() Jordaa

External Reference Specification

for the Wax 1/0 ASIC

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 2 of 102

mEwLLs
K28 FackarD o !
lov.erview?.lé;..l.;‘l{.‘l.’iii'..:l."'O' *® ® ¢ " 0w e
1.1 Description 1 S A T RETRITrTS
1.2 Reference Material®......... 5.
\-
2 EISA Conversion Moduleocceieeeceocscssecsceasacccnss

2.1 Overview
2.1.1 Notes on Notation
2.1.2 Design Objectives

.........

...

...

...

2.1.3 Basic Operation

2.1.4 Hardware Organization
2.2 Functional Description

...

...

...

...

2.2.1 General Information

2.2.2 CPU Accesses to (E)ISA Slave Devices
2.23 CPU Locked Accesses to EISA Slaves

2.2.4 CPU Interrupt Acknowledge Cycles
2.2.5 CPU Accesses to Address Map RAM

...........................

............................

..............................

2.2.6 (E)ISA Master and DMA Device Accesses to System RAM

2.2.7 The Data FIFO

2.2.8 EISA Master Locked Accesses to System RAM
2.2.9 (E)ISA Master and DMA Accesses to Local Memory or 1/0

..........

...

..........

2.2.10 Control and Status Registers

...................................

22 Wdaeds

o ra

.5 riarawarc

escr
15T 11514 1o+ S R R R EEELETER TR

2.3.1 Pin Description
2.4 Basic Schematics

3 GSCinterface

3.1 GSC operation
3.2 Slave Operation

..

for EISA or 8086 Subsystems

se e s e s Y EEEE R I I A R R R B LN AL A R g
...
...

...

3.3 Master Operation
3.4 GSC(+) Arbitration
3.5 GSC(+) signals

4 RS-232 Interface
4.1 Description
4.2 RS—-232 Registers
4.2.1 Base Address
4.2.2 Register Overview

4.2.3 Register Descriptions

* e o

...

c e s e s e v e s s e s e s s AB T T e eec s st eas st aT e

...

...

e e v ess e s it s s men e s PP et s oL Ve

...

..

4.2.3.1 Hardware Handshake Overview
4.2.3.2 Reset Register

...............

................................

43 Hardware Handshaking Control

4.3.1 Hardware Handshake Overview

...................................

..................................

4.3.1.1 Enabling Hardware Handshake

4.3.1.2 Hardware Gating
4.3.1.3 RXRDY Behavior
4.3.1.4 Caveats
4.4 Software Differences

................................

..

...

..

..

4.5 RS—232 Signals

...

...

4.6 Sample Schematic

§ HP-HIL Interface ...

.......

5.1 Description

s 0002 e s e s s 00 s s s 00 s s s0 00

...

10
10
10
10
11
11
14
14
17
19
20
20
21

24
24

26
32

37
37
37
37
38
38

40
40

40

41
41
42
42
42
42
42
43
43
43
45
47

May 3, 1993 Dwg. No. A-1FT4-0001-31

Page 3 of 102

Description: Wax ASIC ERS, rev. 1.0

PACKARD

| ﬂ/z HEWLETT

5.2 HP-HIL Registers

.................

.............................

5§21 Base AQAress .ovvvierentorrananenearansosannsns e rererereeenee

5.2.2 Register Overview

5.2.3.2 8042 Data

§.3 HIL communication

5.6.2 Language register,

5.7 Software Hints

................

5.2.3 Detailed Register Descriptions
5.2.3.1 Assert Resetregister.............

................

$.3.1 Interrupt Status 5X
5.3.2 Interrupt Status 6X
5.4 BBRTC communication
$.5 Sound Generator communication
5.6 Configuration and Identification registers
5.6.1 Configuration register, R11

R12

5.6.3 Nimitz keyboard address map register, R78
5.6.4 ”Cooked” keyboard address map register, R79
5.6.5 HIL interface status register, R7A ...
5.6.6 HIL interface control register, R7B ..
5.6.7 HIL loop reconfiguration counter, R7D
5.6.8 Extended configuration register, R7E
5.6.9 Selftest result register, R7F

5.8 HP—-HIL Master Link Controller

5.8.1 Description of the

5.8.3 MLC Operation

5.8.42 Rl

58.44 R3
5.8.4.5 WO

5.8.4.7 W2

5.8.7 MLC vs. Cerberus

5.10 Sample Schematic

6.2 Register Definitions

6.2.2 Summary of HPIB

HP-HILMLC ..

5.8.2 The Least You Need to Know about HIL to "Get By”

................

.................

6 HPIBInterface ...oovvvvvnnnriennnnnnnenninnne, .
6.1 Description of Interface

................

Registers

6.2.3 Detailed HPIB Register Descriptions

.............................

.............................

...

§2.3.3 BOA2 StAtUS . . oveeeaaeaanenerrenneincacecnoeracaresraneaase
§234 8042 CODIIOl vvvvrrrieiniriiierenecnrecrnncesnesanne eareeese

.............................

.............................

.............................

.............................

.........................

.............................

.............................

........................

.....................

.............................

...........................

.............................

.............................

..

5.7.1 POWETUPTESEt ..uvvviiiiinieeiinnnannnnn e ereeeaeeeieaan
5.7.2 Auto—polling and HIL access commands

..........................

.............................

...............

5.8.4 Register Definitions
3R 27 5 -

5843 R2 t.iuiiiiiiiiiiiiiii it ettt e
5.8.4.6 Wl Liuiiiieiiniiiiiiiiiii ittt
5848 W3 L i it
58.5 FIFO . iuiiitiiii it iiiii it aeattenat e siaasenansannns
5.8.6 Software TIPS «.ovininrnrriiieiee ettt

.............................

59 HP-HILDisablecoviiiiiiiiiiririiiriiiiiiiiiiiiiiinnananas

.............................

.............................

.............................

6.2.1 Base AJAIesS . .vvvtiinernrioinrosnreansecanseaserasesansasesnn

.............................

.............................

49
49
49
49
50
51
s1
51
51
51
51
52
52
52
52
52
52
53
53
53
53

53.

53
53

53

53

56

56
57
57
57
58
58
58
58
59
59
59
60
60
61

62
62
62
62
63
63

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 4 of 102

A/Z8 PACKARD

R D 10] S R 63
6.2.3.2 Clear INTEITUPL . .'evvernrenncnnsnneseeonmernassneteesnncns 64
6.233 Reset RegISIEr .. .vvivunaeerrnneneeenseaonnaessenastnneees 64
6.2.3.4 ISA SLatus TEEISIED . .uvvvrueennrnrracnecaserranuocernensrnses 64
6.2.3.5 ISA CODNIOl TEZISIET .. ouvunernrencnrnencnceseasuennnnnocseees 64
6.23.6 DMA Addresst. J T TR TEE TS 65
6.2.37 DMA COURL «uvunernenrrnannseessnnnssssoscnssssasnasnssenes 65
6.2.3.8 DMA SIALUS . vnevnnnencronannsscssnnensssocecssnonanecaseses 65
6.23.9 DMA COBLIIOl +uvvennnrnrnrarnsnssnansaansseecanensenecaceces 66
6.2.3.10 DMA Character Match Valuecoooiiimeeencnennniencnees 66
62311 FIFO ADATESS +.ovverrriinrnreesneesnanansssnsensosnencsecns 66
62312 FIFO DA . 0uvvereniiirrnaereesacusnasesenssnsasnanceses 66
6.2.3.13 Extended Control R 66
6.2.3.14 Extended Statusoevrvrrnersnonrmsncnesasnancesncernens 66
6.2.3.15 /O FIFO POINIET ..evvvennennimanenencencnmmaaneeensanres 67
6.2.3.16 Processor FIFO POIntEr ..ovvvrernrntececnnnsonnancasnenanens 67

‘J 6.2.4 Summary of 9914 Registersooovrennnenniiirmraeneearrenenes 67
6.2.5 Detailed 9914 Register DesCTiptionscoeeriecrercnanscncaeerre 68
6.2.5.1 9914 TEISIETS oo vereernenrnrnransscennssronnassecneerennees 68

6.3 DMA .orvvernrnererucsasosasnssssensssassonstssecutaasesites 69
63.1 InbOUNADMA . .eiiiniiiinrenarn e snasae e 69
632 Outbound DMA ...ttt ettt iiie et 70
6.3.3 Character Matching cccvvvnnnnnnnnss S P it
6.3.4 HPIB PErfOMMANCE . - vt vvvrnernrescnsnensesenensnasnnsaorasenss)

6.4 SOMWATE HINLS . .o vevveenannaenereaesarsraanansessassanasances 72
6.4.1 Differences with the 82335 interfacecoverenuenrnes e 2
6.4.2 Possible software gOtChasc.iuuiiiiernnienririreanroacenees 72

6.5 HPIB Signalscuununnnmnnnnioesssenissiennnnseeseseseenes 73

6.6 Sample SCHEMALC « .. uvvversiinnnneee et 74

7 Watchdog Timer Interface....... ceeeneas 76
7.1 Watchdog Timer RegISIErsvvveverrerannnnnnnnnnreeeeeeernnns 76
7.1.1 Base AQAIESS . uovuevnrrnarornstnonmanosnossasenasuasoetenens 76
7.1.2 Detailed Register Definitionsooveeciiiiiieninnrerenieeees 76
7121 Timer CODIIOl onviineieaneen it et enen s 76
7122 TiMET AlIVE «vvenenrnarareenvincnanse st 77
7.1.3 Timing of EVERLS .. .oonnnniiniiiietee e 77

8 Real Time Timer Interfacecoeceeecenciccnancacncccone 78
8.1 Description of the Real Time Timersovvvvvaeereeenemmennnn.ne 78

8.2 General OPerationvuuveerresseernnneurnaeseiaesennneneees 78

8.3 Overview of Software Interfaceoovnieiniennirianerreereene. 78

8.4 Register Definitionsovinverenreueraremneenreeeeeneennes 78
8.4.1 Base AAAIESS . .ovveeerernsrnssrnennassasernossstnasansctoeces 78
8.4.2 Register OVEIVIEW . .ouuurenneennenrraseneseceaesnerasenes 78
843 ID REGISIEN « o nnvernnncesnnnessne s s tsnn st 79
8.4.4 Control Word REGISIET . .vvuvvnernnrrnesreimnaarenneneenmnees 79

8.5 Counter REZISIET « oo nuvveieennnrraseneneeasnnn e 80

8.6 Holding REZISIET v venuvernnnesnanerennersnnr e 80

8.7 SOFtWATE THPS « v v e vvvrronnvnnsannnesesssnnrtrasesoenennunnenesns - 80

9 Interrupt Controlcooeveene Ceessessineananse ceieenen 81
9.1 Register Definitionso.vooovreensernmanrareerneriearneeees 81

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page S of 102

A8 PACKARD

9.2 Interrupt Modes

.....

..

9.3 Interrupt Register Bit Assignments

...........................

10 Identification Register and Miscellaneous Control ceeeens

10.1 ID Register

...

11 Test AcceSS POrt . ooviivreneneceonorosncnsscansasonnsnansse

11.1 Description

11.3 Boundary Scan Chain
11.4 Internal Scan Chain
11.5 Clock Control Register
11.6 Test Control Register

11.7 Drive Inhibit Flip Flop

...............

.............

11.2 TAP Instruction Registercooviiniinrvineenneennnnnnennnn.

...........................

12 AddreSSMap 0000000000020 002000PR0 000000000 GPREIBOELLELREES

13 Electrical Characteristics cereenes ceeenas
13.1 DC Electrical Characteristics
13.1.1 Absolute Maximum Ratings

13.1.2 Input Protection

13.2.1 GSC Input Timing
13.2.2 GSC Output Timing

13.2.8 Wax Pinout

...............

13.2.3 i486 Interface Input Timing
13.2.4 i486 Interface Output Timing
13.2.5 i486 Interface EDPU Emulator Timing
13.2.6 8086 and Multiplexed Mode Input Timing
13.2.7 8086 and Multiplexed Mode Output Timing

.........

........

...........................

13.1.3 Electrical Characteristics Over Operating Range
13.2 AC Electrical Characteristics

...........................
R I R R R R
...........................
...........................

...........................

..........................

........................

......................

..

82
82

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 6 of 102

K728 PACKARD

List of Figures

Figure 1 Wax Block Diagramouveenrraiienannnrioncnenn: P
Figure 2 Block Diagram of the Complete GSC-to-EISA Interface
Figure 3 Hard-Wired Byte Swapping Between Data BUussesooveonnerenee
Figure 4 Accesses fromthe CPUociciieiiiinniiinennneenens eaesesas
Figure 5 Accesses from an (E)ISAMaster........oooovvneeenees Precesvrenss
Figure 6 CPU Accesses to EISA & Built-In /O fesessetrasranssases
Figure 7 CPU Accesses to ISAT/O ..ovviiiiiiernnniiirniiiiinaeneeceneees
Figure 8 (E)ISA Accesses Through the AddressMap semsavsass cavs
Figure 9 Wax to EISA Schematic, Without External EDPU, Page1of2.........
Figure 10 Wax to EISA Schematic, With External EDPU, Page 10f2
Figure 11 Waxto EISA Schematic, With or Without External EDPU, Page 20of2

Figure 12 Sample Muxed 8086-Mode Wax to
TI Token Ring Controller Schematic, Page 10f1cvvnvvncnannen

Figure 13 RS—232 Schematic Cerees e eebeeiesrtenanaranasrran
Figure 14 HPHIL Schematicoooivuceriieeniiriiinnnaaeronnenees:
Figure 15 HPIB Schematicooiiiiinieeciiiiiiiinieanen, cevranres

List of Tables

Table 1 RS=232 REGISIETS .. vevvarnenennenenemnenensansnes e
Table 2 RE=2328ignals ... oovvvinnnesnrinerroruanrcicrnactariananennss
Table 3 RS—232 Connector PInOUtSouvuinrininiieraraananasraaeenes
Table 4 HP—HIL REZISIETSvunvrvenrenernrnarnarunrecssnsenarennaens
Table § HPIB REQISIEIS . .rvvvnevnoresreinnmraionotesunsassnsranaensenns
Table 6 ISA SIATUS . v v v v rnvancsnnonesueesosscancsacsnssssentasnasnssses
Table 7 ISA Control TR P P PR
Table 8 DMA S1atls .. .0vinrireirenreareenaossesanssssssocaosancesaesens
Table 9 DMA COBOl . ..oviienrriiinaeaaancsssnseranssasssacossssonsons
Table 10 Extended S1a1USot ieierenreoriusinnrsvrrsascssontonrenes erun
Table 11 9914 Registerscooouvenen O
Table 12 Inbound TIMINGovr v craessniees
Table 13 Outbound Timing . ..vevvrirrnrnenioininieanneencntaens
Table 14 HPIBSignals ...oouvnnienenioiiveniniiiarniiiiaineinenanens
Table 15 Watchdog Timers RegiSIErsovveriiiiaiiicsniunerananannss
Table 16 Real Tlme Timers Registers ... ooucorevnannrernenreeniasiiaranans
Table 17 Interrupt REGISIErsoionnoiineiiiiiiaiiiee i
Table 18 Wax Interrupt Modesooieiniiiiiriioiiiiiiniiiasatnraninens
‘Table 19 Interrupt Control Register Bit Definitioncoovovvienenes cen
Table 20 IRR, IMR, and IPR Bit Definitioncovvnviniiinninenanennnee.
Table 21 IAR Bit Definitioncvhne Ceeraarinen hresassesvescanrioan
Table 22 ID Register Bit Definition erreesseesaearseanaanias
Table 23 TAP INStructions .. ovvvvveanneeeneesarirranoenansnacssssstacnns -
Table 24 Test Control DR ... cvviiniiininnnianss vrieenianes PN ceves
Table 25 GSC AddressMap......covvevnnns e ieaeaertae e
Table 26 GSC+ Address Mapoveveiiiinrarrinieienranenaeeeiennnns .

13
14
15
16
18
19

33

35

36
47
61
75

22X EELE

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31

Page 7 of 102

r HEWLETT
ﬂf) PACKARD
1 Overview

1.1 Description

This document describes the external interface of the 1FT4-0001 ASIC, Wax. Wax is
the internal code name for an ASIC which provides I/O on the GSC. Wax is designed using
a standard-cell design methodology utilizing Hewlett-Packard’s CMOS 26B libraries. Wax
is packaged in a 240 pin MQUAD package.

GSC I ltlcsel y
74 f interface 1 converter 62
Interrupt | RS232 y

control /8
Rea‘l Time 1 HP-HIL / y

Timers p)
Wafchdag 1 HPIB y

Timer f 1

Figure 1 Wax Block Diagram

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 8 of 102

78 PACKARD

Wax provides an interface between the GSC and Intel buses. The Intel buses to which
Wax connects include the 1486, i8086, and a special multiplexed version of the i8086 bus.
Also, a serial port, a IEEE 488 compatible HPIB port, HP-HIL human interface port, and
a couple of special purpose timers are integrated into Wax.

A test access port (tap) is included in the Wax ASIC. This tap is compatible with the
JTAG 1149.1 specification. It allows access to the boundary of the ASIC for board testing.
The tap also has access to all internal flip flops through a scan chain. This allows the Wax
ASIC to be tested.

Following are descriptions of the circuitry in the Wax ASIC, specifications for the ASIC,
connection information for the ASIC, and programming information. Each section of the
Wax ASIC is described, and if the circuit requires external connections, a sample circuit is
included showing how to use that section. Register definitions are included as are some notes
on how to program that specific section.

This is revision 1.0 of the Wax ERS, last modified on May 3, 1993.

1.2 Reference Material

Below is a list of documents which may be used to gain additional understanding of the
concepts and devices used in a system with the Wax ASIC:

Gecko 1/O Subsystem ERS
HP A-A2263-66510-31

TACT84500 EISA Chip Set Designer’s Handbook
Texas Instruments Inc.

EISA Bus Specification, Revision 3.12
BCPR Services Inc., 1400 L Street N.W., Washington D.C. 20005

NS16550A Data Sheet
National Semiconductor Corp.

8042 Firmware Documentation Revision B
HP A-1820-4784-2

Cerberus ERS
HP A-1RD2-6201-2

TMS9914A General Purpose Interface Bus Data Manual
Texas Instruments Inc.

The Test Access Port and Boundary-Scan Architecture
IEEE Computer Society Press #2070

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 9 of 102

/@ HEWLETT
[f;/’ PACKARD

2 EISA Conversion Module

2.1 Overview

This module is called an “EISA converter” only for simplicity’s sake, and because its primary purpose is to
interface a host’s GSC (Gecko System Connect) bus to the EISA bus, to give the system a standard expansion
/O bus. But because of EISA’s complexity, this module does not directly generate EISA bus signals; it generates
an i486-like bus, which the “EBCU” (EISA Bus Control Unit) and “EPCU” (EISA Peripheral Control Unit) of

TI’s EISA chip set then convert into EISA (and ISA). Thus, in its primary mode of operation, this is an i486 bus
conversion module rather than an EISA conversion module.

The first exception to this is the EISA data path. Normally, an EISA system would use the third of TI's EISA
chips, the “EDPU” (EISA Data Path Unit), to interface the host data bus to EISA’s data bus, and to perform the
necessary byte lane copying on EISA’s data bus. Wax incorporates this functionality of the EDPU, and therefore

can interface directly to the 32-bit EISA data bus. This can save the cost and board space of an extra 160-pin
ASIC at the expense of only a small increase in Wax’s complexity. But there are electrical limitations to Wax’s
built-in EDPU; and if Wax is to be used in a system with more than 4 EISA slots, or a system that places Wax
more than a few inches from the EISA connectors, an external EDPU should be used (and Wax should be
configured to provide an i486-like data bus that is fed into the external EDPU).

The second exception is an alternate mode of operation that can be selected at power-up. This mode causes
Wax to generate an 8086-like bus rather than its normal i486-like bus. Primarily differing in the definition of
timing and control signals, this mode may allow Wax to directly connect to simple devices that were designed to
interface to the ISA bus. The third exception is a variation on the converter’s 8086 mode. This variation is
designed specifically to let Wax connect directly to TI’s TMS380C16 Token Ring controller chip. It multiplexes
DMA addresses onto the data lanes, and makes other signal definition changes to help eliminate external glue.

The converter can also be configured to support GSC+ bus transactions on the host side—these include the
pending of host or EISA transfers to increase total host bus utilization, and retrying of host transfers to EISA
while Wax is busy running another transfer.

So, this converter module is really a GSC/GSC+ to EISA/ISA/i486/8086/Multiplexed 8086 Bus converter;
but to save ink and my fingertips, I refer to it simply as the “EISA converter.”

2.1.1 Notes on Notation

First, EISA is (to some degree) a superset of ISA; both EISA and ISA boards can be used in an “EISA”
system. Wherever this document refers to a device on the EISA bus that could be either an EISA or an ISA
board, it will refer to it as an (E)ISA device. “ISA” will refer to ISA-only boards or features, and “EISA”
typically refers to boards or features that take advantage of EISA’s extensions to the original ISA specification.

Unless otherwise indicated, all numbers in this section of the document are in decimal. Hexadecimal
numbers are indicated by a leading “$”. Signal names, module names, address and data values, etc. are set in a
typewriter-style_font to help distinguish them.

2.1.2 Design Objectives

First, this design matches the software interface of the EISA converters on other PA-based controllers and
workstations, such as Pace and Scorpio. This includes the addresses at which (E)ISA memory and 1/0 devices
are accessed, how the address map is set up (and used by EISA or ISA devices), and how interrupt acknowledge
cycles are run.

Second, this design allows EISA- or ISA-mastered and DMA transfers to run at high speed while usin gthe
host bus relatively efficiently. In particular, independent transfers on (E)ISA and the host bus are allowed 1o run

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 10 of 102

[b 7 HEWLETT

PACKARD

concurrently. Also, (E)ISA reads from system memory arc pre-fetched in 8-word block transfers, so that up to 7
subsequent sequential reads can be satisfied from Wax’s internal memory; and up to 8 (E)ISA writes to system
memory are buffered in Wax, allowing the (E)ISA cycles to run at full speed even when the host bus cannot
immediately be acquired, and allowing more efficient block transfers to be run on the host bus once it is
acquired. Additionally, when Wax is in KIOSC mode, it allows the host to “pend” outbound DMA data
transfers, letting the KIOSC bus be used for other things while host memory finds the requested data.

Note that host-originated transfers are not buffered as (E)ISA master- or DMA-originated ones are.
Typically, such transfers will not be large and sequential (as (E)ISA DMA transfers would be), and will be much
less frequent (e.g., large blocks of datato or from SCSI or LAN will instead be transferred by DMA), s it makes
less sense to buffer them. Even without buffering, CPU accesses to (E)ISA via the GSC bus will run ISA cycles
at full speed and EISA cycles at about half of their theoretical top speed. In fact, it is quite probable that the
(E)ISA slave will be the bottleneck and will respond much slower than Wax could handle. So for this reason,
when Wax is in KIOSC mode, it will “pend” all reads from the host to (E)ISA, releasing the KIOSC bus for
other use until the converter actually has data available.

- 2.1.3 Basic Operation
This conversion module supports the following functions:

¢ CPU reads from and writes to (E)ISA 1/O addresses—also note that address scrambling is per-
formed for accesses to JSA /O space, so that each ISA board gets its own protectable page in the
CPU’s address space.

e CPU reads from and writes to (E)ISA memory addresses—only 55.5 MB out of (E)ISA’s 4GB
address space is accessible to the CPU, but the accessible ranges include subsets of each of ISA
20-address-bit, ISA 24-address-bit, and EISA 32-address-bit memory.

e CPU reads from and writes to the address map RAM—after the CPU sets it up, this mapper lets
(E)ISA master and DMA devices access any desired pages in system RAM.

e CPU reads from and writes to the Lock Control Register—this register lets the CPU run a se-
quence of “locked” (undivided) cycles on the EISA bus.

e CPU reads from and writes to the FIFO Enable Register—this register lets the CPU flush the
inbound buffer and clear the outbound buffer, or disable data buffering altogether.

e CPU reads from the Interrupt Acknowledge Register—his is the way the CPU runs interrupt
acknowledge cycles to the (E)ISA interrupt controller and obtains the “interrupt vector” number
of the highest pending (E)ISA interrupt.

o (E)ISA master and DMA reads from and writes to the mapped address space—these accesses
are passed through to the system RAM, after having their addresses translated by the appropri-
ate address map entries. If these accesses are not “locked” on the EISA bus, they can be buffered
within Wax: writes do not immediately occur to system RAM, and reads can be satisfied from
data which was pre-fetched from system RAM. If these accesses are “locked” by the assertion
of EISA’s LOCK signal, the lock is propagated all the way back to system RAM, and no other
masters can run bus cycles or access system RAM between the locked EISA cycles.

« Interrupt requests and non-maskable interrupts from (E)ISA—after flushing and clearing the
data FIFO to ensure that the system sees consistent data, these are simply passed to Wax’s
interrupt controller where they are dealt with appropriately.

2.1.4 Hardware Organization

On the “outside,” this module generates and accepts i486-like control and address signals to communicate
with TI’s EISA chip set, it accepts data path control signals from the EISA chip set, and it directly connects to

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 11 of 102

L' 2diano

(E)ISA’s data bus. In its alternate 8086 mode, it instead generates ISA-like control, address, and data signals that
can be directly connected to TI's IBM Token Ring controller chip. On the “inside,” the module communicates
over Wax’s internal-GSC bus, which is very similar to the external GSC (or KIOSC) bus, including multiplexed
address and data lines, but there is generally a one-clock delay when signals enter or leave the Wax chip. When
the EISA conversion module owns the host bus, it may generate single transfers or 2-, 4-, or 8-word burst .

transfers; when it is a slave, however, it will respond correctly only to single-word transfers (extra words will be
ignored during writes and invalid during reads).

