
PA-RISC 2.0 Firmware Architecture
Reference Specification

Version 1.1E Printed in U.S.A. July 22, 2004

Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information that is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

Copyright  1983-2003 by HEWLETT-PACKARD COMPANY All Rights Reserved
LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

5. IODC
The purpose of IODC is to provide a uniform, architected mechanism to obtain module-type dependent information
from a module. IODC is composed of two parts. The first part is a set of up to 16 bytes that identify and
characterize the module. The second part is a set of entry points that provide a standard procedural interface for
performing module-type dependent operations. IODC is typically contained in a ROM on the module.

The IODC data bytes contain sufficient module-type dependent information to allow a configuration to be
determined automatically during system initialization. This allows new modules and I/O devices to be installed
without modification of the processor configuration and boot ROM.

Each operating system should establish a software convention to control access to IODC. The IODC entry points
provide a consistent interface for operations such as module initialization and testing. Special IODC entry points
are defined to support boot.

All software access to IODC is obtained through the PDC_IODC procedure. PDC_IODC accesses a module’s
IODC by writing the desired IODC address to its IO_DC_ADDRESS register, and reading the addressed data from
its IO_DC_DATA register.

In variable configuration systems, each native module is required to support the IO_DC_ADDRESS and
IO_DC_DATA registers in its HPA.

However, in fixed configuration systems, PDC_IODC need not access the module at all: instead it may return the
appropriate fixed IODC directly to its caller. This is also true for PCI devices under a PCI host bridge. In such a
configuration, a module need not implement the IO_DC_ADDRESS and IO_DC_DATA registers in its HPA if the
functionality is emulated by the PDC_IODC procedure. Further, for PCI devices, the HPA need not be a valid 64-
bit I/O address, but may be a 32-bit PCI Function Address (PFA). Bit 32 of the PFA must always be zero. (the high
order bit)

The sections that follow give a complete definition of IODC. Section 5.1 specifies the format of IODC and gives
the meaning of first 16 data bytes. Section 5.2 shows how the entry point code blocks are organized. Section 5.3
specifies the calling conventions for the IODC entry points. The IODC entry points defined by the architecture are
described in section 5.4. Finally, Section 5.5 describes the module-specific aspects of IODC for all modules.

Firmware Architecture, Ver 1.1E IODC 5-1

5.1 IODC Data Bytes
The architecturally specified locations of the IODC data bytes are shown below:

TABLE 5-1. IODC Data Bytes

Byte
Address Name Description

0 - 1 IODC_HVERSION Hardware version number
2 IODC_SPA Soft physical address capability
3 IODC_TYPE Type of module

4 - 7 IODC_SVERSION Software version number
8 IODC_REV IODC revision
9 IODC_DEP HVERSION dependent
10 IODC_FEATURES Optional features supported
11 RESERVED Reserved

12 - 13 IODC_CHECK Checksum
14 - 15 IODC_LENGTH Length of entry point table

16 - 19 IODC_ENTRY_1 First entry point
.

n-4 - n-1 IODC_ENTRY_N Last entry point

where n is the address of the byte following the last word in the entry point table.

Modules provide one of three subsets of the data shown above. Every module provides at least byte 3 of IODC.
The information in byte 3 is sufficient to identify how many IODC bytes the module provides:

• EXACTLY 1 BYTE: Byte 3, the IODC_TYPE byte, is the only byte the module provides.
Category A and category B processors are the only modules in this class.

• EXACTLY 8 BYTES: The module provides bytes 0 through 7.

• AT LEAST 16 BYTES: The module provides at least bytes 0 through 15.
Bytes 14 and 15 imply how much larger the IODC is.

ENGINEERING NOTE

Some bus specifications allow more than one module to be implemented on one physical card. The I/O
Architecture requires one IODC for each module; the card can emulate this functionality by mapping
multiple IO_DC_ADDRESS and IO_DC_DATA registers to separate portions of one physical ROM.

5-2 IODC Firmware Architecture, Ver 1.1E

IODC_HVERSION (bytes 0 - 1)

Format:
model HV

0 11 12 15

Purpose: To specify the hardware version number (HVERSION) for the module.

An HVERSION is relevant only when compared to the HVERSION of a module which shares the
same IODC_SVERSION[model]. Therefore, when IODC_SVERSION[model] differs there is no
guarantee that the HVERSIONs have the same interpretation.

Fields: Themodelfield specifies the module hardware implementation. If a hardware implementation is
updated in a way which is visible to HVERSION-dependent software (e.g., diagnostics) but
transparent to SVERSION-dependent software (e.g., drivers), IODC_HVERSION[model] must be
incremented. As a result of this type of module change, IODC_SVERSION[rev] and
IODC_SVERSION[model] remain unchanged.

If a hardware implementation is updated in a way which is transparent to all HVERSION-
dependent and SVERSION-dependent software, IODC_SVERSION[rev] and
IODC_SVERSION[model] must remain unchanged.

SUPPORT NOTE

When a change is made to an implementation that is not visible to all HVERSION-
dependent and SVERSION-dependent software, IODC_HVERSION[12..15] should be
updated if the change is considered to be a design change, and not just a simple
hardware part change. Examples of typical design changes are:

• Updating components on a card from TTL to CMOS.

• Going from a full size card to a half size card with SMT.

• Using increased integration to reduce parts count.

The goal of updating the value of IODC_HVERSION[12..15] is to provide support with
a means of tracking design changes that are not visible to diagnostics. Contact the
support organization to determine the initial value of IODC_HVERSION[12..15] and
whether IODC_HVERSION[12..15] should be updated for a particular implementation
change. Note that numerically increasing values for IODC_HVERSION[12..15]
typically denote chronologically later hardware versions.

If a hardware implementation is changed in a way which is visible to SVERSION-dependent
software, then IODC_SVERSION[rev] or IODC_SVERSION[model] must change.

In order to determine the correct fields to update as a result of a module change, the primary
consideration is the impact on HVERSION-dependent and SVERSION-dependent software. The
following table shows the fields that must be updated as a result of a module change.

Firmware Architecture, Ver 1.1E IODC 5-3

IODC_HVERSION (bytes 0 - 1) (continued)

SV Software HV Software SV[model] SV[rev] HV[model]

Y X C Typically 0 4
N N U U U
N Y U U C
S N U C U
S Y U C C

Where:

N = change to the module is not visible to software
Y = change to the module is not compatible with existing software
S = change to the module is visible to software, but existing software

will continue to work (i.e., the new module is a strict superset)
X = don’t care
C = changed
U = unchanged

5-4 IODC Firmware Architecture, Ver 1.1E

IODC_SPA (byte 2)

Format:
io 0 SV shift

0 1 2 3 7

Purpose: To specify the soft physical address capabilities of a module.

Fields: The io bit indicates whether the SPA is in the memory (io = 0) or I/O (io = 1) address space. Each
SPA must be entirely in the memory address space or entirely in the I/O address space. Only
memory modules are allowed to have SPA in the memory address space. If a module does not
have an SPA, theio bit is SVERSION dependent.

Theshift field specifies the maximum SPA space size (in bytes) and the alignment requirement (in
bytes) as 2shift. If a module does not have an SPA, theshift field must be 0.

The following table shows the relationships among module type,io bit, andshift field:

Module Type io bit shift field Description

memory 0 0 processor-dependent satellite
memory 0 1 - 11 illegal
memory 0 12 - 31 maximum SPA = 2shift

memory 1 0 - 31 illegal
coherent i/o module 0 0 - 31 TLB entries = 2shift

coherent i/o module 1 0 - 31 illegal
other module types 0 0 module has no SPA
other module types 0 1 - 31 illegal
other module types 1 0 module has no SPA
other module types 1 1 - 11 illegal
other module types 1 12 - 26 maximum SPA = 2shift

other module types 1 27 - 31 illegal

If software sees an illegal combination of module type,io bit, andshift field, it must presume an
error and should not attempt to enable the SPA of the module in question.

For modules where the architecture defines the SVERSION (i.e., native processor, memory, and
bus converter port modules), the value of IODC_SPA{2} is HVERSION dependent.

Firmware Architecture, Ver 1.1E IODC 5-5

IODC_TYPE (byte 3)

Format:
mr wd w type

0 1 2 3 7

Purpose: To identify the type of the module.

Fields: If the mr ("more") bit is 1, the module provides at least the first 16 bytes of IODC. Ifmr is 0, the
module provides no more than the first 8 bytes of IODC.

If the w ("wide") bit is 1, the modules IODC entry points should be called with the PSW W-bit = 1
(wide mode). If thew bit is 0, the modules entry points should be called with PSW W-bit = 0
(narrow mode).

If the wd ("word") bit is 1, the module provides a full word of address-justified data in
IO_DC_DATA. If wd is 0, the module provides a single byte of right-justified data in
IO_DC_DATA. The locations of the valid and HVERSION-dependent data bytes provided in
IO_DC_DATA are illustrated below:

IO_DC_ADDRESS wd = 0 wd = 1

0 HV HV HV DATA0 DATA0 DATA1 DATA2 DATA3
1 HV HV HV DATA1 DATA0 DATA1 DATA2 DATA3
2 HV HV HV DATA2 DATA0 DATA1 DATA2 DATA3
3 HV HV HV DATA3 DATA0 DATA1 DATA2 DATA3

4 HV HV HV DATA4 DATA4 DATA5 DATA6 DATA7
5 HV HV HV DATA5 DATA4 DATA5 DATA6 DATA7
6 HV HV HV DATA6 DATA4 DATA5 DATA6 DATA7
7 HV HV HV DATA7 DATA4 DATA5 DATA6 DATA7

0 1 2 3 0 1 2 3

Thetypefield specifies the module type, as follows:

Value Name Description

0 TP_NPROC Native Processor
1 TP_MEMORY Memory
2 TP_B_DMA Type-B DMA I/O
3 Obsolete Reserved
4 TP_A_DMA Type-A DMA I/O
5 TP_A_DIRECT Type-A Direct I/O
6 Obsolete Reserved
7 TP_BCPORT Bus Converter Port
8 TP_CIO HP-CIO Adapter
9 TP_CONSOLE Console
10 TP_FIO Foreign I/O Module
11 TP_BA Bus Adapter
12 TP_IOA
13 TP_BRIDGE Bus Bridge to Foreign Bus
14 TP_FABRIC Fabric ASIC
15 TP_MC Management Controller

16 - 30 Reserved Future Types
31 TP_FAULT Faulty Module

Modules with an internal hardware fault may return TP_FAULT instead of their true type.

5-6 IODC Firmware Architecture, Ver 1.1E

IODC_SVERSION (bytes 4 - 7)

Format:
rev model opt

0 3 4 23 24 31

Purpose: To specify the software version number (SVERSION) for the module.

SVERSIONs are unique across all module types. Therefore, SVERSIONs do not need to be
qualified by module type.

Fields: If an enhanced feature is added to a module, the value of therev field must be changed. An
increased value ofrev implies that the newer revision retains all of the previously released
features (i.e., the new module is a strict superset). Existing SVERSION-dependent software will
still function on a module with an increased value ofrev. As a result of this type of module
change, IODC_HVERSION[model], and IODC_SVERSION[model] remain unchanged.

Bit 27 of theopt field define the Module Category, also referred to as themcbit. Bit 26 of theopt
field is reserved. The remainder of theopt field is defined differently for each module type. The
definitions are presented in Section 5.5, Module Specific IODC.

The modelfield specifies the software interface to a module. If a change is made to a module
which results in incompatible SVERSION-dependent software capabilities, the value ofmodel
must be changed. As a result of this type of module change, IODC_HVERSION[model] must be
set to 4, and IODC_SVERSION[rev] is typically set to 0.

ENGINEERING NOTE

If a reduced functionality module is to be released in the future
IODC_SVERSION[rev] may optionally be set to a value greater 0 when
IODC_SVERSION[model] is updated. This allows for a future module which is a
subset of the existing module.

In order to determine the correct fields to update as a result of a module change, the primary
consideration is the impact on HVERSION-dependent and SVERSION-dependent software. The
following table shows the fields that must be updated as a result of a module change.

SV Software HV Software SV[model] SV[rev] HV[model]

Y X C Typically 0 4
N N U U U
N Y U U C
S N U C U
S Y U C C

Where:

N = change to the module is not visible to software
Y = change to the module is not compatible with existing software
S = change to the module is visible to software, but existing software

will continue to work (i.e., the new module is a strict superset)
X = don’t care
C = changed
U = unchanged

The IODC_SVERSION[model] value 0x00FFF is allocated for use by Type A-Direct, Type A-
DMA, and Type B-DMA modules developed independent of HP. Modules with this
IODC_SVERSION[model] value must have an IODC_SVERSION[rev] value of 0. For these
modules, the contents and meaning of the IODC_HVERSION[model] field are dependent on the
particular module implementation, and do not have their normal architectural definition.

Firmware Architecture, Ver 1.1E IODC 5-7

IODC_REV (byte 8)

Format:
rev

0 7

Purpose: To specify the revision of the IODC entry points.

Fields: Therev field contains the revision of the IODC entry points.

If a module implements any of the IODC entry points, IODC_REV[rev] must be incremented if
the IODC entry point code is modified. If a change is made to a module which implements any of
the IODC entry points, and that change results in IODC_SVERSION[model] being updated,
IODC_REV[rev] must be set to 0. For modules that do not implement any IODC entry points, the
value of IODC_REV[rev] is HVERSION dependent. Note that IODC_REV is an unsigned byte.

5-8 IODC Firmware Architecture, Ver 1.1E

IODC_DEP (byte 9)

Format:
dep

0 7

Purpose: To provide HVERSION-dependent information about the module.

Fields: Thedepfield contains HVERSION-dependent information about the module.

Firmware Architecture, Ver 1.1E IODC 5-9

IODC_FEATURES (byte 10)

Format:
R block

0 6 7

Purpose: To specify which optional IODC feature are supported by this module.

Fields: The block field specifies whether ENTRY_IO support Book block input (ARG1=16) and Boot
block output (ARG1=17). A 1 in theblock indicates the feature is supported. A 0 indicates the
feature is not supported.

5-10 IODC Firmware Architecture, Ver 1.1E

IODC_CHECK (bytes 12 - 13)

Format:
checksum

0 15

Purpose: To provide a checksum for the first n bytes of IODC.

PDC_IODC is required to compute this checksum when it is called (with ARG1=0 and ARG4=0)
to get the first 16 bytes of IODC.

Fields: The checksumfield is adjusted to guarantee that the 16-bit arithmetic sum of the halfwords at
locations 0 through n-2 is zero, where n is the number of bytes in the previous IODC and the
following entry point table.

Firmware Architecture, Ver 1.1E IODC 5-11

IODC_LENGTH (bytes 14 - 15)

Format:
length

0 15

Purpose: To specify the length in words of the entry point table, which is comprised of words
IODC_ENTRY_1 through IODC_ENTRY_N.

Fields: The lengthfield specifies the length in words of the entry point table.

This indirectly specifies the "n" bytes covered by the checksum IODC_CHECK, as follows:

n = (4 * length) + 16

Thuslengthhas the same value as N, the number of entry points contained in the IODC. Iflength
is zero, then there are no entry points in the IODC, just exactly 16 bytes of data.

5-12 IODC Firmware Architecture, Ver 1.1E

5.2 IODC Entry Point Table
The words IODC_ENTRY_1 through IODC_ENTRY_N comprise the entry point table. The table describes the
entry points that the module provides. Each word in the entry point table specifies the index and address of an entry
point in the module’s IODC, in the following format: Note that IODC was first defined with the PA-Risc 32 bith
architecture. The use of "word" in the context of the length of the IODC entry point table and the size of items in
the table always refers to a 32-bit word. Similarly "halfword" referes to a 16-bit quantity.

index addr

0 7 8 31

Figure 5-1. Entry Point Table Word

The indexbyte identifies the entry point. The index values in the entry point table are distinct, and are in ascending
order.

The 3-byteaddrfield is the word address of the entry point code block (the byte address is 4 *addr). The format of
the code block is as shown below. The addresses show byte offsets from the start of the block.

ENTRY_CHECK ENTRY_LENGTH

ENTRY_DATA

0

4

nd

Figure 5-2. Entry Point Code Block

The ENTRY_CHECK halfword ensures that the 16-bit arithmetic sum of thend/2 halfwords in the entry point code
block is zero.

The ENTRY_LENGTH halfword is the number of words of data which follow. This value indirectly specifies the
parameternd, the number of bytes in the entry point code block, as follows:

nd = (4 * ENTRY_LENGTH) + 4

The words in ENTRY_DATA comprise a position-independent (relocatable) entry point which can be transferred
by PDC_IODC from the module to memory. Following relocation, the entry point is called using the calling
conventions described in Section 5.3, IODC Calling Conventions.

Firmware Architecture, Ver 1.1E IODC 5-13

5.3 IODC Calling Conventions
IODC provides a procedural interface to module-type dependent code for modules other than native processors.
The calling convention used for these entry points is a subset of the one defined in thePA-RISC 64-bit Runtime
Architecture, Version 3.3.

The applicable portions of the calling convention are summarized here; refer to theRuntime Architecture Document
for details. This subset of the calling convention used by IODC is frozen in the I/O Architecture. Indirect calls
through special stubs will be required if the convention changes in the future.

The architected operation of a module (including execution of IODC) must not require the use of any non-
architected IODC entry points. It must also not require the use of any non-architected options in architected IODC
entry points.

The converse is also true: the execution of a non-architected IODC entry point (or a non-architected option of an
architected entry point) must not affect the architected operation of a module.

5.3.1 Processor Entry/Exit State

The processor must be in the following state when calling IODC entry points:

• The processor must be at Privilege Level 0 at entry, during the call, and at exit.

• The following rules govern the use of the PSW for calls to IODC entry points:

a. ENTRY STATE: The caller must ensure that the PSW W bit and Q bit are 1 and the T, H, L, N, B, C, M,
R, E and D bits are 0. IODC may be called with the I bit set to 0 or 1. The values of the other bits are
defined by the caller.

b. DURING THE CALL: The entry point must not change the values of the S, T, H, L, C, M, R, Q, P, W, E,
and D bits. IODC may optionally modify the N, X, B, V and C/B bits. See Section 5.3.3, IODC and
Interruptions, for the state of the I bit.

c. EXIT STATE: The N, X, E and B bits must be 0. The W bit must be 1. The V and C/B bits are IODC
dependent. The I bit has the value at entry, upon exit of the IODC call.

• The caller of IODC must provide a doubleword-aligned value in GR 30, the stack pointer, which points to the
following data:

SP-96 SAVE_ARG7
SP-88 SAVE_ARG6
SP-80 SAVE_ARG5
SP-72 SAVE_ARG4
SP-64 SAVE_ARG3
SP-56 SAVE_ARG2
SP-48 SAVE_ARG1
SP-40 SAVE_ARG0
SP-32 frame marker
SP stack space for IODC (IODC occupies a maximum of 7 Kbytes)

The values of SAVE_ARG0 through SAVE_ARG7 are defined by the caller at entry and IODC dependent at
exit. They are used to save the first four arguments to the procedure, which are passed to the procedure in
registers GR26 through GR19, respectively. Additional arguments are passed on the stack in successive
locations (ARG8 at SP-104, ARG9 at SP-112, ARG10 at SP-120, etc.)

When the called procedure returns, the value of SP must be restored.

• The memory at the stack pointer address SP and the next 7 Kbytes of larger physical addresses are available for
temporary use by the IODC entry point. It is required that SP always point beyond the last byte of storage used
by the caller.

