
California Language Laboratroy

11000 Wolfe Road

Cupertino, California 95014

Last Printing: October 8, 1997

UNWIND PA64 Functional
Specification.

(c) Copyright 1997 HEWLETT-PACKARD COMPANY.

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.
Hewlett-Packard assumes no responsibility for the use or reliability of its software
on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

Version 1.8
Sept. 16,1997

2 UNWIND PA64 Functional Specification.

October 8, 1997 Data Structures

1.0 Data Structures
■ FYI: scalar type definitions

unsigned long general_reg;

unsigned int bit32;

int boolean;

■ frame record structures

typedef struct
{

unsigned long size;
general_reg sp;
general_reg return_link_offset;
general_reg gp; /* the global pointer value associated

with a given shared library */
general_reg rp;
general_reg mrp;
general_reg r3
general_reg r4
unsigned long reserved[4]

} curr_frame_info;

typedef struct
{

unsigned long size;
general_reg sp;
general_reg return_link_offset;
general_reg gp;
uw_rec_def uw_rec;
long uw_index;
general_reg r3
general_reg r4
unsigned long reserved[4]

} prev_frame_info;

■ unwind descriptors
typedef struct {

unsigned int no_unwind:1; /* 0..0 */
unsigned int is_millicode:1; /* 1..1 */
unsigned int reserved0:1; /* 2..2 */
unsigned int region_descr:2; /* 3..4 */
unsigned int reserved1:1; /* 5..5 */
unsigned int entry_sr:1; /* 6..6 */
unsigned int entry_fr:4; /* 7..10*/
unsigned int entry_gr:5; /* 11..15*/
unsigned int args_stored:1; /* 16..16*/
unsigned int reserved2:3; /* 17..19*/
unsigned int stk_overflow_chk:1; /* 20..20*/
unsigned int two_inst_sp_inc:1; /* 21..21*/
unsigned int reserved3:1; /* 22 */
unsigned int c_plus_cleanup:1; /* 23 */
unsigned int c_plus_try_catch:1; /* 24 */
unsigned int sched_entry_seq:1; /* 25 */

October 8, 1997 Data Structures

page 3 UNWIND PA64 Functional Specification.

unsigned int reserved4:1; /* 26 */
unsigned int save_sp:1; /* 27..27*/
unsigned int save_rp:1; /* 28..28*/
unsigned int save_mrp:1; /* 29..29*/
unsigned int reserved5:1; /* 30..30*/
unsigned int has_cleanup:1; /* 31..31*/
unsigned int reserved6:1; /* 32..32*/
unsigned int is_HPUX_int_mrkr:1; /* 33..33*/
unsigned int large_frame_r3:1; /* 34..34*/
unsigned int alloca_frame:1; /* 35 */
unsigned int reserved7:1; /* 36..36*/
unsigned int frame_size:27; /* 37..63*/

} descriptor_bits;

typedef struct { /* unwind entry as the unwind library stores it in the prev frame record */
descriptor_bits unwind_descriptor_bits;
bit32 region_start_address;
bit32 region_end_address;

} uw_rec_def;

typedef struct {
unsigned long table_start; /* Start address of a table, e.g. the unwind table */
unsinged long table_end; /* End address of same table */

} table_record;

typedef struct {
double so_fp12;
double so_fp13;
double so_fp14;
double so_fp15;
double so_fp16;
double so_fp17;
double so_fp18;
double so_fp19;
double so_fp20;
double so_fp21;

unsigned long so_rp;
unsigned long so_sp;
unsigned long so_mrp; /* gr31 */

unsigned long so_gr3;
unsigned long so_gr4;
unsigned long so_gr5;
unsigned long so_gr6;
unsigned long so_gr7;
unsigned long so_gr8;
unsigned long so_gr9;
unsigned long so_gr10;
unsigned long so_gr11;
unsigned long so_gr12;
unsigned long so_gr13;
unsigned long so_gr14;

4 UNWIND PA64 Functional Specification.

October 8, 1997 Function definitions

unsigned long so_gr15;
unsigned long so_gr16;
unsigned long so_gr17;
unsigned long so_gr18;

} state_vec;

typedef struct {
int bit;
int error_code;

} usertrap_info;

typedef struct {
int status;
int operation;
int op_class;
int format;
int format_src;
int reg_src1;
int reg_src2;
int reg_dest;

} ieee_info_rec;

typedef struct /* unwind_entry_rec as stored in the unwind table by the linker */ {
bit32 lo, hi; /* These are offsets from text base address */
descriptor_bits unwind_descriptor_bits;

} unwind_entry_rec;

2.0 Function definitions
■ void U_init_frame_record(curr_frame_info *frame) -- Fills in the record, “frame” with a

description of the stack frame forU_init_frame_record()and some register values that are followed
during the process of unwinding the processor stack. Table 1.0 describes what values are placed in
the fields of “frame.”