The bulk of the circuitry is synchronous to the host bus clock, which is expected to run at a frequency
somewhere in the range of 25 MHz to 37.5 MHz. Unfortunately, the EISA chip set cannot operate the EISA bus
at full speed with a “host” clock at most of these frequencies. Rather than take an approximately 10%
performance hit on all (E)ISA bus cycles (including those between two (E)ISA devices that don’t even involve
main system memory), the EISA chip set and the outside end of this conversion module are driven by a separate
33 MHz clock. Thus, all of this module’s 1486 signals must be re-synchronized to the appropriate clock when
they enter or leave the chip. Between the module’s data buffering, and the fact that EISA’s backplane clock

operates at only 1/4 the frequency of the EISA chip set’s clock, this re-synchronizing generally has a minimal
effect on performance.

Figure 2 shows the complete host-to-EISA conversion path, including the conversion module within Wax,
and the two TI EISA chips:

Description; Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 12 of 102

K’B packarD

GSC/Kiosc Wa

86 Modul

"™+ 3] Reset Synchronizer |

[]
]
Y % |
: Interrupt Control 2 mi
’ 8
’ w8
+ | Control Registers. 9
s E
'] csc| Esal :
Slave { Master £
| Control Control »
R 2
GSC | EISA
Arbiter | Arbiter
; 4
’
arlout | GSC | EISA
ous] Master | Slave L]
: Control | Control .
' .
| I]
+ |Data FIFO Control I B
L} 9
' Back-end| .
, A_gg;ess Data | |Interface] &
« | R | FIFO | .
. "
" Ay 1 '
[]
N address/ : < ? address
data out 8 :
———— i486 10 GSC ’
' Address & Data feg .
address/ ¥ e :
datain ? ;
caab | GSCto i486 :
.| Address & Data | p» ' ‘: data
. E]
v 1.
! ,.
' 8086 Converter .
N L
' EDPU Emulator a
' 4
P oo o0 0 .% - e 0O " ® 5" 0w ' dau palh conuo‘

Figure 2 Block Diagram of the Complete GSC-to-EISA Interface

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31 Page 13 of 102

| HEWLETT
N () Prsyatd
2.2 Functional Description

This section describes how software communicates with (E)ISA expansion boards.

2.2.1 General Information

The central, unavoidable problem with an EISA converter on a PA-based computer is that the CPU is
big-endian, whereas the (E)ISA bus is little-endian. In other words, they disagree on the location of the most
significant byte within a 16-bit half-word or a 32-bit word.

There are a couple of potential solutions to this problem. Unfortunately, there is no possible solution that
would make all software designed for a native-EISA system work without change. The alternative implemented
here (and in all other HP workstations) reverses the bytes within the word-wide data path between GSC and the

(E)ISA bus:
MSB | LSB
bit 31 24 23 16 15 87 0
GSC Data Bus: byte 0 byte 1 byte 2 byte 3
MSB LSB
bit 31 24 23 16 15 8 7 . 0
EISA Data Bus: byte 3 byte 2 byte 1 byte 0
Figure 3 Hard-Wired Byte ‘Swapping Between Data Busses

This choice has the advantages that mass-storage devices written with an (E)ISA I/O controller on this
system can be read by a controller on a native-(E)ISA computer (and vice versa) without any data pre- or
post-processing, and that all accesses to (E)ISA (byte, half-word, and word) can be run at their “expected”
addresses, without having to be modified according to what part of a word is being accessed. This choice’s
disadvantage is that software must manually swap the bytes within any half-word or word access to (E)ISA:

To access the word of data $aabbcedd in an (E)ISA memory or I/O slave, the
CPU would read or write the word $ddccbbaa.
To access the half-word of data $aabb in an (E)ISA memory or I/O slave, the
CPU would read or write the half-word $bbaa.

For example, if you want to write the word $12345678 to an (E)ISA board, you must actually write the
value $78563412. If you want to write the half-word $1234 to an (E)ISA board, you must actually write
$3412. Reading from an (E)ISA board is similar; you must swap the bytes returned by the read before using the
value. Under HP-UX, drivers should make use of the kernel’s EISA service routines that read and write
half-words and words and perform this byte swapping for you.

Figure 4 shows the converter’s address space as seen by the CPU:

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 14 of 102

R/ZR FACKARD
CPU Address Space Control (E)ISAT/O (E)ISA Memory
/ /SFFF;;FFF

' inaccessible :
X :SOJCO 0000
$PFBFFFFF J/ J:“BF PPPP
7A ~d ' A ~
g/ g g/ g
EISA
> 32-Address Bit
Memory
$FD0O0 0000 $01000000
$FCFFFFFF SOOFF FFFF
-~ |~
oA < A P
’/ ' 4/ -
ISA
> 24-Address Bit
Memory
Address Map
(1024 entries)
$FC500000 $00500000
$FCAFFO000 ' ‘$004FFFFF
-’ = 7 ' '
, L]
' inaccessible :
SFC100000 ' '50010 0000
SFCOFFFFF S000F FFFF
ISA
> 20-Address Bit
Memory
$FC080000 $00080000
$FC07FFFF , L $000TFFFF
t D address scrambling : :
& o .] '
. inaccessible |
SFC020000 ' '
FCO1F000 gtla(‘)u?ﬁlém.)wledgc) '
FC01E001 8 . .
FC012001 Bus Concurrency Reg)
fresiise] FIFO Enable Keg - . :
FCOO Fpn-r*)] C N ro eg. SFFFF . f
ZFcooooooP — » |EISA /ISAVO{¢o000 | 200000000 -

Figure 4 Accesses from the CPU

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 15 of 102

HEWLETT
ﬂi” PACKARD

Figure 5 shows (E)ISA memory space as seen by an EISA or ISA master (note that the master can access
(E)ISA I/O space too; the converter doesn’t get involved in those accesses at all):

(E)ISA Master (E)ISA Memory System
Memory Address Slave Access Memory Access
srmml J’ SFFFFFFFF SFFFFFFFF
—
— “ 2
>
03C00000 $03C00000
03BFFFFF $O03BFFFFF
oA A
5 o s P
o o o -
- “1 EIsA
32-Address Bit
> Memory
: (accessible
from CPU)
$01000000 $01000000
SOOFFFFFF SOOFFFFFF
ISA
24-Address Bit
> Memory
(accessiEIe
from CPU)
$00500000 $00500000
$004FFFFF
} ———————> Address Mapper -
$00100000 SO00F FFFF
$0008 0000 —_— 20 bit - $00080000
$00000000 —_—> ISA20bnMem $00000000 $00000000

Figure 5§ Accesses from an (E)ISA Master

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 16 of 102

K28 FAckarD
2.2.2 CPU Accesses to (E)ISA Slave Devices

The CPU can access all of (E)ISA’s O space and much of its memory space as indicated in the above
diagram. As a slave, the converter will correctly respond only to single (or partial) word reads and writes; if a
multiple word read is issued, the converter will provide only one valid word of data and then supply garbage; if
a multiple word write is issued, the converter will accept only the first word and then ignore the rest.

If Wax is used in a KIOSC system that supports pended reads, any read to an (E)ISA slave will be pended,
and Wax will release the host bus. As soon as the (E)ISA cycle has completed and data is available, Wax will
arbitrate for the KIOSC bus and run a read response cycle to provide the data to the host. While a read is
pending, Wax will “retry” all accesses to the EISA converter address space.

If a partial-word read or write is issued, the converter may have to perform more work, since GSC allows all
possible combinations of byte enables whereas EISA allows only contiguous bytes to be enabled. If a host bus
cycle is issued with a set of byte enables that would be invalid on EISA, the host transfer is split into two EISA
transfers. GSC also allows transfers to be run with no valid byte enables; EISA disallows such transfers, and so
if one is issued, the converter will complete it on the host bus but not pass it on to EISA.

Aside from the above issues and the byte-swapping problems, CPU accesses to (E)ISA memory are
straightforward. As implied by the above CPU address space diagram, the accessible regions of (E)ISA memory
are directly mapped into the CPU’s address space:

To access (E)ISA memory address x (where x is within either of the ranges
$00080000-$000FFFFF or $00500000-$03BF FFFF), the CPU
reads or writes address $FC000000 + x. :

In this system, (E)ISA memory devices can be configured at other address ranges; if they are, they will be
inaccessible to the CPU, but they can be used by EISA or ISA master cards for local memory.

CPU accesses to (E)ISA J/O devices are not so straightforward. The complications arise from a desire to
protect one board from inadvertent or malicious accesses by unauthorized drivers and users. Unlike the (E)ISA
memory space, which is divided between boards in large chunks, the I/O space is much more compact. In fact,
all of I1SA’s I/O space falls within a 4kB block, the size of one MMU page—without additional hardware
protection in Wax’s converter, it would be impossible to protect individual ISA /O boards.

It turns out that, if we extract the JSA FI/O ranges from (E)ISA I/O space, we are left with built-in /O and
EISA slot-specific 1/O addresses all naturally aligned on MMU page boundaries, with one board per page. Thus,
these parts of the I/O space can be directly mapped from a CPU address:

To access EISA or built-in I/O address x (where bits 8 and 9 of address x are
both 0), the CPU reads or writes address $FC000000 +x.

Graphically, this part of the converter ’s address space appears in Figure 6 . This converter will refuse to run
CPU accesses at addresses that are marked as invalid; such accesses will be completed on the host bus (i.e., the
converter will issue a READY), but no (E)ISA cycle will be run:

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 17 of 102

1 ~a HEWLETT
~ | [/’/7 PACKARD

CPU Address Space (E)ISA 1/O Space
.......... ' ey
STEOOTTE imvalid ‘gliased ISAT/O"
$FCOOFCO0 — SFCOOFCFF |] —» [| $FC00 — SFCFF
v invalid . «aliased ISA I/O.
$FCO0F800 — $PCOOFSFF |] — | 1sF800 — SF8FF
. invalid . valiased ISA /0! E_IS,A S}Ot #15
$PCO0F400 — $PCOOPAFF [] —» [-] $F400 — SFAFF (if it existed)
' invalid ‘aliased ISA /O
$FCO0F000 — $FCOO0 FOFF | | — 1sF000 — SFOFF
& # Z #
$FC001C00 — $FCOOICFF| i —_— [isxcoo —$1CFF
‘' invalid ‘aliased ISA 1/0"
$FC001800 — $FCO0 18FF | |l —» | | $1800 — $18FF
. invalid | .aliased ISA I/O, EISA Slot #1
$FC001400 — $FC00 J4FF |] —p | 151400 — $14FF
 invalid ! \aliased ISA 1/O"
$FC001000 — $FCO0 zorr!'] ———— [}$1000 — $10FF
: invalid :aliased ISA IO
$FC000C00 — $FCOO0OCFF|] ——» |]50C00 — SOCFF
» invalid ! _.aliased ISA 1/O!
$FC000800 — SFCOOO8FF[.] —— [] 50800 — SOBFF »
' ipvalid ‘aliased ISA 1/O Built-in 1/O
$FC00 0400 — SFCOO OAFF [] —— [150400 — SO4FF
v invalid . v ISAIO .
$FC000000 — SFCO0 0OFF |] —— | {50000 —$OOFF

Figure 6 CPU Accesses to EISA & Built-In 1/O

Now, Figure 6 shows several blocks of ISA I/O space: the primary ISA 1/O range exists at $10 0-$3FF, but
the EISA spec also defines aliases for this range every $400 bytes, from $500-$7FF through $FD00~SFFFF.
The problem with this 1/O space is that primary ISA I/O space is divided into 8-byte chunks, and each ISA board
can use one (or more) of these chunks. Thus, to protect cards from one another, every group of 8 bytes in this
region must be mapped into a separate 4B MMU page. All of the aliased I/O addresses are made accessible to
the CPU (just in case some I/O board needs to use them to distinguish between its registers); but because most
ISA I/O boards don’t even look at address lines higher than SA[9], we can safely assume that each aliased I/O
address accesses the same board as its corresponding primary I/O address, and map the aliased 1/0 address into
the same MMU page as the primary address.

Figure 7 shows the address scrambling method chosen by this converter (and the Series 300, 400, and 700
EISA converters) to provide the proper protection. Note that three bits of the CPU address are given as “X”s;
these bits are don’t-cares in this design, but all software should set these bits to 0 for consistency. Also note that
one or both of CPU address bits 17 and 18 must be set to 1 to access ISA 1/0 (otherwise the CPU address will
point to EISA /O space or to the converter’s internal register space):

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 18 of 102

(D iiaat

CPU 313029282726252423222120191817161514131211i0 9 8 7 6 5 4 3 2 1 0
Address: 1111111111110:0 OJOIOJOJOJTJ?I?‘?J?I?J?ixllel? ?J:Iv?l?lxj.l.l.
or 1l
orl 1l

ISA1/0

Address: 151413121110 5 8 7 6 5 4 3 2 1 0

Figure 7 CPU Accesses to ISA I/O

For example,
. o the CPU reads or writes address $FC020000 to access ISA I/O address $0100;
~« the CPU reads or writes address SFC02 00CO0 to access ISA I/O address $3100; and
- e the CPU reads or writes address $¥C021001 to access ISA 1/O address $01089.

In general:

To access ISA I/O address x (where bit 8 or bit 9 within address x is 1), the
CPU reads or writes address
$FC000000 + ((x & $SFC00)>> 6) + ((x & $03FB) << 9)+(x & $0007).

2.2.3 CPU Locked Accesses to EISA Slaves

The CPU can use the converter’s internal Lock Control register to run a sequence of locked cycles to the
EISA bus. Although the ISA bus has no notion of locked bus transactions, the Lock Control register can also be
used during accesses to ISA slaves to ensure that the TI chipset will not take mastership away from the CPU in
the middie of a sequence of transfers.

. The Lock Control register is accessed by the CPU as the least significant bit (bit 0) at byte address
$FC010001. When set to 0, this bit will cause Wax to immediately request ownership of the (E)ISA bus. Once
Wax acquires the bus, it holds it until the CPU sets the Lock Control register back to 1, and locks all intervening
CPU accesses to EISA.

To run a sequence of indivisible (E)ISA bus cycles, the CPU writes the byte
$00 to address $FC01 0001, performs the (E)ISA reads or writes that
should be locked together, then writes the byte $01 to address $FC010001.

Note that Wax allows a write to this register to complete before Wax actually acquires the EISA bus. For
running locked cycles this is desirable, since EISA doesn’t really need to be tied up until the CPU’s next access
to an EISA device. However, if this bit is used just to keep (E)ISA slaves out of system memory, software needs
to know when Wax has actually Jocked the EISA bus. It can do this by running any cycle for which Wax needs

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 19 of 102

| [ﬁﬂ HEWLETT
: 48 PACKARD

to own EISA after writing to the Lock Control register: when that second cycle completes, Wax is guaranteed to
have acquired and locked the EISA bus. A read from Wax’s address map RAM (and throwing away whatever

data is returned) is a good choice for this second cycle, since it must acquire the EISA bus, but it has no other
side-effects. .

To guarantee the CPU exclusive access to system memory that may also be
accessed by (E)ISA devices, the CPU writes the byte $00 to address
$FC01 0001, reads the word at address $FC100000 (or performs any oth-
er access to the address map RAM or to an EISA device), then accesses the
desired shared system memory, then writes the byte $01 to address

. $§FC010001.

When writing to this register, the value in bits 1-7 is currently ignored; but for future compatibility, these
bits should be set to 0. The CPU can also read this register to determine the current state of the Lock Control bit
(the values read from the other bits in this register should be treated as undefined and be ignored). At power-up,
the Lock Control bit is initialized to 1 (the (E)ISA bus not locked by the CPU).

2.2.4 CPU Interrupt Acknowledge Cycles

When any of (E)ISAs interrupt request lines are asserted, the TI chipset will generate an IRQ which Wax
passes back to the CPU (through Wax’s main interrupt controller). In an 80x86-based system, which the TI
chipset is designed for, the CPU would then initiate a vectored interrupt acknowledge cycle, in which the chipset

- would provide a unique interrupt vector for the highest-priority (E)ISA interrupt that is pending. However, the
PA processor in this system does not run such vectored interrupt acknowledge cycles; and so Wax provides an
alternate means for the CPU to identify the highest-priority pending (E)ISA interrupt.

A CPU read of the byte at address $FCO1F000 will cause Wax to perform a simulated interrupt
acknowledge cycle to the TI chipset. The “vector” number returned by the chipset will be passed back to the

CPU as the value of this read. Note that the most significant part of this vector number byte must be set by
software when it initializes the chipset’s interrupt controller.

To run a simulated vectored interrupt acknowledge cycle, the CPU reads a

byte from the address $FC01F000; the value returned is the interrupt vector
number from (E)ISA’s interrupt controller.

Note that the interrupt service routine must also issue an EQI (end of interrupt) command to the TI chipset
to clear the interrupt request; the interrupt acknowledge cycle does not take its place. Also note that NMIs from

the TI chipset are handled separately, and are not vectored, so no interrupt acknowledge cycles are run to service
them.

2.2.5 CPU Accesses to Address Map RAM

The address map RAM allows (E)ISA master and DMA devices to talk to system memory. The CPU must

set up appropriate entries in the address map, to point at selected pages within the system’s memory, before
enabling an (E)ISA master/DMA transfer to or from system RAM.

Each address map RAM entry translates one 4kB address range of (E)ISA memory into one 4kB page of
system memory. The page offset (address bits 0 through 11) is not modified by this translation. There are a total
of 1024 ($400) entries in the address map RAM; thus 1024 X4kB = 4MB of (E)ISA memory space can be
mapped into system RAM addresses at any time.

The CPU accesses the address map entries as words, from addresses $FC10 0000 through $FC4F 0000,
with one entry every $1000 bytes. The address map is read/writeable from the CPU. Each entry consists of the

Description: 'Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 20 of 102

! [’6/7 HEwLETDT

PACKARD .

page number of a 4kB block of system RAM to be accessible from (E)ISA; in other words, an entry is the
desired RAM address shifted right by 12 bits. The upper 12 bits of an address map entry are currently not used;
they will read as Os, and should be written as 0s for future compatibility. The address map cannot be directly
accessed from (E)ISA,; instead, every (E)ISA memory access from $00100000 through $004F0000 uses
the address map to generate an address into the system’s memory.

To make system RAM addresses $xxxxx000 through $xxxxxFFF acces-
sible to an (E)ISA device, the CPU writes $000xxxxXx to an address map
entry at $FC100000, $FC101000,...,0r SFC4FF000.

To prevent data from being read from or written to incorrect system RAM addresses, any write into the
address map RAM flushes all inbound data and invalidates all outbound data in the FIFO before taking effect. In
a KIOSC system that supports pended reads, a read from the address map RAM will be pended (this is because
Wax must arbitrate for the EISA bus before it can safely access the address map RAM, and this process may take
a significant number of host bus cycles).

The following section describes in more detail how an (E)ISA device uses this address map to access system
RAM. '

2.2.6 (E)ISA Master and DMA Device Accesses to System RAM

This converter reserves (E)ISA memory space from $00100000 through $004F FFFF for reads from or
writes to system memory. No (E)ISA memory boards should be programmed to respond in this address range.
As described above, accesses to this region are translated by the address map before being forwarded to system
RAM. In particular:

After the CPU has written $000xxxxx to the address map entry at
$FCyyy000, an (E)ISA device can access system RAM address
$xxxxxzzz by performing a memory read or write to (E)ISA address
$00yyyzzz.

B

As an example, suppose the CPU has written $000ABCDE to address $FC321000. Then, an (E)ISA
DMA or bus master transfer to (E)ISA address $00321789 will be passed to the system RAM as a transfer to
address $ABCDE789, as follows:

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 21 of 102

- HEWLETT
ﬁf" PACKARD

Address Map Table:
$4FF
must = $001, $002, $003, or $004 R
o — $4FE \ .
[3
(E)ISA Address: |0, 073,271,789 °
N ——— | o
®
$322
1 1 - |]
$321
> A /B ,C D E
$320[™ ~" o
J/ll] 1
[}
. ®
Y °
System RAM —— -
Address: A Bjc,D|E 7)8,9
$101
} 1 1 1
$100 .
1 i 1 i

Figure 8 (E)ISA Accesses Through the Address Map

In a KIOSC system that supports pended reads, any (E)ISA-originated read from the host will be pended,
frecing the host bus for other use. As soon as host memory is ready to supply the requested data, it rearbitrates
for the KIOSC bus and sends the data to Wax. Throughout this time, the (E)ISA slave is stalled, since (E)ISA
has no notion of split transfers. Thus, any host transaction to the EISA converter while it is waiting for pended
read data must be “retried.”

2.2.7 The Data FIFO

+ (E)ISA-originated transfers to or from system RAM are normally subject to buffering within the converter
for efficiency. This converter contains one 8-word data buffer that can be used for either inbound or outbound
transfers; it is set up to take advantage of the 2-word, 4-word, and 8-word burst transfer types available on the
GSC and KIOSC busses.

When an (E)ISA device first reads from system memory, the converter will issue a burst read on the host bus
that includes the requested word through the last word of its 8-word data line. Thus, up to 7 words are prefetched
and stored within Wax. Subsequent sequential reads are satisfied from this data FIFO, and no more host bus
cycles are issued until the (E)ISA device crosses into the next 8-word data line. Ideally, anyway. In practice,
there are actually several events that will cause the data in the FIFO to be invalidated to ensure that the (E)ISA
slave doesn’t see out-of-date data. The outbound data in the FIFO will be invalidated whenever:

» an (E)ISA read is not sequential (note that the converter allows consecutive 8- and 16-bit reads
as well as 32-bit reads to be counted as sequential);

Description: Wax ASICERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 22 of 102

[ﬁ) HEWLETT

PACKARD .

« an (E)ISA read goes beyond the 8 words stored in the FIFO;

e an EISA read from system memory is “locked” on the EISA bus;

e any (E)ISA write to system memory Occurs;

e an (E)ISA interrupt (including the non-maskable interrupt) is requested;

e the CPU writes to an (E)ISA slave;

e the CPU writes to the address map; or

o the CPU writes to the converter’s FIFO enable bit at address $FC011001.

When an (E)ISA device first writes to system memory, the converter will begin to buffer this data in its data
FIFO; later, when the FIFO fills up, up to 8 words may be bursted into system memory. However, as in the
outbound DMA case, there are actually several events that will cause dirty data in the FIFO to be written into
system memory, no matter how many (or how few) words are in the FIFO. The inbound data in the FIFO will be
flushed (written to system memory) whenever:

« an (E)ISA write is not sequential (but consecutive 8-, 16-, or 32-bit writes are allowed);
 an (E)ISA write goes beyond the 8 word line stored in the FIFO;

-« an (E)ISA write to system memory is “locked” on the EISA bus;

& any (E)ISA read from sysiem memory oCCurs;
 an (E)ISA interrupt (including the non-maskable interrupt) is requested;
e the CPU reads from an (E)ISA slave;
e the CPU writes to the address map; or

"« the CPU writes to the converter’s FIFO enable bit at address $FC011001.

~ The above rules allow typical (E)ISA DMA type transfers to make most efficient use of the host bus, while
ensuring that (E)ISA slaves which poll, or communicate with the CPU via shared memory, or implement
semaphores in system memory will work correctly. Inbound transfers will never be reordered, and neither bus
will ever detect the end of a transfer while there is inbound data yet to be flushed to system memory.

_ In unusual situations, the CPU might want to have manual control over the data FIFO. The converter’s FIFO
enable bit permits such control. Using this register, the CPU can ensure that all inbound data received so far has
reached system memory, and that future outbound data will be (re-)read from system memory; in extreme cases,
the CPU can disable the data FIFO altogether. Specifically:

To flush all dirty inbound data (if any) into system memory and invalidate all
valid outbound data (if any), the CPU writes the byte $01 to address
§FC011001. .

To completely disable the data FIFO, the CPU writes the byte $00 to address
S$FC011001. It can later write the byte $01 to that address to re-enable it.

2.2.8 EISA Master Locked Accesses to System RAM

As mentioned above, the converter’s data buffering is disabled whenever an EISA master drives the LOCK
signal active. Thus, locked EISA transfers are executed to system RAM directly, and without being reordered.

" The remaining requirement for correct operation of EISA “locked” accesses is that no other transfers to
system RAM should be allowed in between the locked ones from the EISA master. This converter satisfies this
requirement by asserting the host bus’s lock control signal whenever EISA’s LOCK is asserted while the it owns

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 23 of 102

| [RRNGRS

the host bus. Once granted the host bus, the converter will not release it until EISA’s LOCK signal is deasserted.

Thus, EISA masters” read-modify-write transactions, and any other types of Jocked cycles, will truly be atomic
operations.

The penalty in running such locked cycles is that the EISA master will be tying up the system’s high-speed
path to memory with its low-speed EISA cycles, for as long as it holds the LOCK signal asserted. Not even CPU
cache misses will be able to access system RAM until EISA’s LOCK is released. Therefore, locked accesses on
the EISA bus must be infrequent and short, or else the whole system will be brought to its knees.

2.29 (E)ISA Master and DMA Accesses to Local Memory or I/O

Wax will ignore all (E)ISA I/O accesses, and (E)ISA memory accesses that do not fall within the
$00100000-$004FFFFF mapping space. This allows one (E)ISA device to talk to another (E)ISA device
without needlessly tying up (or inadvertently accessing) system RAM.

2.2.10 Control and Status Registers

All together, Wax’s EISA converter contains four control and/or status registers. All of them are read/write

registers (that is, the CPU can read the last value it wrote into them), except that several bits in the Status register
are read-only indications of how Wax configured itself at power-up.

The Lock Control register, at $FC01 0001, is fully described earlier in this section; it allows the CPU to
generate locked accesses to slave devices on the EISA bus.