5-14 IODC Firmware Architecture, Ver 1.1E

PROGRAMMING NOTE

An IODC entry point allocates 7 Kbytes of temporary space on the stack to any PDC procedure that
it calls (see Section 4.1.1, Entry/Exit State). Note that the IODC entry point only has 7 Kbytes of
temporary space on the stack allocated to itself. The IODC entry point may optionally get this extra
space by allocating a buffer within its own code space. ENTRY_TEST has another choice; it may
optionally request an extra buffer space from its caller when called with ARG1 = 0 (see Section 5.4,
IODC Entry Points, ENTRY_TEST page).

• The following four tables show the state of the CRs, GRs, SRs, and FPRs:

CR Entry state State during call Exit state

0 Defined by caller No WRITE Value at Entry
1-7 HV(processor) No READ/WRITE HV(processor)
8 Defined by caller No WRITE Value at Entry
9 Defined by caller No WRITE Value at Entry
10 Defined by caller No READ/WRITE Value at Entry
11 Defined by caller IODC dependent IODC dependent
12 Defined by caller No WRITE Value at Entry
13 Defined by caller No WRITE Value at Entry
14 Defined by caller No READ/WRITE Value at Entry
15 See Section 5.3.2, Use of the EIR and EIEM by IODC

Value at Entry plus
time elapsed during
IODC call

16 Defined by caller No WRITE

17-22 Undefined No READ/WRITE Undefined
23 See Section 5.3.2, Use of the EIR and EIEM by IODC
24-31 Defined by caller/IH No READ/WRITE Defined by caller/IH

GR Entry state State during call Exit state

0 Zero Zero Zero
1 Defined by caller IODC dependent IODC dependent

Return address of the
called procedure

2 IODC dependent IODC dependent

3-18 Defined by caller IODC dependent Value at Entry
19 ARG7/Defined by caller IODC dependent IODC dependent
20 ARG6/Defined by caller IODC dependent IODC dependent
21 ARG5/Defined by caller IODC dependent IODC dependent
22 ARG4/Defined by caller IODC dependent IODC dependent
23 ARG3/Defined by caller IODC dependent IODC dependent
24 ARG2/Defined by caller IODC dependent IODC dependent
25 ARG1/Defined by caller IODC dependent IODC dependent
26 ARG0/Defined by caller IODC dependent IODC dependent
27 Defined by caller IODC dependent Value at Entry
28 Defined by caller IODC dependent Return Status
29 Defined by caller IODC dependent IODC dependent
30 Defined by caller IODC dependent Value at Entry
31 Defined by caller IODC dependent IODC dependent

Firmware Architecture, Ver 1.1E IODC 5-15

SR Entry state State during call Exit state

0-2 Defined by caller IODC dependent IODC dependent
3-7 Defined by caller IODC dependent Value at Entry

FPR Entry state State during call Exit state

0-31 Defined by caller No WRITE Value at Entry

The definitions of the terms used in the above tables are as follows:

— Defined by caller. The caller of the IODC entry points can provide any value in the register/bit field, and
IODC entry points must not rely on the value provided by the caller.

— IODC dependent. The state of the register/bit field depends on the IODC entry point. IODC entry points
are allowed to read from and write to the registers/bit fields that are IODC dependent during the call. IODC
entry points may provide any value upon exit for those registers/bit fields that are IODC dependent at exit.

— Value at Entry. The state of the register/bit field is the same as the value provided by the caller for the
IODC call. For those registers/bit fields with this exit state, IODC entry points must restore the value
defined by the caller upon exit of the IODC entry points, even if the state during the call was IODC
dependent.

— HV(processor). The state of the register/bit field is dependent on the HVERSION of the processor.

• Registers GR26 through GR19 contain ARG0 through ARG7. If a particular entry point does not define one or
more of the arguments ARG0 through ARG7, the corresponding registers are defined by the caller at entry and
are IODC dependent at exit.

• The Interruption Vector Table (IVT) is defined by the caller at entry. IODC entry points must not change the
Interruption Vector Table (IVT) pointed to by the IVA (CR14).

PROGRAMMING NOTE

Interruption handlers cannot rely on the contents of any register that IODC is allowed to modify during
the procedure, even if IODC is required to restore the contents of the register upon exit. Specifically, the
interruption handlers cannot rely on the contents of GR 30 to be the Stack Pointer.

5.3.2 Use of the EIR and EIEM by IODC

If ENTRY_INIT or ENTRY_IO can cause its module to send an interrupt message, then it must ensure that the
target of that interrupt is EIR{3} in the global broadcast address space. For ENTRY_TEST, the module must
interrupt only on the EIR bit specified by theEIM_addr argument in the ENTRY_TEST call. ENTRY_SPA and
ENTRY_CONFIG must never cause its module to send interrupts.

IODC must not allow external interrupts generated by its module to be seen by the caller. Callers are not required
to set EIEM{2..31} to any value. If IODC causes a module to send an interrupt, it must clear the target bit on the
EIR and EIEM registers. IODC must not set any bit on these two registers to 1. Additionally, IODC must not
modify any other bit on these two registers.

IODC can determine that the module sent an interrupt by observing registers like IO_II_DATA[ii] on the module.
Therefore, IODC need not change the value of the IVA or the Interruption Vector Table(IVT) to which the IVA
points.

PROGRAMMING NOTE

To increase supportability, IODC is encouraged to also ensure that EIR{3} is set to verify that its module
sent an interrupt when expected.

5-16 IODC Firmware Architecture, Ver 1.1E

If the caller has set the PSW I-bit and the target bit on the EIEM register to 1, then the caller’s interruption handler
must not take any action like clearing the IO_II_DATA[ii] bit on the target module, that could cause IODC to miss
the interrupt it was waiting for.

Upon exit of the IODC call, the EIR register is IODC dependent. The EIEM register has the value at entry, upon
exit of the IODC call.

5.3.3 IODC and Interruptions

IODC may be called with the PSW I-bit set to 0 or 1. The PSW I-bit has the value at entry, upon exit of the IODC
call.

If the PSW I-bit is set to 1, then EIEM{1} must also be set to 1. IODC must set PSW I-bit to 0 if and only if it calls
PDC. In such a case, the PSW I-bit must be set to 0 in the delay slot on the branch to PDC code, and IODC must
also set PSW I-bit to 1 during the first instruction after the PDC call completes.

If PSW I-bit is set to 0, then there is no guarantee that the powerfail budget requirements are met if a powerfail
warning occurs during the IODC call. IODC must not set the PSW I-bit to 1.

Callers must not resume an offline IODC entry point that was interrupted by a powerfail, but instead may restart the
entry point from the beginning.

IODC must not be re-entered.

The execution of IODC must not cause any Group 3 or Group 4 interruptions.

5.3.4 Online IODC

The following IODC entry points can be called online in real mode:

• ENTRY_CONFIG

• ENTRY_SPA

• ENTRY_TEST (online test lists only)

Any IODC entry point that can be executed online must meet the following restrictions:

• must never set the PSW I-bit to 0 (except ENTRY_CONFIG[Get/Set SCSI Parms])

• must never call PDC procedures (except ENTRY_CONFIG[Get/Set SCSI Parms])

• must never cause its module to send interrupts

• must not change the EIEM or EIR registers

• must have a maximum size of 32 Kbytes

In addition to these restrictions, online IODC must provide support for interrupt handling, as online IODC may be
called with interruptions enabled.

Following the processing of an interruption, online IODC entry points must allow the operating system to take
either of the following actions:

• Resume execution of the interrupted online IODC entry point. The operating system can only do this if it can
guarantee that the state of the module is unchanged as a result of interruption processing. If the state of the
module can not be guaranteed to be unchanged, as is typically the case after a powerfail interrupt, the entry
point must not be resumed.

• Discontinue the execution of the IODC entry point. The operating system may optionally choose not to return
to the IODC entry point after interruption processing completes.

If execution of an online IODC entry point is discontinued, the entry point must operate correctly when it is
restarted, provided that the target module is in the required entry state. For example, when an online IODC
entry point has been discontinued by the caller, IODC must allow the caller to restart execution of any online
IODC entry point on the module, including the one that was interrupted.

Firmware Architecture, Ver 1.1E IODC 5-17

5.3.5 IODC and the Operating System

The requirements on the operating system when calling IODC entry points are:

• must be called in real mode

• must run at the highest privilege level

• The operating system interruption handlers must not take any action that could cause IODC to miss the interrupt
it was waiting for

Offline IODC entry points are intended to be used during boot and system configuration, not during normal system
operation. Therefore, an operating system must understand the effects on system state of making offline IODC calls.
The operating system may call offline IODC entry points during initial configuration and also during system
shutdown. Offline IODC entry points must not be resumed after a powerfail.

The additional requirements for the operating system when calling online IODC are:

• The operating system must guarantee that the module is in a quiescent state before invoking an online IODC
entry point for that module. (except ENTRY_CONFIG(Get/Set SCSI PARMS) If ENTRY_TEST is called
online with scope= 1, all modules in the same module set as the module being tested must also be made
quiescent.

• For multiprocessor systems, the operating system must guarantee that the execution of an IODC entry point is
either completed or discontinued before allowing any software other than IODC to access the module. The
operating system must not execute multiple IODC entry points on a module simultaneously, including multiple
instances of the same entry point. If ENTRY_TEST is called online withscope= 1, these restrictions apply to
all modules in the same module set as the module being tested.

• The operating system must not resume execution of an online IODC entry point following an interruption if it
can not guarantee the state of the module is unchanged as a result of processing the interruption.

PROGRAMMING NOTE

Caution must be exercised by the operating system if an online IODC entry point is resumed after a
powerfail, since during the course of a powerfail the state of any module may be affected.

The operating system may optionally restart execution of the interrupted online IODC entry point after
interruption processing completes.

PROGRAMMING NOTE

Online IODC entry points are restricted from actions that would result in problems during normal
system operation. Offline IODC entry points are not subject to these additional restrictions.
Therefore, the operating system should be aware that if offline IODC entry points are called during
normal system operation, problems may result.

5.3.6 IODC and PDC

IODC entry points are allowed to call PDC procedures. Therefore, the caller of an IODC entry point must
guarantee that the following conditions are satisfied before calling the entry point:

— MEM_PDC must contain the address of the monarch processor’s PDCE_PROC entry point.

— MEM_10MSEC must contain the monarch processor’s number of clock ticks in 10 msec.
Only the monarch processor can execute offline IODC entry points, since these IODC entry points can call PDC.
Any processor in a multiprocessor system can execute online IODC entry points, as online IODC entry points must
not call PDC.

5-18 IODC Firmware Architecture, Ver 1.1E

5.3.7 Standard Arguments

The base address of the module’s HPA to which the IODC corresponds is specified inARG0. It must be 4 Kbyte
aligned. ENTRY_CONFIG[Get/Set SCSI Parms] does not use the standard argument for ARG0.

The option of the entry point is selected byARG1. For architected IODC entry points, options 0 through 511 are
architected or reserved; the remaining options (512 through 0xFFFFFFFF) are for SVERSION-dependent use (for
bus converter ports and memory modules, these options are for HVERSION-dependent use). For
SVERSION/HVERSION-dependent IODC entry points, all options are for SVERSION/HVERSION-dependent
use.

Many IODC entry points use the standard argument,spa, to specify the base address of the module’s SPA space. Its
21 most significant bits have the same format as the SPA registers. However, bits 21 through 31 of thespa
argument must be 0. For modules that do not have SPA space,spamust be 0. If thespaargument is provided, it is
ARG2.

Before making any IODC call which hasspa as an argument, the caller must allocate SPA space for the target
module (if the target module has SPA). That is, thespaargument (ARG2) must be properly aligned for the target
module and the I/O address space betweenspaandspa+ SPA size is free of address conflicts, where the SPA size is
the value from the IODC_SPA[shift] field. The caller is not required to enable SPA on the target module.

Many IODC entry points use the standard argument,ID_addr, to specify the desired device. This argument is a
pointer to a six-word LAYER data structure which describes the portion of the path to a device which is beyond the
module and/or contains device-dependent information. See the format of the Primary Boot Path given in the
PDC_STABLE specification for details. If theID_addr argument is provided, it isARG3. It must be doubleword
aligned.

All IODC entry points use the standard argumentR_addrto designate the return parameter buffer. This buffer is a
doubleword-aligned block of 32 doubleword allocated by the caller. The entry point can return parameters to its
caller by storing into the buffer. TheR_addrargument isARG4.

The notation ‘R’ is used to indicate an argument passed to an IODC entry point which is reserved for future
extensions. Reserved arguments must be set by all current callers to 0, and must be ignored by all current callees.
Reserved arguments may be architected in the future, with the value 0 defined to preserve compatibility with
previous versions.

The notation ‘HV’ is used to indicate that the value of the argument is not specified by the architecture and so may
be freely chosen by the caller. By contrast, arguments denoted by ‘---’ are nonexistent: the caller is not required to
provide such arguments at all. Callees must not attach any significance to ‘HV’ arguments and must not attempt to
access ‘---’ arguments.

5.3.8 Data Types

The data types of the standard arguments and return parameters are as follows:

• All signed integers are represented in two’s complement (64-bit) format.

• The status value returned by all IODC entry points in GR28 is a signed integer.

• All addresses, which are passed as arguments, or returned as parameters, are 64-bit unsigned integers.

• The data type of ARG0 in all IODC entry points is a 64-bit unsigned integer.

• The data type of ARG1 in all IODC entry points is a 64-bit unsigned integer.

5.3.9 Return Parameters

If the entry point returns parameters to its caller, they are stored in the return parameter buffer specified byR_addr.
The 32 returned parameters are called RET[0] through RET[31]. At least RET[0] through RET[15] are designated
for architected return parameters. Return parameters in RET[16] through RET[31] which are not architecturally
defined may be used for SVERSION-dependent purposes. All return parameters neither architected nor used for
SVERSION-dependent purposes must be set to 0 by the IODC entry point upon return. The notation ‘R’ indicates a
return value that must be set to 0 by the IODC entry point.

Firmware Architecture, Ver 1.1E IODC 5-19

If an IODC implementation defines a new dependent return word for an entry point, the value 0 must be used to
indicate "not implemented" to preserve compatibility with previous versions.

For SVERSION/HVERSION-dependent IODC entry points and SVERSION/HVERSION-dependent options of
architected IODC entry points, all 32 return values (RET[0] through RET[31]) are SVERSION/HVERSION
dependent.

Unless specified otherwise in the respective IODC entry point sections:

• All RET values are valid with a zero return status.

• All RET values are valid with any positive return status.

• All RET values are HVERSION dependent with any negative return status.

5.3.10 Status

The status of IODC entry points is returned as a signed integer value in register GR28.

The rest of this section applies only to architected options of architected IODC entry points. For
SVERSION/HVERSION-dependent IODC entry points and SVERSION/HVERSION-dependent options of
architected IODC entry points, all status values are SVERSION/HVERSION dependent.

The following status values are common to all IODC entry points:

Value Description

0 OK
-2 Nonexistent option
-3 Cannot complete call without error
-10 Invalid argument

Positive status values (1 to 0x7FFFFFFFFFFFFFFF) are used for warnings whose meaning is dependent on the
entry point that was called.

The other negative status values (-1, -4 to -9, and -11 to -0x8000000000000000) are used for errors whose meaning
is dependent on the entry point that was called.

Status values other than those listed for an IODC entry point are reserved. Each IODC entry point may return only
the values specifically defined for it. Reserved values can be assigned architected meanings in the future.
Therefore, callers must treat the reserved negative values the same as -3 (Cannot complete call without error) and
the reserved positive values the same as 0 (OK).

For status values marked as REQUIRED, all implementations of the IODC entry point are required to detect the
condition specified by the status value, and to return the status value whenever the condition is detected. Values are
designated as required when necessary to support the functionality of the entry point.

For status values marked as OPTIONAL, each implementation of the particular IODC entry point can choose
whether or not it will detect the condition specified by the status value.

For status values marked as CONDITIONAL, each value is accompanied by a specification of the cases in which
the condition must be detected and reported. There will be some IODC implementations for which those cases do
not apply; they must not use the given value at all.

ENGINEERING NOTE

It is expected that those IODC implementations that are able to detect optional conditions will do so (and
will return the appropriate status value).

IODC implementations are encouraged to recognize as many specific error conditions as they can.

If an implementation cannot isolate an error to one of the more specific conditions, then it must report the error by
returning the general status value -3 (indicating that an indeterminate error was detected). If it cannot isolate one
of the specific warning conditions, then they must return status 0 for "OK".

5-20 IODC Firmware Architecture, Ver 1.1E

5.4 IODC Entry Points
This section provides a detailed description of the IODC entry points.

The indices of the IODC entry points are shown in the following table:

TABLE 5-2. IODC Entry Points

Index Name Description

0-2 Obsolete - HVERSION-dependent
3 ENTRY_INIT Initialize module
4 ENTRY_IO Module input/output
5 ENTRY_SPA Module’s extended space requirements

6-63
64-127 Allocated for module-type dependent use
128-255 Allocated for SVERSION dependent use

Firmware Architecture, Ver 1.1E IODC 5-21

ENTRY_CONFIG (index 6)

Purpose: To search for and identify entities connected to a module. Also to store and retrieve SCSI
initialization parameters on SCSI cards.

Options: Options 0, 1, and 2 are required. Options 3 and 4 are required for SCSI device configuration only.
If either of options 3 and 4 are implemented, then both must be implemented.

Restrictions: None

Arguments: Description ARG0 ARG1 ARG2 ARG3 ARG4 ARG5

Search first hpa 0 spa ID_addr R_addr R
Search next hpa 1 spa ID_addr R_addr prev_layer
Probe address hpa 2 spa ID_addr R_addr layer
Get SCSI Parms modaddr 3 Physloc R R_addr R
Set SCSI Parms modaddr 4 SCSI_ID Xfer Bwidth Autoterm

Description ARG6 ARG7

Search first name_addr tic_10ms
Search next name_addr tic_10ms
Probe address name_addr tic_10ms
Get SCSI Parms R R
Set SCSI Parms Physloc R

The data type ofprev_layer, layer, SCSI_ID, Xfer, Bwidth, Autoterm, and tic_10msis a 64-bit
unsigned integer. Themodaddrargument is a 64-bit address variable. ThePhysLocargument is
an 8 byte formatted entry in Physical Location format. Thename_addrargument must be byte
aligned.

Returns: Description RET[0] RET[1] RET[2] RET[3] RET[4]

Search first ent_id name_len layer R R
Search next ent_id name_len layer R R
Probe address ent_id name_len R R R
Get SCSI Parms SCSI_ID Xfer Bwidth Autoterm Physloc

The data type ofent_id, name_len, andlayer is a 64-bit unsigned integer.

Status: Value Description

Autotermination setting not suported.
Programmatic control of autotermination is not supported on this device.
CONDITIONAL. Must be used for devices which do not support programmatic control
of
autotermination.

4

Unidentifiable entity
An entity whose location is specified byID_addr and layer was found, but the entity is
not identifiable. Return parametername_lenequals zero. The contents ofent_id, and
the buffer pointed to byname_addrare HVERSION dependent.
CONDITIONAL. Must be used if error recovery is performed.

3

Recoverable error
The call completed normally and the returned results are valid. The entry point
encountered an error which it was able to correct completely. In the case of theGet
SCSI Parms entry point, it means that the NVRAM data area on the card is
uninitialized, that there is not NVRAM on the card,
or that the Physical Location is invalid. In all cases, default values are returned.
CONDITIONAL. Must be used if error recovery is performed.