■ int U_get_previous_frame(curr_frame_info *curr_frame, prev_frame_info *prev_frame)
Upon entry, “curr_frame_info” contains:

record field value assigned

size 0

sp contents of %sp (gr30)

return_link_offset pc value during execution of U_init_frame_record

mrp 0

r3 contents of %r3

r4 contents of %r4

reserved[4] (not assigned)

curr_frame
record field value contained upon entry

size size of current frame, also referred to as the “callee’s frame.”

sp The current frame’s %sp value. (that is the Top of Stack while control was exe-
cuting the object code that created the current frame)

October 8, 1997 Function definitions

page 5 UNWIND PA64 Functional Specification.

Upon exit, “curr_frame_info” contains

and the “prev_frame_info” record contains information regarding the previous frame (that belonging to the
caller):

In the most simple case (no interrupts or stubs), the “previous frame” is the frame of the “caller” procedure
that called the “callee” procedure whose frame is described by *curr_frame. In some cases, control flow had
reached the “callee” procedure via an HP_UX interrupt in which case the stack contains an interrupt marker
(called sig_context which contains the saved system state) and the “callee” procedure is a user space inter-

return_link_offset The return link address into the “caller procedure”. By definition, it is O.K. for
this value to point to an export stub. The unwind library will consult stub tables
to update this field to point to the actual return point in the “callee procedure.”
At this time, the PA64 run time architecture definition does not allow for Export
stubs. Thus, this situation will only be noticed in PA32.

mrp NA

r3 the callee’s %r3 value

r4 the callee’s %r4 value

reserved[4] NA

curr_frame
record field value contained upon return

size (unchanged) size of current frame, also referred to as the “callee’s frame.”

sp (unchanged) The current frame’s %sp value. (that is the Top of Stack while con-
trol was executing the object code that created the current frame)

return_link_offset The actual return point in the “callee procedure.”

mrp NA

r3 (unchanged) the callee’s %r3 value

r4 (unchanged) the callee’s %r4 value

reserved[4] NA

prev_frame
record field value contained upon return

size size of the previous frame, also referred to as the “caller’s frame.”

sp The previous frame’s %sp value. (that is the Top of Stack while control was exe-
cuting the object code that created the previous frame)

return_link_offset The return link address into the procedure which called the “caller procedure”.
Once again, by definition, it is O.K. for this value to point to an export stub. At
this time, the PA64 run time architecture definition does not allow for Export
stubs. Thus, this situation will only be noticed in PA32.

uw_rec unwind records for the caller procedure

uw_index index of the unwind table entry. (0..N-1, where N is the number of entries in the
table)

r3 the caller’s %r3 value

r4 the caller’s %r4 value

reserved[4] NA

curr_frame
record field value contained upon entry

6 UNWIND PA64 Functional Specification.

October 8, 1997 Function definitions

rupt handler (in HP_UX, it is_sigreturn). By referring to the information in the interrupt marker,
U_get_previous_frame will calculate which routine was interrupted and fill in the
“previous_frame” record with a description of the interrupted routines stack frame.

■ table_record U_get_shLib_unw_tbl(address key)-- Delivers the start address and the end
address for a shared library unwind table. If the input parameterkeydoes not point to an address
(instruction or data) within a loaded shared library,U_get_shLib_unw_tbl(address key)returns -1
in thetable_record.table_startfield, else it returns the start and end addresses for the shared library
unwind table.

■ void U_update_state_vector(struct statevec *state_vec
prev_frame_info *previous_frame_info,
address uw_start_adr,
address uw_end_adr,
address return_link_offset)

Throughout this semantic description ofU_update_state_vector, we shall refer to the procedure
whose %sp, %r3 and %r4 values are passed in via theprevious_frame_infoparameter as the
“caller.” The procedure it called shall be referred to as the “callee” or “current procedure.”

Given:

• state_vec --A pointer to astate_vecrecord containing non-scratch (callee saves)
register values at the moment control flow entered the “callee procedure.”