The FIFO Enable register, at $FC01 1001, has also been previously described (in the subsection about the

data FIFO); it allows the CPU to flush or invalidate any data currently in the FIFO, or to disable the FIFO
altogether. .

The Bus Concurrency register is at $FC012001. It is designed to be used for hardware turn-on and
debugging only; changing the power-up state of this register may seriously degrade system performance. There
are two control bits in this register. The first determines whether or not Wax can issue multiple “splits” within
one GSC cycle: normally, if Wax must split a GSC cycle to the EISA converter, it will run the necessary split
transfer and then release GSC’s split signal, permitting other GSC activity to proceed; it may eventually need to
run several such split cycles before it is finally granted the EISA bus and can complete the original GSC cycle.
However, if Wax is used in a system that can get confused when several separate split cycles are run within one
GSC transaction, changing this bit will force Wax to keep GSC's split signal active, from the first time it runs a
split transfer, until just before it readies the original GSC cycle. This will create a lot of dead bus time in which

Wax has the GSC bus locked but is not actually running any GSC cycles; but it guarantees that Wax will split
each GSC transfer at most once.

The second bit in the Bus Concurrency register controls whether or not Wax permits concurrent bus
operation: that is, whether or not an (E)ISA master device can be granted the bus before Wax owns the GSC bus.
By default, such concurrency is allowed, which lets Wax use its data FIFO and the GSC bus efficiently,
arbitrating for the GSC bus only when it must run a GSC cycle. If this bit is chan ged to disable bus concurrency,
Wax will arbitrate for the GSC bus whenever an (E)ISA master requests the EISA bus, and will hold onto the
GSC bus for as long as the (E)ISA master owns the EISA bus. This can potentially be a long time, and during
this time Wax will make very poor use of GSC (since (E)ISA cycles are much slower than GSC cycles).
However, it also guarantees that Wax will never need to split a GSC transfer, which would allow Wax 10 be
turned on in a system that doesn’t support split GSC transfers.

The EISA converter’s Status register is at $FCO1E001. This register contains several bits that indicate how
the EISA converter configured itself at power-up, and one bit that indicates when a bus error has occurred while
the converter was running a GSC cycle. Thus, this register has little use durin g normal system operation; but it

could be useful during system turn-on, in diagnosing hardware problems, and during error recovery after a GSC
bus error.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 24 of 102

ﬂp HEWLETT

PACKARD

The bus error bit in this register is cleared during system reset. If the EISA converter ever masters a cycle on
GSC which bus errors, this bit will be set. If software wants to identify and recover from GSC DMA cycles that
bus error, it can use this bit to help decide who ran the cycle that errored. Software can then clear this bit by
writing a 1 to it. Writing a 0 to this bit will not change it; and it doesn’t matter what values are written into the
other bits when the CPU writes into this register to clear the bus error bit, since the others are all read-only bits
and cannot be changed from software. The EDPU enabled bit indicates that Wax is internally emulating TI's
EDPU (EISA data path unit), rather than providing an i486-like data bus that an external EDPU must convert
into the EISA data bus. The 8086 enabled bit indicates that Wax is operating in 8086 mode rather than its usual
i486 mode. And the multiplexed mode enabled bit indicates that Wax is operating in its special mode that
interfaces to TI’s token ring chip. This multiplexed mode is a variation on Wax’s 8086 mode in which DMA
addresses are multiplexed onto the data pins; if this bit is set, the 8086 enabled bit will also be set.

Following are graphical representations of each of these registers:

$FC010001: Lock Control Register

bit #:

$FC011001: FIFO Enable Register

FIFO
enable

bit #:

'$FC012001: Bus Concurrency Register

multiple {concurrent
split bus enable
enable -

read/write | read/write

default=1 | default=1

“bit #1 7 s

3 2 1 0

ultiplexed] 8086 EDPU bus error
ode statusimode status/mode status| status

read only | read only | read only mﬁ}r
configured | configured | configured

t power-up| at power-up| at power-up{ default=0

bit #: 7 6

3 2 . 1 0

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31 Page 25 of 102

’ [I;D HEWLETT
F PACKARD

2.3.1 Pin Description

e i486Hclk

s ji486ResetLl

* i486IrgH

¢ 1486NmiH

¢ 1i486HholdH

e i486HhldaH

2.3 Hardware Description

input

output

input

input

input

output

input

The following is a list of the pins on Wax that are dedicated to the i486 conversion module (pins that are of
general use to Wax, such as the GSC bus connections and power, are not listed here). In addition to the pin
names, this list includes the direction (relative to Wax) and a short description of each signal. Signal names
ending in “L” are active-low; those ending in “H” are active-high. Unless otherwise indicated, all signal
descriptions for “8086 Mode” apply to both normal and multiplexed 8086 modes. Where there is no separate
8086 mode description, the pin performs the same function as it does in i486 mode. The signal name prefixes
(“i486”, “eisa”, or “edpu”) indicate where the signals connect (to the intermediate i486 bus, to the final
(E)ISA bus, or to the EDPU control points generated by the TI chipset, respectively):

Master clock for the TI chipset; used by this module for
synchronizing i486 bus signals. Can be any speed from 0
to 33.3 MHz; but should be 33.3 MHz 10 get maximum
performance on the EISA bus. '

8086 Mode: x86Hc1k: Maximum speed is 16.7 MHz.
Multiplexed Mode: Should be 16 MHz, so that timing to
the TI token ring chip will be correct.

Master reset for the TI chipset; this is a version of Wax’s
main chip reset that is synchronized to Helk.
8086 Mode: x86ResetL.

Interrupt request input; the TI chipset asserts this signal
(asynchronously) when it detects an (E)ISA interrupt
request, and deasserts it when there are no more pending
(E)ISA interrupt requests. E
8086 Mode: x86IrgH.

Non-maskable interrupt input; the TI chipset asserts: this
signal (asynchronously) when it detects a serious fault on
the (E)ISA bus (such as bus lock-up or a slave driving
(E)ISA’s IOCHK * signal active), and deasserts it after the
CPU resolves or masks the cause of the NMI.

8086 Mode: x86NmiH.

Host bus hold request; asserted when the TI chipset wants
to own the host bus and potentially run cycles to host
memory on it. Note that, because Wax permits concurrent
bus operation, asserting Hhold will not necessaril y cause
Wax to request the GSC bus.

8086 Mode: x86HholdH.

Host bus hold acknowledge; driven active by Wax, after it
senses a Hhold, to give the TI chipset control of the i486
bus. Once driven active, Hh1lda will not be negated until
after Bhold is deasserted. Again, note that Bhlda may
be asserted even when Wax does not own the GSC bus.
8086 Mode; x86Hh1daH.

At Power-Up: Sensed to determine whether or not .to
enable the EISA converter: if this pin is low (i.e., if it has
an external 4.7kQ pull-down resistor on it), it enables the

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 26 of 102

[]7,0 HEWLETT

PACKARD

e j486HbusreqL

e i486Addr{31:2)

e 1486BeL[3:0]

converter; if high (i.e., if it is tied to VCC directly or
through a 1k pull-up resistor), the converter is disabled.
When it is disabled, this module will not respond as a
GSC or i486 slave at any address, and thus will never
master an i486 cycle; but it will still drive its output-only
signals (such as Reset and Hhlda) normally. If Wax is
used in a system that permanently disables the EISA
converter, all of the i486 input and input/output pins
should be grounded or otherwise prevented from floating,
so that they don’t draw excessive current.

output Host bus request from Wax; asserted when the CPUruns a
cycle to (E)ISA or to the converter that requires Wax to
own the 1486 bus. This signal causes the TI chipset to
include Wax in its next bus arbitration sequence. Wax will
assert this signal even if it already controls the i486 bus,
since doing so shouldn’t hurt anything. Note that if an
(E)ISA device runs a cycle to system memory after

_Hbusregq is asserted, but before the CPU is granted the

C bus, Wax must “split” the CPU cycle to avoxd deadlock >
8086 Mode: x86HbusregL. o
input At Power-Up: Sensed to distinguish i486 mode from
8086 mode: if this pin is low (i.e., if it has an external
4.7kQ pull-down resistor on it), it selects i486 mode; if
high (i.e., if it has an external 4.7k€2 pull-up resistor on it),
it selects 8086 mode.

in/out The i486 address bus. Driven out from Wax when the CPU
has been granted the (E)ISA bus; otherwise an input.
When Wax is the i486 bus master, it does not pipeline
addresses, so these signals are valid throughout a cycle;
but when Wax is the slave, it samples these signals only at
the rising Hclk edge when Hads is asserted.
8086 Mode: x86Addr[31:2]; these signals should be
held stable and valid throughout the bus cycle.
Multiplexed Mode: These signals are output-only from
Wax; the (input) addresses for DMA cycles must be
provided on the x86Data[15: 0] signals.

in/out The i486 byte enables that take the place of address bits 0
& 1 plus transfer size bits. Driven out from Wax when the
CPU has been granted the (E)ISA bus; otherwise an input.
When Wax is the 1486 bus master, these signals are valid
throughout a cycle; when Wax is the slave, it samples
these signals at the rising Hclk edge when Hads is
asserted.

8086 Mode: 1486BeL[1:0] become x86Addr[1:0],
the two low-order address bits that don’t exist on the 1486
bus (and, like the rest of the address bus, they should be
stable and valid throughout the bus cycle),
i486BeL[1:0] are not used, and should be grounded on
the PC board.

Multiplexed Mode: These signals are output-only from

Description: Wax ASIC ERS, rev. 1.0

" May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 27 of 102

[6 HEWLETT
B PACKARD

e i486HadsL

e 1i486BwnrH

e i486HmnicH

* 3i486HdncH

* 3i486HlockL

in / out

in / out

in / out

in / out

in / out

Wax; the (input) addresses: for DMA cycles must be
provided on the x86Data[15: 0] signals.

Host address strobe, that goes active for one Hclk to
indicate that the address bus is valid and that an i486 bus
cycle is starting. Driven out from Wax when the CPU has
been granted the (E)ISA bus; otherwise an input.

8086 Mode: Replaced by x86Sbhel, a bidirectional
signal that is active when the upper 8 bits of the 16-bit data
bus are in use. It is driven out from Wax when the CPU has
been granted the 8086 bus; otherwise it is an input.

Host read/write signal; high indicates a write operation,
and low indicates a read. Driven out from Wax when the
CPU has been granted the (E)ISA bus; otherwise an input.
When Wax is the i486 bus master, this signal is valid
throughout a cycle; when Wax is the slave, it samples this
signal on the rising Hc1k edge when Hads is asserted.
8086 Mode: Replaced by x86MrdcL, a bidirectional
signal that is active during memory read cycles. It is
driven out from Wax when the CPU has been granted the
8086 bus; otherwise it is an input.

Host memory/IO signal; high indicates a memory access,
and low indicates an 1/0 access. Wax will not respond as a
slave to 1/O cycles (i.e., if this signal is low). Driven out
from Wax when the CPU has been granted the (E)ISA bus;
otherwise an input. When Wax is the i486 bus master, this
signal is valid throughout a cycle; when Wax is the slave,
it samples this signal on the rising Hc1k edge when Hads
is asserted.

8086 Mode: Replaced by x86MwtcL, a bidirectional
signal that is active during memory write cycles. It is
driven out from Wax when the CPU has been granted the
8086 bus; otherwise it is an input.

Host data/code signal; high indicates a normal or data
access, and low indicates a special or code access. As a
master, Wax drives this signal low only during interrupt
acknowledge cycles; and as a slave, Wax will not respond
to any cycles in which this signal is low. Driven out from
Wax when the CPU has been granted the (E)ISA bus;
otherwise an input. When Wax is the i486 bus master, this
signal is valid throughout a cycle; when Wax is the slave,
it samples this signal on the rising Hc1k edge when Hads
is asserted.

8086 Mode: Replaced by x86IorcL, an output-only
signal that is active during 1/0 read cycles.

Host bus lock, indicating that the current bus master wants
to run a sequence of indivisible bus cycles to the slave.
When the CPU has been granted the (E)ISA bus, this
signal is driven out from Wax, and is active when Wax’s
internal lock control register has been set. Otherwise, this

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 28 of 102

HEWLETT
PACKARD

(D

e i4B6HreadyinlL

e i486HreadyoutL

» i4B86HlacOL

e eisaData[31:0]

input

output

output

in / out

signal is an input that, when asserted during a cycle that
Wax responds to, disables Wax’s data buffering and locks
the system’s busses all the way back to system RAM, to
ensure the (E)ISA device indivisible accesses to RAM.
8086 Mode: Replaced by x86IowcL, an output-only
signal that is active during I/O write cycles.

Host bus ready input to Wax, driven active for one Hclk
by the TI chipset to indicate that a bus cycle is complete.
This signal’s assertion allows Wax to complete a GSC bus
cycle that it is running to (E)ISA.

8086 Mode: Replaced by x86HreadyinL, a ready
indication that—once asserted—should be held active
until Wax deasserts its cycle running signal (Mrdc, Mwtc,
Iorc, or Iowc).

Multiplexed Mode: During J/O cycles, this signal does
not need to be asserted: Wax will automatically end the
cycle after 3 Hclks.

Host bus ready output from Wax, driven active for one
Hclk by Wax to indicate that a bus cycle is complete.
When the CPU has been granted the (E)ISA bus, this
signal is a version of Hreadyin delayed by one Hclk,
since the TI chipset needs this feedback. Otherwise, Wax
asserts it when the (E)ISA-originated cycle can complete
(that is, after either GSC or Wax’s internal data buffer has
sourced or accepted the data).

8086 Mode: Replaced by x86HreadyoutlL, a ready
indication that—once asserted—is held active until the
cycle running signal (Mrdc or Mwtc) is deasserted. When
Wax owns the 8086 bus, this output is tri-stated; thus, the
x86HreadyinL and x86HreadyoutL pins can be
tied together to create a bidirectional ready signal.

Host bus local access indication; this signal is driven
active for one clock after Hads during (E)ISA cycles to
Wax’s mapped address space, to tell the EISA chipset that
these cycles are being run on the host bus.

8086 Mode: Not used; should be left unconnected.

The (E)ISA data bus. Driven out from Wax during CPU
writes to (E)ISA or (E)ISA reads from system memory,
and also during some (E)ISA assembly and disassembly
cycles between different-sized (E)ISA masters and slaves;
otherwise an input into Wax.

8086 Mode: eisaData[15:0] are x86Data[15:0],
the 16 bits of the 8086 data bus;

eisaData[31:16] are not used, and should be
grounded on the PC board.

Multiplexed Mode: During DMA cycles, these pins also
function as address inputs: the high 16 address bits are
applied and latched by Sxal, then the low 16 address bits
are applied and latched by Sale.

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 29 of 102

ﬁ HEWLETT
P8 PACKARD

* edpuSdilel

e edpuSel[2:0]

* edpuSdoeL[1:0]

input

input

input

System data input latch enable, from the EBCU. When
low, this signal causes the (E)ISA input data latch to be
transparent; when it goes high, the current value of the
(E)ISA data bus is latched.

8086 Mode: Replaced by x86MuxedL, an input that
determines if the address from the external 8086 device is
multiplexed onto the data pins. If it is tied low, addresses
are multiplexed onto the data pins, controlled by the
following signals, and the address pins are outputs only;

~ this is referred to as “Multiplexed Mode,” and must be

used if Wax is connected to TI’s token ring controller chip.
If this signal is tied high, the address pins are bidirection-
al, as they are when Wax is in its i486 mode.

Select data transaction inputs from the EBCU. These
signals encode the source of data and its size during
(E)ISA transactions; they help control Wax’s input and
output (E)ISA data bus byte swapping and multiplexing
logic. The possibie values are:

sel

[2) [1}] [0} Source of Data
0 0 0 8-bit (E)ISA device
0 0 1 16-bit (E)ISA device
0 1 0 32-bit (E)ISA device
0 1 1 unused
1 0 0 32-bit host bus
1 0 1 latched (E)ISA input
1 1 0 unused
1 1 1 latched (E)ISA input

8086 Mode: These bits are not used, and should be
grounded on the PC board.

Multiplexed Mode: Bit 2 is replaced by x86SownL, an
input that is active when the 8086 device owns the bus;
bit 1 is replaced by x86SddirH, an input that is high
when data is being transferred toward system memory;
bit 0 is replaced by x86SdbenL, an input that is active
when the data buffers should be enabled.

These inputs override Wax’s normal output enable logic
for x86Data[15:0] when Wax is the slave to a DMA
transfer. '

System data output enables from the EBCU; these work
with the sel[2:0] inputs and EISA’s beL[3:0] to
determine when data should be driven onto (E)ISA’s data
bus. When sdoeL[1] is active, data from the latched
(E)ISA input can be driven out; or when sdoeL[0] is
active, data from an (E)ISA device or the host is driven.

8086 Mode: These bits are not used, and should be

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 30 of 102

() Prel

e edpuBelatl input

e eisaBeL[3:0] input

Total: 92 signal pins.

grounded on the PC board.

Multiplexed Mode: Bit 1 is replaced by x86SxalH, an
input that latches the high 16 bits of a DMA address;

bit 0 is replaced by x86SaleH, an input that latches the
low 16 bits of a DMA address;

both parts of the address are applied to Wax’s
x86Data[15:0] pins.

At Power-Up: Sensed to determine whether or not to
enable Wax’s internal EDPU. If both of these signals are
low (i.e., they are tied or pulled to ground), the internal
EDPU is disabled and an external EDPU chip will be
used. If at least one of these signals is high (as will be the
case if these signals are driven by the EBCU), Wax will
use its internal EDPU. If Wax is in 8086 mode, these
inputs are ignored during power-up, since an 8086 system
does not use the EDPU’s functionality.

Byte enable latch enable from the EBCU; it allows Wax to
latch EISA’s byte enable signals at the start of a cycle and
hold them valid throughout the cycle. When low, this
signal causes the eisaBeL[3:0] inputs to flow into
Wax transparently; when it goes high, the byte enable
signals are latched.

8086 Mode: Not used; should be grounded on the PC
board.

EISA’s byte enable signals. Note that these are different
from the 1486BeL[3:0] signals that control transfers
over the i486 bus (they will differ during (E)ISA byte
assembly and disassembly cycles). These EISA byte
enables are used only by the data path section, and
determine when to drive data out onto (E)ISA’s data bus.
8086 Mode: Not used; should be grounded on the PC
board.

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 31 of 102

[b HEWLETT
FB PACKARD

2.4 Basic Schematics for EISA or 8086 Subsystems

The schematics in this section show how the EISA interface of Wax typically will be connected to TI's EISA

chip set to create a complete EISA interface, or how the interface in 8086 mode can be connected to TI’s Token
Ring controller.

Please note that these typical circuits are intended only as guidelines. Any particular implementation will
have unique testability, physical layout, and PC technology requirements and limitations; and you should
address these issues and make any necessary modifications for your application. In other words, if you just plop

these drawings down into a schematic capture program and automatically route it, the board you get back
probably won’t work or be testable.

Specific areas which usually need special attention are: series damping for all clocks and for EISA’s
START* and CMD* signals; minimizing HCLK skew between Wax and the TI chipset; and in general keeping
traces between Wax and the TI chipset, and between the TI chipset and the EISA connectors, as short as
possible. Many signals have rather tight timing margins (even on the “slow” (E)ISA bus), and several signals
(especially on (E)ISA) are sampled asynchronously, so long traces may increase propagation delays or cause

signal integrity to degrade enough to make the system fail. If Wax must be more than about a foot from the EISA
connectors, you should be very careful. '

Also, if Wax must be placed more than a few inches from the EISA connectors, or if your system includes
more than 4 EISA slots, you should use an EDPU chip to drive the EISA data bus rather than using Wax’s
built-in EDPU emulator. Wax’s data bus drivers are not beefy enough to drive a more heavily-loaded bus.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 32 of 102

HEWLETT

K

1082

PACKARD
D Q
66.67 MHz S |
Oscillator _
Q ?—‘
i4861rqH}je22

§486NmiH 12

‘Wax

j486Hclk pe124

i486ResetLD> 106

i486HbusreqL |0

i486HboldH

1C
88

j486HhldaH |22
o1

1486Addr{31:2)

1486BeL[3:0] =112

- . j486HadsL D>
) j486HwnrH ZZ

i486HmnioH

3

!

1486HdncH

!

i486HlockL.

J
©
E

i486HlacOL

wn

i486HreadyinL

.

i486HreadyoutL
’ 5
<

202209

4.7k

edpuSel[2:0] -
v

edpuSdileLo*"

edpuSdoeL{1:0] Dedl=28

<o ... =dpuBelall He?l!

cisaBeL[3:0)pel28=192

eisaData[31:0]f@ 13-158

Figure 9 Wax to EISA Schematic, Without External EDPU, Page 1 of 2

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 33 of 102

HEWLETT
PACKARD

K.

166.67 MHz
“QOscillator’

TEST

BUSY386/IGNNE
BUSY387/FERR . _

113-1

=15

g
= § %mx
20
Qa 2=
EN “ g
.°', =i I R
8
8 4J3ISB 88
- §F —————— >
TEST E ‘§OZ§8<&@:¢
cksEL 2 SZ<zhzE30
HCLK = 2 »-%m 1<
PWRGOOD gA 1%
HRESET 3 2]
»IHBUSREQ
HHOLD | |
HHLDA =~ s
4-2%lHA312] EBCU
“SJHLOCK |z
ZHLACO O o = g
qiLact B PR SeirRe
agumove PEEE RRER
*JHRDYI 222212 BIGBRES
+5V | nene o
NC O
o 1 T d
- i %3
y
¢ -Fm2£3?smm<xaom SHEER K
, < =e Y oee =171 —
d;E AIS%QQ_& 88“4;«3&3 SEIESIRBRELr -5
e o 'Bzddmzzém-—‘D& J.Qm.ngﬂi‘—
= mmmmw EEWDQ. L' S8R B D
=5 z‘mm QZ v o
HDBI‘O] = 88 g 7 SDI31:0 28-80
POl 3% EDPU L0l

Figure 10 Wax to EISA Schematic, With External EDPU, Page 1 of 2

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 34 of 102

A

HEWLETT
PACKARD

RTCWR/GENCS3

RTCALE/DEVTEST .E-—N‘V\r—l-i»SV

SRIABIIRQ
PRIRQ

1k

+5V

o B M e e

10Q

%* .
Y

14.318 MHz
-Qscillator :

<

4

—1-——41&-6 MASTER IS
81 -176]D;lREQH;[[:Og-]”
2,5

184

=B

x B

: o L
e

-&

>JoE 74A1LS245 .

DR Transceive

signalin the bus is
ired to a different slot.

&S +5V :

M lic signals ‘

Italic signals are __.

:.lo‘:- gx?‘nc: each -

. - w. :
j —

Figure 11 Wax to EISA Schematic, With or Without External EDPU, Page 2 of 2

Description:

Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 35 of 102

% packaro

102

32MHz
Oscillator

W —L0%ASYNCIN

€q eql)
x_86HholdH (;486HholdH)

x86thdaH (.manw;n)

xBGSdban (edancl[O]) e
86SddirH (edpuSel[lD

SHRQ
SHLDA

SRS[X,2:0]
SCS

SBHE

SRD

SWR
SRAS
SIACK

SRDY

SDBEN
23 SDDIR
I~ g 205 t___:lg_c;c SOWN
o7 SBBSY
42 15X AL
88 43 N
[oo l SALE
.
D NC_— 244 SPH
N SeiSPL

113 124

63-1344 SADH[7:0]

45=S4e SADL[7:0)

SBCLK

25| SRESET
l——ﬂ—c SBRLS

TMS380C16

Figure 12 Sample Muxed 8086-Mode Wax to TI Token Ring Controller Schematic, Page 1 of 1

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 36 of 102

KA

MIEYWLES) §

PACKARD
3 GSC interface

3.1 GSC operation

The Wax ASIC is connected to one or more SPUs through the GSC. In a Gecko, this is
the on-board bus which interconnects the SPU, 1/0, and graphics. The Wax GSC circuitry
is similar to the GSC interface in the Lasi ASIC, but Wax is also a GSC+ compatible device.
The gscHkioscL signal selects GSC operation when high, GSC+ operation when low. The
address space occupied by Wax changes between GSC and GSC+ operation.

3.2 Slave Operation

When Wax is accessed as a slave, it adheres to all GSC(+) protocols. The SPU can access
WAX as a slave with any address or transaction type specified although only single word and
partial word transfers are supported. All GSC transfers begin with an address phase. Wax
checks the parity during the address phase and will ignore the transfer if the parity is in error.
GSC+ DMA read return cycles do not have an address phase, so no parity error can occur
during these cycles.

During slave writes, Wax checks parity on all data transferred. If a data parity error is
detected, Wax asserts gscErrorL signal to indicated the parity error occurred. If a multiple
word write is indicated by the transaction type, all words of data are checked for correct par-
ity. Only the first word, or partial word, will actually be written into a register, the remaining
words of data are ignored.

During slave reads, Wax generates parity for all words indicated in the transfer byte en-
ables. When Wax is accessed during a slave read, the entire gscAd bus is driven for the first
word of the data transfer. If multiple words are indicated by the transaction type, subsequent
words are meaningless, but are accompanied by correct parity.

The Intel bus converter will split slave accesses using the gscLsL signal when in either
GSC or GSC+ operation, but only if necessary to prevent deadlock. In GSC+ mode, the Intel
bus converter interface will allow slave read cycles to be retried or pended. If an error occurs
during a pended slave read transfer, the error is ignored.

3.3 Master Operation

When Wax is a GSC(+) master, it adheres to all GSC(+) protocols. Wax requests master-
ship of the GSC(+) and then waits until it has been granted mastership of the GSC(+). Wax
transfers begin with an address phase, then one to eight data phases. Wax generates parity
for the address. During mastered transfers, Wax monitors the gSCErrorL signal to determine
if the transfer terminates with an error condition. Each interface within Wax will indicate if
a bus error ocurred during a mastered GSC(+) transaction.