2

5-22 IODC Firmware Architecture, Ver 1.1E

ENTRY_CONFIG (index 6) (continued)

OK
The call completed normally and the entry point detected no error.
REQUIRED.

0

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Unrecoverable hardware error
A hardware error prevented the call from completing correctly.
CONDITIONAL. Must be used if hardware errors are isolated.

-4

Illegal entity address
The address specified by ID_addr is invalid and cannot be used. One or more of the
LAYER fields is out of range and could never be a valid entity address.
OPTIONAL. Checking for illegal addresses will increase supportability.

-6

Nonexistent entity
The address specified by ID_addr is valid, but it points to an entity that is not present, or
an entity that does not respond. The contents of the buffer pointed to byname_addrare
HVERSION dependent.
CONDITIONAL. Must be used if nonexistent entities can be identified.

-7

Cannot locate an entity on the module. The contents of the LAYER structure and the
buffer pointed to byname_addrare HVERSION dependent.
REQUIRED.

-9

Invalid argument
An argument other than ARG1 was invalid.
OPTIONAL. The entry point may assume that its caller is perfect and so need not check
arguments for correctness.

-10

Entry State: The required architected state of the target module (module specified by ARG0) upon entry to
ENTRY_CONFIG is listed below. IO_FLEX is initialized in all cases, and all module state other
than those listed is HVERSION dependent.

• Option ARG1=0: IO_FLEX[enb] = 1

• Option ARG1=1: state unchanged from that established by the most recent previous call to
ENTRY_CONFIG options ARG1=0 or 1

• Option ARG1=2: IO_FLEX[enb] = 1

• Option ARG1=3: IO_FLEX[enb] = 1

• Option ARG1=4: IO_FLEX[enb] = 1

Exit State: The required architected state of the target module (module specified by ARG0) upon exit from
ENTRY_CONFIG is listed below. IO_FLEX is unchanged and all module state other than those
listed is HVERSION dependent.

• Option ARG1=0: state expected by ENTRY_CONFIG option ARG1=1

• Option ARG1=1: state expected by ENTRY_CONFIG option ARG1=1

• Option ARG1=2: unchanged from state at entry

• Option ARG1=3: unchanged from state at entry

• Option ARG1=4: NVRAM on card updated to expected values

Description: ARG7, tic_10ms, is the number of clock ticks per 10 msec on the executing processor. This
argument is intended for use in multiprocessor systems to establish timeouts.

Firmware Architecture, Ver 1.1E IODC 5-23

Search first (ARG1=0) ENTRY_CONFIG

Purpose: To locate the first entity connected to the given module.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 0
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG6 name_addr pointer to 80-byte product name buffer
ARG7 tic_10ms number of clock ticks per 10 msec

Returns: Number Name Description

RET[0] ent_id entity identifier
RET[1] name_len length of name
RET[2] layer number of valid layers in the LAYER structure

Status: Value Description

3 Entity present, but not identifiable
2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-9 Cannot locate an entity

-10 Invalid argument

Description: This option searches for the first entity connected to a module. The first entity is the one which
has the lowest possible value in thelayer return value and the lowest values in the LAYER
structure pointed to byID_addr.

Upon entry to the option,ID_addr points to a LAYER structure, but the contents of the structure
are HVERSION dependent. If the option finds an entity, it deposits the path to the entity in the
LAYER structure specified by ID_addr and sets the return valuelayer to the number of valid
layers in the LAYER structure.layer must have a value greater than zero and less than seven.

The option returns an ASCII string identifying the entity inname_addr, and an entity identifier in
ent_id. Note that the string is not terminated by a newline or null character.

The name may be up to 80 characters long and the length is returned inname_len. If name_lenis
zero, no name is available.

ENGINEERING NOTE

The name will typically be the HP product name, and is primarily intended for use by a
person (not software), via utilities like IO_MAP.

It is recommended that ENTRY_CONFIG obtain the ASCII name from the entity,
rather than maintain a lookup table in IODC. For example, the CS/80 Describe
command, the SCSI Inquiry command, and the Esc *sˆ escape sequence for HP
compatible terminals can all return an ASCII string identifying the device.

The ent_id return value identifies the software interface to the entity (similar to SVERSION for
modules). It is unique only amongst all entities that can be connected to modules with the same
SVERSION.

5-24 IODC Firmware Architecture, Ver 1.1E

Search first (ARG1=0) (continued) ENTRY_CONFIG

ENGINEERING NOTE

The ent_idvalue is primarily intended for use by software, not by any person. Many
entities have the ability to return such an identifier. For example, the Amigo Id
returned by many HP-IB peripherals is a 16-bit number which is unique for a particular
type of peripheral.

Only SVERSION-dependent software can interpret the meaning of a particularent_id,
although generic software could associate a driver with the entity without necessarily
understanding the exact meaning.

The path returned by this option must be used in subsequent calls to the "Search Next" option to
identify other entities connected to the module.

The status -9 indicates that no entity can be located on the module, in which case the contents of
the LAYER structure and the buffer pointed to byname_addrare HVERSION dependent.

Firmware Architecture, Ver 1.1E IODC 5-25

Search next (ARG1=1) ENTRY_CONFIG

Purpose: To locate the next entity connected to the given module.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 1
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG5 prev_layer number of valid layers in the LAYER structure
ARG6 name_addr pointer to 80-byte product name buffer
ARG7 tic_10ms number of clock ticks per 10 msec

Returns: Number Name Description

RET[0] ent_id entity identifier
RET[1] name_len length of name
RET[2] layer number of valid layers in the LAYER structure

Status: Value Description

3 Entity present, but not identifiable
2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-9 Cannot locate an entity

-10 Invalid argument

Description: This option searches for the next entity connected to a module. The search must be depth first,
that is, the search must be conducted down to the first leaf of the first branch before searching
across to find other branches.

Upon entry to the option,prev_layerand ID_addr point to the entity located in the previous
search using ARG1=0 or ARG1=1. If the option finds another entity, it deposits the path to the
entity in the LAYER structure specified byID_addr, and sets the return valuelayer to the number
of valid layers in the LAYER structure. Bothprev_layerandlayer are greater than 0 and less than
7.

The option returns an ASCII string identifying the entity inname_addr, and an entity identifier in
ent_id.

The name may be up to 80 characters long and the length is returned inname_len.

The ent_id return value identifies the software interface to the entity (similar to SVERSION for
modules). It is unique only amongst all entities that can be connected to modules with the same
SVERSION.

The status -9 indicates that previous calls located all the entities connected to the module.

5-26 IODC Firmware Architecture, Ver 1.1E

Probe address (ARG1=2) ENTRY_CONFIG

Purpose: To identify the entity connected to the given module at the specified address.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 2
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG5 layer number of valid layers in the LAYER structure
ARG6 name_addr pointer to 80-byte product name buffer
ARG7 tic_10ms number of clock ticks per 10 msec

Returns: Number Name Description

RET[0] ent_id entity identifier
RET[1] name_len length of name

Status:

Value Description

3 Entity present, but not identifiable
2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-6 Illegal entity address
-7 Nonexistent entity

-10 Invalid argument

Description: This option probes for an entity connected to a module at the address specified by thelayer
parameter and the LAYER structure pointed to by theID_addrparameter.

Upon entry to the option,ID_addr points to a LAYER structure, containing the address of entity
to be identified. The entry point is not allowed to modify the contents of ID_addr. Thelayer
parameter is the number of valid layers in the LAYER structure, and must have a value greater
than zero and less than seven.

The option returns an ASCII string identifying the entity inname_addr, and an entity identifier in
ent_id.

The name may be up to 80 characters long and the length is returned inname_len. If name_lenis
zero, no name is available. Note that the name is not terminated by a newline or null character. If
name_len is zero, or for a negative status return, the contents of the buffer pointed to by
name_addr is HVERSION dependent.

The ent_id return value identifies the software interface to the entity (similar to SVERSION for
modules). It is unique only amongst all entities that can be connected to modules with the same
SVERSION.

Firmware Architecture, Ver 1.1E IODC 5-27

Get SCSI Parms (ARG1=3) ENTRY_CONFIG

Purpose: To obtain the parameters stored on a SCSI card required for a SCSI device initialization.

Arguments: Number Name Description

ARG0 modaddr pointer to the path structure of the I/O card
ARG1 option value is 3
ARG2 Physloc Physical Location of the I/O card
ARG3 - Reserved
ARG4 R_addr pointer to return buffer
ARG5 - Reserved
ARG6 - Reserved
ARG7 - Reserved

Returns: Number Name Description

RET[0] SCSI_ID SCSI Initiator ID
RET[1] Xfer Maximum Transfer Rate
RET[2] Bwidth Bus Width
RET[3] Autoterm Autotermination Indicator
RET[4] Physloc I/O Card Physical Location

Status:

Value Description

2 NVRAM uninitialized or invalid Physical Location, returning default values
0 OK

-3 Cannot complete call without error
-5 No NVRAM on card

-10 Invalid argument

Description: This option gets the SCSI parms stored on the I/O card at the module path in the path structure
pointed to by themodaddrpointer. The Physical Location of the card is passed in ARG2, the
Physloc input argument. This argument is checked against the Physical Location stored in
NVRAM to validate the data. This option is required for I/O cards that contain a SCSI controller.
It must not be implemented on other I/O cards.

The modaddrinput argument is a memory pointer to an 8-byte structured value containing the
module path of the I/O card whose SCSI parms are to be returned. The parms are returned in the
memory buffer supplied by the caller in RET[0] through RET[4].

RET[0], SCSI_ID, is the SCSI initiator ID of the SCSI controller on the I/O card to which the
request is made.SCSI_IDmust be an integer in the range 0..15. The default value is 7.

RET[1], Xfer, is the maximum transfer rate (in mega-transfers per second) on the SCSI bus. The
valid transfer rates depend on the particular SCSI device, and are contained in the PDC ERS for
the particular platform on which the I/O card or cards are used. In any case, the parameter is an
integer. The default value is the maximum rate that the SCSI controller is capable of, except on
Ultra SCSI controllers (which are maximally capable of 20 mega-transfers per second) where the
default is 10.

RET[2],Bwidth, indicates the width of the SCSI bus connected to the SCSI port on the adapter on
the card. This parameter is an unsigned integer, and valid values are 8 or 16, depending on the
width of the bus on the card. The default value is the bus width that the SCSI controller is capable
of.

RET[3], Autoterm indicates whether the autotermination feature of the I/O card is enabled or
disabled. This parm is an integer. A value of 1 indicates that autotermination is enabled. A value
of 0 indicates that autotermination is disabled. A value of 2 indicates that the autotermination
setting is not programmatically readable on the card and is hence unknown. For

5-28 IODC Firmware Architecture, Ver 1.1E

Get SCSI Parms (ARG1=3) (continued) ENTRY_CONFIG

programmatically readable cards the default value is 1, indicating autotermination is enabled;
otherwise the default is unknown.

RET[4], Physlocis the Physical Location of the I/O card. It is an 8-byte formatted quantity in
Physical Location format. See Section 1.2.3 of the PDC PAT ARS, Version 2.5 or later, for the
format of this field. The default value is the input argument value.

When this procedure is called to return the SCSI parms, it should check the system serial number,
which Set SCSI Parmshas previously stored in card NVRAM before returning values. If the data
area is uninitialized or the serial number is not correct, the call should return default values for all
the parms, and a Return Status of 2, to indicate that default values are being returned. This
procedure should also check for invalid Physical Location by checking the stored value versus the
ARG2,Physloc. If they do not match, the procedure should return default values for all the parms
and a Return Status of 2.

Firmware Architecture, Ver 1.1E IODC 5-29

Set SCSI Parms (ARG1=4) ENTRY_CONFIG

Purpose: To store initialization parameters required for SCSI devices on NVRAM located on the I/O card.
This information will be subsequently read at each boot when the card is initialized.

Arguments: Number Name Description

ARG0 modaddr pointer to structure contain module path of I/O card
ARG1 option value is 4
ARG2 SCSI_ID SCSI initiator ID
ARG3 Xfer Maximum Transfer Rate
ARG4 Bwidth Width of SCSI bus
ARG5 Autoterm Autotermination indicator
ARG6 Physloc I/O Card Physical Location
ARG7 - Reserved

Returns: This options has no return parameters.

Status:

Value Description

4 Autoterm disabling not supported
2 Invalid Physical Location
0 OK

-3 Cannot complete call without error
-5 No NVRAM on card

-10 Invalid argument

Description: This option stores the SCSI parms required for the OS to initialize an I/O card at the module path
in the path structure pointed to by themodaddrpointer. The parms are stored in NVRAM on the
card for subsequent use by the OS. This option is required for I/O cards that contain a SCSI
controller. It must not be implemented on other I/O cards.

The parms stored are ARG2 through ARG6. These are the same variables as are returned in
RET[0] through RET[4] forGet SCSI Parms.

For each parm being stored, a value of -2 in the corresponding input argument means do not
change the parm, a value of -1 in the input argument means to set the parm to its default value.
These values of input arguments are not valid for ARG6,Physloc. It must always be the Physical
Location of the card.

ARG2, SCSI_ID, is the SCSI initiator ID of the SCSI controller. This input argument is a signed
integer. Valid values are 0 through 15, or -2 indicating don’t change, or -1 indicating use the
default. The default is 7.

ARG3,Xfer, is the maximum transfer rate on the SCSI bus. Units are mega-transfers per second.
This argument is a signed integer. Valid values for Xfer depend on the SCSI protocol being used,
and are given in the PDC ERS for each individual platform. The input argument must either be a
valid value, or -2 indicating don’t change, or -1 indicating use the default value as defined inGet
SCSI Parms.

ARG4, Bwidth is the width of the SCSI bus on the card.Bwidth is a signed integer. Valid values
for this argument are 8, 16, or -2, indicating don’t change or -1 indicating use the default, or 0
indicating that the card default should be used (chose by the driver). The ENTRY_CONFIG
default is the capable width of the adapter.

ARG5, Autoterm is the indicator of whether autotermination should be enabled or disabled.
Autoterm is a signed integer. Valid values for this argument are 0, indicating to disable
autotermination, 1, indicating to enable autotermination, -1 indicating to use the default value
("enabled"), or -2, indicating not to change the autotermination indicator.

5-30 IODC Firmware Architecture, Ver 1.1E

Set SCSI Parms (ARG1=4) (continued) ENTRY_CONFIG

ARG6, Physloc is the Physical Location of the I/O card in the complex.Physloc is an 8-byte
formatted value in Physical Location format. There is no default value.

When this option is called to write the SCSI parms to the NVRAM on the card, it is expected to
obtain the system serial number of the computer that is is running on and store it along with the
parms. Subsequent calls to theGet SCSI Parmsoption should check the stored serial number
against the serial number of the computer as obtained from PDC_MODEL.

NOTE

This option and the optionGet SCSI Parmsshould be used in combination with the
PDC_SCSI_PARMS call. Please see the documentation of that call for more
information on the calling requirements.

Firmware Architecture, Ver 1.1E IODC 5-31

ENTRY_INIT (index 3)

Purpose: To initialize and test a console module or boot module so that ENTRY_IO can be used to transfer
data to/from the module and to establish a module-device connection.

Options: Options ARG1=2 and ARG1=3 are optional. However, if either of them is implemented, the other
option must be implemented as well. The three options ARG1=4 through ARG1=6 are all
required. The option ARG1=9 is optional.

Restrictions: The length of the ENTRY_INIT entry point must not exceed 16 Kbytes.

ENTRY_INIT must not enable the SPA space(s) to any value outside of the range determined by
thespaargument and IODC_SPA[shift].

Arguments: Description ARG0 ARG1 ARG2 ARG3 ARG4 ARG5

Search first hpa 2 spa ID_addr R_addr ---
Search next hpa 3 spa ID_addr R_addr ---
Init & test mod & dev hpa 4 spa ID_addr R_addr HV
Init & test dev hpa 5 spa ID_addr R_addr HV
Init & test mod hpa 6 spa HV R_addr HV
Return message hpa 9 spa ID_addr R_addr data_addr

Description ARG6 ARG7 ARG8 ARG9 ARG10 ARG11

Search first --- --- --- --- --- ---
Search next --- --- --- --- --- ---
Init & test mod & dev HV HV lang --- --- ---
Init & test dev HV HV lang --- --- ---
Init & test mod HV HV lang --- --- ---
Return message msg_addr R lang R R R

The data type oflang is a 32-bit unsigned integer. The argumentsdata_addrandmsg_addrmust
be word aligned.

Returns: Description RET[0] RET[1] RET[2] RET[3]

Search first R class net_id_hi net_id_lo
Search next R class net_id_hi net_id_lo
Init & test mod & dev stat class net_id_hi net_id_lo
Init & test dev stat class net_id_hi net_id_lo
Init & test mod stat R R R
Return message msg_size R R R

The data type ofnet_id_lo, net_id_hi, stat and msg_sizeis a 32-bit unsigned integer. The data
type ofclassis a 4-bit unsigned integer.

Status: Value Description

Recoverable error
The call completed normally and the returned results are valid. The entry point
encountered an error which it was able to correct completely.
CONDITIONAL. Must be used if error recovery is performed.

2

OK
The call completed normally and the entry point detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option implemented by the entry point.
REQUIRED.

-2

5-32 IODC Firmware Architecture, Ver 1.1E

ENTRY_INIT (index 3) (continued)

Value Description

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Unrecoverable hardware error
A hardware error on the module or device prevented the call from completing correctly.
CONDITIONAL. Must be used if hardware errors are isolated.

-4

Unrecoverable data error
The entry point encountered an error while transferring data to or from the device.
Returned only by options ARG1=4 and ARG1=5.
OPTIONAL. May be used if hardware has the capability to isolate data errors.

-5

Illegal device address
The device address specified byID_addr is invalid and cannot be used. One or more of
the LAYER fields is out of range and could never be a valid device address. Returned
only by options ARG1=4 and ARG1=5.
OPTIONAL. Checking for illegal addresses will increase supportability.

-6

Nonexistent device
The device address specified byID_addr is a valid device address. However, it points to
either a device that is not installed or a device that does not respond. Returned only by
options ARG1=4 and ARG1=5.
CONDITIONAL. Must be used if nonexistent devices can be identified.

-7

Module/device not ready
The module or device is not ready to be initialized or tested. A module may not be ready
because it is still performing its selftest after reset or power-on. An example of device
not ready is a disk drive that is still spinning up. Returned only by options ARG1=4
through ARG1=6.
OPTIONAL. Implementations may use this status if waiting for the module or device to
become ready would make the call take longer than 5 seconds.

-8

Cannot locate a console device or boot device
The search could not locate a console device or boot device on the module. Returned
only by options ARG1=2 and ARG1=3.
CONDITIONAL. Must be used if the search options are provided.

-9

Invalid argument
An argument other than ARG1 was invalid.
OPTIONAL. The entry point may assume that its caller is perfect and so need not check
arguments for correctness.

-10

Protocol error
A protocol violation was encountered on the module-device connection while
transferring data to or from the device. Returned only by options ARG1=4 and ARG1=5.
CONDITIONAL. Must be used if the implementation can detect a protocol error.

-13

Invalid or uninitialized SCSI parms in NVRAM.
when initializing a SCSI module, either the SCSI parms in system NVRAM or module
NVRAM were unitialized, or they did not agree. Returned only by options ARG1=4 and
ARG1=6.
CONDITIONAL. Must be used both the card and system supports NVRAM for SCSI
parms.