• previous_frame_info --A pointer to aprev_frame_info record containing the
frame size, the sp, r3, and r4 values and the unwind table entries for the “caller”
procedure.

• uw_start_adr, uw_end_adr --the unwind region start and end addresses for the
“caller” procedure who’s stack state is described by “previous_frame”. (Note these
are the start and end of the unwind region (in code space.) Not the location of the
unwind entry in the unwind table. A common user error is to confuse these two)

• return_link_offsetthe “return link offset” to the “caller procedure” (who’s stack
state is described by “prev_frame”)

U_update_state_vector()restores the non-scratch general and floating point register
values in thestate_vec to the values the registers contained when control flow entered the
“caller” (previous) procedure.

■ void U_resume_execution(struct statevec *state_vec, address resume_at_pc, address
resume_at_gp)

Given:

• statevec -- A pointer to astate_vecrecord containing non-scratch (caller saves)
register values.

• resume_at_pc --An instruction address in a procedure whose callee-saves
register values are stored instatevec

• resume_at_gp --The gp value for the code at address, “resume_at_pc.”

Partially sets the system’s processor state to the state described by the state vector, then branches to
the address indicated byresume_at_pc. U_resume_execution()requires that the information in the
state vector andresume_at_pc address be obtained from a “context preserving” unwind process and
that the context described by the contents of the state vector and byresume_at_pc still have a frame

October 8, 1997 Function definitions

page 7 UNWIND PA64 Functional Specification.

on the procedure call stack. Note: that the entire system state is not (and cannot) be restored by the Unwind
library. Any values the procedure kept in “caller saves” registers cannot be restored by the unwind library.
“Resume_at_gp” can be obtained from prev_frame_info->gp after a call to U_get_previous_frame.

■ table_record U_get_unwind_table() --returns a record containing the 64 bit address of the unwind table
start and the64 bit address of the end of the unwind table. By definition, end of the unwind table is the
address of the first byte after the last entry in the unwind table (e.g. unwind end does not point to the last
entry of the unwind table.)

■ address U_get_shLib_text_addr(address key)-- Given an address of an instruction or data item with a cur-
rently loaded shared library,U_get_shLib_text_addr()returns the 64 bit text address of the shared library.
Unwind entries in the shared library unwind table are offsets from this text address. Returns -1 if the
dynamic loader is not loaded or the key is not an address within a shared library.

■ address U_get_unwind_entry(general_reg program_counter,
general_reg utab_start, /* addr where unwind table starts */
general_reg utab_end) /* addr where unwind table ends */ --returns a pointer to the unwind

table entry for the code segment containing theprogram_counter address. Note: address is typedefined as
unsigned long -- a 64 bit quantity in pa64. (32 bits in pa32)

■ void U_init_frame_record(curr_frame_info* start_frame) -- Initializes the fields instart_frameso it
describes the stack frame used byU_init_frame_record().There is one exception: Thereturn_link_offset
field of start_framereflects a pc_offset withinU_init_frame_record().A call to
U_prep_frame_rec_for_unwind(start_frame) will set thereturn_link_offset field to the return link offset
value as required by U_get_previous_frame.

■ void U_prep_frame_rec_for_unwind(curr_frame_info* cfi) -- Fills in cfi’s return_link_offset field with
the return pointer to the caller of the routine whose frame is described bycfi.

■ void U_get_my_context(curr_frame_info* start_frame, struct statevec * state_vec)-- Initializes the
fields instart_frameand the fields instate_vecto describe the processor state during the execution of
U_get_my_context.This is the method for initializing a context restoring stack unwind which has the follow-
ing basic form exhibited by the following ANSI C source excerpt:

state_vec state_vector; /* State vector */
prev_frame_info previous_frame;
curr_frame_info current_frame;
unsigned long adjustment;
U_get_my_context(¤t_frame, &state_vec);
U_prep_frame_rec_for_unwind(¤t_frame);
while(!termination_condition) {

U_get_previous_frame(¤t_frame,&previous_frame);
if (resume_to_user_code_condition_has_been_met) {

U_resume_execution(&state_vec, current_frame.return_link_offset);
/* Note: U_resume_execution returns the control of flow to the user’s code. Control flow. */
/* never reaches this point */