Wax will generate multiple word master write transfers. When Wax writes as a master,
each data phase has the data written accompanied by parity. If Wax detects a data parity error
during a master write transfer, it will wait for the gscReadyL signal to assert before continu-
ing.

Wax will generate mutiple word master read transfers. When Wax reads as a master, each
data phase of the transfer is checked for errors. If an error is detected, Wax will terminate

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 37 of 102

I K

HEWLETT
PACKARD

the transfer. In GSC+ operation, the Intel bus converter allows mastered read cycles to be
pended.

3.4 GSC(+) Arbitration

Wax will arbitrate for the GSC(+) whenever one of the sections inside wax requests mas-
tership. Wax will keep the GSC(+) until no more sections are requesting mastership, or the
external arbiter negates the gscBgL signal. Wax will split slave accesses to the Intel bus con-
verter when necessary. When mastership has been requested and that requirement is met by
splitting a slave transaction to Wax, the gscBrL signal will be negated before mastership is
granted. In all other cases, Wax must be granted mastership before it will stop requesting it.
Wax will always wait until gscBgL is negated between requests for mastership.

3.5 GSC(+) signals

Below is a description of the system interface on the Wax ASIC:

gscAd[31:0]

multiplexed GSC Address and Data

e gscAddvlL GSC Address valid, active low

o gscType[0:3] GSC transaction type and data byte enables

o gscParity GSC parity bit for gscAd[31:0] -

. gScReadyL u GSC ready bit for data transfers, active low

* gscErrorl GSC error bit for address and data
transfers, active low

» gscResetl GSC reset, active low

s gscBrL GSC bus request, active low

* gscBglL GSC bus grant, active low

» gscSplitl GSC split, active low, also called gscLs!

* gscSyncH GSC sync, active high, system clock

» gscSynclL GSC sync, active low, system clock

o gscHkiosclL GSC active high, GSC+ (kiosc), active low

* kpendL GSC+ (kiosc) pend request, active low

e kpackL GSC+ (kiosc) pend acknowledge, active
low

o kretryL GSC+ (kiosc) retry request, active low

o kdrrL' GSC+ (kiosc) dma read return request, '
active low

» sysResetl system reset, active low, output from
watchdog timers to reset system

» sysCik4OM system clock input, 40 Mhz

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 38 of 102

| () Prrsoet

o trstl tap reset, active low
e tdi tap data in
* ftcik tap clock
e tms tap mode select
s tdo tap data out
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 39 of 102

N & B
4 RS-232 Interface

4.1 Description

The RS-232 interface that is built into the Wax ASIC emulates on of the UARTS in the National NS16550A
chip, with the addition of hardware handshaking. The design of this portion of the circuitry was done for the
Stiletto ASIC by MCSY in Fort Collins. This circuitry is software compatible with the serial interface in the
Lasi ASIC.

4.2 RS-232 Registers

4.2.1 Base Address

The GSC base address for the RS~232 intérface is OxF020 2000. The GSC+ base address for the RS-232
interface is OxFFEO 2000.This interface identical to the RS-232 port in Gecko, the only difference is the base
address.

The RS-232 interface may be disabled entirely by grounding the RS—232Txd output during power up.
When this is done, accesses to the RS-232 address space will not generate a gscReadyl. If the rs232Txd
signal is not grounded, the RS-232 interface will function as described.

422 Register Overview

The RS-232 registers are defined as a word port only. When data is written to any register, all thirty-two
bits on the data bus are written into the register regardless of the state of the byte enable bits associated with the
transfer. When any register is read, all thirty-two bits of the data bus are driven. Unused bits are always read as
zeros. The RS-232 registers may be accessed using multi-word transfers, but only the first word of the transfer
occurs. During muiti-word writes, the second and subsequent words are ignored. During multi-word reads, the
first location accessed is driven as the first word of data, but subsequent words are not meaningful data. Correct
GSC protocol is followed for multi-word transfers, the data is just meaningless.

_ Table 1 shows the register assignments and address offsets for the registers of the RS-232 subsystem in the
Wax ASIC. The actual address is obtained by adding the address offset for a register to the base address of the
Wax ASIC.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 40 of 102

[,5 HEWLETT
7B PACKARD

Table 1 RS—232 Registers

Reset Register 0x000 || W X X X X X X X X
Undefined ~{0x001-

Receiver Buffer 0x800 .{ R |{ Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit
Register (RBR) DLAB = 0 7 6 5 4 3 2 1 0
Transmitter Hold- | 0x800 W | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit
ing Register (THR) |[pLaB=o 7 6 5 4 3 2 1 0
Interrupt Enable 0x801 {R/W 0 0 0 0 Enable | Enable | Enable | Enable
Register (IER) MSI RLSI | THREI | RDAl
Interrupt Ident 0x802 R Fifos Fifos 0 0 Int ID IntID IntID | IntNot
Register (IIR) Enabled | Enabled Bit 2 Bit1 Bit0 | Pending
Fifo Control 0x802 W || Rx Trig | Rx Trig X X DMA | TxFifo | RxFifo Fifo
Register (FCR) MSB LSB Mode Reset Reset Enable
Line Contro} 0x803 [R/W | DLAB Set Stick ‘| Even Parity { Numof | Wrd Len | Wid Len
Register (LCR) Bit Break Parity Parity | Enable |StopBits| Bitl Bit0
Modem Control 0x804 ||R/W 0 0 0 Loop Unused |[SeeNote | KIS DIR
Register (MCR) Back 1

Line Status 0x805 R |l EmorIn | Txmitter | TxHold | Break | Framing | Parity | Overrun | Rx Data
Register (LSR) Rx Fifo | Empty |RegEmp | Interrupt | Error Error Error Avail
Modem Status 0x806 R/W | DCD RI DSR CTS Delta Trail Delta Delta
Register (MSR) (RL.SD) DCD | EdgeRI DSR CTS
Scratch Register 0x807 [R/W || Scratch | Scratch | Scratch | Scratch | Scratch | Scratch | Scratch | Scratch
(SCR) Bit7 Bit6 Bit5 Bit 4 Bit3 Bit2 Bit1 Bit0
Divisor Latch Reg |0x800 ||R/W || Divisor | Divisor | Divisor | Divisor | Divisor | Divisor | Divisor | Divisor
LSB (DLL) DLAB = 1 Bit 7 Bit 6 Bit 5 Bit4 Bit3 Bit2 Bit1 Bit0
Divisor Latch Reg {0x801 || R/W || Divisor | Divisor | Divisor | Divisor | Divisor | Divisor | Divisor | Divisor
MSB (DLM) DLAB = 1 Bit 15 Bit 14 Bit 13 Bit 12 Bit11 Bit 10 Bit9 Bit8
Undefined 0x808- ‘ L T

| OXFFF

Note 1 — Bit 2 of the MCR is involved in Hardware Handshaking control. Refer to section NO TAG for more
detail.

4.2.3 Register Descriptions

See The National NS16550A data sheet for a detailed description of all of the registers except the Reset Reg-
ister. A cheat sheet for the Interrupt ID Register is shown below. ' '

4.2.3.1 Hardware Handshake Overview

The upper nibble (bits 7-4) of the IIR register will return 0xC in fifo mode, and 0x0 in non-fifo mode.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 41 of 102

W HEWLETT
[’9/7 PACKARD

The lower nibble (bits 3-0) will return the following interrupt IDs, in priority order.
First Priority Receiver Line Status 0x6
Second Priority Character Time-out Indication 0xC
Second Priority Receiver Data Available 0x4
Third Priority Transmitter Holding Register Empty ~ 0x2
Fourth Priority Modem Status 0x0
No Interrupt No Interrupt 0x1

4.2.3.2 Reset Register

Asserting gscResetL or writing to the Reset Register, 0xF0202800, will reset the Serial Interface. The re-
setting of the Serial Interface causes all of its registers except the divisor latches to return to their power-up state.
Unlike previous serial subsystems, the serial interface in the Wax ASIC is stand alone. Resetting any other serial
interface will NOT reset the serial interface in the Wax ASIC. Also, resetting the serial interface in the Wax ASIC
will NOT affect any other serial interfaces in the system.

4.3 Hardware Handshaking Control
4.3.1 Hardware Handshake Overview

The basic concept of hardware handshaking as it has been implemented in the 375/380, 720/730/750, and
here in the Wax ASIC, is quite simple. Supply a method, in hardware, by which a serial transmission can be sus-
pended if the receiver fifo has reached a set threshold. The modem control lines provide an ideal method of
communicating information regarding a serial transmission, and the RXRDY line contains the necessary informa-
tion regarding the receiver fifo data levels. Combining these two features results in a solid solution. The only
necessary feature remaining is the ability to enable and disable the hardware handshaking. All of this is accom-
plished with the implementations in the machines mentioned, and in the following sections, the exact details of
the Wax ASIC implementation will be revealed. '

43.1.1 Enabling Hardware Handshake

For hardware handshaking to be enabled, two bits in the Modem Control Register (MCR) need to be af-
fected. Bit 2 is the hardware handshaking disable bit (normRTS), and should be set to a 0. Consider this bit to
be write only. Reading it at power-up or after a directed reset will return the opposite value of what it really is.
It powers up a 1 despite what reading the register might tell you. This is an ASP anomaly we duplicated. The
RTS bit (bit 1) must also be set to a 1 for hardware handshaking to be enabled. It powers up cleared. A write of
0x02 to the MCR would be the correct way to enable hardware handshaking. To disable hardware handshaking,
bit 2 should be set, and bit 1 should be cleared unless there is a need to keep RTS asserted for some other reason.

4.3.1.2 Hardware Gating

For those who want to know what the hardware is really doing to combine RXRDY, RTS, and normRTS,
here’s the scoop. RXRDY is an active low signal. It is low when the receiver has reached the trigger level. RTS
is active low when used by the hardware outside of the register. For example, writing a 1 to the RTS bit to assert
RTS will drive a logic 0 externally. The logic then looks like: {(normRTS | RXRDY) | RTS. These means that
unless normRTS is cleared, RXRDY will be blocked, and unless RTS is asserted, RXRDY qualified by normRTS
will be blocked. This is why normRTS must be cleared and RTS must be set to enable hardware handshaking.
The final result when hardware handshaking is enabled is that RXRDY will appear inverted on the RTS line.

Description: 'Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 42 of 102

[5 HEWLETT
PACKARD

4.3.1.3 RXRDY Behavior

The National NS16550A data sheet gives a reasonable description of the operation of RXRDY, but I will run
through one example here. Let’s assume we have set up a receiver trigger level of 8 bytes, and have chosen DMA
mode 1. To do this, we would have written 0x89 to the FCR after having enabled the fifos. Initially, RXRDY
will be negated, so with hardware handshaking cnablcd, RTS will be asserted. This tells the transmitting device
that it is okay to send data. RXRDY will stay negated until the trigger level (8 bytes in this case) has been reached
in the receive fifo. Once RXRDY asserts and hence RTS negated, RXRDY will stay asserted until the receive
fifo is empty. In other words, the transmitting device will continue to be told not to send data until the receive
fifo is completely empty.

4.3.1.4 Caveats

The biggest source of confusion has typically been the assumpnon that the prevention of hardware overflow
eliminates the possibility of data overrun. Unfortunately this is not true. Memory buffers can also overflow, so
in many cases, Softwarc handshakmg (XON/XOFF) is still required. 1

so that RTS can temporarily be forced negated to halt the
further transmission of data and hence prevent the overflow of Software buffers.

4.4 Software Differences
The Wax ASIC 16550 megacell is intended to function just like the real National NS16550A.

-
rd

) e . There are a few minor differ-
ences, however, between the NS16550A and the Wax ASIC.

~ Unlike the ASP implementation which uses the WD16C552 externally, there is no need for the software to
worry about minimum cycle time requirements with the Wax ASIC. The hardware will guarantee no violation
of minimum cycle time specifications for register accesses.

\ : cFifo Control Register in the Wax ASIC behaves a little different-
ly from that of the N516550A or WD16C552 For the Wax ASIC, bit 0 of the FCR must be set before other bits
in the FCR can be set. What this means is that writing 0xc1 to the FCR does not set the receiver trigger level
to 14 bytes, unless bit 0 was set by a previous write. The necessary sequence would be a write of 0x01 to the FCR
followed by a write of 0xc1 to the FCR. This may not affect existing software, since the WD data sheet has word-

ing that implies the kind of operation that the Wax ASIC implements.

_ Abug was recently discovered with the WD16C552 that I also managed to design in. A second transition
of a modem control line can be missed if it occurs during a read of the Modem Status Register. The level of the
modem control input will be latched off of the leadin g edge of the read strobe to be presented as read data. Howev-
er, the interrupt resulting from the initial transition of a modem input will be cleared off of the trailing edge of the
read strobe. The result is that no new interrupt gets generated, yet the old level of the modem input gets passed
on the read. '

The Wax ASIC presets the modem control input synchronizers such that if after coming out of reset, any of
the modem control inputs are active (0 level external, 1 reflected in the Modem Status Register), a modem "delta”
for that bit will be indicated. Software should read the MSR to clear out modem status interrupts first thing, since
the modem lines could glitch during power up, so this difference shouldn’t be a problem.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 43 of 102

© WA HEWLETT
[/’/7 PACKARD

The NS16550A data sheet never really says what happens if a divisor value of 0x0000 is loaded for baud
rate generation. As it turns out, the NS16550A treats the "0 as if a divisor value of 0x0020 were loaded. The
Wax ASIC treats it as if a 0x0001 were loaded, since this is the smallest meaningful value.

The NS16550A data sheet does not say if the Modem Status Register is writable, or what should happen
if it is written to. The lower 4 bits (3:0) are indeed writable, and they will set or clear the modem "delta” bits (and

the interrupt if enabled) just like real changes in the modem control lines. The Wax ASIChas duplicated this opera-
tion.

The table in the NS16550A data sheet indicates that bit 4 (loopback) of the Modem Control Register will
always return a 0 on reads. This is not true. It will return the value that was written into this bit. The Wax ASIC
has duplicated this operation.

If the THRE (transmitter holding register empty) interrupt is currently enabled, and there is no THRE inter-
rupt pending, and the THRE interrupt is disabled and re-enabled, the NS16550A will generate a new THRE
interrupt. The Wax ASIC has duplicated this operation. However, if the THRE interrupt is already enabled, and
the Interrupt Enable Register is written so as to keep the THRE interrupt enabled (no change on that bit), the
NS16550A will cause a THRE interrupt. The Wax ASIC will not.

If the transmitter fifo and the transmitter buffer are both émpty, one would not expect changing to/from fifo
mode to cause a THRE interrupt. The UART is transitioning from empty to empty, so there is no edge which
should cause an interrupt. However, a THRE interrupt is generated whenever going to/from fifo mode. In addi-

 tion, clearing the transmitter fifo via bit 2 of the Fifo Control Register also causes the THRE interrupt (regafdless
of whether it was already empty). The Wax ASIC has duplicated this operation. '

The Line Status Register is writable in the NS16550A for factory testing. The Line Status Register in the
Wax ASIC is not writable. With scan testing employed at the IC level, this was not necessary.

For the TEMT bit (transmitter empty) in the Line Status Register, it is never really defined when the trans-
mitter shift register should be considered empty. The Wax ASIC waits until all of the data bits AND all of the
stop bits have been sent out before considering the transmitter empty. This is probably the desired behavior if this
bit is being checked to see if itis okay to change baud rates. However, if in loopback mode and data is transmitted,
receive data available will be indicated before TEMT, because only the detection of the first stop bit is required

for receiving data. This isn’t necessarily a problem, but it may be unexpected. I don’treally know what the real
NS16550A does.

The NS16550A clears the receive fifo registers when it reads from them. The Wax ASIC does not. When
the fifo empties, the NS16550A will always return 0’s on reads. The Wax ASIC will return the value that was
previously in that fifo location. It seems unwise to.rely on a fifo value when receive data available (line status)
indicates it is an empty fifo location. R

The NS16550A data sheet says that a break is defined as received data being O for one full character time (start
+ data + parity + stop bits). However, it really calls something a break if received data is 0 for start + data + parity
+ 1/2 first stop bit. Basically, the NS16550A indicates all of the receiver line status interrupts (and receive data
available) half wéy through the first stop bit. The Wax ASIC has duplicated this operation.

The NS16550A says that on a framing error, it considers the 0 stop bit to really be a start bit, so it samples
it twice and then starts looking for the next data bit. Who knows what they are trying to say. The operation of

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 44 of 102

() PR

the NS16550A is non~deterministic in this case. Normally, the NS16550A will behave as if the O stop bitis a
start bit, and it will take the next bit as data. However, sometimes it treats the next bit as a start bit rather than
data. The Wax ASIC always treats the next bit as data. Additionally, the Wax ASIC does a 2 out of 3 sample on
that stop bit anyway, so it shouldn’t falsely be seen as a 0.

The NS16550A data sheet lies about the line status interrupts for the receiver and when they are cleared. It
says that reading the Line Status Register is the only way to clear a break indication, an overrun error, a parity
error, or a framing error. This is true in non~fifo mode, but in fifo mode, if the Line Status Register is not read,
but the receive data is read, the Line Status Register will be updated with the info from the next fifo location.
If the next location doesn’t have any errors, the receiver line status errors have effectively been cleared, while never
having read the Line Status Register. The Wax ASIC has duplicated this operation.

From looking at the ordering of the interrupts in the table for the Interrupt ID Register in the NS16550A
data sheet, it would appear that a receiver data available interrupt would have priority over a character time-out
interrupt. Both are considered "second” priority, but the receiver data available interrupt is listed first. In reality,
the character time-out interrupt has priority. With the fifo trigger level setat1byte, an interrupt caused by receiver
data being available will turn into an indication of a character time-out interrupt if the receiver is not read soon

enough.

4.5 RS-232 Signals
Below is a description of the ports allocated on the Wax ASIC for RS-232 signals:

Table 2 RS—232 Signals

Signal .0 Pin | Di

rs232Txd 236 {Out Transmit data
rs232Rxd 235 |In Receive data
rs232Cts 239 |In Clear to send
rs232Rts 240 |Out Request to send
rs232Dcd 1 In Data carrier detect
rs232Dsr 2 In Data set ready
rs232Ri 237 {In Ring indicator
rs232Dtr 238 |Out Data terminal ready

Table 3 shows suggested connector pin-out for the RS-232 interface. Both a nine position male D
connector, such as those used in PC products, and a twenty-five position female D connector, such as those used
in traditional workstations, are shown.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 - |} Page 45 of 102

| () el

Table 3 RS-232 Connector Pinouts

rs232Txd | out 3 3
rs232Rxd In 2 2
rs232Cts In 8 5
rs232Rts Out 7 4
rs232Dcd In 1 8
rs232Dsr In 6 6
rs232Ri In 9 22
rs232Dtr Out 4 20
ground 5 7
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Page 46 of 102

Dwg. No. A-1FT4-0001-31

/78 packarD

4.6 Sample Schematic

WAX
TxD
RxD

RTS

DTR
DSR
* ' DCD

RI

+2y Y

1 75C185 |20 DSUBS
236 13 I 8 3]
235 1 -« 4 2]
240 15 > 6 1]
239 14 <_ 7 8]
238 16 . 5 40
2 18 -« 3 6]
1 19 - 2 1]
237 12 A 9 9]

10 11 5 I

-12v GND

Figure 13 RS-232 Schematic

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 47 of 102

.‘ ' HEWLETT
[”/”] PACKARD
5 HP-HIL Interface

5.1 Description

The Wax ASIC contains the circuitry to emulate an Inte]l © UPI-42 microcontroller to provide access to the
HPHIL master link controller. The circuitry is compatible with HP P/N 1820-4784, which is used in previous
HP9000/7XX workstations. Unlike previous workstations, the Wax ASIC does not contain a real time clock or

a sound generator. The design of this portion of the circuitry was leveraged from work done for the Stiletio ASIC
by MCSY in Fort Collins.

5.2 HP-HIL Registers

5.2.1 Base Address

The GSC base address for this interface is OXF020 1000. The GSC+ base address for this interface is
OxFFEO 1000.
5.2.2 Register Overview

Table 4 shows the register assignments and addresses for the registers in the HP-HIL sub-system in the
Wax ASIC. This interface looks like a UPI-42 mircocontroller connected 1o the GSC bus.

Table 4 HP-HIL Registers

Assert Reset X

Undefined. . ¢ -

8042 data R/W |l Data Bit | Data Bit | Data Bit | Data Bit Data Bit | Data Bit | Data Bit | Data Bit
7 6 5 4 3 2 1 0

8042 status/control | 0x801 R f IStat Bit | IStat Bit | IStat Bit | Istat Bit | reserved NMI IBF OBF
7 6 5 4 reason

0x801 W |t Data Bit | Data Bit | Data Bit | Data Bit Data Bit | Data Bit | Data Bit | Data Bit

7 6 5 .4 3 2 1 0

Undefined

PS-28042data | 0x808 || R/W || Data Bit | Data Bit | Data Bt | Data Bit | Data B | Do Bit | Data Bit | Data Bit

7 6 5 4 3 2 1 0
PS-2 8042 0x809 R | IStat Bit | IStat Bit | IStat Bit | IStat Bit | reserved | 1Stat Bit IBF OBF
status/control 7 6 5 4 2

0x809 W i Data Bit { Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit | Data Bit
7 6 5 4 3 2 1 0

Undefined

Negate Reset
Un‘dci:mc‘d, S

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 48 of 102

[,’5/7 HEWLETT

PACKARD

The HIL registers are defined as a word port only. When data is written to any register, all thirty-two bits on
the data bus are written into the register regardless of the state of the byte enable bits associated with the transfer.
When any register is read, all thirty-two bits of the data bus are driven. Unused bits are always read as zeros.
The HIL registers may be accessed using multi-word transfers, but only the first word of the transfer occurs.
During multi-word writes, the second and subsequent words are ignored. During multi-word reads, the first
Jocation accessed is driven as the first word of data, but subsequent words are not meaningful data. Correct GSC
protocol is followed for multi-word transfers, the data is just meaningless.

5.2.3 Detailed Register Descriptions

It may be helpful to be acquainted with the UPI-42 8042 documentation from Intel and the HP dwg
A-1820-4784-2 Firmware Doc Rev B. while reading the following description.

5.2.3.1 Assert Reset register

This register puts the 8042 in a reset state until the Deassert Reset register is written. The power up value of
this register is that reset is asserted.

5.2.3.2 8042 Data

This register is used to send and receive data to/from the 8042. Data should not be written unless status register
bit JBF is a zero; and data should not be read unless status register bit OBF is a one.

5.2.3.3 8042 Status

The upper four bits (7:4) are used for communicating interrupting conditions as follows:

Value Description

0000 Not used

0001 10 ms periodic interrupt

0010 Special purpose timer interrupt

0011 Both a 10ms periodic and special purpose timer interrupt

0100 The 8042 Data register contains a byte that was requested

0101 The 8042 Data register contains a STATUS CODE associated with HIL
0110 The 8042 Data register contains DATA associated with HIL

0111 Power up reset and selftest was completed successfully

1000 The 8042 Data register contains a key (both shift and control)

1001 The 8042 Data register contains a key (only control)

1010 The 8042 Data register contains a key (only shift)

1011 The 8042 Data register contains a key (no shift or control)

1100 The 8042 Data register contains a RPG count (both shift and control)
1101 The 8042 Data register contains a RPG count (only control)

1110 The 8042 Data register contains a RPG count (only shift)

1111 The 8042 Data register contains a RPG count (no shift or control)

Bit 3 is reserved. It will be set when the last write was to the 8042 control register; it will be a zero when
the last write was to the 8042 data register.

NMI reason: In the case of an NMI bit 2 will be set if there is a fast-handshake interrupt, else it will be zero
10 indicate that the RESET key was pressed.

Description: Wax ASIC ERS, rev. 1.0 . May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 49 of 102

(D) P

IBF (Input buffer full): This bit will be set when a write to either the 8042 Control or Data occurs and will
be cleared when the 8042 reads the data. Writes should occur only when this bit is a zero.

OBF (output buffer full): This bit will be set when the 8042 has valid data for the processor to read from the
8042 Data register.

5.2.3.4 8042 Control

This register is used to send commands and data to the 8042. The commands are briefly described below.
For more detailed information set aforementioned documentation. "

LOAD commands: The 8042 Data register will be loaded with the appropriate value and an
interrupt will occur. :

0x00-1F: Request a byte of data from internal RAM addresses 0x00-1F

0xFO-FF: Request a byte of data from internal RAM addresses 0xFO-FF

LOAD Timer Output Buffer commands: The timer output buffer (in internal RAM) will be

loaded from the cycle interrupt counter, the fast handshake timer, or the real time clock. Use commands
0x13-0x17 to access the data.

0x31: Load the real time

0x36: Load the fast handshake time
0x3B: Load the delay interrupt time
0x3E: Load the cycle interrupt time

Set Interrupt Mask commands: These commands will set individual interrupt masks.
0x40-7F: The lower five bits set the following interrupting conditions masks. If a bit is -
set, the interrupt is disabled. |

Bit 0: Keyboard, RPG and HIL interrupt mask

Bit 1: RESET key NMI mask

Bit 2: Timer interrupt mask

Bit 3: Periodic system interrupt mask

Bit 4: Fast handshake interrupt mask

Bit 5: Reserved, set to 0.

SET-UP commands: These commands are used to set several state variables used by the 8042.
Each of these commands should be followed by one or more 8042 Data register writes.