-14

ENGINEERING NOTE

The status returns -3, -4, and -5 are progressively more specific about the nature of an
error. If the device or module hardware provides an indication to IODC that a problem
with data transfer has occurred, then a status return of -5 is appropriate. If the hardware
indicates that a hardware failure occurred, then a status of -4 is returned. It may also

Firmware Architecture, Ver 1.1E IODC 5-33

ENTRY_INIT (index 3) (continued)

correspond to a data error that was not isolated. A status return of -3 indicates an
unspecified error which might have been a data error or a hardware error.

Entry State: The required architected state of the target module (module specified by ARG0) upon entry to
ENTRY_INIT is listed below. IO_FLEX is initialized in all cases, and all module state other than
those listed is HVERSION dependent.

• Option ARG1=2: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=4, 5, or 6

• Option ARG1=3: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=2 or 3

• Option ARG1=4: IO_FLEX[enb] = 1

• Option ARG1=5: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=4, 5, or 6

• Option ARG1=6: IO_FLEX[enb] = 1

• Option ARG1=9: IO_FLEX[enb] = 1

Exit State: The required architected state of the target module (module specified by ARG0) upon exit from
ENTRY_INIT is listed below. IO_FLEX is unchanged and all module state other than those listed
is HVERSION dependent.

• Option ARG1=2: state expected by ENTRY_INIT options ARG1=3 and 5

• Option ARG1=3: state expected by ENTRY_INIT options ARG1=3 and 5

• Option ARG1=4: state expected by ENTRY_IO options ARG1=0 and 1 for boot devices; state
expected by ENTRY_IO options ARG1=2 and 3 for console devices.

• Option ARG1=5: state expected by ENTRY_IO options ARG1=0 and 1 for boot devices; state
expected by ENTRY_IO options ARG1=2 and 3 for console devices. The state of devices
other than the one specified byID_addr is not altered.

• Option ARG1=6: state expected by ENTRY_INIT options ARG1=2 and 5

• Option ARG1=9: unchanged from state at entry

Description: Time Limits

There is no time limit on the Search options (ARG1=2 and ARG1=3) of ENTRY_INIT. Those
options take as much time as is necessary to locate a console device or boot device on the given
module. However, the device that is found need not be ready for use. Thus the entry point should
return immediately after locating the device rather than wait for it to become ready for use.

The Init & test options (ARG1=4 through ARG1=6) of ENTRY_INIT do not have any
architecturally specified time limit. However, the entry point must know the upper bound
required to complete initialization and test and establish a timeout accordingly. That is,
ENTRY_INIT must not allow a defective module or device to hang the system. In some cases, the
entry point may not be able to begin the initialization process because a module or device is not
ready. For example, ENTRY_INIT may not be able to begin until a disk has spun up or a modem
connection is established. The Init & test options should make an effort to detect cases in which a
device is not yet ready. If the entry point determines that its device is preparing for use, then it
should immediately return -8 (Module/device not ready). ENTRY_INIT should not wait for its
device to become ready, rather it should immediately return -8 whenever its device is not yet
ready. The case of a disk being offline is NOT a situation in which the device is not ready;
ENTRY_INIT should return -4 (Unrecoverable hardware error) when its device is offline. (The
difference between status values -4 and -8 is that when the status is -8, it is expected that a future
call to ENTRY_INIT can succeed without any operator intervention, whereas when the status is

5-34 IODC Firmware Architecture, Ver 1.1E

ENTRY_INIT (index 3) (continued)

-4, operator intervention is required to fix the problem.)

Required Initialization Functions

The Init & test options that pertain to devices (ARG1=4 and ARG1=5) are required to initialize
the state of the device. If the device is a console, the cursor position and the display status are
HVERSION dependent after ENTRY_INIT completes. In the case of a boot device of the
sequential class, the position of the medium is HVERSION dependent after ENTRY_INIT
completes.

The options ARG1=4 and ARG1=5 establish module-device connections. A module-device
connection (for example, the link between the boot module and the boot device) is a
communication link that is established between a module and a device. A module-device
connection is closed by ENTRY_IO option ARG1=4.

ENGINEERING NOTE

If required for testing, ENTRY_INIT may disable the SPA. The original SPA base
address must be restored after a successful test.

Return Values

The Search First, Search Next, Init & Test mod & dev, and Init & Test dev (ARG1=2 through
ARG1=5) of ENTRY_INIT return in RET[2] and RET[3] the value of the station address for I/O
modules with network connections:

Number Name Description

RET[2] net_id_hi Most significant 16 or 32 bits of station address
RET[3] net_id_lo Least significant 16 or 32 bits of station address

net_id_hi and net_id_lo are optional, but if they are returned by one of these four options to
ENTRY_INIT, they must be returned by any of the four options which are implemented. They
must not be returned by any other ENTRY_INIT options.

If net_id_hiandnet_id_loboth have a value of zero, then either the I/O module does not have a
network connection or a station address has not been returned.

The station address may be a 16, 48, or 64 bit unsigned integer.

If net_id_hi{0..31}is zero and andnet_id_lo{0..15}is zero, butnet_id_lo{15..31}is non-zero,
then a 16 bit station address has been returned.

If net_id_hi{0..15}is zero, butnet_id_hi{16..31}or net_id_lo is non-zero, then a 48 bit station
address has been returned.

If net_id_hi{0..15}is non-zero, then a 64 bit station address has been returned.

ENGINEERING NOTE

PDCE_RESET should display the station address on the console in hexadecimal. One
of the following formats is suggested:

Length net_id_hi net_id_lo Display

16 bits 00000000 0000bbaa 000000-00bbaa
48 bits 0000ffee ddccbbaa ffeedd-ccbbaa

Firmware Architecture, Ver 1.1E IODC 5-35

ENTRY_INIT (index 3) (continued)

64 bits hhggffee ddccbbaa hhgg-ffeedd-ccbbaa

ENGINEERING NOTE

Note that while the station address is potentially a double-word quantity, it is not
guaranteed that it will be double-word aligned, since R-addr need only be word
aligned.

PROGRAMMING NOTE

The intended use of the Search options (ARG1=2 and ARG1=3) is shown in the
following algorithm to perform autosearch for boot device:

1. Call ENTRY_INIT with ARG1=6 to initialize and test the boot module to be
searched.

2. Call ENTRY_INIT with ARG1=2 to search for the first console device or boot
device on the module.

3. If the status is -9, then terminate the search unsuccessfully.

4. Check the return parameterclassto verify that the device is appropriate for boot.
If classis not appropriate (because the search found a console device), skip step
5 and continue with step 6.

5. Call ENTRY_INIT with ARG1=5 to initialize and test the device. If the call was
successful, then terminate the search having found the boot device, else continue
with step 6.

6. Call ENTRY_INIT with ARG1=3 to search for the next console device or boot
device on the module.

7. Return to step 3.

5-36 IODC Firmware Architecture, Ver 1.1E

Search first (ARG1=2) ENTRY_INIT

Purpose: To locate the first console device or boot device on the given module.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 2
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer

Returns: Number Name Description

RET[1] class device class
RET[2] net_id_hi most significant 16 or 32 bits of station address
RET[3] net_id_lo least significant 16 or 32 bits of station address

Status: Value Description

2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-9 Cannot locate console device or boot device

-10 Invalid argument

Description: Upon entry to the option,ID_addr points to a LAYER structure, but the contents of that structure
need not be initialized to any particular value. If the option finds a console device or boot device,
it deposits the path to the device in the LAYER structure specified byID_addr. This path can be
used in subsequent calls to ENTRY_INIT or ENTRY_IO. The status -9 indicates that no console
device or boot device can be located on the module, in which case the contents of the LAYER
structure are HVERSION dependent.

Return valueclass indicates the device class. Device classes are defined in Section C.2, Data
Format of Page Zero; the relevant table is reproduced below for convenience.

Value Name Description

0 CL_NULL Invalid
1 CL_RANDOM Random access media (as in disk)
2 CL_SEQU Sequential record access media (as in tape)

3 - 6 Reserved Reserved
7 CL_DUPLEX Full duplex point-point communication (as in RS-232)
8 CL_KEYBD Half-duplex console (Keyboard In)
9 CL_DISPL Half-duplex console (Display Out)

10 - 15 Reserved Reserved

Firmware Architecture, Ver 1.1E IODC 5-37

Search next (ARG1=3) ENTRY_INIT

Purpose: To locate the next console device or boot device on the module.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 3
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer

Returns: Number Name Description

RET[1] class device class
RET[2] net_id_hi most significant 16 or 32 bits of station address
RET[3] net_id_lo least significant 16 or 32 bits of station address

Status: Value Description

2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-9 Cannot locate console device or boot device

-10 Invalid argument

Description: Upon entry to the option,ID_addr points to the device located in the previous search using
ARG1=2 or ARG1=3. When the call returns, the LAYER structure specified byID_addrpoints to
the next console device or boot device on the module. The status -9 indicates that previous calls
located all console devices and boot devices on the module.

Return parameterclassindicates the device class. (See the table of device classes on the page for
the "Search first" option.)

5-38 IODC Firmware Architecture, Ver 1.1E

Init & test mod & dev (ARG1=4) ENTRY_INIT

Purpose: To test and initialize the module and a specific device.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 4
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] stat module status
RET[1] class device class
RET[2] net_id_hi most significant 16 or 32 bits of station address
RET[3] net_id_lo least significant 16 or 32 bits of station address

Status: Value Description

2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready

-10 Invalid argument
-13 Protocol error

Description: The option tests and initializes the module specified byhpaand the device pointed to byID_addr.
The duration of the test is known by ENTRY_INIT, but no time limit is imposed by the I/O
Architecture. This test is a GO/NO GO test: it need not isolate the failed FRU. A test which
passes does not guarantee totally correct module operation but means that errors which occur in
ENTRY_IO will be detected. The initialization leaves the device in a state so that ENTRY_IO
can be used to transfer data. The only permitted value forlang is 0.

This option establishes a module-device connection.

For all positive and zero status returns, RET[0] contains the value of IO_STATUS at the time of
exit. For a status return of -5, -7, -8, or -13, RET[0] contains the value of IO_STATUS at the the
time of exit. RET[0] is HVERSION dependent for a status return of -2, -3, -4 -6, or -10.

Return parameterclassindicates the device class. (See the table of device classes on the page for
the "Search first" option.)

Firmware Architecture, Ver 1.1E IODC 5-39

Init & test dev (ARG1=5) ENTRY_INIT

Purpose: To test and initialize a specific device.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 5
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] stat module status
RET[1] class device class
RET[2] net_id_hi most significant 16 or 32 bits of station address
RET[3] net_id_lo least significant 16 or 32 bits of station address

Status: Value Description

2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready

-10 Invalid argument
-13 Protocol error

Description: The option tests and initializes the device pointed to byID_addr. The duration of the test is
known by ENTRY_INIT, but no time limit is imposed by the I/O Architecture. This test is a
GO/NO GO test: it need not isolate the failed FRU. A test which passes does not guarantee totally
correct module operation but does guarantee that errors which occur in ENTRY_IO will be
detected. The initialization leaves the device in a state so that ENTRY_IO can be used to transfer
data. The only permitted value forlang is 0.

This option establishes a module-device connection.

For all positive and zero status returns, RET[0] contains the value of IO_STATUS at the time of
exit. For a status return of -5, -7, -8, or -13, RET[0] contains the value of IO_STATUS at the the
time of exit. RET[0] is HVERSION dependent for a status return of -2, -3, -4, -6, or -10.

Return parameterclassindicates the device class. (See the table of device classes on the page for
the "Search first" option.)

5-40 IODC Firmware Architecture, Ver 1.1E

Init & test mod (ARG1=6) ENTRY_INIT

Purpose: To test and initialize the module.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 6
ARG2 spa SPA of the module
ARG4 R_addr pointer to return buffer
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] stat module status

Status: Value Description

2 Recoverable error
0 OK

-3 Cannot complete call without error
-4 Unrecoverable hardware error
-8 Module/device not ready

-10 Invalid argument

Description: The option tests and initializes the module specified byhpa. The duration of the test is known by
ENTRY_INIT, but no time limit is imposed by the I/O Architecture. This test is a GO/NO GO
test: it need not isolate the failed FRU. A test which passes does not guarantee totally correct
module operation but does guarantee that errors which occur in ENTRY_IO will be detected. The
only permitted value forlang is 0.

For all positive and zero status returns, RET[0] contains the value of IO_STATUS at the time of
exit. For a status return of -5, -7, -8, or -13, RET[0] contains the value of IO_STATUS at the the
time of exit. RET[0] is HVERSION dependent for a status return of -2, -3, -4, -6, or -10.

Firmware Architecture, Ver 1.1E IODC 5-41

Return message (ARG1=9) ENTRY_INIT

Purpose: To ask for a message when the status from the previous call to the entry point was nonzero.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 9
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG5 data_addr pointer to previous return buffer
ARG6 msg_addr pointer to message buffer
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] msg_size number of bytes returned in the message buffer

Status: Value Description

2 Recoverable error
0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-10 Invalid argument

Description: The old R_addrpointer from the previous call is supplied as argumentdata_addr to the new
option. The SVERSION-dependent part of the oldR_addr (the last 16 words) contains all the
information the option needs to return the appropriate message (the entry point does NOT need to
look at the state of its module; the values indata_addrare sufficient). The argumentshpa, spa,
andID_addr must be the same as in the previous call which yielded the nonzero status. The size
of the buffer pointed to bemsg_addrmust be 2 Kbytes. The only allowed value forlang is 0.

If msg_sizeis 0, no message was returned. The text of the returned message must not exceed one
screen (24 lines).

5-42 IODC Firmware Architecture, Ver 1.1E

ENTRY_IO (index 4)

Purpose: To perform basic I/O with boot devices and console devices so that the system can boot in a
device-independent fashion, and to close module-device connections.

Calls to the boot device and to the console device have been distinguished, to allow a single
device to be used for either functionality (possibly using different protocols).

Options: The option ARG1=0 is required of all boot modules, but option ARG1=1 is optional. For a duplex
console module, the pair of options ARG1=2 and ARG1=3 are required. A simplex console
module need implement only the appropriate half of the pair. The option ARG1=4 must be
implemented by a module if it opens a module-device connection that needs to be closed in the
future. The option ARG1=9 is optional.

Restrictions: The length of the ENTRY_IO entry point must not exceed 16 Kbytes.

Arguments: Description ARG0 ARG1 ARG2 ARG3 ARG4 ARG5

Boot input hpa 0 spa ID_addr R_addr devaddr
Boot output hpa 1 spa ID_addr R_addr devaddr
Console input hpa 2 spa ID_addr R_addr HV
Console output hpa 3 spa ID_addr R_addr HV
Close connection hpa 4 spa ID_addr R_addr R
Return message hpa 9 spa ID_addr R_addr data_addr

Description ARG6 ARG7 ARG8 ARG9 ARG10 ARG11

Boot input memaddr reqsize maxsize --- --- ---
Boot output memaddr reqsize --- --- --- ---
Console input memaddr reqsize lang --- --- ---
Console output memaddr reqsize lang --- --- ---
Close connection R R R R R R
Return message msg_addr R lang R R R

The data type ofreqsize, maxsize, andlang is a 32-bit unsigned integer. The argumentsdata_addr
andmsg_addrmust be word aligned.

Returns: Description RET[0]

Boot input count
Boot output count
Console input count
Console output count
Return message msg_size

The data type ofcountandmsg_sizeis a 32-bit unsigned integer.

Status: Value Description

EOF encountered
The call completed normally and the returned results are valid. The entry point
encountered an EOF (end of file) during the last boot input operation. Returned only by
option ARG1 = 0, and only when the device has class CL_SEQU.
OPTIONAL. Implementations may use this status if they can detect an EOF when
executing boot input from a CL_SEQU device.

3

Recoverable error
The call completed normally and the returned results are valid. The entry point
encountered an error which it was able to correct completely.

2

Firmware Architecture, Ver 1.1E IODC 5-43

ENTRY_IO (index 4) (continued)

Value Description

CONDITIONAL. Must be used if error recovery is performed.
Inexact I/O transfer
The amount of data transferred was not exactly the same as specified by thereqsize
argument. Returned only by options ARG1=0 and ARG1=1.
REQUIRED.

1

OK
The call completed normally and the entry point detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option implemented by the entry point.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Unrecoverable hardware error
A hardware error prevented the call from completing correctly.
CONDITIONAL. Must be used if hardware errors are isolated.

-4

Unrecoverable data error
An error was encountered while transferring data to or from the device.
CONDITIONAL. May be used if hardware has the capability to isolate data errors.

-5

Illegal device address
The device address specified byID_addr is invalid and cannot be used. One or more of
the LAYER fields is out of range and could never be a valid device address. Returned
only by options ARG1=0 through ARG1=4.
OPTIONAL. Checking for illegal addresses increases supportability.

-6

Nonexistent device
The device address specified byID_addr is a valid device address. However, it points to
either a device that is not installed or a device that does not respond. Returned only by
options ARG1=0 through ARG1=4.
CONDITIONAL. Must be used if nonexistent devices can be identified.

-7

Module/device not ready
The module or device is not ready to do I/O. Returned only by options ARG1=0 through
ARG1=4.
OPTIONAL. Implementations may use this status if waiting for the module or device to
become ready would make the call take longer than 5 seconds.

-8

Invalid argument
An argument other than ARG1 was invalid.
OPTIONAL. The entry point need not check arguments for correctness.

-10

Data buffer too small
Medium is formatted with a record size larger than the data buffer. Returned only by
option ARG1=0, and only when the device has class CL_SEQU.
REQUIRED.

-11

Unsupported record size
Requested record size not supported by the device. Returned only by options ARG1=0
and ARG1=1, and only when the device has class CL_SEQU.
CONDITIONAL. Must be used if legal values ofreqsizeare not supported.

-12

Protocol error
A protocol violation was encountered on the module-device connection while
transferring data to or from the device. Returned only by options ARG1=0 through
ARG1=4.

-13

5-44 IODC Firmware Architecture, Ver 1.1E

ENTRY_IO (index 4) (continued)

Value Description

CONDITIONAL. Must be used if the implementation can detect a protocol error.
Illegal device block size
The device is formatted with a block size that is not a factor of 2 Kbytes. Returned only
by options ARG1 = 0 and ARG1 = 1, and only when the device has class
CL_RANDOM.
CONDITIONAL. Must be used if illegal device block sizes are detected.

-14

ENGINEERING NOTE

The status returns -3, -4, and -5 are progressively more specific about the nature of an
error. If the device or module hardware provides an indication to IODC that a problem
with data transfer has occurred, then a status return of -5 is appropriate. If the hardware
indicates that a hardware failure occurred, then a status of -4 is returned. It may also
correspond to a data error that was not isolated. A status return of -3 indicates an
unspecified error which might have been a data error or a hardware error.

Entry State: The required architected state of the target module (module specified by ARG0) upon entry to
ENTRY_IO is listed below. IO_FLEX is initialized in all cases, and all module state other than
those listed is HVERSION dependent.