}
adjustment = U_get_shLib_text_addr(current_frame.return_link_offset);
if (adjustment == -1)

adjustment = 0;
/* Adjust current_rlo if it is an absolute address addressing
* a location in a shared library. The “unwind start” and “unwind
* end” values for shared libraries are offsets from the start
* of the shared library’s text space. Thus we must subtract the
* absolute starting address of the text space of the shared library
* from current_rlo.
*/

8 UNWIND PA64 Functional Specification.

October 8, 1997 Function definitions

U_update_state_vector(&state_vec, &previous_frame,
prev_fr.uw_rec.boundaries.start,
prev_fr.uw_rec.boundaries.end,
curr_fr.pc_offset - (unsigned int) adjustment);

/* copy pertinent fields from the previous frame record to the next loop iteration’s current fr */
U_copy_frame_info((¤t_frame,&previous_frame);

}

■ void U_copy_frame_info(curr_frame_info *current, prev_frame_info *previous) --The size,
sp, pc_offset, r3, and r4 fields are copied frompreviousto current.

■ curr_frame_info U_get_current_frame() --Returns acurr_frame_info structure which describes
the stack frame of the routine that calledU_get_current_frame() Thecurr_frame_infostructure
returned is ready for use in callingU_get_previous_frame.This routine is good for initializing a
non-context restoring unwind.

■ int U_is_stack_unwound(address sp, unsigned int uw_desc_wd1,unsigned int uw_desc_wd2) -
- Returns 1 if the stack is fully unwound. Returns 0 otherwise.

■ void U_TRACEBACK(int sig_number, struct sigcontext* ptr) -- Displays the error status fol-
lowed by a stack trace. The first parameter, “sig_number” is used to select which of about 19 error
messages to print as listed here. The format of the stack trace is the same as that described under

U_STACK_TRACE().

■ boolean U_IS_MILLI_CODE(general_reg pc) --returns 1 if the instruction address inpc is
pointing into a millicode routine; else returns 0.

message

Signal 1: hangup

Signal 2: interrupt

Signal 3: quit

Signal 4: illegal instruction

Signal 5: trace trap

Signal 6: abort

Signal 7: not enough memory available

Signal 8: floating point exception

Signal 9: kill

Signal 10: bus error

Signal 11: segmentation violation

Signal 12: bad argument for system call

Signal 13: write on a pipe with no one to read

Signal 14: alarm clock trap

Signal 15: software termination signal

Signal 16: user defined signal 1 trap

Signal 17: user defined signal 2 trap

Signal 18: death of a child

Signal 19: power fail

October 8, 1997 Function definitions

page 9 UNWIND PA64 Functional Specification.

■ void U_STACK_TRACE() -- delivers a stack trace to stderr. The trace display begins with the function
which calledU_STACK_TRACE()and concludes with the executable’s “start” code (typically found in crt0.o
or in libc.sl). The fields of the stack trace is as follows:

Example:

(0) 0x000031f4 foo + 0x14 [./a.out]
(1) 0x00003214 bar + 0x14 [./a.out]
(2) 0x0000323c main + 0x14 [./a.out]
(3) 0xc0046e98 _start + 0xa8 [/usr/lib/libc.2]
(4) 0x00002730 $START$ + 0x160 [./a.out]

■ void U_TRAP_STACK_TRACE(curr_frame_info start_frame) -- delivers a stack trace to stderr. The
trace display begins with the frame represented by the fields instart_frame. The fields and their contents are
the same as those described forU_STACK_TRACE().

■ int U_NextFrame(curr_frame_info frame_rec) -- Performs an unwind step, filling in the fields of
frame_rec()with information describing the next deeper user code frame on the stack. Returns 0 if the
unwind step was successful. Prints the message, “Stack_Trace: error while unwind stack,” and returns -1 if
the unwind step was not successful.

2.1 Changes from the PA32 interface
1. Many functions which were defined withinteger return values in pa32 but which returned nothing, have

been specified as havingvoid return values in the pa64 interface.

field contents format

1st the depth (counted in user
code stack frames excluding
stubs and interrupt markers)
of the current procedures
frame on the run time stack.

(decimal integer)

2nd return link address where
control will return to this
function when it’s callee
executes a “return” (such as
a bv 0(rp)).”

hex

3rd same address as field #2
with symbol information.
The symbol information
will not be provided if the
symbols have been stripped
from the “a.out” file.

procedure label + hex offset

4th Name of the load module in
which the procedure resides.

[HP_UX path name]

10 UNWIND PA64 Functional Specification.

October 8, 1997 Function definitions

