ADDR register and
the Runway control state in the RUN_CTRL register.

run_ctrl_par_err_log_en R/W Enable logging for Runway control parity errors. The
information that is logged for this error is the state of the
Runway ADDR_DATA bus in the RUN_ADDR or
RUN_DATA register (depending on when the control parity
error occurs) and the Runway control state in the RUN_CTRL
register.

Register 2: ERROR_ENABLE Register

The ERROR_ENABLE register independently controls the logging enable and signaling enable
of an error condition. An error condition’s log_en bit must be set for that error to reflect in the
ERROR_STATUS register. What this also implies is that if signaling of an error is desired,
logging should be enabled as well . The hardware may make some assumptions about this, so the
behavior with signaling enabled but logging disabled is undefined. It should also be noted that
disabling or enabling error conditions during normal operation could result in the loss of some
error information. This enabling/disabling is assumed to be done by PDH at system initiali zation
time.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 11 of 20

1.6.1.3 Error Status Register
M
S
B

ERROR_STATUS Register
(address: 0xFF_FED0_8020)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

reserved

ru
n_

pa
th

_e
rr

_o
ve

r

m
em

_a
dd

r_
pa

r_
ov

er

m
em

_c
or

r_
ov

er

m
em

_u
nc

or
r_

ov
er

ru
n_

br
oa

d_
er

r_
ov

er

ru
n_

m
em

_r
an

ge
_e

rr
_o

ve
r

ru
n_

da
ta

_p
ar

_e
rr

_o
ve

r

ru
n_

ad
dr

_p
ar

_e
rr

_o
ve

r

ru
n_

ct
rl

_p
ar

_e
rr

_o
ve

r

reserved

ru
n_

pa
th

_e
rr

_s
ta

t

m
em

_a
dd

r_
pa

r_
st

at

m
em

_c
or

r_
st

at

m
em

_u
nc

or
r_

st
at

ru
n_

br
oa

d_
er

r_
st

at

ru
n_

m
em

_r
an

ge
_e

rr
_s

ta
t

ru
n_

da
ta

_p
ar

_e
rr

_s
ta

t

ru
n_

ad
dr

_p
ar

_e
rr

_s
ta

t

ru
n_

ct
rl

_p
ar

_e
rr

_s
ta

t

Power On Initialization
X X X X X X X X 0 0 0 0 0 0 0 0 X X X X X X X 0 0 0 0 0 0 0 0 0

Size: 64-bit only

Field Access Description
run_path_err_over R Detects overflow for Runway path errors.
mem_addr_par_over R Detects overflow for memory buffer address/control parity

errors.
mem_corr_over R Detects overflow for correctable memory errors.
mem_uncorr_over R Detects overflow for uncorrectable memory errors.
run_broad_err_over R Detects overflow for the observance of a BROAD_ERROR on

the Runway bus.
run_mem_range_err_over R Detects overflow for Runway memory address out-of-range

errors.
run_data_par_err_over R Detects overflow for Runway data parity errors.
run_addr_par_err_over R Detects overflow for Runway address parity errors.
run_ctrl_par_err_over R Detects overflow for Runway control parity errors.
run_path_err_stat R Status of Runway path errors.
mem_addr_par_stat R Status of memory buffer address/control parity errors.
mem_corr_stat R Status of correctable memory errors.
mem_uncorr_stat R Status of uncorrectable memory errors
run_broad_err_stat R Status of the observance of a BROAD_ERROR on Runway.
run_mem_range_err_stat R Status of Runway access to memory that is out-of-range

errors.
run_data_par_err_stat R Status of Runway data parity errors.
run_addr_par_err_stat R Status of Runway address parity errors.
run_ctrl_par_err_stat R Status of Runway control parity errors

Register 3: ERROR_STATUS Register

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 12 of 20

The ERROR_STATUS register contains error status (stat) and error overflow (over) bits. These
bits can be thought of as being in four groups corresponding to the three sets of logging resources
inside Astro, plus run_broad_err and mem_addr_par (which don’ t use any logging resources).
The first error in a group sets its “stat” bit, the second error in a group sets its “over” bit. If
simultaneous errors were to occur, multiple “stat” bits could get set. How these status and
overflow bits are cleared is described in the ERROR_CONTROL register description. The four
error groups are:
1. run_*_err errors, excluding run_broad_err. These all use RUN_ADDR, RUN_DATA, and

RUN_CTRL. The first occurrence of one of these errors will set the appropriate “stat” bit
(i.e. run_addr_par_err_stat). The second occurrence of any of these errors will set the
appropriate “over” bit (i.e. run_data_par_err_over). In this manner, it can always be
determined which error the log information corresponds to in a multi -error scenario. Note
that simultaneous errors could set multiple “stat” bits, but in such a case, the log information
applies to both errors.