• Option ARG1=0: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=4 or 5 or ENTRY_IO options ARG1=0, 1, 2, or 3

• Option ARG1=1: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=4 or 5 or ENTRY_IO options ARG1=0, 1, 2, or 3

• Option ARG1=2: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=4 or 5 or ENTRY_IO options ARG1=0, 1, 2, or 3

• Option ARG1=3: state unchanged from that established by the most recent previous call to
ENTRY_INIT options ARG1=4 or 5 or ENTRY_IO options ARG1=0, 1, 2, or 3

• Option ARG1=4: state unchanged from that established by the most recent previous call to
ENTRY_IO options ARG1=0, 1, 2, or 3

• Option ARG1=9: IO_FLEX[enb] = 1

Exit State: The required architected state of the target module (module specified by ARG0) upon exit from
ENTRY_IO is listed below. IO_FLEX is unchanged and all module state other than those listed is
HVERSION dependent.

• Option ARG1=0: state expected by ENTRY_IO options ARG1=0, 1, 2, 3, and 4

• Option ARG1=1: state expected by ENTRY_IO options ARG1=0, 1, 2, 3, and 4

• Option ARG1=2: state expected by ENTRY_IO options ARG1=0, 1, 2, 3, and 4

• Option ARG1=3: state expected by ENTRY_IO options ARG1=0, 1, 2, 3, and 4

• Option ARG1=4:

— If the console connection was closed, then the state expected by ENTRY_INIT options
ARG1=2, 3, 4, and 5

— If the boot connection was closed, then the state expected by ENTRY_INIT options
ARG1=2, 3, 4, and 5

• Option ARG1=9: unchanged from state at entry

Firmware Architecture, Ver 1.1E IODC 5-45

ENTRY_IO (index 4) (continued)

Description: Responsibilities of the Caller

The caller of ENTRY_IO is responsible for verification of input parameters. If alignment or value
constraints are not met, the effects of the call are HVERSION dependent and errors will not
necessarily be detected.

If ENTRY_IO returns with status -3 (Cannot complete call without error) or -4 (Unrecoverable
hardware error) or -5 (Unrecoverable data error), the caller must call ENTRY_INIT to initialize
the module and device before retrying ENTRY_IO.

If the boot device has class CL_SEQU, the caller must ensure that the medium is rewound before
accessing the device. Rewind is accomplished by calling ENTRY_IO (ARG1=0 or 1) with
devaddr=0. (The call that rewinds can also transfer data.)

When reading IPL from a device of class CL_SEQU for which the record size is unknown, the
caller of ENTRY_IO with ARG1=0 is advised to allocate an input buffer of 64 Kbytes (maxsize
should be 64 Kbytes). That ensures that the buffer is large enough, because the IPL record size
can never exceed 64 Kbytes.

The caller of ENTRY_IO with ARG1=0 or ARG1=1 must always check the return parameter
countand react appropriately if ENTRY_IO did not transfer all the data that was requested.

PROGRAMMING NOTE

Here is an example of the steps that a caller of ENTRY_IO could follow to transfer a
block of data of SIZE bytes which is stored in memory at location MEM to address
DEV on an output device of class CL_RANDOM:

while (SIZE > 0) {
status ← ENTRY_IO(1, spa, ID_addr, R_addr, DEV, MEM, SIZE);
if statu s < 0 then handle_error(....);
SIZE ← SIZE — RET[0];
MEM ← MEM + RET[0];
DEV ← DEV + RET[0];

}

Conflicts with Data Contained in the Cache(s)

For data output, ENTRY_IO must flush the data buffer in the D-cache before DMA begins. For
data input, ENTRY_IO must flush/purge the data buffer in the D-cache before DMA begins and
must also flush/purge the data buffers in the D-cache and the I-cache after DMA completes.

The flush/purge before DMA begins must be to lines in the data buffer betweenmemaddrand
memaddr+ count, if the value ofcount is known before DMA begins. If the value ofcount is not
known, the flush/purge must be to lines in the data buffer betweenmemaddrand memaddr+
maxsize. After DMA completes, the flush/purge must be to lines in the data buffer between
memaddrandmemaddr+ count.

A SYNC instruction must follow each flush/purge or groups of flush/purge instructions.

Following the flush/purge to the I-cache, IODC must ensure that there are at least 8 instructions
between the SYNC instruction and the end of the IODC code, or IODC must execute at least 8
instructions before returning to the caller.

Timeouts

The ENTRY_IO entry point is required to timeout all requests. The timeout can be based on the
length of the requested transfer size, or can be a fixed value based on the maximum supported
transfer size.

The caller of ENTRY_IO must not put a timeout on the duration of the call.

5-46 IODC Firmware Architecture, Ver 1.1E

ENTRY_IO (index 4) (continued)

ENGINEERING NOTE

Implementations are encouraged to complete each ENTRY_IO call within 5 seconds
whenever possible. Adherence to this guideline allows the caller of ENTRY_IO the
opportunity to report forward progress through the console and/or chassis display.
However, there are a number of events that may make it impossible for ENTRY_IO to
guarantee that it will return within 5 seconds. Listed below are some examples of these
events:

• Transactions to or from the console that are paused by a pacing mechanism, such as
XON/XOFF.

• Tape rewind.

• Lock-outs on I/O systems that are shared by multiple masters. A-LINK and LANs
are examples of I/O systems that can have multiple masters.

• Device seek time.

• Automatic read/write retries not explicitly controlled by ENTRY_IO.

• Device internal maintenance. As an example, HP793x disk drives can go offline for
2 or 3 seconds to perform maintenance.

Console Model

The following features are true of the console I/O options to ENTRY_IO:

• All input characters are returned to the caller as a series of ASCII bytes.

• All output characters are passed to the entry point as a series of ASCII bytes.

• Maintenance of the console cursor is SVERSION dependent.

• The minimum screen size is 24 lines x 80 columns per line

• The action of the following ASCII characters is defined:

ASCII Char Value Action

Audible beep or does nothingBEL 07
Moves the cursor one character position to the left. The erasure of the
backspaced character is HVERSION dependent. If the cursor is at the
beginning of a line there is no action.

BS 08

Moves the cursor to the same position in the next line. If the next line is
beyond the bottom of the screen, the action is to scroll the screen one line
up. The top line of the screen could be lost.

LF 10

Moves cursor to the beginning of the current line.CR 13
The character is displayed at the current cursor position and the cursor
moves on position to the right. If the cursor is at the rightmost position in
the line, the action is HVERSION dependent.

SP 32

Definitions of values 33 through 126 are similar to that of SP (they are the usual printing
characters). IODC is not required to make any checks for unspecified characters.

Console Input: The receipt of unspecified characters is console input device dependent.
Console Output: The output of unspecified characters is console output device dependent.

Firmware Architecture, Ver 1.1E IODC 5-47

ENTRY_IO (index 4) (continued)

PROGRAMMING NOTE

Only 79 characters can be printed in each line, since the resulting action when the
cursor is in the rightmost position is HVERSION dependent.

ENGINEERING NOTE

For bit-mapped displays, the cursor position must be available to ENTRY_IO. The
cursor position can be stored in module registers or in a nonvisible part of the
display RAM.

Console Flow Control

The ENTRY_IO options are modeled after half-duplex devices. The ENTRY_IO caller is
assumed to provide all character echoing, erase, and new line processing.

Some console/display devices may use special flow control characters (e.g., XON/XOFF) to
regulate the pace at which data can be transmitted to the console on output. If the hardware
device can generate those flow control characters, then the ENTRY_IO code must handle them in
a manner transparent to its caller. Specifically, ENTRY_IO must pause its output when the stop
signal is received, and continue only when the start signal is received. When ENTRY_IO is
called, it starts in a state in which transmission is enabled, and it returns only after its entire output
message has been sent and transmission is once again enabled.

On the other hand, it is the caller of ENTRY_IO for console output that must ensure that a new
screenful of data does not overwrite previous output before the user is ready for it. The
architecture does not require support for any special user flow control characters, such as
Control_Q/Control_S. Rather, the pace of console output is governed by a paging model. Before
a caller can send a console message that would overwrite a previous screen or cause lines to be
scrolled off the screen, it must first prompt the user to give some input indicating that it is all right
to do so. Note that the minimum console/display is required to have 24 lines, so a program is
required to prompt the user whenever more than 24 lines of output are generated without any
intervening user input. The IODC entry points that can return error messages for display must
therefore limit those messages to strictly less than 24 lines. PDC must ensure that it can complete
an automatic boot (autoboot or autosearch) without requiring any user input at the console.
Callers which do not send more than 24 lines to the console do not need to implement the paging
model.

ENTRY_IO is not required to support "type ahead". That is, it is allowed for ENTRY_IO to cause
a duplex console device to discard characters, if those characters were typed in during a "Console
Output" call.

To simplify ENTRY_IO implementations, the caller must convert a carriage return (CR) into a
carriage return and line feed sequence (CR, LF) before echoing.

5-48 IODC Firmware Architecture, Ver 1.1E

Boot input (ARG1=0) ENTRY_IO

Purpose: To perform input from a boot device.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 0
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG5 devaddr address on device medium
ARG6 memaddr address of data buffer
ARG7 reqsize size of data transfer requested
ARG8 maxsize size of maximum allowable data transfer

Returns: Number Name Description

RET[0] count actual size of data transfer

Status: Value Description

3 EOF encountered
2 Recoverable error
1 Inexact I/O transfer
0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready
-10 Invalid argument
-11 Data buffer too small
-12 Unsupported record size
-13 Protocol error
-14 Illegal device block size

Description: The argumentreqsizespecifies the amount of data that the caller would like to read. It must be a
multiple of 2 Kbytes, but is otherwise unconstrained. The argumentmaxsizeis the maximum
amount of data that the caller is prepared to accept (i.e., it is the size of the data buffer that has
been allocated. The data buffer is the area of memory betweenmemaddrand memaddr+
maxsize.) The value ofmemaddrmust be a multiple of 64 bytes. The caller must ensure that
reqsizeis not greater thanmaxsize, or else the results are HVERSION dependent. The address on
the device medium,devaddr, must be 2 Kbyte aligned. If the call returns a nonnegative status, the
return parametercount is the number of bytes actually input; it must be a multiple of 2 Kbytes.
The input data is in memory betweenmemaddrandmemaddr+ count. If maxsizeis greater than
count, the contents of the remainder of the data buffer is HVERSION dependent. If the call
returns a negative status, the value ofcount and the contents of the data buffer are HVERSION
dependent. In the case of inexact I/O transfer(status return = 1),count must be a multiple of 2
Kbytes if there is more data to be transferred. The value ofcount need not be a multiple of 2
Kbytes if there is no more data to be transferred.

ENGINEERING NOTE

If status return = 1 andcount is a multiple of 2 Kbytes, the caller makes another call if
more data has to be transferred. If no more data has to be transferred, the caller does
not make another call.

Firmware Architecture, Ver 1.1E IODC 5-49

Boot input (ARG1=0) (continued) ENTRY_IO

If status return = 1 andcount is not a multiple of 2 Kbytes, then the caller does not
make another call for there is no more data to be transferred. For example, the end of
file has been reached.

If the boot device has class CL_SEQU, the call reads one record from the device. Each IODC
implementation is free to select the maximum record size that it supports, but that maximum size
must be at least 64 Kbytes. The maximum size can be greater than 64 Kbytes, but
implementations are encouraged to choose it so that a record can be input within 5 seconds
whenever possible. If the sequential medium is formatted with a record size greater thanmaxsize,
then the call returns -11 (Data buffer too small). If the sequential medium is formatted with a
record size greater than the implementation maximum record size, then the call returns -12
(Unsupported record size). As long as the record size on the sequential medium is not greater
thanmaxsizeor the implementation maximum, the call transfers one input record into memory. If
reqsizewas not equal to the record size, then the call returns 1 (Inexact I/O transfer). The caller
must ensure that the value ofdevaddris either 0 or equal to the sum of the previousdevaddrand
the valuecount returned by the previous call (devaddr=0 causes the medium to be rewound). If
the boot device has class CL_SEQU and the call completed normally, ENTRY_IO may optionally
return a status of 3 (EOF encountered) when it detects an EOF, instead of 0. ENTRY_IO reads a
sequential medium in a strictly continuous fashion; it does not support a "skip" to a higher device
address. If the call returns a negative status, then the position of the medium is HVERSION
dependent.

If the boot device has class CL_RANDOM, then the IODC implementation is free to select its
own maximum transfer size. This maximum value may be chosen based on device characteristics
or in order to meet timeout guidelines. The maximum data transfer must be a multiple of 2
Kbytes. For each request, the call transfers the smaller ofreqsize and its implementation
maximum size. Ifreqsizeis greater than the maximum size, then the call returns 1 (Inexact I/O
transfer).

In order for a CL_RANDOM device to be supported as a boot device, the device must be
formatted with a block size that is a factor of 2 Kbytes (i.e., 2 Kbytes is a multiple of the device
block size). ENTRY_IO may optionally check that the CL_RANDOM device has been formatted
with a legal block size. If IODC detects an illegal block size on the device, the call must return a
status of -14 (Illegal device block size).

It is assumed that ENTRY_IO for a boot device of class CL_RANDOM supports both random and
record sequential access methods.

5-50 IODC Firmware Architecture, Ver 1.1E

Boot output (ARG1=1) ENTRY_IO

Purpose: To perform output to a boot device.

It is not required that every implementation support this option, but it should be supported when
possible and not unduly complicated.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 1
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG5 devaddr address on device medium
ARG6 memaddr address of data buffer
ARG7 reqsize size of data transfer requested

Returns: Number Name Description

RET[0] count actual size of data transfer

Status: Value Description

2 Recoverable error
1 Inexact I/O transfer
0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready
-10 Invalid argument
-12 Unsupported record size
-13 Protocol error
-14 Illegal device block size

Description: The argumentreqsizespecifies the amount of data that the caller would like to write. It must be a
multiple of 2 Kbytes, but is otherwise unconstrained. The data to write is in memory at the
address specified bymemaddr. The value ofmemaddrmust be a multiple of 64 bytes. The
address on the device medium,devaddr, must be 2 Kbyte aligned. If the call returns a
nonnegative status, the return parametercount is the number of bytes actually output; it must be a
multiple of 2 Kbytes. If the call returns a negative status, the value ofcountand the data written
are HVERSION dependent.

If the boot device has class CL_SEQU,reqsizespecifies the record size and length of transfer.
ENTRY_IO always writes exactly one record, with the record size equal to the length of the
transfer. Each IODC implementation is free to choose the set of record sizes that it supports. If
reqsizeis equal to an unsupported record size, then the call returns status -12 (Unsupported record
size). It is the responsibility of the caller to know which record sizes are supported by a device of
class CL_SEQU. If the call returns a negative status, then the position of the medium is
HVERSION dependent. This option never returns status 1 (Inexact I/O Transfer) for output to a
device of class CL_SEQU. The caller must ensure that the value ofdevaddris either 0 or equal to
the sum of the previousdevaddrand the valuecount returned by the previous call (devaddr=0
causes the medium to be rewound). ENTRY_IO writes a sequential medium in a strictly
continuous fashion; it does not support a "skip" to a higher device address.

If the boot device has class CL_RANDOM, then the IODC implementation is free to select its
own maximum transfer size. This maximum value may be chosen based on device characteristics
or in order to meet timeout guidelines, and may be different from the maximum limit imposed on

Firmware Architecture, Ver 1.1E IODC 5-51

Boot output (ARG1=1) (continued) ENTRY_IO

input transfers. The maximum data transfer must be a multiple of 2 Kbytes. For each request, the
call transfers the smaller ofreqsizeand its implementation maximum size. Ifreqsizewas greater
than the maximum size, then the call returns 1 (Inexact I/O transfer).

In order for a CL_RANDOM device to be supported as a boot device, the device must be
formatted with a block size that is a factor of 2 Kbytes (i.e., 2 Kbytes is a multiple of the device
block size). ENTRY_IO may optionally check that the CL_RANDOM device has been formatted
with a legal block size. If IODC detects an illegal block size on the device, the call must return a
status of -14 (Illegal device block size).

5-52 IODC Firmware Architecture, Ver 1.1E

Console input (ARG1=2) ENTRY_IO

Purpose: To perform input from a console device.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 2
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG6 memaddr address of data buffer
ARG7 reqsize size of data transfer requested
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] count actual size of data transfer

Status: Value Description

2 Recoverable error
0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready
-10 Invalid argument
-13 Protocol error

Description: The argumentreqsizespecifies the amount of data that the caller would like to read. It must be
greater than 0. The address of the data buffer allocated by the caller is specified bymemaddr. The
value ofmemaddrmust be a multiple of 64 bytes and the size of the data buffer must be at least as
large asreqsizerounded up to the next multiple of 64. The only allowed value forlang is 0.

This call is required to establish timeouts so that it completes within a reasonable time (typically
within 5 seconds). Thus, the call may not be able to provide the full number of bytes requested by
the caller in thereqsizeargument. If there is no input available from the console device, the call
must returncount= 0. If there is input available from the console device, the call may return with
countstrictly less thanreqsizein order to meet timeout requirements.

PROGRAMMING NOTE

Since echoing characters to the display is the responsibility of the caller, it will be most
effective if the console input option returns as soon as it has any input characters
available, rather than waiting until the request can be satisfied in its entirety.

The input data is in memory betweenmemaddrandmemaddr+ count. If count is not a multiple
of 64 bytes, the data up to the next 64-byte boundary is HVERSION dependent. If the call returns
a negative status, the value ofcount and the contents of the data buffer are HVERSION
dependent.

This call is defined for the classes CL_DUPLEX and CL_KEYBD.

Firmware Architecture, Ver 1.1E IODC 5-53

Console output (ARG1=3) ENTRY_IO

Purpose: To perform output to a console device.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 3
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG6 memaddr address of data buffer
ARG7 reqsize size of data transfer requested
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] count actual size of data transfer

Status: Value Description

2 Recoverable error
0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready
-10 Invalid argument
-13 Protocol error

Description: The argumentreqsizespecifies the amount of data that the caller would like to write. It must be
greater than 0. The data to write is in memory at the address specified bymemaddr. The value of
memaddrmust be a multiple of 64 bytes. The only allowed value forlang is 0.

This call must not return acountvalue that is less thanreqsize. If the call was unable to output all
the bytes specified by the caller in thereqsizeargument, it must not output any of them; the
appropriate negative status value must be also returned. If the call returns a negative status, then
the value ofcountand the data written are HVERSION dependent.

This call is defined for the classes CL_DUPLEX and CL_DISPL.

5-54 IODC Firmware Architecture, Ver 1.1E

Close Connection (ARG1=4) ENTRY_IO

Purpose: This option closes the ENTRY_IO module-device connection that was established by
ENTRY_INIT.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 4
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer

Returns: None

Status: Value Description

0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-5 Unrecoverable data error
-6 Illegal device address
-7 Nonexistent device
-8 Module/device not ready
-10 Invalid argument
-13 Protocol error

Description: A module must implement this option if ENTRY_INIT opens a module-device connection that
will need to be closed at a future point in time. An example of this type of module-device
connection is one that is established solely for the purposes of boot and is not needed when boot is
complete.

After this option has been called, ENTRY_INIT must be called to re-establish the connection with
the device if additional module-device communication is required.