0xAO0: Sct repeat delay (1 byte)

0xA2: Set repeat delay (1 byte)

0xA3: Set beep info (not supported in the Wax ASIC)

0xA6: Set RPG interrupt rate (1 byte) in 10ms increments

OxAD: Set the real time 10ms time (not supported in the Wax ASIC)
O0xAF: Set the real time day (not supported in the Wax ASIC)

0xB2: Set the fast handshake delay (2 bytes)

0xB4: Set the real time match interrupt value (3 bytes)

0xB7: Set the delay interrupt value (3 bytes)

0xBA: Set the cycle interrupt value (3 bytes)

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 50 of 102

[ﬁﬁ HEWLETT

PACKARD

0xC1: Set the RAM data output pointer associated with the 00 command
OxEO-EF: Write to intemal RAM locations 0xFO-FF

Trigger commands: These commands transfer data between the internal RAM buffer and the
real time clock (BBRTC) and HIL.

0xC2: Write BBRTC. Not supported in the Wax ASIC

0xC3: Read BBRTC. Not supported in the Wax ASIC

0xC4: Write Beeper. Not supported in the Wax ASIC

0xCS5: Write HIL. Data is transferred from the buffer to the HIL MLC

8.3 HIL communication

The HIL interface is controlled by the Master Link Controller (MLC). The 8042 sits between the software
and the MLC (usually getting in the way). The two HIL interrupt status codes 0x5X and 0x6X are for reporting
data returned from the loop due to an 8042 initiated pol! command. The contents of the 8042 Data register hold
additional information on who responded to the poll and what data they sent out. See section NO TAG on page
NO TAG for more detailed information of the MLC. '

5.3.1 Interrupt Status 5X
Interrupt status SX precedes an interrupt status 6X. The 5X reports header information in the 8042 Dataregis-

ter as follows:
Status 5X Data
[0 T x] x .| ar . {omp.] a2 | AL A0]
AP: Indicates that data to follow was returned in response to an auto-poll
CMD: When set, the data that follows is the HIL command
A2-0: Contains the address of the HIL device that sent the following data

5.3.2 Interrupt Status 6X

Interrupt status 6X reports that there is data (or a command) from an HIL device in the 8042 Data register.
This data is in response to an 8042 initiated auto-poll or a user initiated HIL command.

5.4 BBRTC communication

The battery backed-up real time clock is not supported in the Wax ASIC. 8042 commands to write and read
from the battery backed-up real time clock may be sent to the 8042 without any ill effects; however, any data read
will be invalid.

5.5 Sound Generator communication

The sound generator is not supported in the Wax ASIC. 8042 commands to write and read from the sound
generator may be sent to the 8042 without any ill effects; however, any data read will be invalid.

5.6 Configuration and Identification registers

There are many configuration and identification registers that exist in the 8042 internal RAM. These can be
read, and sometimes written, with 8042 commands.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 51 of 102

[/ Fidicaro

5.6.1 Configuration register, R11

R11
1] KNP |-NKR {0 { KCI | KCo |

KNP: Keyboard is present if zero
NKR: N key rollover is implemented when set
KC1-0: Keyboard code

00 ITF

01 Reserved

10 98203C

11 reserved

5.6.2 Language register, R12

This register holds the keyboard language code for the first keyboard. Refer to the keyboard ERS’s for more
detailed information.

§.6.3 Nimitz keyboard address map register, R78

For each Nimitz keyboard on the loop the bit corresponding to the keyboards address will be set. A Nimitz
keyboard at address 1 will be reflected in bit 0.

5.6.4 ”Cooked” keyboard address map register, R79

For each "cooked” keyboard on the loop the bit corresponding to the keyboard’s address will be set. A cooked
keyboard at address 1 will be reflected in bit 0. Clearing bit 1 will put the keyboard at address 2 into RAW mode.

5.6.5 HIL interface status register, R7A

LPSTAT
| RF | X 1 x | x | B J iz Jraa [Lco |
RF: If set, loop reconfiguration failed
RS: If set, loop reconfiguration was successful
LC2-0: Count of devices on the loop
5.6.6 HIL interface control register, R7B
LPCTRL
[R] x] X [cook] X [DRLR [DRLE | AP |
RL: If set, loop will be reconfigured
COOK: If set, keyboards will be cooked
DRLR: If set, loop reconfiguration errors will not be reported
DRLE: If set, loop errors (parity, framing, etc.) will not be reported
AP: If set, the 8042 will perform auto-polling at 20ms intervals

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 52 of 102

PACKARD

[bﬂ HEWLETT

5.6.7 HIL loop reconfiguration counter, R7D

This register is incremented each time the loop is reconfigured.

5.6.8 Extended configuration register, R7E
EXCNFG

o [o [o [1] o fwo f 1 |1

5.6.9 Selftest result register, R7F

This register will be set to 0x55 when the selftest has passed.

5.7 Software Hints

5.7.1 Power up reset

Once the Reset Deassert register is written software must wait for at least 400ms before accessing the 8042.
It is easiest to wait for the first interrupt which will report selftest passed, and read the 8042 Data register.

5.7.2 Auto-polling and HIL access commands

Software should make certain that HIL auto-polling is disabled before sending commands to the MLC. This
can be accomplished by clearing bit 0 of register R7B.

5.8 HP-HIL Master Link Controller

5.8.1 Description of the HP-HIL MLC

The master link controller (MLC) provides the hardware interface between the host system and all
the devices connected to the HP-HIL. The MLC accepts commands from the system processor and
transmits the information to the HIL devices in the proper format. The MLC also transmits data from
the HIL devices back to the system processor. Two eight-bit data buses are used to transfer data to
and from the host processor. The MLC also has a 16-frame FIFO to reduce processor interruptions.
In the Wax ASIC, the system processor is the 8042 module.

5.8.2 The Least You Need to Know about HIL to »Get By”

The Hewlett Packard Human Interface Link (HP-HIL) is an asynchronous serial communication protocol
that allows a computer or terminal to talk to various devices. Devices that speak HIL include keyboards,
mice, button boxes, knob boxes, ID modules, graphics tablets and those thingeys that go beep. .

Data travels around the Link in a fixed format called a frame. Every frame consists of 15 bits of
information including start, device address, command, opcode/device data, parity and stop bits. Each
frame is transmitted at a rate of 10 microseconds per bit. A minimum of 4 microseconds of idle time
is required between frames. The idle state of the Link is a logic 1. 1 is +5 volts.

Description: Wax ASIC ERS, rev. 1.0 - May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 53 of 102

KA picicanc

150 microseconds 4
K
start ddress com command opcode/dat arity _stop
_l 2| 1| o0 71 6] S| 4] 3] 2| 1| o [

FRAME FORMAT

The start bit is 0 indicating the beginning of a frame transmission. Hardware that speak HIL sample this bit
three times during the 10 microsecond interval to insure that it is a frame transmission and not a glitch.

HIL has the capacity to address up to seven unique devices. This requires three bits in the frame. The
address 0 is the universal address to which all devices should respond. The balance of the addresses, 1 through

7, are assigned to individual devices during the configuration process. Some devices, such as the knob box,
require more than one HIL address.

The command bit differentiates device data from a device command. If this bit is one, the next eight bits are
a command opcode. If the bit is zero, the next eight bits are device data.

The next field consists of the actual command or data. A device command may be a hard reset or a request
for data. Device data can be something like a key from a keyboard or the X and Y coordinates from a mouse.

The parity bit provides error detection for every frame. The sum of all bits, including start and stop, should
be odd. HIL hardware understands this and sets the parity bit accordingly before transmission. If a device
receives a frame that doesn’t follow this protocol, an error is flagged. Parity errors will be discussed later.

The stop bit is 10 microseconds of logic 1. This signals the end of the frame. If the stop bit is not a logic 1,
an error is flagged. This is a framing error and will also be discussed later.

Every computer that speaks HIL has one Master Link Controller. Every HIL device has one Slave Link
Controller (SLC). There may be 0 to 7 SLCs but only one MLC on the Link. The MLC has two HIL signals:
serial in (SI) and serial out (SO). The SLC has four HIL signals. Besides SI and SO, there is also return data in

(RI) and return data out (RO). The signal connections for a two-device configuration would look like the
following diagram.

Upon power up, all HIL devices are in loop-back mode. In loop-back mode, the serial in signal
is internally connected to the return data out. During configuration, each device is assigned an HIL .
address and has reported on what type of device it is. After configuration, all devices except the last
device on the link are in pass-thru mode. In pass-thru mode, the serial in signal is connected to the
serial out. The return data in is passed on to the return data out signal. With all the devices but the
last one in pass-thru mode, all packets from the MLC will be passed on to the next SLC until it is
received by the last HIL device. The last HIL device, in loop-back mode, will send the packet back
to the previous device via its return data out signal.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 54 of 102

L/ FAckarD

MLC SLC SLC
S RO RI RO RI
S SI S SI SQ
HOST SYSTEM DEVICE 1 DEVICE 2

Frames typically originate at the host. The host processor initiates a frame transmission by writing
to certain registers in the MLC. The MLC assembles the data into the proper format and transmits
the frame. Upon receiving the frame, the SLC can do one of three things:

1. Retransmit the frame If the address field of the frame is not the universal address
(0) or does not match the address of the device, the SLC '
will retransmit the frame to the next device.

2. Trap an error If a parity or framing error is detected, the frame is
discarded and a command frame with an error opcode is
transmitted to the next device.

. 3. Process the frame If there is an address match (frame address is 0 or the
device address) and no errors, the SLC will interrupt its
- device processor which will handle the command. When
the device processor is finished, it may load the SLC with
data to pass on. The SLC will format the frames and
retransmit them to the next device.

If data is sent back to the host in response to a command, then the command trails the data frames.
This allows the MLC to determine when all of the data related to the last command has been received.
It is easy for the MLC to determine when the command has returned by monitoring the command bit
of every frame received. Upon receiving the command frame back, the MLC interrupts the host processor.

There can only be one command active on the Link at one time. The host processor typically issues
a.command to the Link via the MLC and then waits for the MLC to interrupt with data. If the MLC
receives a frame without first sending a command frame, it will be a reset command from a device or
an error.

HP-HIL has a command set by which all necessary functions to set up and maintain the Link are
performed. Basic operation of the Link can be broken down into Link configuration, error recovery,
data extraction and device identification.

Link configuration is the process that sets up the Link so it can provide the host with data in an
orderly manner. Configuration usually occurs at power up and any time when error recovery calls for
a reconfiguration of the Link. The configuration process assigns a unique address to each device on
the Link. It also sets each device in the proper mode (pass-thru or loop-back) so that the HIL frames

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 55 of 102

PACKARD

n}a HEWLETT

will be looped back by the last device on the Link. In the process, each device may be requested to
identify what type of device it is.

Errors may occur under various conditions on HP-HIL. HP-HIL provides for several levels of error
recovery so that if an error occurs, the recovery process will preserve the maximum amount of data and
minimize the interaction with the Link. The error recovery is initiated by the host processor but detected
by both the device SLCs and the host MLC.

Data extraction commands let the host gather information from the HIL devices on the Link. Character
data, pointer position data, status, and device specific data can be communicated back 1o the host using
data extraction commands. When used in conjunction with the device identification commands, the data
can be processed by the host system.

Identification commands are used to determine the type of attached devices. They are also used
to gather general characteristics of these devices. Device characteristics include resolutions, directional
information, and information on how the device reports data.

The previous paragraphs explain the gist of HP-HIL. If one wishes to learn more about HP-HIL
to become a local HIL guru or perhaps just to woo babes, obtain a copy of the HP-HIL Technical Reference
Manual. The product number on this document is 45918A. The document covers the philosophy behind

HP-HIL, the hardware requirements, and the command. opcodes. It is a well written document from
which much of the previous discussion was plagiarized.

5.8.3 MLC Operation

HIL commands or data are sent to HIL devices in two steps. First, the host processor writes the
command bit and address to register W1. Next, the processor writes the command opcode or device
data to W0. The MLC computes the parity bit, adds the start and stop bits and transmits the frame.

The MLC stores all the return frames in its FIFO. When the MLC receives the initial command
or an error code, it interrupts the processor (int=0). The host processor clears the interrupt by reading
register R3. The processor then reads the frames stored in the FIFO by altemately reading R1 (command
and address bits) and RO (data) until the command frame is read. Each time RO is read, the frames
inside the FIFO shift up one position. RO and R1 are the top of the FIFO.

5.8.4 Register Definitions

There are four read-only registers (R0-R3) and four write-only registers (WO0-W3). These registers
are accessed by either a read or write strobe with the corresponding address bits (A0-A1) asserted.
The reading of all registers but R1 will cause the values in them to change. As expected, wriling to
any of the write registers changes their value. The read registers can’t be written, The write registers
can’t be read.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 56 of 102

HEWLETT
E‘/’ PACKARD

OUTPUT REGISTERS

DATA R.PW%PERR
716151431210 1 0 0
RO
DATA
716151 43[2 110
W0
5.8.4.1 RO

" RO contains the command opcode or data from the top HIL frame in the FIFO. After a command
is sent out to the HIL link, the first frame received will be put in the top of the FIFO. The next frame
reccived will be put in the second position and so on. Reading RO will cause all FIFO data to shift
up one position and the top data will be overwritten with data in the second position.

5.8.4.2 R1

R1 contains the command bit and address of the frame at the top of the FIFO. This information
should correspond to the data in RO.- Since reading RO will destroy the data it contains, frame information
should be read by reading R1 then RO for each frame. RI1 should always be read before R0O. All
the frames in the FIFO can be read by alternating reads from R1 and RO.

R1 is also home to the OB (output busy) bit. This bit reflects the operation of the output shifter.
If the transmit state machine is transmitting a frame, the OB bit will be set. Software should poll this
bit to insure that it is clear before sending out a frame. The reading of R1 will not destroy its contents.

5.8.4.3 R2

R2 contains the error bits: FOF, FERR, and PERR. FOF is the FIFO overflow bit. It is set when
the MLC is receiving more frames than it can store. The HIL specification limits the number of frame
transmissions in one HIL transaction to 16. When a frame is received and the FIFO is full, this bit
is set and the frame is stored in the input shifter. The input shifter can be accessed by reading the
FIFO (R1 then RO) 17 times. When the first frame is read, the input shifier gets copied into the
last position in the FIFO. The seventeenth frame read will be the one from the input shifter.

Bit one of R2 is the framing error bit (FERR). A FERR occurs when the stop bit of an incoming
frame is 0. When a framing error occurs, the FERR bit is set and the MLC enters a resynchronization
routine. To resynchronize the input, the MLC monitors the serial input high for 150 microseconds.
If serial in goes low during that time, the timer is reset and the procedure is repeated. The input state
machine is then reset. If the MLC was receiving frames (a command frame had been transmitted but
not retuned yet) when the framing error occurred, the INT bit will be set with the FERR bit. If the

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 57 of 102

Il & FRGen

MLC was not receiving frames when the framing error occurred, it will assume there was no real frame
transmission and the FERR and INT bits will hold their current values.

To prevent framing errors caused by false starts (incorrectly indicating a frame reception), the input
state machine will sample each bit period three times and determine the sense to be the best-of-three
samples. This makes the MLC more resistant to ESD glitches.

Bit 0 of R2 is the parity emror bit (PERR). A parity error occurs when the sum of all the bits
in a frame, including the start and stop bits, is even. If the MLC detects a parity error when it is
receiving frames, a command frame has been sent but hasn’t yet returned, the PERR bit and the INT
bit are set. If the MLC is not receiving frames when a parity error occurs, the input state machine
is reset and no bits are set.

R2 is a destructive register. It will clear all bits when it is read.
s.s.dl‘ R3

R3 houses some real riffraff. Bit 2, the LERR bit, is the loop error bit. It is set when the MLC s in autopoll
mode receiving frames and a rising edge is detected on the AP pin. This is a serious error. If this error is seen,
there is a major flaw in the hardware driving AP or the software. Since the author was working on the perfect
project with flawless hardware and infallible software, this bit was not implemented. Also, since the autopoll

mode is not supported or needed in the Wax ASIC, there was no need for implementing LERR. There are
versions of the MLC that do support autopoll.

Bit 1, NMI, is set when a device on the HIL loop sends the dreaded FB command. FBis a system hard reset
sent by an HIL device to signal a non-maskable interrupt or reset. When FB is received, the nmi signal is
asserted (low) for 5 microseconds. The reception of the FB command has no affect on the INT bit. The FB
command, however, will not be loaded into the FIFO. ‘

Bit 0, INT, is set whenever a command frame is returned and whenever FOF, FERR, PERR, or LERR are
set. The interrupt signal is a complement of this bit. When INT is set, the interrupt signal is asserted (low).

Reading R3 will clear the three bits. Therefore, reading R3 clears the interrupt.
58.4.5 Wo '

WO is the write frame data register. The data or opcode of the HIL frame to be transmitted is
written to W0. Whenever WO is written, an HIL frame is assembled and transmitted. Therefore, developers
should always write to W1 before writing to WO to insure proper data in the HIL frame.

Only one HIL command should be active on the HIL link. When there is a write cycle to WO,
the MLC checks the command bit in W1 to see if a command is about to be transmitted. If the command
bit is set, the MLC resets the FIFO pointer. If there was any HIL frames in the FIFO, they will be
overwritten by the HIL frames returning in response to the command being transmitted.

5846 W1

W1 contains the command bit and the HIL device address for the next frame to be transmitted.
As mentioned earlier, if the command bit is set, the frame is an HIL command. If it is clear, it is
data.

5.8.47 W2

The ignore poll frame (IPF) and test bit reside in W2. The ignore poll frame bit is not implemented
in this version of the MLC.

As its name implies, the test bit is used for testing the MLC. Setting this bit, puts the MLC in
test mode. In this mode, the serial in signal is internally tied to the serial out signal. The extemnal

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 58 of 102

K22 eackarD SN

serial out is pulled high so frame transmissions are not seen by devices on the HIL link. This mode
can be used to fill the FIFO with data by writing to W1 and WO, repeatedly. The FIFO can then
be emptied by reading R1 and RO repeatedly. By comparing the data read with the data written, one
can verify that the MLC is working properly. This type of loop-back test exercises a great portion
of the MLC.

5.8.48 W3

. The autopoll enable bit is the only bit in this register. Since autopoll is not a supported mode in
teh Wax ASIC, this register is not used.

5.8.5 FIFO

The MLC has a 16-frame first-in-first-out queue (FIFO) for storing incoming frames. The FIFO
has a pointer that points to the next empty location in the FIFO. The FIFO grows from the top down.
As mentioned before, RO and R1 reflect the top frame in the FIFO.

As a frame is received, it is placed into the FIFO and the FIFO pointer is incremented. If more
than 16 frames are received, the FIFO overflow bit (FOF) is set and incoming frames overwrite the last
frame in the input shifter. When the next command frame is received in the input shifter, the MLC
will set the INT bit and the host processor will be interrupted. The input shifter can be thought of
as the 17th frame in the FIFO. It can be read by reading the FIFO (alternating reads to R1 and RO)
17 times. Subsequent reading of the FIFO will simply repeat the contents of the input shifter.

As frames are read, the FIFO pointer is decremented and all frames shift up one position in the
FIFO. Since reading RO signals the FIFO that a frame is being read, always read R1 before reading
RO or the contents of Rl will be lost as the next frame shifts up.

If a frame with bad parity or a framing error is received, the data error frame (opcode FC with
a universal address (0) is loaded into the FIFO, the parity error bit (PERR) or the framing error bit
(FERR) is set, and operation continues as if a command frame were received.

- The FIFO will never contain more than one command frame (and its associated data) at one time.
If the contents of the FIFO aren’t read when when the processor is interrupted, the next command sent
out will overwrite the FIFO data when it returns. When the host processor writes data to WO (signalling
a frame transmission), the FIFO pointer is set to zero pointing to the top of the FIFO. All frames
received after this point will overwrite any frames in the FIFO.

Reception of a master ‘hard reset frame (opcode FB) is a special case. When a master hard reset
frame is received, the nmi signal is lowered (nmi=0) for 5§ microseconds and the NMI bit in R3 is set.
The frame is not shifted into the FIFO. Further frames can be received. The interrupt signal and bit
are not affected by a master hard reset.

The FIFO is not cleared nor set at power up. The only way to initialize the FIFO is to send and
receive a command. At power up, the FIFO pointer is set to 0.

5.8.6 Software Tips

This section is specifically for folks using the MLC module outside of the Wax ASIC. All HIL
transactions inside the Wax ASIC talk to the MLC via the 8042. If you wish to send data out to a
device on the HIL, consult the 8042 documentation.

For those using the MLC module without the 8042, make sure that the OB bit is clear before writing
to W0. If the bit is set and a frame needs to be transmitted, poll the bit until it is clear, Then write
to WO and the frame will be transmitted. The OB bit will not be set for more than 154 microseconds.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 59 of 102

o HEWLETT

PACKARD

When clearing and interrupt by reading R3, always read R2 immediately after. R2 contains error
bits that will help determine if the interrupt was set because a command frame returned or if there was
an error. :

R3 should not be read within one microsecond of the falling edge of the interrupt signal. If R3
is read within one microsecond of the interrupt, it will not be cleared. If this is a potential problem,
the user may want to read R2 before reading R3 to allow this time period to lapse.

5.8.7 MLC vs. Cerberus

There are a few differences between the Wax ASIC’s MLC and the old Cerberus (1RD2-6201).
The differences are transparent to the Wax ASIC users because there is no way to talk directly to the
MLC. All transactions with the MLC are through the 8042.

The greatest difference is the absence of the autopoll function. This was not necessary since one
of the functions of the 8042 is to initiate autopolling on the HIL. As mentioned before, there are three
register bits associated with autopoll that aren’t implemented: LERR, APE, and IPF.

The internal clock of Cerberus is twice the frequency of the external crystal. The system clock of
the MLC is the same speed as the external clock so transactions are slower. This, again, doesn’t matter
since all transactions are through the 8042. '

Cerberus double buffers its outgoing HIL frames. The MLC doesn’t. The 8042 always checks the
OB before initiating a frame transmission. If the MLC is busy sending out a frame, the 8042 will wait
until it isn’t, before initiating another frame transmission.

P

5.9 HP-HIL Disable

The HP-HIL interface may be disabled entirely by grounding the hilSo output during power up. When this
is done, accesses to the HP-HIL address space will not generate a gscReadyL. If the hilSo signal is not
grounded, the HP-HIL interface will function as described.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 60 of 102

| () Pl

| 5.10 Sample Schematic

WAX

hilSi L4

+12V

HILCONN
.

1K ?

hilSo L5

VA
VV\A

2T
i)

1K |
AU —

/l

Figure 14 HPHIL Schematic

GND

I .
I]

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 61 of 102

[[/7) HEwLETT
7B PACKARD

6 HPIB Interface

6.1 Description of Interface

The HPIB interface that is built into the Wax ASIC is compatible with HPIB interfaces used in Series 300
controllers previously. The design requires three chips external the the Wax ASIC: the TMS9914, SN75163, and
SN75162 . This design of this portion of the circuitry was originally designed for the Stiletto ASIC by MCSY
in Fort Collins. Below is a table showing the registers used on the HPIB portion of the Wax ASIC:

The HPIB interface was designed with two goals in mind. The first goal was to be as close as possible to be
software compatible with the 82335 ISA HPIB card. The second goal was to add DMA to the definition to
increase performance and to decrease processor resources need to use the HPIB. To achieve the first goal, the

‘register definition the HPIB interface is a superset of the 82335 ISA HPIB card. In the software hints section,
there are descriptions of what the differences are between the 82335 ISA HPIB card and this interface. To
achieve the second goal of increasing performance and to decrease processor resources, a 32 byte Fifo with

DMA capability was added to the interface. The Fifo transfers byte(8 bit) wide data to the 9914 and word
wide(32 bit) data to main memory.

Also added to the interface was a character matching function. The character matching function allows
software to set a character value to stop the DMA process. When this feature is enabled, the hardware will stop
transferring data when it transfers a data value equal to the special character value. The hardware will then
interrupt the software to let it know that the DMA is finished. This is useful to some instruments that do not tag
the end of their data with a EOI transfer but instead make the last byte a special character like a <line feed>.

6.2 Register Definitions

The following describes the registers that are part the the HPIB interface. After defining the base address of
the interface, there are tables that summarizes the registers. Following the tables, there is a detail description of
the registers and their individual bits.

6.2.1 Base Address

The GSC base address for the HPIB interface is OxF020 5000. The GSC+ base address for the HPIB
interface is OxFFEQ 5000.

The HPIB registers are defined as a word port only. When data is written to any register, all thirty-two bits
on the data bus are written into the register regardless of the state of the byte enable bits associated with the
transfer. When any register is read, all thirty~two bits of the data bus are driven. Unused bits are always read as
zeros. The HPIB registers may be accessed using multi-word transfers, but only the first word of the transfer

- occurs. During multi-word writes, the second and subsequent words are ignored. During multi-word reads, the
first location accessed is driven as the first word of data, but subsequent words are not meaningful data. Correct
GSC protocol is followed for multi-word transfers, the data is just meaningless.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 62 of 102

@

HEWLETT
PACKARD

6.2.2 Summary of HPIB Registers

Table S HPIB Registers

ID register 0x000-0x003 || R
32 bit word - 0x00000001
Clear Interrupt 0x000-0x003 §| W X
Reset 0x004-0x007 || W
Undefined 0x008-0x7FE : IR e X L
ISA Status Ox7FF R Intr Intr ? DMA ? System ? ?
pending | enable ensble catlr
ISA Control Ox7FF w X X X X System Intr X DMA
enable | enable enable
DMA Address 0x800-0x803 §i R/'W
32 bit Address
DMA Count 0x804-0x807 | R/W
) 32 bit Count
DMA Status 0x808 R ? empty full flush ? Bus Match DMA
. o Error enable |direction
DMA Control 0x808 w X X X flush X X Match | DMA
enable |{direction
DMA Character | 0x809 R/W 8 bit Character Match Value
Match Value
FIFO Address 0x80A R/W X X X S bit Address
FIFO Data 0x80B R/W 8 bit Data
Undefined 0x80C-0x80F ST
Extended Control |0x810 w » X
Extended Status }0x811 R Intr Intr terminal char ? ? “active 9914
pending | enable | count | match entlr Intr
Undefined - . -{0x812-0x813 N e o L : T
I/O FIFO Pointer {0x814 R ? ? ? 5 bit Pointer
Processor FIFO [0x815 R ? ? ? 5 bit Pointer
Pointer
Undefined 0x816-0xFF7 S -
9914 Registers OxFF8-OxFFF (| R'W Refer to the 9914 register definition for details

6.2.3 Detailed HPIB Register Descriptions
6.2.3.1 1D Register

The 1D register is the Identification Number of the interface. This is an arbitrary number that the Stiletto
team assigned to the interface and is identical in the Wax ASIC. Previous designs(ASP) did not have any

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 63 of 102

ﬂ* HEWLETT
P8 PACKARD

method of identifying an interface. As interfaces become obsolete, the address space that it ori ginally occupied
will not be able to be reused because there will be no easy way to identify which interface, new or old, is
occupying that address space. The register is a 32 bit register with a 32 value of one(1).