2. run_broad_err or mem_addr_par. Since nothing is logged, the first occurrence sets
run_broad_err_stat or mem_addr_par_stat, a second occurrence sets
run_broad_err_over or mem_addr_par_over.

3. mem_uncorr. Since there are dedicated logging resources (MEM_ADDR, MEM_SYND),
the first occurrence sets mem_uncorr_stat, a second occurrence sets mem_uncorr_over.

4. mem_corr. Since there are dedicated logging resources (MEM_ADDR_CORR,
MEM_SYND_CORR), the first occurrence sets mem_corr_stat, a second occurrence sets
mem_corr_over.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 13 of 20

1.6.2 Error logg ing registers

1.6.2.1 Runway Control Register
M
S
B

RUN_CTRL Register
(address: 0xFF_FED0_8038)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved a_par [3:0]

a_
ct

l_
pa

r

a_mid[2:0] a_tid[5:0]

Power On Initialization
X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

reserved d_par[3:0]

d_
ct

l_
pa

r

d_mid[2:0] d_tid[5:0]

Power On Initialization
X

Size: 64-bit only

Field Access Description
a_par R Address parity.
a_ctl_par R Control parity for address
a_mid R Master ID for address.
a_tid R Transaction ID for address.
d_par R Data parity.
d_ctl_par R Control parity for data
d_mid R Master ID for data.
d_tid R Transaction ID for data.

Register 4: RUN_CTRL Register

The RUN_CTRL register saves the state of the Runway control signals:
1) TRANS_ID
2) MASTER_ID
3) CTL_PAR
4) AD_PAR

One half of the register saves the state of these signals on address cycles, the other half of the
register saves the state of these signals on data cycles. This register updates with every non-idle
cycle until an error is detected, then it freezes. Interesting facts about the MASTER_ID are that a
MASTER_ID of 0x7 is used by Astro for BROAD_ERRORs it generates. A MASTER_ID of
0x6 is used by the Astro IOC for any transactions it masters. For these IOC mastered
transactions, the two most significant bits of the TRANS_ID contain additional information. A
pattern of 00 indicates a transaction initiated by the cache (fetch or flush), a pattern of 10

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 14 of 20

indicates a TLB request, a pattern of 01 indicates a peer-to-peer read transaction, and a pattern of
11 indicates a non-memory targeted write transaction (peer-to-peer, interrupt, etc.).

1.6.2.2 Runway Address Register
M
S
B

RUN_ADDR Register
(address: 0xFF_FED0_8040)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

run_addr[63:32]
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

run_addr[31:0]
Power On Initialization

X

Size: 64-bit only

Field Access Description
run_addr R Runway address.

Register 5: RUN_ADDR Register

The RUN_ADDR register saves the state of the ADDR_DATA bus on Runway whenever an
address cycle is on the bus. This register updates until an error is detected, then it freezes.

1.6.2.3 Runway Data High Register
M
S
B

RUN_DATA_HIGH Register
(address: 0xFF_FED0_8048)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

run_data[127:96]
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

run_data[95:64]
Power On Initialization

X

Size: 64-bit only

Field Access Description
run_data R Runway data.

Register 6: RUN_DATA_HIGH Register

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 15 of 20

The RUN_DATA_HIGH register saves the state of the upper 64-bits of turbo-mode data on the
ADDR_DATA bus on Runway whenever a data cycle is on the bus. This register updates until
an error is detected, then it freezes.

1.6.2.4 Runway Data Low Register
M
S
B

RUN_DATA_LOW Register
(address: 0xFF_FED0_8050)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

run_data[63:32]
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

run_data[31:0]
Power On Initialization

X

Size: 64-bit only

Field Access Description
run_data R Runway data.

Register 7: RUN_DATA_LOW Register

The RUN_DATA_LOW register saves the state of the lower 64-bits of turbo-mode data on the
ADDR_DATA bus on Runway whenever a data cycle is on the bus. This register updates until an
error is detected, then it freezes.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 16 of 20

1.6.2.5 Memory Address Register
M
S
B

MEM_ADDR Register
(address: 0xFF_FED0_C008)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved mid[2:0] tid[5:0]
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

re
se

rv
ed

addr[35:6]

Power On Initialization
X X 1

Size: 64-bit only

Field Access Description
mid R Master ID of uncorrectable read.
tid R Transaction ID of uncorrectable read.
addr R Address of uncorrectable read.