Firmware Architecture, Ver 1.1E IODC 5-55

Return message (ARG1=9) ENTRY_IO

Purpose: To ask for a message when the status from the previous call to the entry point was nonzero.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 9
ARG2 spa SPA of the module
ARG3 ID_addr pointer to LAYER structure
ARG4 R_addr pointer to return buffer
ARG5 data_addr pointer to previous return buffer
ARG6 msg_addr pointer to message buffer
ARG8 lang future use as language specifier

Returns: Number Name Description

RET[0] msg_size number of bytes returned in the message buffer

Status: Value Description

2 Recoverable error
0 OK
-3 Cannot complete call without error
-4 Unrecoverable hardware error
-10 Invalid argument

Description: The old R_addrpointer from the previous call is supplied as argumentdata_addr to the new
option. The SVERSION-dependent part of the oldR_addr (the last 16 words) contains all the
information the option needs to return the appropriate message (the entry point does NOT need to
look at the state of its module; the values indata_addrare sufficient). The argumentshpa, spa,
andID_addr must be the same as in the previous call which yielded the nonzero status. The size
of the buffer pointed to bemsg_addrmust be 2 Kbytes. The only allowed value forlang is 0.

If msg_sizeis 0, no message was returned. The text of the returned message must not exceed one
screen (24 lines).

5-56 IODC Firmware Architecture, Ver 1.1E

ENTRY_SPA (index 5)

Purpose: To return the number, size, and alignment specifications of the module’s SPA space(s).

Options: The option ARG1=0 is required.

Restrictions: ENTRY_SPA is allowed to access its module’s HPA only to ascertain the SPA specifications. It is
not allowed to cause its module to generate interrupts nor to mask the occurrence of interrupts by
changing CR15 (EIEM).

Arguments: Description ARG0 ARG1 ARG2 ARG3

Return Info hpa 0 tic_10ms R

Description ARG4 ARG5 ARG6 ARG7

Return Info R_addr R R R

The data type oftic_10msis a 32-bit unsigned integer.

Returns: Description RET[0] RET[1]

Return Info spa0_spec spa1_spec

The data type ofspa0_specandspa1_specis a 32-bit unsigned integer.

Status: Value Description

OK
The call completed normally and the entry point detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option implemented by the entry point.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG1 was invalid.
OPTIONAL. The entry point may assume that its caller is perfect and need not check
arguments for correctness.

-10

Entry State: The required architected state of the target module (module specified by ARG0) upon entry to
ENTRY_SPA is listed below. IO_FLEX is initialized in all cases, and all module state other than
those listed is HVERSION dependent.

IO_FLEX[enb] = 1

Exit State: The required architected state of the target module (module specified by ARG0) upon exit from
ENTRY_SPA is listed below. IO_FLEX is unchanged and all module state other than those listed
is HVERSION dependent.

Unchanged from state at entry.

Description: An I/O module that has more than one SPA or a single SPA which is not a power of two in size is
required to implement ENTRY_SPA.

Modules that provide ENTRY_SPA and which can be a boot module or a console module must
ensure that ENTRY_INIT and ENTRY_IO function correctly when called by PDC.

ARG2, tic_10ms, is the number of clock ticks per 10 msec on the executing processor. This
argument is intended for use in multiprocessor systems to establish timeouts.

Firmware Architecture, Ver 1.1E IODC 5-57

ENTRY_SPA (index 5) (continued)

Depending on whether the module has one or two SPA space(s), ENTRY_SPA will return one or
two nonzero parameters. If a module has one SPA space,spa0_specdescribes that SPA and
spa1_specis 0. If the module has two SPA spaces,spa0_specdescribes the first SPA and
spa1_specdescribes the second SPA.

The format of the return parameters is as follows:

size R io 1 SV shift

0 19 20 23 24 25 26 27 31

The sizespecifies the number of pages in the SPA space. The valid range forsize is 1 ≤ size≤
61,312 if io is 1 and 1≤ size≤ 978,944 ifio is 0. If an invalidsizevalue is returned, software may
consider the module broken.

The io field indicates whether the SPA space is in the memory (io=0) or I/O (io=1) address space.
Each SPA space must be either entirely in the memory address space or entirely in the I/O address
space. At present, only memory modules are allowed to have an SPA space in the memory
address space and any other request to have an SPA space in the memory address space should be
considered illegal.

Theshift field specifies the alignment requirement for the SPA as 2shift. The valid range forshift is
12 ≤ shift ≤ 26 if io is 1 and 12≤ shift ≤ 31 if io is 0. All modules which do not have an SPA
space should return 0 for theshift field, even if the module type does not support SPA capabilities.
All other values for theshift field are illegal and if an invalidshift value is returned, software may
consider the module broken.

For processor, memory, and bus converter port modules where the architecture defines the
SVERSION, the value of the SV bit is HVERSION dependent.

ENGINEERING NOTE

PDCE_RESET is discouraged from calling ENTRY_SPA as it would be forced to track
any future changes to the ENTRY_SPA specification. A module will function correctly
even if ENTRY_SPA is not called.

5-58 IODC Firmware Architecture, Ver 1.1E

ENTRY_TEST (index 8)

Purpose: To perform extensive tests on a module. In the case of an I/O module, these tests are more
complete than those in ENTRY_INIT for that module and provide isolation to the FRU (Field
Replaceable Unit) level. ENTRY_TEST (unlike ENTRY_INIT) may diagnose faults not involved
in the basic operations of the module used by ENTRY_IO. In the case of a memory module,
ENTRY_TEST provides tests that are more complete than the simple read/write test performed by
PDC.

Options: The options ARG1=0 and ARG1=1 are required. The options ARG1=2 and ARG1=9 are
optional.

Restrictions: None

Arguments: Description ARG0 ARG1 ARG2 ARG3 ARG4 ARG5

Return Info hpa 0 spa/io_low ID_addr/io_high R_addr list_addr
Execute Step hpa 1 spa/io_low ID_addr/io_high R_addr data_addr
Describe Section hpa 2 spa/io_low ID_addr/io_high R_addr data_addr
Return Message hpa 9 spa/io_low ID_addr/io_high R_addr data_addr

Description ARG6 ARG7 ARG8 ARG9 ARG10

Return Info R list_type R scope layer_valid
Execute Step inbuf_addr EIM_addr test_id scope layer_valid
Describe Section R list_type test_id scope layer_valid
Return Message msg_addr msg_type lang scope layer_valid

Description ARG11 ARG12 ARG13 ARG14 ARG15

Return Info tic_10ms R R R R
Execute Step tic_10ms R R R R
Describe Section tic_10ms R R R R
Return Message tic_10ms R R R R

The data type ofio_low, list_type, msg_type, scope, and tic_10msis a 32-bit unsigned integer.
The argumentslist_addr, msg_addr, and EIM_addr must be word aligned. Theinbuf_addr
parameter must be word aligned.

For all modules except bus converter ports, ARG2 and ARG3 represent thespa and ID_addr,
respectively. For bus converter ports, ARG2 and ARG3 areio_low andio_high, respectively.

For all options, the module alone is referenced ifscopeis 0. If scopeis 1, the module and the
shared hardware are referenced. All other values are reserved. If the module is not part of a
module set, both 0 and 1 refer to the module. When running ENTRY_TEST withscope= 1, all
status values apply to the referenced module and the shared hardware.

For all options, iflayer_valid is 1, thenID_addr points to a valid layer structure. Iflayer_valid is
0, then the value ofID_addr is defined by the caller. If an implementation of ENTRY_TEST
wishes to useID_addras a pointer to a layer structure, it must first check the value oflayer_valid.
ENTRY_TEST can only test beyond the module when it has been passed a validID_addr (i.e.,
layer_valid is 1). Note that ENTRY_TEST may optionally ignoreID_addr, in which case it can
only test the module.

The caller of ENTRY_TEST must setlayer_valid to 0 if a pointer to a valid layer structure is not
available or if testing must be restricted to the module.

For online test lists, ARG11,tic_10ms, is the number of clock ticks per 10 msec on the executing
processor. This argument is intended for use in multiprocessor systems to establish timeouts.
This argument must be 0 for offline test lists.

Firmware Architecture, Ver 1.1E IODC 5-59

ENTRY_TEST (index 8) (continued)

Returns: Description RET[0] RET[1]

Return Info dbuf_size mbuf_size
Execute Step r_fixed R
Describe Section R R
Return Message msg_size R

The data type ofdbuf_size, r_fixed, msg_size, andmbuf_sizeis a 32-bit unsigned integer.

Status: Value Description

Error detected, FRU not isolated
An error was detected, but the FRU was not isolated. The caller should continue testing
in order to isolate the problem. Returned only by option ARG1=1.
CONDITIONAL. Must be used if the test cannot always isolate the FRU.

2

Returning for user input, next call must be sequential
Returned only by option ARG1=1.
CONDITIONAL. Must be used if the entry point has a test which expects user input.

1

OK
The call completed normally and the entry point detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option implemented by the entry point.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid user input
The caller must re-execute the previous step to specify new user input. Returned only by
option ARG1=1.
CONDITIONAL. Must be used if the entry point has a test which expects user input.

-4

Error detected, FRU isolated, module is usable
The module may be usable in a degraded state; that is, the module is fully functional but
performance may be lessened. Returned only by option ARG1=1.
CONDITIONAL. Must be used if errors may leave the module usable.

-5

Error detected, FRU isolated, module is not usable
The module has a problem and is not fully functional. Returned only by option
ARG1=1.
CONDITIONAL. Must be used if errors may leave the module unusable.

-6

Fatal error detected, damage is possible
The error that was detected is serious enough to cause damage if testing is continued.
The FRU may or may not be isolated, but further testing must be aborted. Returned only
by option ARG1=1.
CONDITIONAL. Must be used if testing may cause damage.

-7

Module/device not ready
The module or device is not ready to be tested. A module may not be ready because it is
still performing its selftest after reset or power-on. An example of device not ready is a
disk drive that still is spinning up. Returned only by option ARG1 = 1.
OPTIONAL. Implementations may use this status if waiting for the module or device to
become ready would make the call take longer than 10 seconds.

-8

Invalid argument
An argument other than ARG1 was invalid.
OPTIONAL. The entry point may assume that its caller is perfect and so need not check

-10

5-60 IODC Firmware Architecture, Ver 1.1E

ENTRY_TEST (index 8) (continued)

Value Description

arguments for correctness.
Illegal device address
The device address specified byID_addr is invalid and cannot be used. One or more of
the LAYER fields is out of range and could never be a valid device address. Returned
only by option ARG1 = 1 and only if ARG10 = 1.
OPTIONAL. Checking for illegal addresses increases supportability.

-11

Nonexistent device
The device address specified byID_addr is a valid device address. However, it points to
either a device that is not installed or a device that does not respond. Returned only by
option ARG1 = 1 and only if ARG10 = 1.
CONDITIONAL. Must be used if nonexistent devices can be identified.

-12

Entry State: The required architected state of the target module (module specified by ARG0) upon entry to
ENTRY_TEST is listed below. IO_FLEX is initialized in all cases, and all module state other
than those listed is HVERSION dependent.

• Option ARG1=0: IO_FLEX[enb] = 1 (for bus converter ports, the target module must have
been given CMD_RESET.ST)

• Option ARG1=1:

If ARG8 indicates first step of a section: IO_FLEX[enb] = 1

If ARG8 not first step of a section: state unchanged from that established by the most recent
previous call to ENTRY_TEST option ARG1=1 for the previous step in the test list

• Option ARG1=2: IO_FLEX[enb] = 1

• Option ARG1=9: IO_FLEX[enb] = 1

Exit State: The required architected state of the target module (module specified by ARG0) upon exit from
ENTRY_TEST is listed below. IO_FLEX is unchanged and all module state other than those
listed is HVERSION dependent.

• Option ARG1=0: unchanged from state at entry

• Option ARG1=1: state expected by next step in the test list; for bus converter ports, at the last
step in a section, the required exit conditions must be met

If this option is called with ARG9=1 (scope=1) for a module in a multi-module set, then the
state of other non-processor modules in the set is HVERSION dependent. The state of
processor modules in the module set must be unchanged.

• Option ARG1=2: unchanged from state at entry

• Option ARG1=9: unchanged from state at entry

Description: ENTRY_TEST may be used in an interactive (user input) or noninteractive (no user input) mode,
and in a real (offline) or virtual (online) environment. Modules may provide a simplified
ENTRY_TEST with only a single noninteractive offline test list and no messages, or take
advantage of the complete definition to provide a flexible, interactive diagnostic, or choose any
subset of the interface between these two extremes. The complexity of the ENTRY_TEST for a
particular implementation is determined by the support requirements and functional limitations of
the product.

Firmware Architecture, Ver 1.1E IODC 5-61

ENTRY_TEST (index 8) (continued)

PROGRAMMING NOTE

System reliability may be hampered if memory ENTRY_TEST is called online.
Consider the following case:

Memory ENTRY_TEST may want to test the double-bit error detection circuitry in the
memory array. This may be achieved by placing the memory module in a mode that
inserts double-bit errors every time a transaction is directed to the array. Unwanted
double-bit errors could be inserted if any of the following events occurs while the
module is in "double-bit error insertion mode":

• The processor services an interruption (for example, an external interrupt, or a
powerfail warning) and invokes a handler that issues a write.

• The processor performs an asynchronous cache flush. (Asynchronous in the sense
that the flush is not related to any instruction. The processor performs the flush for
performance reasons).

By calling memory ENTRY_TEST offline, the probability of inserting unwanted
double-bit errors decreases. Note, however, that ENTRY_TEST cannot prevent any of
the above events, even when called offline, because:

• ENTRY_TEST must not disable the PSW I-bit.

• There is no way to prevent asynchronous cache flushes.

ENTRY_TEST may want to test the error signalling mechanisms of its module. However,
ENTRY_TEST is not allowed to build its own HPMC handler. Therefore, ENTRY_TEST must
call PDC_ADD_VALID to detect the assertion of the error signalling mechanisms that otherwise
would generate an HPMC.

ENTRY_TEST may optionally use the information in the module’s IO_STATUS, IO_ERR_RESP,
IO_ERR_REQ, and IO_ERR_INFO registers to increase the probability that the condition that
PDC_ADD_VALID detected was the condition that ENTRY_TEST introduced.

Test Lists

A test list is a collection of tests that are appropriate for a particular testing environment, such as
interactive or noninteractive. A test list is composed of one or more one-word entries called test
ids. A given test id represents the same test independent of the test list that it was returned in.

A test list is terminated by a word containing zero. Thus, a test list consisting of a single word
containing zero is a null list that contains no tests.

A test list is divided into a series of consecutive words that form sections. Therefore, a test list
consists of zero or more test sections followed by a word containing zero.

The most significant unsigned halfword of each test id contains the section number and the least
significant unsigned halfword contains the test step number. Both the section number and test
step number are positive integers (neither may have a value of zero except when both are, which
marks the end of the list). The section number uniquely identifies the section within an
implementation of ENTRY_TEST. That is, a section number may appear on multiple test lists, but
it always indicates the same series of test ids.

A section is the smallest independent entity, and contains one or more test steps. That a section is
independent implies that it can be executed without advance preparation, and can be executed
repetitively in a loop. A test step is not necessarily independent; it may rely on earlier steps in the
section to establish the proper context. Following the execution of a test step, the module under
test is in the state expected by the next test step in the section. The consecutive test ids in a
section indicate successive test steps in a section. Test step numbers must be distinct within a
section. Test steps must be executed in the order that they appear in the test list except under the

5-62 IODC Firmware Architecture, Ver 1.1E

ENTRY_TEST (index 8) (continued)

following circumstances:

• When a status of -4 (invalid user input) has been returned, the caller of ENTRY_TEST must
re-execute the previous test step in the test list to specify user input.

• When a status of -8 (module/device not ready) has been returned, the caller of ENTRY_TEST
must re-execute the current test step or abort the test.

Test steps are not required to be in increasing order within a section. Sections are not required to
be in increasing order within a test list. A test step can either perform a test or prompt for user
input, but it must not do both operations.

An example of a valid test list (all words in hexadecimal):

00050001, 00050002, 00050003, 001a0011, 001a0007, 00020001, 00000000

This is a test list with three sections, containing three, two, and one test steps, respectively. If any
of the sections in this test list appear in other test lists, the sequence of test ids that comprise that
section must be identical for all test lists in this ENTRY_TEST implementation. For example, if
the following test list were part of the same ENTRY_TEST implementation as the one shown
above, it would not be valid because section 0005 differs from the test list above:

00050001, 00050002, 001a0011, 001a0007, 00020001, 00000000

However, the following test list would be valid:

00070004, 00020001, 00050001, 00050002, 00050003, 00000000

The user input test lists may contain steps which request user input; noninteractive input test lists
must not request user input. Offline test lists run in an environment (e.g., during boot) where
interruptions are typically masked. Online test lists run in an environment (e.g., normal system
operation) where interruptions are typically enabled. The standard test lists are given below.

TABLE 5-3. Standard Test Lists

list_type Description

0 Complete Offline Test List
1 Default User Input Offline Test List
2 Default Non User Input Offline Test List
3 Complete Online Test List
4 Default User Input Online Test List
5 Default Non User Input Online Test List

6-63 Reserved
64-127 SVERSION dependent
>127 Reserved

Test lists 0 and 2 are both required. Test list 0, the complete offline test list, represents the union
of all offline test lists.

Test list 5, the default non user input online test list, is optional. Test list 3, the complete online
test list, is required if any online test lists are implemented. When it is implemented, test list 3 is
the union of all online test lists.

To test shared hardware in a multi-module set, a caller retrieves a test list by calling
ENTRY_TEST(Return Info) with ARG9=1 (scope=1).

The following pseudocode illustrates the calling sequence of sections and steps for a test list that
does not include user input:

Firmware Architecture, Ver 1.1E IODC 5-63

ENTRY_TEST (index 8) (continued)

list_type ← n; /* select list type */
entry_test (hpa_mod_under_test, 0,....); /* call return info */
test_id{0..15} ← section; /* select test section */
step_number ← first_step_in_section(); /* initialize step number */
count ← number_of_steps_in_section(); /* initialize loop counter */

while (count > 0) {
test_id{16..31} ← step_number; /* test step to execute */
entry_test (hpa_mod_under_test, 1,....); /* call execute step */

switch (status) {

case 0 or >= 2: /* continue test */
step_number ← next_step_in_section();
count ← count — 1;
break;

case —8: /* module/device not ready, re—execute current step */
break; /* loop counter is not altered */

/* for a —8, the caller may optionally abort the test */

default: /* the call to return message is optional */
entry_test (hpa_mod_under_test, 9,....); /* call return message */
entry_io (hpa_display, 3,....); /* output returned message to console */
abort_test;

}
}

User Input

User input to a test step is performed by having a test step that requests user input. A caller of
ENTRY_TEST must not call the "Execute Step" option with a user input test list if there is no
console. If any of its test lists include user input, ENTRY_TEST must implement the "Return
Message" option.

ARG6 (inbuf_addr) is only valid for a step immediately following a step that returned a status of 1
(returning for user input). Otherwise, its value is defined by the caller.

The size of the buffer pointed to byinbuf_addr is a maximum of 80 characters followed by a
carriage return. The caller of ENTRY_TEST must append a carriage return to the buffer if it does
not already contain one.

If an "Execute Step" call returns a status of -4, the input passed in atinbuf_addrwas invalid. If
this occurs, the caller must call the "Return Message" option, display the message on the console,
and re-execute the previous step.

Each user input step may optionally supply its own default values to the caller following the
detection of invalid user input, instead of returning a status of -4.

If an "Execute Step" call returns a status of 1, a test step is returning for user input. If this occurs,
the caller must call the "Return Message" option, display the message on the console, and retrieve
a new line of input.

If status = 1 or -4 is returned from a call to "Execute Step", ENTRY_TEST must enter the message
pending state (i.e., a call to the "Return Message" option will return a message). ENTRY_TEST
may optionally enter the message pending state when other status values are returned from a call
to "Execute Step".