6.2.3.2 Clear Interrupt

The Clear Interrupt register clears the interrupt bit in the ISA Status register and the Extended Status
register. A write to any byte in this address range will clear the interrupt bit.

6.2.3.3 Reset Register

The Reset register resets the interface. A write to any byte in this address range will reset the internal state
machines of the interface and will also assert the reset line to the 9914 for 64 GSC clocks. At 37.5 MHz, this
signal will be asserted for 1.7 psecs. At 30MHz, this signal will be asserted for 2.1 pusecs. The 9914 spec for the
reset line is a minimum of eight 9914 clocks. In a typical Wax system, the 9914 runs at SMHz so the minimum
reset assert time is 1.6 psecs.

6.2.3.4 ISA Status register

The ISA Status register is a software compatible register to the 82335 ISA card. It contains the basic
status bits for the interface.

Table 6 ISA Status

ISA Status Ox7FF

R Intr Intr ? DMA ? .
pending | enable enable : cntlr

Intr pending - Interrupt Pending bit. This bit is asserted when either the 9914 has interrupted, the DMA
controller has reached terminal count, or the DMA controller has had a character match interrupt. On
reset, this bit is setto a 0. It also can be cleared by writing to the Clear Interrupt register. This bit
will be driven as an interrupt to the processor if IEN is set. If IEN is not set, this bit can still be set
but it is not driven as an interrupt to the processor. '

Intr enable - Interrupt Enable bit. This bit reflects the value of Intren in the ISA Control register.

DMA enable - DMA Enable bit. This bit indicates that DMA is currently enabled. It is enabled by writing
a1inthe ISA Control register. It is cleared by several methods. One is to write a 0 in the ISA
Control register. The second is by reaching terminal count in the DMA Count register. The third
is by having a character match occur with the character matching enabled. The last is by getting a
buserror during a dma transfer.

System cntlr - System Controller bit. This bit reflects the inverse of the value of SYSEN in the ISA Control
register. This bit controls whether the interface is considered the system controller.

6.2.3.5 ISA Control register

ISA Control register is a software compatible register to the 82335 1SA card. It contains the basic control bits
for the interface.

Table 7 ISA Control

ISA Control OXTFF w | X X X X | System | Intr X | DMA
enable enable | enable

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 64 of 102

| () Pyt

System enable - System Controller enable bit. A 0 means that the interface is the system controller. On reset,
this bit is set to a 0.

Intr enable - Interrupt Enable bit. A 1 means that interrupts are enabled. On reset, this bit is set to a 0.
DMA enable - DMA Enable bit. A 1 means that the dma is enabled. On reset, this bitis settoa 0.
6.2.3.6 DMA Address

DMA Address register is the 32 bit register that contains the current address that the DMA state machine will
use when transferring data to/from memory. When loading the DMA Address register, the address MUST
be word aligned(lower two address bits must be equal to zero).

6.2.3.7 DMA Count

"DMA Count register is a 32 bit register that contains the number of bytes that the DMA state machine still has
to transfer before reaching terminal count.

6.2.3.8 DMA status
DMA Status register is a register that contains the status bits specific to the DMA controller.

Table 8 DMA Status

DMA Status 0x808 R “ ? empty full flush

Error enable {direction

Empty - Empty bit. This bit indicates when the Fifo is currently empty. This bit should only be used for de-
bugging.
FULL - Full bit. This bit indicates when the Fifo is currently full. This bit should only be used for debugging.

Flush - Flush bit. This bit indicates that the Fifo is currently trying to flush its contents on a INBOUND trans-
fer. This bit can be set several ways:

1. When 9914 interrupt is asserted.
2. When the DMA Count register is equal to zero.
3. Manually set by writing a 1 into the FLSH bitlocation in the DMA Control register.

This bit will clear when the 9914 interrupt is cleared and when the Fifo is empty. This bit will also
clear if the dmadir bit in the DMA Control register is set to OUTBOUND transfer.

Bus Error - Bus error bit. This bit indicates that a bus error occurred during a DMA transfer. A bus error will
occur when the DMA state machine attempts to address a memory location that does not exist. This
bit will be cleared when the dmaen bit is setto a 1.

Match enable - Character matching enable bit. This bit reflects the current value of the CMEN bit in the
DMA control register. When enabled, DMA will stop and assert an interrupt if a byte is transferred
from the 9914 during an INBOUND DMA transfer that matches the value in the DMA Character
Match Value register. This feature is designed to be used when an device si gnals the end of transmis-
sion with a certain character value like a line-feed.

DMA direction - DMA direction bit. This bit reflects the current value of the DDIR bit in the DMA control
register. When the bit is equal to a 0, the transfer is an INBOUND transfer(from 9914 to memory).
When the bit is equal to a 1, the transfer is an OUTBOUND transfer(from memory to 9914).

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 65 of 102

[,‘]P HEWLETT

PACKARD

6.2.3.9 DMA Control
DMA Control register is a register that contains the control bits specific to the DMA controller.

Table 9 DMA Control

DMA Control 0x808 EWE X X X flush X X Match | DMA

enable |direction

Flush - Flush bit. Setting this bit to a 1 causes the Fifo to flush its contents on a INBOUND transfer. This
bit is meant for debug only. The Fifo should flush automatically when the DMA Count register is
equal to zero or when the 9914 interrupts. On reset, this bit is set to a 0. '

Match enable - Character matching enable bit. Setting this bit to a 1 enables the character matchin g function.
When enabled, DMA will stop and assert an interrupt if a byte is transferred from the 9914 during
an INBOUND DMA transfer that matches the value in the DMA Character Match Value register.

This feature is designed to be used when an device signals the end of transmission with a certain
character value like a line~feed.

DMA direction - DMA direction bit. When the bit is equal to a 0, the transfer is an INBOUND transfer(from

9914 to memory). When the bit is equal toa 1, the transfer is an OUTBOUND transfer(from memory
t0 9914).

6.2.3.10 DMA Character Match Value

- DMA Character Match Value register contains the character value that is used for comparison when the
Match enable bit is set in the DMA Control register.

6.2.3.11 FIFO Address

FIFO Address register is an address pointer into the FIFO. Any access to the FIFO Data register will be
performed on the FIFO address pointed to by the FIFO Address register. This register is meant to be used for
debug purposes only.

6.2.3.12 FIFO Data

FIFO Data register is a window register into the FIFO. When this register is read from or written to, the
FIFO byte pointed to by the FIFO Address register is accessed. This register is meant to be used for debug
purposes only.
6.2.3.13 Extended Control

Extended Control register is currently architected into the register definition but the bits are not defined.

6.2.3.14 Extended Status

Extended Status register is an attempt to create one register that contains all the possible interrupting
conditions so that software will be able to access only one byte to get the information. This register also
contains the active controller bit that was not defined in the original ISA status register.

Table 10 Extended Status

!
I
L.

Extended Status {0x811 R I] Intr Intr terminal char

? ? Tactive | 9914
pending | enable | count match cntlr Intr

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 66 of 102

[ﬁp HEWLETT

PACKARD -

Intr pending - Interrupt Pending bit. This bit is asserted when either the 9914 has interrupted, the DMA
controller has reached terminal count, or the DMA controller has had a character match interrupt. On
reset, this bit is set to 2 0. It also can be cleared by writing to the Clear Interrupt register. This bit
will be driven as an interrupt to the processor if Intr enable is set. If Intr enable is not set, this bit
can still be set but it is not driven as an interrupt to the processor. This bit is identical to the Intr pend-
ing bit in the ISA Status register.

Intr enable - Interrupt Enable bit. This bit reflects the value of Intren in the ISA Control register.

_ terminal count - Terminal Count bit. This bit indicates when the Terminal Count has been reached in the
DMA transfer. Terminal Count is when the DMA Count register is equal to zero. If interrupts were
enabled when the Terminal Count transitions to a one, an interrupt will be generated. It signifies that
all the bytes have been placed in memory on INBOUND transactions or all the bytes have been trans-
ferred to the 9914 on OUTBOUND transactions.

char match - Character Match bit. This bit is set when the last INBOUND transfer from the 9914 matches
the value in the DMA Character Match Value register. If the match enable bit is a one in the DMA
Control register; the DMA direction bit is a 0(INBOUND) in the DMA Control register, and inter-
rupts are enabled when the Character Match bit transitions to a one, an interrupt will be generated.
When these conditions are meet, the DMA enable bit in the ISA Control register will be cleared.
DMA can be resumed by writing a one(1) to the DMA enable bit in the ISA Control register.

~active entlr - Not Active Controller bit. This bit reflects the status of the NCONT line on the 9914. It indi-
cates when the 9914 is the Active Controller. A zero(0) means the 9914 is the current Active
Controller.

.. 9914 Intr - 9914 Interrupt. This bit reflects the status of the interrupt line from the 9914. A zero(0) means
that the 9914 is currently asserting its interrupt line.

6.2.3.15 1/0 FIFO pointer

The 1/O FIFO pointer register is a read only register that indicates the current value of the 9914 or 1/Oside
pointer into the FIFO. This register is meant 1o be used for debug purposes only.

6.2.3.16 Processor FIFO pointer

The Processor FIFO pointer register is a read only register that indicates the current value of the GSCor
processor side pointer into the FIFO. This register is meant to be used for debug purposes only.

6.2.4 Summary of 9914 Registers

The 9914 registers are shown in' Table 11. The bits in Table 11 are reference in Motorola bit notation to
maintain consistency with the data sheet from TL

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 67 of 102

[Z HEWLETT
P8 PACKARD

Table 11 9914 Registers

9914 Int Status 0

9914 Parallel Poll | OXFFE
9914 Data In OxFFF

PP8 PP7 PP6 PPS PP4 PP3 PpP2 PP1
DIO8 DIO7 DIO6 DIOS DIO4 DIO3 DIO2 DIO1

R
9914 Int Status 1 | OXFF9 H R GET | ERR | UNC APT | DCAS | MA SRQ IFC
9914 Addr Status |OxFFA R { REM | L1O ATN | LPAS | TPAS | LADS | TADS ulpa
9914 Bus Status | OXFFB R | ATN | DAV | NDAC | NRFD | EOI SRQ IFC REN
9914 Undefined | OXFFC ﬂ R
9914 Undefined |OxFFD f R}
9914 Cmd Pass | OXxFFE R § DIO8 | DIO7 | DIO6 | DIOS | DI04 | DIO3 | DIO2 | DIO1
9914 Data In OXFFF ﬁ R || DIO8 | DIO7 | DIO6 | DIOS | DIo4 | DIO3 | DIO2 | DIO1
9914 Int Status 0 | OXFF8 ﬁ w X X BI BO END | SPas RLC MAC
9914 Int Status 1 | OXFF9 f Wl GET | ERR UNC APT | DcCAS MA SRQ IFC
9914 Undefined |OxFFA w
9914 AuxCmd | OxFFB w cs X X f4 f3 f2 f1 f0
9914 Address | OXFFC W || edpa | dal “dat AS Ad A3 A2 Al
9914 Serial Poll | OXxFFD W S8 rsvl S6 S5 S4 S3 s2 S1

W

w

6.2.5 Detailed 9914 Register Descriptions
6.2.5.1 9914 registers

The 9914 registers are expanded in Table NO TAGNO TAG. These registers MUST be accessed in byte
mode only. Accessing in half-word(16 bit) or word(32 bit) mode will give unpredictable results. For a complete
explanation of the 9914 registers, refer to TI's TMS9914A General Purpose Interface Bus(GPIB) Controller
Data manual. The following are definitions of most of the bits in the registers

AS5~Al — Primary address of the 9914.

AFPT — Address Pass Through. This will be a 1 if a secondary command is received. Disable for second-
ary addressing. ' o

ATN — The attention line is low(true) on the bus.

BI — Byte In. This will be a 1 when a data byte has been received in the Data In register.

BO — Byte Out. This will be a 1 when there is room for a data byte in the Data Out register.

DAV - Device Available. Reflects the current value of the DAV line.

DCAS - Device Clear Active State. This will be a 1 when a DCL or SDC command is received.

END -—This will be a 1 when the last byte received was tagged with a EOL. |
~ EOI - End Or Identify. Reflects the current value of the EOI line.

ERR - Error. This will be a 1if the source handshake becomes active and there are no accepters on
the bus.

GET - Group Execute Trigger. This will be a 1 when a Group Execute Trigger command is received.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 68 of 102

[ﬁ/’ HEWLETT

PACKARD

IFC — Interface Clear. This will be a 1 when the IFC line becomes true.

INT1 — This will be a 1 when an unmasked status bit in Interrupt Status register 1is settoa 1.
INTO — This will be a 1 when an unmasked status bit in Interrupt Status register O is settoa 1.
LADS - The device is addressed to listen.

LLO - Local lockout is in operation.

LPAS -~ The 9914 is in the listener primary addressed state.

MA — My Address. This will be a 1 when teh 9914 recognizes its primary talk or listen address.

MAC - My Address Change. This will be a 1 when the 9914 has received a command which changes
the address.

" NDAC - Not Data Accepted. Reflects the current value of the NDAC line.
- NRFD - Not Ready For Data. Reflects the current value of the NRFD line.
REM - The device is in the remote state.
REN - Remote Enable. Reflects the current value of the REN line.

RLC - Remote/Local Change. This will be a 1 whenever there is a transition betweenlocal and remote
states.

SPAS — This will be a 1 when 9914 has requested service via rsv1 or rsv2 and has been polled in a serial

poll.
SRQ - Service Request. This'will be a 1 when the SRQ line becomes true.

TADS - The device is addressed to talk.
TPAS — The 9914 is in the talker primary addressed state.
~ UNC - Unrecognized Command. This will be a 1 if a command that has no meaning is received.
cs — Clear or set the feature
dal — Disable listener function.
- dat — Disable talker function.
edpa — Enable dual primary addressing mode.
f4—f0 — Auxiliary command select.
ulpa — This bit shows the LSB of the last address recognized by the 9914.

LT AT

6.3 DMA

DMA was added to the HPIB interface to reduce the load on the processor and to increase performance. A
FIFO was added to optimize the use of the GSC interface to main memory. The 32 byte size of the FIFO
matches the line size of the memory as designed in the Hummingbird ASIC. During normal operation, the
DMA state machine will transfer complete 32 byte lines to and from memory. The transfers across the GSC bus
are done in eight 32 bit accesses. The transfers to/from the 9914 are done in thirty-two 8 bit accesses.

_ The FIFO is not a true dual-ported design. When a transfer to/from memory is started, the data is
transferred uninterrupted until the the FIFO is either completely empty or completely full. During this time,
there will no transfers to/from the 9914. Conversely, once a transfer is started to the 9914, there will be no
transfers to/from the memory until the 9914 transfer is complete. This simplified the FIFO design considerably
without a major impact on the performance. '

6.3.1 Inbound DMA

INBOUND DMA is defined as transferring data from the 9914 to main memory. A typical sequence to
program a INBOUND transfer is as {ollows;

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 69 of 102

iﬁ HEWLETT
78 PACKARD

o Program the 9914 per the TMS9914A General Purpose Interface Bus(GPIB) Control-
ler manual to place the 9914 in LACS(Listener Active State).

o Write the physical address that the data is destined for in main memory to the DMA
Address register.

o Write the number of bytes to transfer to the DMA Count register.

« Optionally write the character matching value into the DMA Character Match value
register. ,

o Write the direction of the dma transfer and (optionally) Match enable into the DMA
Control register. The direction bit should be set to a zero(0).

~» Enable DMA by writing a one(1) to the DMA enable bit in the ISA Control register.
If interrupts are desired, enable interrupts by writing a one(1) into the intr enable
bit at the same time. DMA will begin immediately after this write has completed.

INBOUND DMA can terminate on several conditions. Under normal conditions, INBOUND DMA will
terminate when the DMA Count register reaches terminal count. Terminal count is defined as when the counter
value is equal to zero(0). For INBOUND DMA, the DMA Count register is based on the number of bytes
transferred from the 9914. Another condition that INBOUND DMA will terminate on is when there is a
character match and character matching is enabled. The final condition that will terminate INBOUND DMA is
when a bus error occurs during the DMA write to main memory. ‘

There are some peculiarities with the FIFO and INBOUND DMA. Generically, the FIFO will empty into
main memory whenever it has become full. There is the special case when the FIFO is emptied into main
memory when it is not full. This case is referenced as flushing the FIFO. The FIFO is flushed under a number
of circumstances. The first and most normal is when terminal count is reached. In this case, the DMA state
machine has transferred the correct number of bytes from the 9914 and therefore needs to transfer all the bytes
from the FIFO to main memory even if the FIFO is not full.

The second case is when there is a character match and character matching is enabled. There is no guarantee
that the FIFO is full and this is a terminating condition where the DMA state machine will not attempt to get
more bytes out of the 9914. Therefore, bytes in the FIFO need to be transferred into main memory. The third
case is when the 9914 asserts its interrupt line. When the interrupt line is asserted, DMA is not terminated
because there may be many reasons why the 9914 can interrupt that might have no affect on the DMA in
progress. However, one of the conditions that the 9914 will assert the interrupt line is when a byte is tagged with

EOI(End of transfer). In this case, the 9914 will not supply any more bytes of data so the FIFO will never get
full and it needs to be flushed.

The final case is when the flush bit in the DMA Control register is set to a one(1). This is a special debug
case that will case the FIFO to flush no matter what the current state of the DMA state machine.

6.3.2 Outbound DMA

OUTBOUND DMA is defined as transferring data from main memory to the 9914. A typical sequence to
program a OUTBOUND transfer is as follows;

» Program the 9914 per the TM59914A4 General Purpose Interface Bus(GPIB) Control-
ler manual to place the 9914 in TACS(Talker Active State) or CACS(Controller
Active State).

o Write the physical address that the data is from in main memory tothe DMA Address
register.

o Write the number of bytes to transfer to the DMA Count register.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 70 of 102

K28 PackARD

« Write the direction of the dma transfer into the DMA Control register. The direction
bit should be set to a one(1).

« Enable DMA by writing a one(1) to the DMA enable bit in the ISA Control register.
If interrupts are desired, enable interrupts by writing a one(1) into the intr enable
bit at the same time. DMA will begin immediately after this write has completed.

. OUTBOUND DMA will terminate on only two conditions. The first is when terminal count is reached in
the DMA Count register. Terminal count is defined as when the counter value is equal to zero(0). For
OUTBOUND DMA, the DMA Count register is based on the number of bytes transferred from main memory.
The second condition that will terminate OUTBOUND DMA is when a bus error occurs during the DMA read
from main memory.

6.3.3 Character Matching

Character Matching is a new feature added to the HPIB interface for instrument control. There are quite a
few instruments that do not tag the last byte with the EOI line asserting but instead tag the end of transfer with
a unique value for the last byte. An example would be having the last byte be a line-feed character. In the past,
1o receive the data from an instrument like this, software has had to handle the transfer instead of hardware.
DMA could not be enabled since the number of bytes to transfer was not known and quite often it was
detrimental to transfer bytes after the instrument has sent the tag character to signal the end of transfer. For these
reasons, software could not enable DMA but instead had to hand transfer every byte and compare the value with
the tag character. This was inefficient in both the processor utilization as well as the bus utilization.

When character matching is enabled in this HPIB interface, the hardware will transfer bytes from the
instrument until either the DMA count reaches zero or the character reccived from the 9914 matches the
character previous written to the Character Matching Value Register. The proposed usage of this feature is to
load the maximum number of bytes that the instrument will send into the DMA Count Register, the tag
character the signals the end of transfer in the Character Matching Value Register, and then enable DMA with
character matching enabled. If for some reason, software did not want the DMA to stop after receiving the tag
character, DMA can be resumed where it left off by simply re-enabling DMA

é‘.3.4 HPIB Performance

These performance numbers are preliminary and require verification. The numbers assuming that GSC
clock is running at 30MHz.

Table 12 Inbound Timing

HPIB interface 260 ns ~6.5 cycles
minimum hpibGr low time 9914 interface 700ns Measured max rate
Time per byte to transfer from 9914 to FIFO 960ns/byte
Filling the FIFO from 9914 HPIB/9914 interface {30720 ns 32 bytes x 960ns/byte
GSC arbitration time Wax/Lasi 400 ns
Transferring data from FIFO to main memory HPIB interface 1280 ns 8 words x 160ns/word. Assumes
0 wait state memory
Time per cache line to transfer from 9914 to main memory 32100ns/line or 996Kbytes/sec

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 71 of 102

K/ Exckann

Table 13 Outbound Timing

“hpibch asserted to bpibGr asserted - HPIB interface 260 ns 76.5 cycles
minimum bpibGr low time 9914 interface 1440ns Measured max rate ,
e per byte to transfer from FIFO to the 9914 1700ns/byte -
Emptying the FIFO from 9914 HPIB/9914 interface | 54400 ns 32 bytes x 1700ns/byte
GSC arbitration time Wax/Lasi 400 ns
Transferring data from main memory to FIFO HPIB interface 1600ns 8 words x 200ns/word. Assumes
0 wait state memory
Time per cache line to transfer from 9914 to main memory 56400ns/line or 567Kbytez/:;

6.4 Software Hints

6.4.1 Differences with the 82335 interface

The Clear Interrupt “register” was a write-only register that occupied the address range 0x000 to 0x7F7. On the
PA-HPIB interface, this register will only occupy the byte address 0x000. '

An ID register was added at word(32bit) address 0. This is a read-only register that returns the value of
0x00000001.

The HPIB status/control register occupied the address range 0x7F8 to 0x7FF. On the PA-HPIB interface, this
register will only occupy the byte address 0x7FF. '

The PA-HPIB added new registers called Extended status/control registers in the definition. There currently are
no bits defined in the control register. The status register has the two bits("active controller and 9914 interrupt)
that were creatively snuck into the 9914 register space on the 82335 as well as duplicate bits to those contained
intheregular status and the DMA status register. The reason that the duplicate bits were added was to give software

a one register to determine the reason for an HPIB interrupt. The two bits("active controller and 9914 interrupt)
were moved to this register to make a cleaner method to get to these bits

The PA-HPIB added a simple DMA interface. An attempt was made to look like the ISA/EISA DMA model.

\ linaily opieu 1or a simple interface that had an address register, count register,
status/controi register. I have slipped it into an address space in the 82335 definition that seemed unoccupied.

6.4.2 Possible software gotchas

For normal operation, you should not need to access the following:
* HPIB DMA FIFO address
* HPIB DMA FIFO data
* HPIB DMA HPIB side FIFO pointer
* HPIB DMA GSC side FIFO pointer
* flush bit in DMA Control register

These were added for debug purposes case there is a bug with the Fifo.

When the DMA Count register is loaded, the FIFO is cleared. This means that anything that is currently

loaded into the FIFO is sent to the big bit bucket in the sky. In other words, do not write to the DMA Count
register unless you have finished with the previous DMA,

The flush bit only has meaning in the INBOUND case. It does nothing for the OUTBOUND case. Flushing

will cause the contents of FIFO to transfer to memory. This is different then clearing which throws away the
data.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 72 of 102

L7280 FACKARD

When a 9914 interrupt causes a flush to occur, the flush bit stays asserted while the 9914 interrupt remains
asserted. The side effect of this is the FIFO becomes a one byte deep Fifo. If any new data is placed in the
FIFO, the data will immediately be transferred to memory. As soon as the 9914 interrupt is cleared, the flush
bit will clear and the FIFO will resume normal operation.

When a 9914 interrupt occurs, the interface remains in DMA mode. If more data is available, the interface
will continue transfer data to/from the 9914.

When a bus error occurs on the GSC bus when the PA-HPIB is a bus master, dmaen will be
cleared(stopping any current DMA) and the buserr bit will be set in the HPIB DMA status register. A bus error
occurs because either the address generated by the PA-HPIB is not a valid memory address or a data parity error
has occurred. The buserr bit will remain set until the dma is re-enabled. DMA is re-enabled when the dmaen
bit is set in the HPIB control register.

" Don’t write a zero{0) into the DMA Count Register with DMA enabled. This will cause weird results. An
interrupt will occur and the flush bit will get stuck on if the DMA direction is set to INBOUND.