Register 8: MEM_ADDR Register

The MEM_ADDR register stores the MID, TID, and address of an uncorrectable memory error.
All i mplemented bits of the addr field reset to 1’s (an impossible memory address). This register
only updates when an error is detected. The syndrome bits can be used to improve address
resolution to 8-bytes.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 17 of 20

1.6.2.6 Memory Syndrome Register
M
S
B

MEM_SYND Register
(address: 0xFF_FED1_1440)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

syndrome7[7:0] syndrome6[7:0] syndrome5[7:0] syndrome4[7:0]
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

syndrome3[7:0] syndrome2[7:0] syndrome1[7:0] syndrome0[7:0]
Power On Initialization

0

Size: 64-bit only

Field Access Description
syndrome7 R Syndrome byte 7.
syndrome6 R Syndrome byte 6.
syndrome5 R Syndrome byte 5.
syndrome4 R Syndrome byte 4.
syndrome3 R Syndrome byte 3.
syndrome2 R Syndrome byte 2.
syndrome1 R Syndrome byte 1.
syndrome0 R Syndrome byte 0.

Register 9: MEM_SYND Register

The MEM_SYND register saves the syndrome of a memory read that has an uncorrectable error.
There are 8 bits of syndrome per 64-bit quantity, so a whole cache-line is represented. This
register only updates when an error is detected. Its reset value is all 0’s (the syndrome for no
error). The syndromeN field is the syndrome from the Nth 64-bit word of a cache-line
(syndrome0 is for the cache line at the lowest address).

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 18 of 20

1.6.2.7 Memory Address Correctable Register
M
S
B

MEM_ADDR_CORR Register
(address: 0xFF_FED0_C010)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

reserved mid[2:0] tid[5:0]
Power On Initialization

X

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

re
se

rv
ed

addr[35:6]

Power On Initialization
X X 1

Size: 64-bit only

Field Access Description
mid R Master ID of correctable read.
tid R Transaction ID of correctable read.
addr R Address of correctable read.

Register 10: MEM_ADDR_CORR Register

The MEM_ADDR_CORR register stores the MID, TID, and address of a correctable memory
error. All i mplemented bits of the addr field reset to 1’s (an impossible memory address). This
register only updates when an error is detected. The syndrome bits can be used to improve
address resolution to 8-bytes.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 19 of 20

1.6.2.8 Memory Syndrome Correctable Register
M
S
B

MEM_SYND_CORR Register
(address: 0xFF_FED1_1448)

L
S
B

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

 3
4

3
3

3
2

syndrome7[7:0] syndrome6[7:0] syndrome5[7:0] syndrome4[7:0]
Power On Initialization

0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

 1

0

syndrome3[7:0] syndrome2[7:0] syndrome1[7:0] syndrome0[7:0]
Power On Initialization

0

Size: 64-bit only

Field Access Description
syndrome7 R Syndrome byte 7.
syndrome6 R Syndrome byte 6.
syndrome5 R Syndrome byte 5.
syndrome4 R Syndrome byte 4.
syndrome3 R Syndrome byte 3.
syndrome2 R Syndrome byte 2.
syndrome1 R Syndrome byte 1.
syndrome0 R Syndrome byte 0.

Register 11: MEM_SYND_CORR Register

The MEM_SYND_CORR register saves the syndrome of a memory read that has a correctable
error. There are 8 bits of syndrome per 64-bit quantity, so a whole cache-line is represented.
This register only updates when an error is detected. Its reset value is all 0’s (the syndrome for no
error). The syndromeN field is the syndrome from the Nth 64-bit word of a cache-line
(syndrome0 is for the cache line at the lowest address).

1.7 Corner cases

What should happen when a read from memory has an uncorrectable error but the data isn't
actually used due to a cache-to-cache copy satisfying the read request? A path error can’ t be
signaled to a processor. In this case, a BROAD_ERROR will be sent instead. Even though the
data wasn’ t used, the memory subsystem is very sick, and the entire system should be halted as
quickly as possible to prevent further errors from propagating bad data.

Astro External Reference Specification +

Revision 1.2 02/17/00 Page 20 of 20

1.8 Things I though t I’d mention

• Astro never issues a DIR_ERROR.

• There isn’ t a one-to-one correspondence between error occurrences that cause us to issue a
BROAD_ERROR, and BROAD_ERRORs being issued on Runway. The first error
condition will t rigger Astro to send a BROAD_ERROR to Runway. Astro will not send any
more BROAD_ERRORs to Runway until the error is cleared by the ERROR_CONTROL
register.