The following pseudo-code illustrates the calling sequence of sections and steps for a test list that
may include user input:

5-64 IODC Firmware Architecture, Ver 1.1E

ENTRY_TEST (index 8) (continued)

list_type ← n; /* select list type */
entry_test (hpa_mod_under_test, 0,....); /* call return info */
test_id{0..15} ← section; /* select test section */
step_number ← first_step_in_section(); /* initialize step number */
count ← number_of_steps_in_section(); /* initialize loop counter */

while (count > 0) {
test_id{16..31} ← step_number; /* test step to execute */
entry_test (hpa_mod_under_test, 1,....); /* call execute step */

switch (status) {

case 1: /* returning for user input */
entry_test (hpa_mod_under_test, 9,....); /* call return message */
entry_io (hpa_display, 3,....); /* output returned message to console */
input_count ← 0; /* initialize input loop counter */
while (input_character != carriage_return && input_count < 80) {

entry_io (hpa_keyboard, 2,....,1,0); /* perform single character
input from console */

entry_io (hpa_display, 3,....,1,0); /* echo input character */
input_count ← input_count + 1;

}
if (input_count = 80) /* 80 characters input from console */

append_carriage_return(); /* append carriage return to the buffer
if it does not already contain one */

step_number ← next_step_in_section();
count ← count — 1;
break;

case 0 or >= 2: /* continue test */
step_number ← next_step_in_section();
count ← count — 1;
break;

case —8: /* module/device not ready, re—execute current step */
break; /* loop counter is not altered */

/* for a —8, the caller may optionally abort the test */

case —4: /* invalid input, re—execute previous step */
entry_test (hpa_mod_under_test, 9,....); /* call return message */
entry_io (hpa_display, 3,....); /* output returned message to console */
step_number ← previous_step_in_section();
count ← count + 1; /* increment loop counter */
break;

default: /* the call to return message is optional */
entry_test (hpa_mod_under_test, 9,....); /* call return message */
entry_io (hpa_display, 3,....); /* output returned message to console */
abort_test;

}
}

Timeouts

ENTRY_TEST must guarantee that no call takes longer than 10 seconds to complete. (Note that
memory ENTRY_TEST has stricter requirements. See Section 5.5.2.2, IODC Entry Points.) The
caller of ENTRY_TEST must not put a timeout on the duration of the call.

If an error prevents ENTRY_TEST from completing a call in the required 10 seconds,
ENTRY_TEST must return:

• status value -3 if ARG1 = 0, 2, or 9,

• the appropriate status value corresponding to the state of the test when the timeout occurred if
ARG1 = 1.

Firmware Architecture, Ver 1.1E IODC 5-65

ENTRY_TEST (index 8) (continued)

PROGRAMMING NOTE

Note that IODC entry points are not allowed to write to CR16, the Interval Timer.
Therefore, ENTRY_TEST is not allowed to determine the 10 second timeout by
detecting an Interval Timer External Interrupt. An alternate method that
ENTRY_TEST may use is to divide the number of counts that CR16 has taken since
ENTRY_TEST was entered by MEM_10MSEC, the word in Page Zero that contains
the number of clock ticks in 10 msec.

Error Handling

The "Execute Step" option may return a variety of status values indicating its progress in isolating
a failure to the FRU.

A status of 2 indicates that an error was found, but the FRU has not been isolated. This value is
advisory only, since the caller should still continue testing in order to isolate the problem.

Status values -5 and -6 indicate that an error has been isolated to a FRU. If status -5 is returned,
the module may be usable in a degraded state; that is, the module is fully functional but
performance may be lessened. ENTRY_INIT must be invoked before using ENTRY_IO on the
module. Status value -6 indicates that the module is not fully functional; ENTRY_INIT and
ENTRY_IO are not guaranteed to function correctly, or even detect that an error exists.

SUPPORT NOTE

If a status equal to -5 or -6 is detected following a call to Execute Step, the caller may
use the following sequence of steps to identify the FRU:

1. Call ENTRY_TEST(Return Message)

2. If a status of -2 (i.e., unimplemented option) is returned, the caller should output
the SVERSION-dependent locations in the return buffer (i.e., RET[16] through
RET[31]) to the console.

Callers are strongly encouraged to identify the FRU since this increases
supportability. In addition, implementations of ENTRY_TEST which do not
provide the Return Message option are strongly encouraged to provide FRU
isolation information in RET[16] through RET[31].

Status value -7 has been included to handle situations where the error that was detected is serious
enough to possibly cause damage if testing is continued. In this case the FRU may or may not be
isolated, but further testing must be aborted. The status of FRU isolation can be indicated in a
message returned using the ENTRY_TEST "Return Message" option.

Status value -8 indicates that the device is not ready for use. If ENTRY_TEST determines that its
device is preparing for use, it should not wait for the device to become ready. Instead, it should
immediately return -8.

5-66 IODC Firmware Architecture, Ver 1.1E

Return info (ARG1=0) ENTRY_TEST

Purpose: For I/O modules, to retrieve a test list and required buffer sizes for the entity selected by thehpa,
spa, andID_addr arguments. For all other modules, to retrieve a test list and required buffer sizes
for the entity selected by thehpaargument.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 0
ARG2 spa/io_low SPA of the module/lower bound of I/O range
ARG3 ID_addr/io_high pointer to LAYER structure/upper bound of I/O range
ARG4 R_addr pointer to return buffer
ARG5 list_addr pointer to list buffer
ARG7 list_type type of test list
ARG9 scope scope of test
ARG10 layer_valid qualifier forID_addr
ARG11 tic_10ms number of clock ticks per 10 msec

Returns: Number Name Description

RET[0] dbuf_size required size for data buffer
RET[1] mbuf_size required size for message buffer

Status: Value Description

0 OK
-3 Cannot complete call without error

-10 Invalid argument

Description: The caller must allocate at least 8 Kbytes atlist_addr for the test list. The test list selected by
list_typeis returned atlist_addr. If the value of thelist_typeargument corresponds to a value that
is unimplemented, ENTRY_TEST must return a null list (i.e. a single word containing zero).

The return parametersdbuf_sizeandmbuf_sizespecify the size (in bytes) of the data buffer and
message buffer, respectively, that must be allocated by the caller in subsequent calls to
ENTRY_TEST.

Firmware Architecture, Ver 1.1E IODC 5-67

Execute step (ARG1=1) ENTRY_TEST

Purpose: To execute a single test specified bytest_id.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 1
ARG2 spa/io_low SPA of the module/lower bound of I/O range
ARG3 ID_addr/io_high pointer to LAYER structure/upper bound of I/O range
ARG4 R_addr pointer to return buffer
ARG5 data_addr pointer to data buffer
ARG6 inbuf_addr pointer to user input buffer
ARG7 EIM_addr value for IO_EIM register
ARG8 test_id identifier of test to execute
ARG9 scope scope of test
ARG10 layer_valid qualifier forID_addr
ARG11 tic_10ms number of clock ticks per 10 msec

Returns: Number Name Description

RET[0] r_fixed fixed address of remote port

The return valuer_fixed is defined only for bus converter port modules. For all other modules,
this parameter is reserved.

Status: Value Description

2 Error detected, FRU not isolated
1 Returning for user input
0 OK

-3 Cannot complete call without error
-4 Invalid user input
-5 Error detected, FRU isolated, module may be usable
-6 Error detected, FRU isolated, module is not usable
-7 Fatal error detected, damage is possible
-8 Module/device not ready

-10 Invalid argument

Description: This option executes the test specified bytest_id. The test_idargument has two parts: the 16-bit
unsigned test section number in the most significant halfword and the 16-bit unsigned test step
number in the least significant halfword. Theinbuf_addrargument points to a buffer containing
user input and is used when ENTRY_TEST is interacting with the console.

The data_addrargument points to a global data buffer of sizedbuf_sizein the memory address
space. The caller of ENTRY_TEST must always pass the same buffer to all calls of
ENTRY_TEST (ARG1 = 1, 2, or 9) during the execution of a given test list. The caller must not
alter the contents of this buffer between calls to ENTRY_TEST during the execution of a given
test list.

The caller establishes ARG7 (EIM_addr) to specify the target of interrupts caused by this option.
The format of EIM_addr is the same as that of the SRS IO_EIM register in Type-A DMA
modules. If the caller wishes to prevent ENTRY_TEST from generating interrupts, the caller
must set ARG7=0. If ARG7 is nonzero, the caller must be prepared to accept interrupts at the
group and address specified. If the caller wishes to allow ENTRY_TEST for a Type-A Direct
module to generate interrupts, the caller must setEIM_addrto 0xFFFE0003.

If EIM_addr is nonzero, ENTRY_TEST for Type-A DMA modules or HP-CIO Adapters can write
EIM_addrto IO_EIM to establish the target for interrupts.

ENTRY_TEST for Type-B DMA modules must adjust the format ofEIM_addr to suit
CCMD_LINK_I.

5-68 IODC Firmware Architecture, Ver 1.1E

Execute step (ARG1=1) (continued) ENTRY_TEST

ENTRY_TEST for Type-A Direct modules is allowed to generate interrupts if and only if
EIM_addr is nonzero. ENTRY_TEST for Type-A Direct modules may optionally return status -10
(Invalid parameter) ifEIM_addr is nonzero but not equal to 0xFFFE0003.

ENTRY_TEST for memory modules must ignore theEIM_addrargument.

For bus converter ports, the return parameterr_fixedspecifies the fixed address of the remote port.
A value of -1 means that the fixed address of the remote port is not known, and a value from 0 to
63 means that the remote port has that value for its fixed address. All other values are illegal.

Firmware Architecture, Ver 1.1E IODC 5-69

Describe section (ARG1=2) ENTRY_TEST

Purpose: To generate a message describing a test section in the test list specified bylist_type.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 2
ARG2 spa/io_low SPA of the module/lower bound of I/O range
ARG3 ID_addr/io_high pointer to LAYER structure/upper bound of I/O range
ARG4 R_addr pointer to return buffer
ARG5 data_addr pointer to data buffer
ARG7 list_type type of test list
ARG8 test_id identifier of test to describe
ARG9 scope scope of test
ARG10 layer_valid qualifier forID_addr
ARG11 tic_10ms number of clock ticks per 10 msec

Returns: None

Status: Value Description

0 OK
-3 Cannot complete call without error

-10 Invalid argument

Description: The message is retrieved by a subsequent call to the "Return Message" option. Following a call to
"Describe Section", if status is greater than or equal to 0, ENTRY_TEST must enter the message
pending state. For status values less than 0, ENTRY_TEST may optionally enter the message
pending state.

The least significant halfword oftest_idmust always be 0 and the effect when it is nonzero is
SVERSION dependent. Iftest_id is greater than 0, a description of the section specified by the
most significant halfword is generated andlist_type is ignored. Iftest_idis 0, a short description
of all sections in the test list specified bylist_typeis generated.

The data_addrargument points to a global data buffer of sizedbuf_sizein the memory address
space. The caller of ENTRY_TEST must always pass the same buffer to all calls of
ENTRY_TEST (ARG1 = 1, 2, or 9) during the execution of a given test list. The caller must not
alter the contents of this buffer between calls to ENTRY_TEST during the execution of a given
test list.

5-70 IODC Firmware Architecture, Ver 1.1E

Return message (ARG1=9) ENTRY_TEST

Purpose: To retrieve a status message, summary error report, detailed error report, test section description,
or a user input prompt.

Arguments: Number Name Description

ARG0 hpa HPA of the module
ARG1 option value is 9
ARG2 spa/io_low SPA of the module/lower bound of I/O range
ARG3 ID_addr/io_high pointer to LAYER structure/upper bound of I/O range
ARG4 R_addr pointer to return buffer
ARG5 data_addr pointer to data buffer
ARG6 msg_addr pointer to message buffer
ARG7 msg_type type of message
ARG8 lang future use as language specifier
ARG9 scope scope of test
ARG10 layer_valid qualifier forID_addr
ARG11 tic_10ms number of clock ticks per 10 msec

Returns: Number Name Description

RET[0] msg_size number of bytes returned in the message buffer

Status: Value Description

0 OK
-3 Cannot complete call without error

-10 Invalid argument

Description: This option must be called to retrieve any pending message after each call to the "Execute Step"
option that returns a status of 1 or -4. The "Return Message" option may optionally be called after
every call to the "Execute Step" or "Describe Section" options. Ifmsg_type=0, a short (summary)
message is returned, while a longer (detailed) message is returned ifmsg_type=1. The option
interprets values ofmsg_typegreater than 1 to be the same asmsg_type=1 (to allow for future
extensions). The message is returned atmsg_addrand will not be longer thanmbuf_size.

The data_addrargument points to a global data buffer of sizedbuf_sizein the memory address
space. The caller of ENTRY_TEST must always pass the same buffer to all calls of
ENTRY_TEST (ARG1 = 1, 2, or 9) during the execution of a given test list. The caller must not
alter the contents of this buffer between calls to ENTRY_TEST during the execution of a given
test list.

The only allowed value forlang is 0.

The actual size of the message is returned asmsg_size. When there is no message pending,
"Return Message" is required to returnmsg_size= 0. When there is a message pending, "Return
Message" is required to returnmsg_size> 0. If msg_size> 0, the caller must write the message to
the console. The pending message must be cleared after each call to "Return Message".

Firmware Architecture, Ver 1.1E IODC 5-71

ENTRY_TLB (index 9) ENTRY_TEST

Purpose: To return the size of a Translating Bus Converter’s TLB.

Options: The option ARG1=0 is required.

Restrictions: ENTRY_TBL is not allowed to access its module at all. It is not allowed to cause its module to
generate interrupts nor to mask the occurrence of interrupts by changing CR15 (EIEM). It is
implemented only for upper ports.

Arguments: Description ARG0 ARG1 ARG2 ARG3

Return Info hpa 0 R R

Description ARG4 ARG5 ARG6 ARG7

Return Info R_addr R R R

Returns: Description RET[0] RET[1]

Return Info tlb_size R

The data type oftlb_size is a 32-bit unsigned integer.

Status: Value Description

OK
The call completed normally and the entry point detected no error.
REQUIRED.

0

Nonexistent option
ARG1 did not correspond to an option implemented by the entry point.
REQUIRED.

-2

Cannot complete call without error
An error of unspecified type prevented the call from completing correctly.
CONDITIONAL. Must be used if indeterminate errors can be detected.

-3

Invalid argument
An argument other than ARG1 was invalid.
OPTIONAL. The entry point may assume that its caller is perfect and need not check
arguments for correctness.

-10

Entry State: The architected state of the target module (module specified by ARG0) upon entry to
ENTRY_SPA is immaterial, and must not be changed by ENTRY_TLB.

Description: A Translating Bus Converter module must implement ENTRY_TLB for its upper port unless the
number of TLB entries is equal to the number in the U2 Translating Bus Converter module.

ENTRY_TLB returns in thetlb_size return parameter the number of TLB entries in the module’s
upper port.

5-72 IODC Firmware Architecture, Ver 1.1E

5.5 Module Specific IODC
The previous sections have described the aspects of IODC that are independent of module type. This section
details the module-specific aspects for each module type.

The only IODC byte which is module-type dependent is the IODC_SVERSION[opt] byte. Some of the other bytes
have special attributes based on module type.

SVERSION-dependent information for memory modules and bus converter ports will be given in this section.

5.5.1 Native Processor Specific IODC

5.5.1.1 IODC Data Bytes

Category A and category B processors implement only one byte of IODC, namely the IODC_TYPE byte. The
IODC_TYPE byte must be 0, which identifies the module as a native processor and specifies the correct values of
the mr andwd bits. Category A and category B modules also have an HVERSION and an SVERSION, but those
values are accessed through the PDC_MODEL procedure rather than through the IODC.

5.5.1.2 IODC Entry Points

No IODC entry points are defined for native processor modules.

Firmware Architecture, Ver 1.1E IODC 5-73

5.5.2 Memory Module Specific IODC

5.5.2.1 IODC Data Bytes

IODC_SVERSION

Two SVERSION model numbers are defined for memory modules (and these are the only SVERSION model
numbers that will ever be defined):

IODC_SVERSION[model] Description

8 Architected memory module
9 Processor-dependent memory module

The definition of the IODC_SVERSION[opt] byte for memory modules is as follows:

R mc eel R

24 26 27 28 29 31

mc Defines the module category. Has values 0 and 1 for category A and B modules respectively.

eel Validates the IO_ERR_REQ, IO_ERR_RESP, and IO_ERR_INFO registers for architected errors.

5.5.2.2 IODC Entry Points

The following table describes the IODC entry points defined for Memory Modules:

Index Mode Name

0-2 R Obsolete
3-6 R Reserved for entry points
7 R Obsolete
8 SV1 ENTRY_TEST

9-63 R Reserved for architected expansions
64-127 ??? Allocated for module-type dependent use
128-255 HV Allocated for HVERSION-dependent use

Notes:

1. This entry point is HVERSION dependent for architected memory modules and reserved for processor-dependent memory modules.

The only entry point defined for memory modules is ENTRY_TEST; it applies to architected memory modules
only.

The following are the objectives for ENTRY_TEST for architected memory modules:

• Verify operation of RAM error detection circuitry.

• Verify operation of RAM error correction circuitry.

• Verify operation of error reporting mechanisms in the memory module’s bus interface.

• Verify operation of error logging circuitry.

• Verify operation of all I/O registers.

• Complete the test in approximately 5 seconds.

The use of ENTRY_TEST by architected memory modules is governed by these rules:

• ENTRY_TEST may be implemented or not depending on the HVERSION.

• The Default Non User Input Offline Test List (list_type=2) is required if ENTRY_TEST is implemented. Other
test lists may be implemented or not depending on the HVERSION.

• All calls to ENTRY_TEST must be made with ARG3 (ID_addr) equal to 0.

Memory ENTRY_TEST must use the data buffer requested from its caller if it needs to write to the memory module

5-74 IODC Firmware Architecture, Ver 1.1E

under test. (ENTRY_TEST requests this buffer when called with ARG1 = 0). The caller of memory ENTRY_TEST
must allocate this data buffer in the memory module to be tested and in memory locations that have undergone a
Destructive Array Test. (Note that during Boot this corresponds to memory locations lower than or equal tofast-
size).

To guarantee that memory ENTRY_TEST runs in an environment where the only memory module is the IMM, the
following relation must be valid:

(size of the memory module for which ENTRY_TEST is written)
≥ (maximum value of MEM_FREE)

+ (ENTRY_TEST code size)
+ (8 Kbytes for ENTRY_TEST’s test list)
+ (ENTRY_TEST data buffer)
+ (ENTRY_TEST message buffer)

Firmware Architecture, Ver 1.1E IODC 5-75

5.5.3 Type-B DMA Specific IODC

5.5.3.1 IODC Data Bytes

IODC_SVERSION

The definition of the IODC_SVERSION[opt] byte for Type-B DMA I/O modules is:

int R mc R

24 25 26 27 28 31

int Module has interrupt capability if the bit is set.

mc Defines the module category. Has values 0 and 1 for category A and B modules respectively.

In addition to the IODC_SVERSION[opt] byte which explicitly encodes the existence or nonexistence of certain
functionality in the module, the IODC_TYPE byte for Type-B DMA I/O modules also implicitly encodes the
following functionality:

• The SRS has an IO_STATUS register.

• No effects on the responder can occur on a READ operation from any register (address).

• The module uses DMA I/O data transfers with command chaining.

• The module will only interrupt after the insertion of a completion list entry.