6.5 HPIB Signals

Table 14 is a list of the signals which interface the TI9914 chip to the Wax ASIC:

The HPIB interface may be disabled entirely by grounding the hpibCsL output during power up. When this
is done, accesses to the hpib address space will not generate a gscReadyL. If the hpibResetL signal is not
grounded, the HPIB interface will function as described. -

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 73 of 102

o B
Table 14 HPIB Signals
‘hvpibData[O] 212 /o Data.bus
hpibData[1] 213 /o Data bus
hpibData[2] 214 /0 Data bus
hpibData[3] 215 /o Data bus
hpibData[4] 216 0] Data bus
hpibData[5] 217 /o Data bus
hpibData[6}] 218 IO Data bus
hpibData[7] 220 10 Data bus
hpibReset 234 0 TI9914 reset
hpibCIkS 1227) SMHz clock
hpibRs[0] 224 0] TI9914 register select
hpibRs([1] 225 o TI9914 register select
hpibRs{2] 229 0] T19914 register select
hpibDbin 221 o ' TI9914 data bus direction
hpibWe 223 o TI9914 write signal
hpibCs 208 I/O 1 T19914 chip select
hpibAccgr 210 I T19914 DMA grant
hpibAccrq 222 o) TI9914 DMA request
hpiblnt 233 1 TI9914 interrupt request
hpibScnt 207 1 Wax system controller bit
hpibContr 231 0O TI9914 controller signal
6.6 Sample Schematic
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 74 of 102

| ¢

HEWLETT

PACKARD
+5V 45V :
75A1LS160
113 pe
WAX 9914 ‘e |2 1]t CONN26
hpibD[0]}-21 11 147 dio7 {34 19§ d1 bl j2 1)
hpibD[1]} 213 12 146 dio6 |35 181d2 b2 13 2@
hpibD[2]} 214 13]ds dioS |36 173d3 b3 |4 3]
hpibD[3]}215 14 1d4 dio4 1 37 16 1d4 b4 15 4]
hpibD[4]} 216 15 1d3 dio3 1 38 153d5 b5 L6 13—
hpibD[5]|-212 16 }d2 dio2 {39 14 1d6 b6 |7 14—
hpibD[6]} 218 171d1 diol } 41 13147 b7 |8 1S
hpibD[7]} 220 19 140 dio0 1 42 121d8 b8 19 16
hpibRs[0]}.224 1s0
hpibRs[1]}.225 8 1rs1 1
hpibRs[2]} 229 9frs2 GND 75ALS162
hpibDbin} 221 6 { dbin ren | 24 22 }ren srq |10 ’ 10—
hpibCsL} 205 ce ifc } 25 211ifc atn 19 N
hpibWwr} 223 S1we atn _31___’ 16 } atn eoi |8 5<:
¢ hpibAccrq] 222 accrq - eoi §30 o 17 } eoi ~dav}]Z 6]
hpibAccgyf 210 3 }accgt srq 132 15 §srq nrfd 1 6 JC:‘
hpinIntL 233 o 10 {int dav 1 29 18 | dav ndac |5 8]
hpibClk5}| 227 20 clk nrfd } 27 19 § nrfd ifc |4 15—
hpibRstl4 234 21 §reset ndac | 26 20 § ndac ren |3 16]
hpibContr] cont tr143 21te
hpibSctl} 207 11 §dc
1]sc
74F32
35—

Figure 15 HPIB Schematic

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 75 of 102

[ﬁ‘w HEWLETT
PACKARD

J 7 Watchdog Timer Interface

‘. The Wax ASIC contains the watchdog timer block. This implementation is compatible with the design on
; the Stiletto ASIC. The purpose of the watchdog timer is to reset the system if the software gets hung-up. When
the watchdog time is enabled, a register in the watchdog timer must be written periodically or the system will be
reset. The Watchdog timers drive a reset output pin on the Wax ASIC, this allows the system to be resct by the
watchdog timer. The reset output, SysResetL, should be connected to the open-collector reset line from the
power supply monitor to the system boards. Since the watchdog timers are disabled when the Wax ASICisreset,
if the watchdog functionality is not required, this block may be ignored.

This register must be written every 256 milliseconds. If the software does not write to the alive register for
over 256 milliseconds, Wax will master the GSC bus and a TOC condition will be signalled. The watchdog
timer circuitry will rcqumt mastership of the GSC and when granted mastership, a TOC interrupt will be written
into the address specified in the IAR, then the bus will be released. The software has another 256 milliseconds .
to write to the alive register before the watchdog timer resets the system.

7.1 Watchdog Timer Registers

Both watchdog registers are defined as a word port only. The byte enable bits are ignored on writes to this
register. When data is written to either register, all thirty-two bits on the data bus are written into the register
regardless of the state of the byte enable bits associated with the transfer. When either register is read, all
thirty-two bits of the data bus are driven. Unused bits are always read as zeros. The watchdog registers may be
accessed using multi-word transfers, but only the first word of the transfer occurs. During multi-word writes,
the second and subsequent words are ignored. During multi-word reads, the first location accessed is driven as
the first word of data, but subsequent words are not meaningful data. Correct GSC protocol is followed for
multi-word transfers, the data is just meaningless.

7.1.1 Base Address

The GSC base address for the Watchdog Timer interface is OxF020 3000 The GSC+ base address for the
Watchdog Timer interface is OXFFEO 3000.

Table 15 Watchdog Timers Registers

Timer Control 0x000 R/W X X Error X Enablcdw
Timer Alive 0x004 w X X X X X
Undefined - {0x008-OxFFF

7.1.2 Detailed Register Definitions
7.1.2.1 Timer Control

The watchdog timer Enabled bit is used to enable and disable the watchdog timer. Writing the least
significant bit of the Timer Control register as a one will enable the watchdog timer. Writing the least significant
bit as a zero will disable the watch dog timer. This register may be read, and the value of the enable bit will be
in the least significant bit position.

If the watchdog timer is bus master when an error occurs, bit eight of the control register will be set. This bit
is cleared when any data is written to the control register or when the Wax ASIC is reset.

l Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 76 of 102

ﬂ HEWLET T
P8 PACKARD

Errors may be generated by one of three conditions:

1. No register exists at the TOC address (OxFFFBEO30)

2. A parity error occurred during the address phase of the transfer
3. A parity error occurred during the data phase of the transfer

7.1.2.2 Timer Alive

If the Watchdog Timer is enabled, the software must periodically write to the Timer Alive register to keep
the Watchdog Timer from resetting the system. The data written is irrelevant, the action of performing the write
10 the register will keep the Watchdog Timer from resetting the system. If the Timer Alive register is read, the
data read are meaningless, and the Watchdog Timer is not prevented from resetting the system.

7.1.3 Timing of Events

‘The Watchdog Timer interface counts GSC clocks to determine when to TOC, when to reset, and how long
1o assert reset. From the time when the Watchdog Timer is enabled, the Time Alive register must be written
every 280 milliseconds to prevent the Watchdog Timer from generating a TOC. If a TOC has been generated, the
Timer Alive register must be written within the next 280 milliseconds to prevent the sysResell signal from
asserting.

When a TOC is generated by the Watchdog Timer, a OXOOOOOOOS is written as data to address Oxfffbe030.
This information is hard wired into the Wax ASIC.

The interval from enable to TOC, or from TOC to sysResetl assertion is 350 millisecconds when the GSC
clock is 30MHz. The interval from enable to TOC, or from TOC to sysResetl. assertion is 280 milliseconds
when the GSC clock is 37.5MHz. The assertion time of sysResetl is 2.2 milliseconds when the GSC clock is
30MHz. The assertion time of sysResetl is 1.75 milliseconds when the GSC clock is 37.5MHz.

When the system is initially powered up, the watchdog Timer interface may be in such a state that it is
asserting it’s sysResetl output signal. This situation will resolve in a maximum of 2.2 milliseconds, and then
the system will come up normally.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Pwg. No. A-1FT4-0001-31 Page 77 of 102

- [PREGRS

8 Real Time Timer Interface

8.1 Description of the Real Time Timers

The register map for the real time timers is based on the design of the MC6840 timer chip used in previous
controllers. This register map is compatible with software which runs on HP9000 workstations and controllers.
This design is leveraged from the implementation on the Stiletto ASIC and the design was done by MCSY in
Fort Collins.

The Real Time timers consist of two sixteen bit timers and one timer which may be either sixteen bits or
thirty-two bits. All three timers have a resolution of one millisecond. The two sixteen bit timers can be
programmed to cause an interrupt at intervals from one microsecond up to 65.5 milliseconds. The thirty-two bit
timer can be programmed from one microsecond up to 71.5 minutes.

The real time timers have no dedicated signal pins on the Wax ASIC. The RT timers power up disabled and
do not affect system operation until they are enabled. There is no way to totally disable the RT timers, they will
respond to accesses in their address range.

8.2 General Operation

Typically, the timers are operated by initializing one of the counters and enabling counting and interrupts.
The timer will then interrupt when the timer has counted down t0 0.

Polling can also be used by reading the CWR repeatedly and checking the INT bit or by reading the counter
repeatedly until it reaches 0. The second polling method will not be as accurate but will be within 1
microsecond of the initial time programmed.

8.3 Overview of Software Interface

The timers are initialized by writing the number of microseconds to count down to the appropriate counter.
Then the timer must be enabled by setting the GATE bit in the control word register CWR. While writing to the
CWR, the interrupt enable bit (IE) can also be set. IE will enable the interrupt signal. If IE is not set, the INT
bit in the control word register will set at terminal count (0) but the interrupt signal will not be asserted.

After the timer has interrupted, the interrupt can be cleared by writing a 0 to the INT bit in the control word
register.

8.4 Register Definitions

8.4.1 Base Address

The GSC base address for the Real Time Timer interface i$ 0xf02068000. The GSC+ base address for the
Real Time Timer interface is Oxffe06000.

8.4.2 Register Overview

The addressing scheme for the RT timers is as follows:

Description; Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 78 of 102

[ﬁ 0 HEWLETT

PACKARD

Table 16 Real TIme Timers Registers

1D Register 0x000 R 0 0 0 0 0 0
Control Word 0 {0x004 ||R/W [X INT X | GATE X IE X X CM1 | CMO
Comier 0 |0x008 [RIW — R - — —
Holding Reg 0 |0x00c § R
Undefined {0x010 o I P i o
Comtrol Word 1]0x014 |RW| X [INT | X |GAIE] X | IE | X | X |CMI | CMo
Counter 1 10x018 | R/W nf :
Holding Reg1 j0x01c {iR
Undefined | 0x020 T e
Control Word 2 {0x024 [R/W | X INT X |GATE| X IE X TEST | CM1 | CMO

o
(=
—t
<

Counter 2 0x028 |IR/W Curre ntCou'hf :.”':
Holding Reg2 |0x02c ||R Next Count
Undefined 0x030-

: 10xFFF

These are addresses for full word transfers. For byte and half-word aoodsscé, the address must be adjuétéd
accordingly. If you wish to read the ID register in byte mode, read address F0206003. If you wish to access
counter 0 or counter 1 in half-word mode, use addresses F020600A and FO20601A.

8.4.3 ID Register

The ID register is a read-only register that will return the ID number of 0x00000002 when read. This
identification number signifies a real time timer module. ID registers are convenient for the Operating System
1o determine what devices are present in specific address spaces.

8.4.4 Control Word Register

The INT bit is set by the timer when the counter reaches 0. It can be cleared by writing a 0 to bit 24 of the
corresponding Control Word Register. It cannot be set by writing the CWR.

GATE enables the counter. When set to 1, the counter will count down. When set to 0, the counter will hold
its current value.

The IE bit enables the external interrupt signal. If IE is set and INT gets set by the timer, the timer’s
interrupt signal will assert. If the corresponding bit in the interrupt block register IMR is set, the processor will
receive an interrupt.

TEST is a bit only in CWR2. It is used to divide the 32-bit counter into two 16-bit counters. When set, the
upper 16-bits and lower 16-bits count down as two separate numbers. This is used for testing. If the upper
16-bits are not the same as the lower 16-bits and TEST and GATE are set, INT will never get set since the full
32-bit number will never equal 0.

CMO and CM1 are used to set the Counter mode. At the present time, there are only two modes that the
counter can be in: 1 and 0. The extra bit is for future modes. When in mode 0, the counter will interrupt after
counting down to zero and await further programming. In mode 1, the counter will count down to 0, interrupt,
reload the count value from the holding register and resume counting.

The control bits within the CWRs have been segregated into different bytes. The user can clear an interrupt,
change a counter mode, or change the status of the interrupt enable bit without worrying about the current value

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 79 of 102

)

N ¢

| HEWLETT
PACKARD

of the other bytes. Remember that the addresses given for the CWRs are assuming full word accesses. If you

wish to access particular bytes within the CWR, count up from that base address. For example, the byte
containing the INT bit in CWRO could be accessed at F0837007.

8.5 Counter Register

The counters are readable and writeable. They may be read at any time. They may be written at any time

except when enabled in mode 1. When a timer is counting in mode 1, counting must be disabled by clearing the
gate bit and then writing the new value. The interrupt enable bit should also be cleared in case the timer is at
terminal count. The timer may then be enabled by again setting the gate bit.

8.6 Holding Register

Each counter has its own holding register. The holding register maintains the latest value written to its

corresponding counter. Whenever a value is written to a counter, that value is put in both the counter and the
holding register. For this reason, the holding register is a read-only register. It can be indirectly written by
writing a value to the associated counter.

On a byte or half-word write to a counter, only the active data bytes will overwrite the current value in the

holding register. Consider timer 1 initially programmed with the value Ox{fff. After 10 microseconds, the count
will be Oxfff5. Byte writing the value 0x0011 to FO83701B will overwrite the least significant byte in the

holding register, not the current count. The counter will load 0xff11 and resume counting. The holding registers
may be read at any time.

8.7 Software Tips

The method of programming the counters is fairly simple:

* Write the desired delay-1 to the counter. For example, if you wish to set timer 1 up to count off
10 microseconds, write a 0x9 to address OXF0206018

~* Enable the counter and interrupt by writing to the Control Word Register. In our example, we

would write a 0x00010100 to address 0xFO206014. This would enable the counter by setting
the GATE to 1, enable the interrupt by setting IE to one and put the counter in mode 0.

* After the counter has interrupted, the interrupt can be cleared by again writing 0x00010100 to
address OxF0206014. This will clear the INT bit in the CWR.

Here are a few more useful tips:

¢ Remember that if the timer is already enabled and counting in mode 1, you must disable the
counter before writing a new value to it. After the new value is written to the counter, the timer
may be re-enabled.

» Accesses to any register in the RT timers block which is not defined in Table 16 will cause a
bus error.

¢ If the programmer is not using the full 32-bit data bus during reads, mask off all other bits.
* The 16-bit timers are the 16 least significant bits of the data bus when doing a 32-bit access.

* Upon power up or whenever the the Wax ASIC is reset, all RT timer registers will be cleared.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 80 of 102

PACKARD

[,5/7 HEWLETT

9 Interrupt Control

External interrupts from Wax are always sent to the PCX/L processor via a GSC write transaction to the
10_EIR or an address specified in the IAR. The 10_EIR is a five bit register that is physically located inside the
processor. The five bit value written to the I0_EIR indicates which bit of the EIR (CR23) will be set. The Wax
chip supports interrupt modes compatible with the needs of both the HP-UX and the HP-RT operating systems.

9.1 Register Definitions

_ There are four registers in Wax associated with interrupts. Table 17 defines the interrupt control registers.
The GSC address for this interface is 0xF020 0000. The GSC+ address for this interface is OXFFEO 0000.

Table 17 Interrupt Registers

Register {Symbol | Address R/W | Description -
Offset
Interrupt {IRR 000 R The IRR contains the status of all requesting interrupts. A 1in
Request an IRR bit indicates that the corresponding interrupt is pending
Register and enabled. When an IRR bit is set it will cause Wax to gener-
ate an interrupt transaction.
Interrupt {IMR 004 R/W | The IMR is used to mask pending interrupts. A 1in an IMR bit
Mask enables the corresponding pending interrupt to create an inter-
Register rupt request.
Interrupt {IPR 008 R/W |The IPR is used to latch incoming interrupts and indicate them as
Pending pending. An active edge on an internal interrupt signal causes
Register the corresponding IPR bit to be set to 1. Writes to this register
are intended for diagnostic use only and will cause the entire reg-
ister to be cleared.
Interrupt |ICR 00C R/W | The ICR is used to indicate if the system is running HP-UX or
Control HP-RT. It also indicates if a bus error was detected during a
Register write to the io_eir.
Interrupt |IAR 010 R/W | The interrupt address register contains two pieces of information:
Address the address to which interrupt transactions are written and the
Register group number written in HP-UX mode.

The interrupt registers appear to be 32-bits and are accessed as such. However, not all of the bits are
implemented for each register. The un-implemented bits are not affected by writes and are always read as zeros.

The interrupt registers are
bits on the data bus are written i

defined as a word port only. When data is written to any register, all thirty-two
nto the register regardless of the state of the byte enable bits associated with the

transfer. When any register is read, all thirty-two bits of the data bus are driven. Unused bits are always read as
zeros. The interrupt registers may be accessed using multi-word transfers, but only the first word of the transfer

occurs. During multi

—word writes, the second and subsequent words are ignored. During multi-word reads, the

first location accessed is driven as the first word of data, but subsequent words are not meaningful data. Correct
GSC protocol is followed for multi-word transfers, the data is just meaningless.

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 81 of 102

- A Fickano

9.2 Interrupt Modes

The interrupt mechanism in Wax must operate in two different modes. The mode is determined by the value
of the RT bit set by software in the ICR. Both modes will cause at least one write transaction to the address
specified in the IAR when a bit is set in the IRR. Table 18 summarizes the different interrupt modes.

Table 18 Wax Interrupt Modes

icr bit 8 Mode ' Interrupt Data
0 - HP-UX ~ |Lowest 5 bits of IAR
HP-RT ’ group number of the highest
priority bit that is set

If an interrupt source in Wax indicated that it wants to interrupt the processor by setting it’s interrupt request
signal, the bit in the IPR corresponding to that interrupt will be set to 1. If that interrupt is not masked (IMR.
bit=1), the same bit of the IRR will be set to 1 and a write to the IO_EIR register will be initiated.

If Wax is in HP-UX mode, the group number programmed into the least significant five bits of the 1AR will
be written to the IO_EIR. The least significant five bits of the IAR are padded up to the most significant bit with
zeros. This group number defaults to 000000007 during reset Following an interrupt, the HP-UX operating
system will then read the IRR. The IRR will be cleared immediately after the IRR read cycle. The HP-UX
operating system will insure that all interrupts indicated in the IRR are serviced.

If Wax is in HP-RT mode, the priority number from the highest priority bit that is set will be written 1o the
address specified in the IAR. For example, if the bit with priority 27 and the bit with priority 15 are both set, 27
will be written to the IO_EIR. See Table 20 for the priority of each bit in the IRR. In HP-RT mode, a write to

the I0_EIR will occur for every bit in the IRR that is set. Also, each bit written will be cleared automatically
after the write.

In HP-UX modes, the contents of the IRR and unmasked bits (IMR bit=1) of the IPR are cleared on the

clock cycle following a read of the IRR. In mode 2, the highest priority bit that is set , will be cleared in the IRR
and IPR on the cycle following the GSC write to the IO_EIR.

In either the HP-UX or the HP-RT interrupt modes, the address of the IO-EIR is programmed into the most
significant twenty-seven bits of the IAR. This address defaults to OXFFFBEQOO during reset.

9.3 Interrupt Register Bit Assignments

Table 19 shows the implemented bits for the ICR in Wax. Table 20 shows the implemented bits for the
IRR, IMR and IPR in Wax.

Table 19 Interrupt Control Register Bit Definition

0 RT If set, this bit indicates that the Wax ASIC is operating in HP-RT mode. If reset, thigsml
bit indicates that the Wax ASIC is operating in HP-UX mode.
8 Bummed |Indicates that a bus error condition was detected when the Wax ASIC was writing to

the IO_EIR. This bit is cleared by any write to this register.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 82 of

102

A Sicicarno

Table 20 IRR, IMR, and IPR Bit Definition

. Bit.] Interrupt Sours

0 |EISANMI

1 18042 general purpose 12
2 | 8042 high priority 13
6 |[RS-232 22
10 |EISA 28
13 | Woody Audio 8
28 |{Real Time Timer 1 25
29 |Real Time Timer 2 21
30 |Real Time Timer 3 18
31 |HPIB 16

Table 21 IAR Bit Definition

address of IO-EIR

Group number

The IO-EIR address portion of the IAR is set to correspond to an I0-EIR at address OxFFFBEOOO when the
Wax ASIC is reset.. The group number portion of the IAR is set to OX7 when the Wax ASIC is reset. Either or
both of these values may be changed at any time by writing to this register. The current setting of this register

may be read at any time.

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 83 of 102

| () PR
10 Identification Register and Miscellaneous Control

10.1 ID Register

The Wax identification register is a read only register which allows the Wax ASIC to be identified by
software. This register is at address 0xF020 7000 when in GSC mode. This register is at address OxFFE 7000
when in GSC+ mode. This register returns the value 0x56617800 when read. Writes to this register are ignored.

Table 22 ID Register Bit Definition

0101 0110 0110 0001 0111 1000 0000 0000

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31

Page 84 of 102

11 Test Access Port

11.1 Description

The test access port (TAP) inside Wax controls the boundary scan, the internal flip-flop scan, the clock
generation, and some test control signals. The TAP is compatible with JTAG 1149.1 specifications. The TAP in
Wax has five pins dedicated to operation of the TAP. The signal trstl initializes the TAP into the test-logic-rest
state. The TAP allows normal ASIC operation with trstL grounded, but the intention is that this signal is -

asserted during the power-up reset of the system.

11.2 TAP Instruction Register

The Wax TAP has an eight bit instruction register which spcciﬁcs'the operation of the TAP. The Wax TAP
provides for the use of all public instructions required by the 1149.1 specification. It also includes several

private instructions for control of the Wax ASIC.

Table 23 TAP Instructions
EXTEST 00000000 {00 |Drive boundary with scan data
SAMPLE 00100000 {20 |Sample pins into boundary scan
RESERVED 01000000 {40 |Do not use. Could cause IC to drive unknown values.
HIGHZ 01100000 {60 |Tristate all pins in boundary
BYPASS 11111111 |FF |Select bypass register
FREE_RUN 10000000 |80 [Allow gscSync into Wax to run
SINGLE_STEP 10000001 {81 |Force one single pulse of gscSync into Wax
DOUBLE_STEP 10000010 |82 |Force two pulses of gscSync into Wax
NSTEP 10000011 |83 [Force n pulses of gscSync into Wax (see detail below)
HALT_HIGH 10000100 {10 [Halt gscSync into Wax chip in high state
HALT_LOW 10000101 |85 |Halt gscSync into Wax chip in low state
DR_UPDATE 10000110 |86 |Update data from scan chain to Q outputs of flip flops
CLR_DR_INH 01000010 {42 |Clear drive inhibit flip flop
SET DR_INH |01000011 |43 |Set drive inhibit flip flop
SELDRO 10100000 {AO |Select boundary scan chain
SELDR1 10100001 |Al |Select internal scan chain
SELDR2 10100010 | A2 |Select clock control register
SELDR3 10100011 |A3 |Select test control register
SELDR4 10100100 |A4 |Select bypass register

11.3 Boundary Scan Chain

The boundary scan chain is integrated into the pads used in the Wax ASIC. This scan chain is used to place
signals on the circuits external to the Wax ASIC, monitor the state of nets connected to the Wax ASIC, drive

signals into the core of Wax, and finally, monitor signal generated in the core of Wax. This scan chain is 314 bits
long.

11.4 Internal Scan Chain

This is a long data register which allows access to all flip flops in the standard cell portion of the Wax ASIC.
The only storage devices not accessible through this scan chain are: The IOMAP RAM, all flip flops within the

TAP circuitry, any storage within the boundary (including pad structures), and any latch functions within the
ASIC. This scan chain is 2522 bits long.

This scan chain is intended to be used for test purposes. A set of vectors generated from the ATG program
can be loaded into this scan chain, the clocks pulsed, and then the state of the scan chain verified. Also, this scan
chain is used for testing of the ROM in the HPHIL circuitry.

11.5 Clock Control Register

The clock control register is ten bits long. It is a way to load a counter which is used during the NSTEP
command. If the clock control register is loaded with a number, then a NSTEP command is issued, the internal

version of the gscSync clock will pulse the number of times corresponding 1o the number loaded into the clock
control register.

11.6 Test Control Register

Below is a table showing the bits in the test control register. The bit labeled 0 is the first bit shifted into the
scan input port tdi. '

Table 24 Test Control DR

IDDQTEST |SCANMODE |MH_CNTL

* RTSTMODE Enables the receive test mode for the boundary scan chain. Set to 0 by trstL.

e PTEST Controls the static current draw of the IOMAP RAM. Set to 0 by trstL.. When
set, the IOMAP RAM should not draw any static current. This bit should be
reset for normal operation of the ASIC.

e IDDQTEST Controls the static current draw of the clock receiver. Set to 0 by trstL. When
set, the clock receiver should not draw any static current. This bit should be
reset for normal operation of the ASIC.

* SCANMODE Controls the multiplexing of all flip flop clocks in the ASIC. Set to 0 by trstL.
When set, all flip flops receive the output of the gscSync clock receiver. When

reset, the flip flops get the appropriate clock for normal system operation. This
bit should be set when manipulating the internal scan chain.

MH_CNTL Controls the Master Hold bit to the flip flops. This bit is set to 1 by trstL.

11.7 Drive Inhibit Flip Flop

The drive inhibit flip flop will cause all tristateable output pins on the Wax ASIC to go into the high
impedance state. This flip flop is cleared by gscResetL or by TAP command; it is set by TAP command only.

This bit is useful after internal ASIC test have completed. Since the ASIC may be in such a state where damage
could occur, the drive inhibit flip flop is set until the internal state of the ASIC is consistent with the external

environment.

(’ﬁ HEWLETT
PR PACKARD

12 Address Map

Table 25 shows the entire address map for the Wax ASIC when it is used in GSC mode.
Table 25 GSC Address Map

Interrupt Control F020 0000 ~ F020 OFFF 4K
HP-HIL Interface F020 1000 - F020 1FFF 4K
RS-232 F020 2000 - F020 2FFF 4K
Watchdog Timer F020 3000 - F020 3FFF 4K
Wax Doesn’t Respond F020 4000 — F020 4FFF 4K
HPIB F020 5000 - F020 S5FFF 4K
Real Time Timers F020 6000 - F020 6FFF 4K
Identification Register F020 7000 - F020 7FFF 4K
Wax doesn’t respond F020 8000 - FBFF FFFF | 200M
i486 Bus Control FC00 0000 - FFCF FFFF 64M
‘Wax Doesn’t Respond =" --*/| FFD0 ‘0000 -~ FFFF FFFF 3M -

Table 26 shows the entire address map for the Wax ASIC when it is used in GSC+ mode.

Table 26 GSC+ Address Map

‘ \k@' Wax Doesn’t Respond 0000 0000 - FBFF FFFF | 4.2G FC+YK,
8@8 486 Bus Control FCO0 0000 - FECF FFEF [64 V/atate
\L\ Wax Doesn’t Respond . FFDO 0000 - FFDF FFFF 1

: Interrupt Control FFEO 0000 - FFEO OFFF 4K O3 fooooo

HP-HIL Interface FFEO 1000 - FFEO 1FFF 4K PpSFO| OO0

RS-232 FFEO 2000 - FFEO 2FFF 4K 93501@9&

Watchdog Timer FFEO 3000 - FFEO 3FFF 4K @z £03

Wax Doesn’t Respond FFE0 4000 - FFEO 4FFF | 4K {2z0Y

HPIB FFEO 5000 - FFEO SFFF | 4K ¢pros

Real Time Timers FFE0O 6000 - FFEQO 6FFF 4K %eaé

Identification Register FFEO 7000 - FFEO 7FFF 4K @3[‘0’7

Wax Doesn’t Respond FFEO 8000 - FFFF FFFF | 2M (3f¢8
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 88 of 102

| () PRyt
13 Electrical Characteristics

1_3.1 DC Electrical Characteristics

13.1.1 Absolute Maximum Ratings

Vpp -0.5V 7.0V
VoL -0.5v 7.0V
DC Input Voltage -0.5V 7.0V
DC Input Current +/- 100mA
Power Dissipation 0.75W
Storage Temperature -40°C 125°C
Ambient Temperature Under Bias -20°C 85°C

13.1.2 Input Protection

Electrostatic Discharge (between any two pins) +/- 2.0KV
through 1500 ohms in series with 100pf
DC Input Current (for latchup protection) +/- 100mA

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 89 of 102

PACKARD

13.1.3 Electrical Characteristics Over Operating Range

Vpp - Supply Voltage 4.5V 5.25V
VpL- GSC Supply Voltage 3.0V 3.5V
A% High Level Input Voltage 2.0v
Vo - Low Level Input Voltage 0.8v
\S High Level Input Voltage (syncH,syncL) 3.83v
vo - Low Level Input Voltage (syncH,syncL) 3.55v
Vou - High Level Output Voltage (at Ioy max) 24V
VoL - Low Level Output Voltage (at Iop. max) 0.4V
1In/1y - Input Leakage Current -10uA 10uA
Ioz - Tristate Output Leakage Current ~10uA 10uA
Ipp - Supply Current 150mA
Ion - High Level Output Current (Group 1 Signals) -ImA @ 2.4V
IoL - Low Level Output Current (Group 1 Signals) 12mA @ 0.4V
Ion - High Level Output Current (Group 2 Signals) =-3mA @ 2.4V
IoL - Low Level Output Current (Group 2 Signals) 24mA @ 0.4V
Ioy - High Level Output Current (Group 3 Signals) -1mA @ 2.4V
IoL - " Low Level Output Currlcnt (Group 3 Signals) 8mA @ 0.4V
C - Input Capacitance 10pf
’f; - Operating Junction Temperature 0°C 85°C
Group 1 Signals:
gscAD([31:0], gscType[0:3], gscAdvL, gscReadyL, gscParity, gscErrorL,
gsclLsliL
Group 2 Signals:
eisaD[31:0]
Group 3 Signals:
All other Outputs or I/Os.
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31

Page 90 of 102

HEWLETT
PACKARD

K

13.2 AC Electrical Characteristics

13.2.1 GSC Input Timing

gscAD[31:0] 2.5ns 45 ns 1
gscType[0:3] 2.5ns -4.51ns 2
gscParity 2.5ns 4.5ns 3
gscReadyL 25ns 45nmns 4
gscErrorL 2.5ns 45nmns 5
gscResetL 2.5ns 4.5ns 6
gscBgL 25ms 45mns 7
kpackL 25ms 4.5ns 8
kretryL 2.5ms 4.5ns 9

13.2.2 GSC Output Timing

gscAd[31:0] Sns (Cp = 20pf) 18 ns (Cyp. = 100pf) .02 ns/pf .07 ns/pf 10
“| gscType[0:3] 5ns (Cp = 20pf) 18 ns (Cp = 100pf) 02 ns/pf | .07 ns/pf 1
'| gscAddvL Sns (CL = 20pf) 17 ns (Cp = 100pf) .02 ns/pf .07 ns/pf 12
] gscParity 5ns (Cp=20pf) 21 ns (Cp = 100pf) .02 ns/pf .07 ns/pf 13
gscReadyL 5ns (Cp=20pf) 21 ns (CL = 100pf) .02 ns/pf .07 ns/pf 14
gscErrorL 5ns (Cp = 20pf) 17 ns (Cp = 100pf) .02ns/pf | .07 ns/pf 15
gscBrL S5ns (CL=5pf) 14 ns (CL = 30pf) .02 ns/pf .07 ns/pf 16
gscSplitL 5ns (Cp=5pf) 16 ns (Cr = 30pf) .02 ns/pf .07 ns/pf 17
kpendL 5ns (CL=5pf) 16 ns (Cp = 30pf) 02 ns/pf | .07 ns/pf 18
kretryL 5ns (CpL = 5pf) 16 ns (Cp = 30pf) .02 ns/pf .07 ns/pf 19

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 91 of 102

KA 2idicaro

13.2.3 i486 Interface Input Timing

33.33 MHz

i operating frequency bC
duty cycle 40% 60% 21
j486HholdH signal to i486Hclk rising edge 1S sep; 22
i486Addr[31:2) |signal to i486Hclk rising edge 1:; o ;‘o‘l"dp?]l 23
i486BcL[3:0) signal to i486Hclk rising edge 1; " ;2‘&1’; n 24
i486HadsL signal to i486Hclk rising edge 1ons seup; " 25
i486HwnrH signal to i486Hclk rising cdge 10 setup; " 26
. | i486HmnioH signal to i486Hclk rising edge ’g_ s Seiup: " 27
i486HdncH signal to i486Hclk rising edge 13 o o u 28
#486HlockL signal to i486Hclk rising edge 13 o ;‘;‘;;P; ” 29
i486HreadyinL |signal to i486Hclk rising cdge 1S senp; " 30
sDuppro) [JECIS et | 11 s e
14861IrqH signal to i486Hclk rising edge [can arrive asynchronously] " 32
1486NmiH signal to i486Hclk rising edge [can arrive asynchronously) - 33

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 92 of 102

[bﬁ HEWLETT

PACKARD

13.2.4 486 Interface Output Timing

. Parameter
_ 1486Resetl delay from i486Hclk rising edge 4 ns 14 ns 34
" 1486HhldaH delay from i486Hclk rising edge 4 ns 13 ns 35
' i486HbusreqL delay from i486Hclk rising edge 4ns 13 ns 36
1486 Addr[31:2] delay from i486Hclk rising edge 4 ns 17 ns 37
" }1486BeL[3:0] delay from i486Hclk rising edge 4ns 17 ns 38
_§1486HadsL delay from i486Hclk rising edge 4 ns 17 ns 39
1486HwnrH delay from i486Hclk rising edge 4ns 17 ns 40
1486HmnioH delay from i1486Hclk rising edge 4ns 17 ns 41
i486HdncH delay from i486Hclk rising edge 4 ns 17 ns 42
1486HlockL delay from i486Hclk rising edge 4 s 17 ns 43
i486HreadyoutL delay from i486Hclk rising edge - 4ns 18 ns 44
i486HlacOL delay from i486Hclk rising edge 4 ns 14 ns 45
e B T E

13.2.5 1486 Interface EDPU Emulator Timing

) eisaData[31:0} signal to edpuSdileL rising edge 1411;:'5 s;:;g; ‘ 47
“ YeisaData[31:0] ~ |{delay from edpuSdileL Sns 21 ns 48
eisaData[31:0} delay from eisaData[31:0] Sns 19 ns 49
eisaData[31:0] delay from edpuSdoeLl[1:0] 6 ns 19 ns 50
eisaData[31:0] delay from edpuSel[2:0] 5ns 22 ns 51
eisaData[31:0] delay from edpuBelatL 6 ns 24 ns 52
eisaBeL[3:0] signal to edpuBelatL rising edge lznjs s;g;g; 53

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 93 of 102

L& |

13.2.6 8086 and Multiplexed Mode Input Timing

[l 4 J SN =4 By |

PACKARD

operating frequency DC 16 MHz 54
duty cycle 30% 70% 55
11 ns setup; (1o guarantee recognition
x86HholdH signal to x86Hclk rising edge Ins hold on this clock edge) 56
[can arrive asynchronously } h
x86Addr[31:0] signal to x86Hclk rising edge 1‘; e ;‘;‘l‘g" " 57
x86SbheL signal to x86Hclk rising edge 13 o ;‘otl‘g’; q 58
x86MrdcL signal to x86HCIK rising edge 1810s setup; 59
x86MwicL signal to x86Hclk rising cdge .18 e Sewp; 60
12 ns setup; (to guarantee recognition
x86HreadyinL signal to x86Hclk falling edge Ins hold . on this clock edge) 61
[can arrive asynchronously |
signal to x86Hclk rising edge, 16 ns sctup;
’_‘8650“1‘ with multiplexed mode enabled 1ns bold 62
x86Data[15:0] | signal to x86Hclk rising edge 1S selup, 63
. signal to x86SxalH falling edge, 2ns setup;
x86Data[15:0] with multiplexed mode enabled 2ns bold 64
. signal to x86SaleH falling edge, 2 ns setup;
x86Data[15:0] with multiplexed mode enabled 2ns hold 65

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 94 of 102

[ﬁ 0 HEWLETT

PACKARD

13.2.7 8086 and Multiplexed Mode Output Timing

. e ’;?ara.r.'.’.q‘?’,. L
x86ResetL. delay from x86Hclk rising edge 4 ns 14 ns 66
x86HhldaH delay from x86Hclk rising edge 4 ns 13 ns 67
x86HbusreqL delay from x86Hclk rising edge 4 ns 13 ns 68
x86Addr[31:0] delay from x86Hclk rising edge 4 ns 17 ns 69
-1 x86SbheL delay from x86Hclk rising edge 4ns 17 ns 70
x86MrdcL delay from x86Hclk rising edge 4ns 17 ns 71
x86MwicL delay from x86Hclk rising edge 4 ns 17 ns 72
x86lorcL. delay from x86Hclk rising edge 4ns 17ns 73
x86IowcL delay from x86Hclk rising edge 4ns 17 ns 74
x86HreadyoutL delay from x86Hclk rising edge 4 ns 18 ns 75
x86Data[15:0] delay from x86Hclk rising edge © Tns 22ns 76
sBDa(1S0] | L e nabled ons t6ms m
ASDA(10] | L e i abled 6ns t6ms 7
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 95 of 102

HEWLETT
ﬂ/’ PACKARD

13.2.8 Wax Pinout

1 |rs232DcdL 1 Serial data carrier detect
2 |rs232DstL O Serial data set ready
3 |GND dirty
4 1hilSi 1 Hphil serial data input
S |hilSo o* Hphil serial data output
6 |kpendL I GSC+ pended transaction indicator
7 |kpackL o GSC+ pended transaction acknowledge
8 |kretryL O | GSC+ transaction retry |
9 }kdrrlL I GSC+ DMA read return
10 | VDL dirty
11 |gscParity I/0 Parity for gscAd[31:0]
12 |GND dirty
13 |gscAddvL I/O | gscAd[31:0] has valid address
14 |gscReadyL I/0 | GSC(+) transfer acknowledge
15 }gscErrorL 1/0 GSC(+) parity error or time—out
16 |gscSplitL 0] Connects to gscLsL signal
17 }gscHkioscL I Select GSC or GSC+ operation/address space
18 |gscResetL I Power—on reset, GSC clock synchroniziation
| 19 |GNDdirty
20 |gscType[0] 1/0 | GSC(+) transfer type and byte enable
" 21 |gscType[1] I/0O | GSC(+) transfer type and byte enable
22 |gscType[2] 1/0 GSC(+) transfer type and byte enable
23 |gscType[3] I/0 GSC(+) transfer type and byte enable
24 |gscBrL 0O Request for GSC(+) bus mastership
25 | VDL dirty
26 |sysResetL o Watchdog output to reset system on timeout
27 |GND dirty
28 1gscBgL 1 GSC(+) bus mastership acknowledge
29 |GND clean
30 |VDDclean
31 |GND core
32 |gscSyncL 1 system ECL clock input
33 |gscSyncH I system ECL clock input
34 VDD core
35 |GND clean
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 96 of 102

K

HEWLETT

PACKARD
Pin {Signal * | Direction | Note
36 | VDD clean
37 |gscAd[00] I/O | GSC(+) address/data bus
38 jgscAd[01] 1/0 GSC(+) address/data bus
39 |GND dirty
40 |gscAd[02] I/0 | GSC(+) address/data bus
41 |gscAd[3] I/O | GSC(+) address/data bus
42 |gscAd[4] I/O | GSC(+) address/data bus
43 |gscAd[5] I/O | GSC(+) address/data bus
44 VDL dirty
45 |gscAd[6] 1/0 GSC(+) address/data bus
46 |GND dirty
47 |gscAd[7] /O | GSC(+) address/data bus
48 |gscAd[8] I/0 GSC(+) address/data bus
49 |gscAd[9] 1/0 GSC(+) address/data bus
50 |gscAd[10] I/O | GSC(+) address/data bus
51 |gscAd[11] /O | GSC(+) address/data bus
52 igscAd[12] I/O | GSC(+) address/data bus
53 jGND dirty
54 |gscAd[13] 1/0 GSC(+) address/data bus
55 |gscAd[14] I/O | GSC(+) address/data bus
56 |gscAd[15] I/O | GSC(+) address/data bus
1757 |gscadis) /O |GSC(+) address/data bus
758 [gscad[17] /O |GSC(+) address/data bus
59 | VDL dirty
60 |gscAd[18] I/O | GSC(+) address/data bus
61 |GND dirty
62 |gscAd{19] I/O GSC(+) address/data bus
63 |gscAd[20] I/O | GSC(+) address/data bus
64 |gscAd|[21] I/O |GSC(+) address/data bus
65 |gscAd|[22] 1/0 GSC(+) address/data bus
66 |gscAd[23] I/O |GSC(+) address/data bus
67 | GND dirty
68 |gscAd[24] /0 |GSC(+) address/data bus
69 | VDD clean
70 |gscAd[25] I/O | GSC(+) address/data bus
71 |GND clean
Description; Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 97 of 102

) Prstoe

72 |gscAd[26] I/O GSC(+) address/data bus

73 | gscAd[27] I/0 GSC(+) address/data bus

74 | gscAd[28] /O |GSC(+) address/data bus

75 | VDL dirty

76 |gscAd[29] I/0O | GSC(+) address/data bus

77 |GND dirty

78 |gscAd[30] I/O | GSC(+) address/data bus

79 |gscAd[31] 1/0 GSC(+) address/data bus

80 {trstL I JTAG tap reset

81 {tdi I JTAG tap serial scan data input

82 |tclk I JTAG tap clock input

83 |tms I JTAG tap mode select input

84 |tdo o JTAG tap serial scan data output

85 |i486HreadyinL I " |x86HreadyinL if Wax is in 8086 mode

86 |i486HreadyoutL 0] x86HreadyoutL if Wax is in 8086 mode

87 |GND dirty

88 1i486HholdH I x86HholdH if Wax is in 8086 mode

89 |i486HhldaH O |x86HhldaH if Wax is in 8086 mode

90 [i486HadsL I/O |x86SbheL if Wax is in 8086 mode

91 |VDD core

92 |clkdOM I

93 {GND core

94 |i486HlacOL 0]

95 i486HwnrH I/0 x86MrdcL if Wax is in 8086 mode

96]i486HmnioH I/O |x86MwtcL if Wax is in 8086 mode

97 }edpuSdoeL[0] 1 x86S5xalH if Wax is in 8086 multiplexed mode

98 |edpuSdoel|[1] 1 x86SaleH if Wax is in 8086 multiplexed mode

99 |edpuSdileL 1 x86MuxedL if Wax is in 8086 mode

100 |i486HdncH I/O |x86lorcL if Wax is in 8086 mode

101 {i486NmiH I x86NmiH if Wax is in 8086 mode

102 |i486IrqH I x86IrqH if Wax is in 8086 mode

103 | VDD dirty

104 |{i486Hclk I x86Hclk if Wax is in 8086 mode

105 |GND dirty A

106 {i486ResetL o* x86ResetL if Wax is in 8086 mode

107 |i486HbusreqL O* x86HbusreqL if Wax is in 8086 mode
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 98 of 102

/A -ickano

Pin |Signal

108 |i486HlockL I/0 |x86IowcL if Wax is in 8086 mode
109 |i486BeL[0] I/0 x86Addr[0] if Wax is in 8086 mode
110 |i486BeL[1] /O |x86Addr[1] if Wax is in 8086 mode
111 |i486Bel[2] I/0
112 |i486BeL (3] 1/0
113 |eisaDatal0] 1/0 |x86Data[0] if Wax is in 8086 mode
114 |eisaData[1] I/0 |x86Data[1]if Wax is in 8086 mode
115 |GND dirty
116 |eisaData[2] I/0 |x86Data[2] if Wax is in 8086 mode
117 | VDD dirty .
118 |eisaData[3) I/O |x86Data[3]if Wax is in 8086 mode
119 | VDD clean
120 |eisaData[4] I/0 |x86Datal4] if Wax is in 8086 mode
121 |GND dirty
122 |eisaData[5] I/O |x86Data[5]if Wax is in 8086 mode
123 |eisaData[6] I/O [x86Data[6] if Wax is in 8086 mode
124 {eisaData[7] I/0 |x86Data[7] if Wax is in 8086 mode
125 |eisaData[8] I/O |x86Data[8] if Wax is in 8086 mode
126 { VDD dirty
127 |eisaData[9] I/O |x86Data[9]if Wax is in 8086 mode
128 |GND dirty
129 |eisaData[10] I/O {x86Data[10] if Wax is in 8086 mode
130 |eisaData[11] /O |x86Data[11] if Wax is in 8086 mode
131 |eisaData[12] I/O |x86Data[12] if Wax is in 8086 mode
132 |eisaData[13] I/O |x86Data[13] if Wax is in 8086 mode
133 {eisaData[14] I/O [x86Data[14] if Wax is in 8086 mode
134 | VDD dirty
135 |eisaData[15] I/O |x86Data[15] if Wax is in 8086 mode
136 | GND dirty
137 |eisaData[16] 1/0
138 |eisaData[17] 1/0
139 |eisaData[18] I/0
140 |eisaData[19] I/0
141 |eisaData[20] 1/0
142 | VDD dirty
143 |{eisaData[21] 1/0

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 99 of 102

| KB RRSkARS

144 |GND dirty

145 |eisaData[22] I/0

146 |eisaData[23] I/0

147 |eisaData[24] I/0

148 |eisaData[25] I/0

149 | VDD core

150 |eisaData[26] 1/0

151 |GND core

152 |eisaData[27] 1/0

153 |GND dirty

154 |eisaData[28] I/0

155 | VDD dirty

156 |eisaData[29] 10

157 |eisaData[30] 1/0

158 |eisaData[31) 1/0

159 |i486Addr[2] I/0 |x86Addr[2] if Wax is in 8086 mode

160 {i486Addr[3] I/O |x86Addr[3] if Wax is in 8086 mode

161 |i486Addr[4] I/O |xB6Addr[4] if Wax is in 8086 mode

162 |i486Addr[5] I/O |xB6Addr[5] if Wax is in 8086 mode

163 |GND dirty -

164 [i496Addr[6] 1/0 x86Addr[6] if Wax is in 8086 mode

165 |i486Addr[7] I/0 |x86Addr[7] if Wax is in 8086 mode

166 |i486Addr[8] I/O {x86Addr[8] if Wax is in 8086 mode

167 |i486Addr[9] I/O {x86Addr[9] if Wax is in 8086 mode

168 |i486Addr[10] I/O |x86Addr{10] if Wax is in 8086 mode

169 |i486Addr[11] I/O |x86Addr[11]if Wax is in 8086 mode

170 |i486Addr[12] I/O [x86Addr[12]if Wax is in 8086 mode

171 |i486Addr[13] I/O |x86Addr[13]if Wax is in 8086 mode

172 1i486Addr[14] 1/0 {x86Addr[14] if Wax is in 8086 mode

173 | VDD dirty ' '

174 |i486Addr[15] I/O |x86Addr[15] if Wax is in 8086 mode

175 |GND dirty

176 |i486Addr[16] I/O |x86Addr{16] if Wax is in 8086 mode

177 |i486Addr[17] I/O |x86Addr[17]if Wax is in 8086 mode

178 {VDD clean

179 |i486Addr[18] I/O_ {x86Addr[18] if Wax is in 8086 mode
Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 100 of 102

| () eyt

Pin [Signal [Direction[Notes_

180 {GND clean
181 |i486Addr[19] I/O |x86Addr[19]if Wax is in 8086 mode
182 |i486Addr[20] /O |xB6Addr{20]if Wax is in 8086 mode

7| 183 |i486Addr[21] I/O |xB6Addr[21]if Wax is in 8086 mode

1 184 |i486Addr[22] /O |x86Addr[22] if Wax is in 8086 mode
185 |i486Addr[23] I/O |x86Addr[23] if Wax is in 8086 mode
186 i486Addr[24] I/O |x86Addr[24] if Wax is in 8086 mode
187 | VDD dirty
188 {i486Addr[25] /O |xB6Addr[25]if Wax is in 8086 mode
189 |GND dirty
190 }i486Addr[26] I/O |xB6Addr[26]if Wax is in 8086 mode
191 {i486Addr([27] I/O |xB6Addr[27] if Wax is in 8086 mode
192 1i486Addr([28] I/O |xB6Addr[28]if Wax is in 8086 mode
193 1i486Addr[29] I/O |xB6Addr[29] if Wax is in 8086 mode
194 }i486Addr[30] I/O |x86Addr[30] if Wax is in 8086 mode
195 |i486Addr[31] I/O |x86Addr[31] if Wax is in 8086 mode
196 |eisaBeL[0] . I
197 |eisaBeLl|[1] I
198 |eisaBeL[2] 1
199 |eisaBel[3] 1
200 | GND dirty
201 jedpuBelatL I
202 {edpuSel{0] I x86SdbenL if Wax is in 8086 multiplexed mode
203 |edpuSel[1] I x86SddirH if Wax is in 8086 multiplexed mode
204 | VDD core
205 |edpuSel[2] 1 x86SownL if Wax is in 8086 multiplexed mode
206 | GND core
207 {hpibSctl 0 Hpib system controller
208 |hpibCsL - O* Hpib 9914 chip select/hpib enable input
209 | VDD dirty
210 jhpibAccgt 0 Hpib 9914 bus mastership acknowledge
211 |GND dirty
212 |hpibD][0} /O |Hpib 9914 data bus
213 |hpibD[1] I/0 | Hpib 9914 data bus
214 {hpibD[2] /O |Hpib 9914 data bus
215 {hpibD][3] I/O | Hpib 9914 data bus

Description: Wax ASIC ERS, rev. 1.0 May 3, 1993 Dwg. No. A-1FT4-0001-31 Page 101 of 102

gl ¢ Erieen

4

Pin [Signal | Direction [Notes =~
216 [hpibD[4] 1I/0 | Hpib 9914 data bus
217 |hpibD[5] 1/0 Hpib 9914 data bus
218 |hpibD[6] 1/0 |Hpib 9914 data bus
219 |GNDdirty
220 |hpibD[7] I/O |Hpib 9914 data bus
221 {hpibDbin O Hpib 9914 data bus direction
222 |hpibAccrq I Hpib 9914 bus mastership request
223 | hpibWr O |Hpib write to 9914
224 | hpibRs[0] O Hpib 9914 register select
225 {hpibRs[1] O Hpib 9914 register select
226 |VDD clean
227 |hpibClkSM O Hpib 9914 5 MHz clock output
228 |GND clean
229 |hpibRs[2] o Hpib 9914 register select
230 | VDD dirty
231 |hpibContr O Hpib system controller
232 |GND dirty
233 {hpibIntL I Hpib 9914 interrupt input
234 |hpibRstL O Hpib 9914 reset output
235 |rs232RxdL I Serial receive data input
236 |rs232TxdL o Serial transmit data output
237 |rs232RiL 1 Serial ring indication
238 {rs232DtrL 1 Serial data terminal ready
239 {rs232CtsL 1 Serial clear to send
240 |rs232RtsL O Serial request to send

* Wax also uses this output as a mode select input during power-up resel.

Description: Wax ASIC ERS, rev. 1.0

May 3, 1993

Dwg. No. A-1FT4-0001-31

Page 102 of 102

	W1to19.pdf
	W20to39.pdf
	W40to59.pdf
	W60to79.pdf
	W80to102.pdf