5.5.3.2 IODC Entry Points

The following table describes the IODC entry points defined for Type B DMA I/O Modules:

Index Mode Name

0-2 R Obsolete
3 A1 ENTRY_INIT
4 A1 ENTRY_IO
5 SV2 ENTRY_SPA
6 SV ENTRY_CONFIG
7 R Obsolete
8 SV ENTRY_TEST

9-63 R Reserved for architected expansions
64-127 ??? Allocated for module-type dependent use
128-255 SV Allocated for SVERSION-dependent use

Notes:

1. This entry point is architected if the module is a boot or console module; otherwise, it is reserved.

2. This entry point is architected if the module has more than one SPA or a single SPA which is not a power of two in size; otherwise, it is
reserved.

5-76 IODC Firmware Architecture, Ver 1.1E

5.5.4 Type-A DMA Specific IODC

5.5.4.1 IODC Data Bytes

IODC_SVERSION

The definition of the IODC_SVERSION[opt] byte for Type-A DMA I/O modules is:

int R mc R

24 25 26 27 28 31

int Module has interrupt capability if the bit is set.

mc Defines the module category. Has values 0 and 1 for category A and B modules respectively.

In addition to the IODC_SVERSION[opt] byte which explicitly encodes the existence or nonexistence of certain
functionality in the module, the IODC_TYPE byte for Type-A DMA I/O modules also implicitly encodes the
following functionality:

• The SRS has an IO_STATUS register.

• Effects on the responder can occur on a read only from any non-architected register (address).

• The module uses DMA I/O data transfers without command chaining.

• The module will only interrupt via a programmable IO_EIM register after setting the IO_II_DATA[ii] bit in the
SRS.

5.5.4.2 IODC Entry Points

The following table describes the IODC entry points defined for Type A DMA I/O Modules:

Index Mode Name

0-2 R Obsolete
3 A1 ENTRY_INIT
4 A1 ENTRY_IO
5 SV2 ENTRY_SPA
6 SV ENTRY_CONFIG
7 R Obsolete
8 SV ENTRY_TEST

9-63 R Reserved for architected expansions
64-127 ??? Allocated for module-type dependent use
128-255 SV Allocated for SVERSION-dependent use

Notes:

1. This entry point is architected if the module is a boot or console module; otherwise, it is reserved.

2. This entry point is architected if the module has more than one SPA or a single SPA which is not a power of two in size; otherwise, it is
reserved.

Firmware Architecture, Ver 1.1E IODC 5-77

5.5.5 Type-A Direct Specific IODC

5.5.5.1 IODC Data Bytes

IODC_SVERSION

The definition of the IODC_SVERSION[opt] byte for Type-A Direct I/O modules is:

int R mc R

24 25 26 27 28 31

int Module has interrupt capability if the bit is set.

mc Defines the module category. Has values 0 and 1 for category A and B modules respectively.

In addition to the IODC_SVERSION[opt] byte which explicitly encodes the existence or nonexistence of certain
functionality in the module, the IODC_TYPE byte for Type-A Direct I/O modules also implicitly encodes the
following functionality:

• The SRS may not have an IO_STATUS register; generic software will assume that it does not.

• Effects on the responder can occur on a read only from any non-architected register (address).

• The module uses direct I/O data transfers.

• The module will only interrupt via asserting the PATH_INT signal (producing a global broadcast interrupt to
EIR{3}) after setting the IO_II_DATA[ii] bit in the SRS.

5.5.5.2 IODC Entry Points

The following table describes the IODC entry points defined for Type A Direct I/O Modules:

Index Mode Name

0-2 R Obsolete
3 A1 ENTRY_INIT
4 A1 ENTRY_IO
5 SV2 ENTRY_SPA
6 SV ENTRY_CONFIG
7 R Obsolete
8 SV ENTRY_TEST

9-63 R Reserved for architected expansions
64-127 ??? Allocated for module-type dependent use
128-255 SV Allocated for SVERSION-dependent use

Notes:

1. This entry point is architected if the module is a boot or console module; otherwise, it is reserved.

2. This entry point is architected if the module has more than one SPA or a single SPA which is not a power of two in size; otherwise, it is
reserved.

5-78 IODC Firmware Architecture, Ver 1.1E

5.5.6 Bus Converter Port Specific IODC

An upper bus converter port must provide at least bytes 0 through 15 of IODC data and at least the ENTRY_TEST
entry point. A lower bus converter port must provide at least bytes 0 through 7 of IODC data.

5.5.6.1 IODC Data Bytes

IODC_HVERSION

IODC_HVERSION bits {0..4} give the bus ID of the port’s bus, according to theBus Identifier table in Section
B.2.2. of the PA-RISC 1.1 I/O Architectural Reference Specification.

PROGRAMMING NOTE

Bits 0..4 of IODC_HVERSION[model] of a bus converter port can be used to identify the bus connected
to that port. This is useful for determining the optimal system configuration (based on bus performance)
and executing diagnostics.

IODC_SVERSION

The assigned value for IODC_SVERSION[rev] is 0x0.

The assigned value for IODC_SVERSION[model] is 0x0000C.

The definition of the IODC_SVERSION[opt] byte is:

R D S R

24 26 2728 29 31

D Indicates that the Bus converter is D-coherent. If the D-bit is 1, then purges and flushes do not need to
be done after I/O operations. If the bit is set to 0, then purges and flushes of the memory range DMAed
to must be done after an I/O operation.

S Indicates that the Bus converter does Synchronzation on I/O. If the S-bit is 1, then no SYNCDMA
instructions must be executed in conjunction with a DMA operation. If the S-bit is 0, then each I/O
operation requires SYNCDMA instructions.

5.5.6.2 IODC Entry Points

The following table describes the IODC entry points defined for Bus Converter Modules:

Index Mode Name

0-2 R Obsolete
3-6 R Reserved for entry points
7 R Reserved
8 A1 ENTRY_TEST

9-63 R Reserved for architected expansions
64-127 ??? Allocated for module-type dependent use
128-255 HV Allocated for HVERSION-dependent use

Notes:

1. This entry point is architected for ports that are not hardwired and hardwired upper ports. It is reserved for lower ports.

ENTRY_TEST is the only IODC entry point allowed for bus converter ports.

ENTRY_TEST is required for all ports that are not hardwired. Additionally, it is required for hardwired upper
ports. It is not allowed on a hardwired lower port. In the case of independent ports, ENTRY_TEST will exist in
each port, but only the one accessed through the upper port will be executed. However, ENTRY_TEST must be
able to test both ports of the bus converter.

Firmware Architecture, Ver 1.1E IODC 5-79

When hard booting, PDC must call ENTRY_TEST for all bus converters in the boot and console paths and may
optionally call ENTRY_TEST for all other bus converters; PDC must not call ENTRY_TEST at any other time.
The successful execution of ENTRY_TEST for a bus converter decreases the likelihood that the bus converter will
impede the data transfer between the boot/console module and memory on the central bus.

SUPPORT NOTE

To minimize undetected failures, the operating system is encouraged to call ENTRY_TEST during
system configuration after a hard boot for all bus converters not tested by the PDC boot code. However,
if ENTRY_TEST is called during a soft boot, OS_PFR, or OS_PFW_REMOTE, the OS should be aware
that it may need to allocate some portion of memory to load the ENTRY_TEST code into, keeping in
mind that there is no architectural limit on the size of ENTRY_TEST (offline test lists).

The only system configuration that bus converter ENTRY_TEST may assume, in addition to the bus converter
itself, is the monarch processor and a memory module on the central bus. In particular, ENTRY_TEST must not
assume that a module on the lower bus could serve as a slave to transactions coming from the upper port or as a
master for transactions going to the upper port.

The EIM_addr anddata_addrarguments allow ENTRY_TEST to test the bus converter’s master circuitry on the
upper port. ENTRY_TEST may obtain the monarch processor’s HPA either by calling PDC_HPA, or by deriving it
from theEIM_addrargument (if theEIM_addrargument is not in the BPA space). TheEIM_addrargument must
be either the monarch processor’s IO_EIR address, or the IO_EIR address in the global broadcast address space.
Thedata_addrargument points to a buffer in a memory module’s SPA. ENTRY_TEST may use these arguments to
generate the slave address of a transaction directed to the central bus. (Another way for ENTRY_TEST to test the
bus converter port’s master circuitry is to issue transactions to itself.)

The io_low andio_higharguments provide a range of addresses that can be used to test transactions going through
the BC. Both io_low and io_high must be 64 Kbyte aligned. The range must be such that ((io_high &
0xFFFC0000) -io_low) >= 256 Kbytes, in order to guarantee that ENTRY_TEST always finds an address range to
use as the HPA of the remote bus.

SUPPORT NOTE

ENTRY_TEST should test every possible circuit including the following:

• Modes (OFF, INCLUDE, EXCLUDE, and PEEK)
• Master and slave functionality
• Error signalling circuitry
• Error logging circuitry
• The link connecting both ports
• Transaction queues
• All implemented registers in the I/O and broadcast address spaces

In addition to the normal IODC calling conventions, the state of both ports of the bus converter between the
execution of sections in a test list is the following:

• The IO_FLEX register on the upper port must not be changed.

• On the lower port, IO_FLEX[flex] on the lower port must be set to any 256 Kbyte-aligned address between
io_low andio_highand IO_FLEX[enb] must be zero.

• IO_IO_LOW, IO_IO_HIGH, and IO_CONTROL registers may be modified by ENTRY_TEST, provided the
changes in these registers do not cause multiple slaves to acknowledge a directed transaction. However, in
order to prevent unwanted transactions from modules on the lower bus, a broadcast flex disable must be issued
before enabling the remote port.

• On exit, the values of IO_CONTROL, IO_IO_LOW, and IO_IO_HIGH are HVERSION dependent if
ENTRY_TEST returns with a negative status. Otherwise, the following restrictions apply:

5-80 IODC Firmware Architecture, Ver 1.1E

— IO_CONTROL[mode] on the upper port must be set to INCLUDE; IO_CONTROL[mode] on the lower port
must be set to EXCLUDE.

— IO_IO_LOW and IO_IO_HIGH must be set to the values passed in as ARG2 and ARG3.

• If ENTRY_TEST returns with a negative status value, IO_STATUS and the extended error logging registers
must reflect the state of the bus converter ports at the time ENTRY_TEST failed. Otherwise, the IO_STATUS
register must indicate the port is in ST_READY, IO_STATUS[lp] must be 0 on the upper port and 1 on the
lower port, IO_STATUS[pl] must be 0 on both ports, and IO_STATUS[pw,pf] must reflect the state of the
remote power.

• The remaining registers may be modified and contain HVERSION-dependent data upon exit of each call to
ENTRY_TEST.

Further, ENTRY_TEST must not cause any modules on the upper and the lower bus to generate bus traffic through
the bus converter during its execution. Also, ENTRY_TEST must not affect the state of any module "above" the bus
converter other than the contents of memory fromdata_addrto data_addr+dbuf_size-1 and sending an interrupt to
EIM_addr.

For an offline test list, the state of all other modules "below" the BC being tested is a function of the
IODC_HVERSION and IODC_REV bytes of the upper BC port.

SUPPORT NOTE

It is recommended that affecting the state of other modules "below" the bus converter should be avoided
if possible.

In addition to the requirements listed above, the caller of "Return Info" option of ENTRY_TEST needs to establish
the following state:

• Modules on the upper bus have been reset (with CMD_RESET.ST), have their HPA initialized, and have their
bus mastership enabled.

PROGRAMMING NOTE

A recommended sequence of steps for ENTRY_TEST is as follows:

1. Test the upper bus converter port.

2. Issue a CMD_CLEAR to the upper bus converter port and put it in PEEK mode.

3. Initialize the HPAs and disable mastership on the lower bus.

4. Identify the bus converter lower port (this step is easy if its fixed address is hardwired).

5. Put the upper port in INCLUDE mode.

6. Test the lower bus converter port.

Firmware Architecture, Ver 1.1E IODC 5-81

5.5.7 Translating Bus Converter (IOA) Specific IODC

An upper translating bus converter port must provide at least bytes 0 through 15 of IODC data and at least the
ENTRY_TEST entry point. It may optionally also provide the ENTRY_TLB entry point. A lower bus converter
port must provide at least bytes 0 through 7 of IODC data.

5.5.7.1 IODC Data Bytes

IODC_HVERSION

IODC_HVERSION bits {0..4} give the bus ID of the port’s bus, according to theBus Identifier table in Section
B.2.2. of the PA-RISC 1.1 I/O Architectural Reference Specification.

PROGRAMMING NOTE

Bits 0..4 of IODC_HVERSION[model] of a bus converter port can be used to identify the bus connected
to that port. This is useful for determining the optimal system configuration (based on bus performance)
and executing diagnostics.

IODC_SVERSION

The assigned value for IODC_SVERSION[rev] is 0x0.

The assigned value for IODC_SVERSION[model] is 0x0000B.

The definition of the IODC_SVERSION[opt] byte is:

R D S R

24 26 2728 29 31

D Indicates that the Bus converter is D-coherent. If the D-bit is 1, then purges and flushes do not need to
be done after I/O operations. If the bit is set to 0, then purges and flushes of the memory range DMAed
to must be done after an I/O operation.

S Indicates that the Bus converter does Synchronzation on I/O. If the S-bit is 1, then no SYNCDMA
instructions must be executed in conjunction with a DMA operation. If the S-bit is 0, then each I/O
operation requires SYNCDMA instructions.

5.5.7.2 IODC Entry Points

The following table describes the IODC entry points defined for Translating Bus Converter Modules (IOAs):

Index Mode Name

0-2 R Obsolete
3-6 R Reserved for entry points
7 R Reserved
8 A1 ENTRY_TEST
9 O2 ENTRY_TLB

10-63 R Reserved for architected expansions
64-127 ??? Allocated for module-type dependent use
128-255 HV Allocated for HVERSION-dependent use

Notes:

1. This entry point is architected for ports that are not hardwired and hardwired upper ports. It is reserved for lower ports.

2. This entry point is optional for upper ports. If the number of TLB entries is the same as the U2 IOA module, it is not required, otherwise,
it is. It is reserved for lower ports.

ENTRY_TEST and ENTRY_TLB are the only IODC entry points allowed for Translating Bus Converter (IOA)
modules.

5-82 IODC Firmware Architecture, Ver 1.1E

ENTRY_TEST is required for all ports that are not hardwired. Additionally, it is required for hardwired upper
ports. It is not allowed on a hardwired lower port. In the case of independent ports, ENTRY_TEST will exist in
each port, but only the one accessed through the upper port will be executed. However, ENTRY_TEST must be
able to test both ports of the bus converter.

When hard booting, PDC must call ENTRY_TEST for all bus converters in the boot and console paths and may
optionally call ENTRY_TEST for all other bus converters; PDC must not call ENTRY_TEST at any other time.
The successful execution of ENTRY_TEST for a bus converter decreases the likelihood that the bus converter will
impede the data transfer between the boot/console module and memory on the central bus.

SUPPORT NOTE

To minimize undetected failures, the operating system is encouraged to call ENTRY_TEST during
system configuration after a hard boot for all bus converters not tested by the PDC boot code. However,
if ENTRY_TEST is called during a soft boot, OS_PFR, or OS_PFW_REMOTE, the OS should be aware
that it may need to allocate some portion of memory to load the ENTRY_TEST code into, keeping in
mind that there is no architectural limit on the size of ENTRY_TEST (offline test lists).

The only system configuration that bus converter ENTRY_TEST may assume, in addition to the bus converter
itself, is the monarch processor and a memory module on the central bus. In particular, ENTRY_TEST must not
assume that a module on the lower bus could serve as a slave to transactions coming from the upper port or as a
master for transactions going to the upper port.

The EIM_addr anddata_addrarguments allow ENTRY_TEST to test the bus converter’s master circuitry on the
upper port. ENTRY_TEST may obtain the monarch processor’s HPA either by calling PDC_HPA, or by deriving it
from theEIM_addrargument (if theEIM_addrargument is not in the BPA space). TheEIM_addrargument must
be either the monarch processor’s IO_EIR address, or the IO_EIR address in the global broadcast address space.
Thedata_addrargument points to a buffer in a memory module’s SPA. ENTRY_TEST may use these arguments to
generate the slave address of a transaction directed to the central bus. (Another way for ENTRY_TEST to test the
bus converter port’s master circuitry is to issue transactions to itself.)

The io_low andio_higharguments provide a range of addresses that can be used to test transactions going through
the BC. Both io_low and io_high must be 64 Kbyte aligned. The range must be such that ((io_high &
X’FFFC0000) -io_low) >= 256 Kbytes, in order to guarantee that ENTRY_TEST always finds an address range to
use as the HPA of the remote bus.

SUPPORT NOTE

ENTRY_TEST should test every possible circuit including the following:

• Modes (OFF, INCLUDE, EXCLUDE, and PEEK)
• Master and slave functionality
• Error signalling circuitry
• Error logging circuitry
• The link connecting both ports
• Transaction queues
• TLBs and caches
• All implemented registers in the I/O and broadcast address spaces

In addition to the normal IODC calling conventions, the state of both ports of the bus converter between the
execution of sections in a test list is the following:

• The IO_FLEX register on the upper port must not be changed.

• On the lower port, IO_FLEX[flex] on the lower port must be set to any 256 Kbyte-aligned address between
io_low andio_highand IO_FLEX[enb] must be zero.

Firmware Architecture, Ver 1.1E IODC 5-83

• IO_IO_LOW, IO_IO_HIGH, and IO_CONTROL registers may be modified by ENTRY_TEST, provided the
changes in these registers do not cause multiple slaves to acknowledge a directed transaction. However, in
order to prevent unwanted transactions from modules on the lower bus, a broadcast flex disable must be issued
before enabling the remote port.

• On exit, the values of IO_CONTROL, IO_IO_LOW, and IO_IO_HIGH are HVERSION dependent if
ENTRY_TEST returns with a negative status. Otherwise, the following restrictions apply:

— IO_CONTROL[mode] on the upper port must be set to INCLUDE; IO_CONTROL[mode] on the lower port
must be set to EXCLUDE.

— IO_IO_LOW and IO_IO_HIGH must be set to the values passed in as ARG2 and ARG3.

• If ENTRY_TEST returns with a negative status value, IO_STATUS and the extended error logging registers
must reflect the state of the bus converter ports at the time ENTRY_TEST failed. Otherwise, the IO_STATUS
register must indicate the port is in ST_READY, IO_STATUS[lp] must be 0 on the upper port and 1 on the
lower port, IO_STATUS[pl] must be 0 on both ports, and IO_STATUS[pw,pf] must reflect the state of the
remote power.

• The remaining registers may be modified and contain HVERSION-dependent data upon exit of each call to
ENTRY_TEST.

Further, ENTRY_TEST must not cause any modules on the upper and the lower bus to generate bus traffic through
the bus converter during its execution. Also, ENTRY_TEST must not affect the state of any module "above" the bus
converter other than the contents of memory fromdata_addrto data_addr+dbuf_size-1 and sending an interrupt to
EIM_addr.

For an offline test list, the state of all other modules "below" the BC being tested is a function of the
IODC_HVERSION and IODC_REV bytes of the upper BC port.

SUPPORT NOTE

It is recommended that affecting the state of other modules "below" the bus converter should be avoided
if possible.

In addition to the requirements listed above, the caller of "Return Info" option of ENTRY_TEST needs to establish
the following state:

• Modules on the upper bus have been reset (with CMD_RESET.ST), have their HPA initialized, and have their
bus mastership enabled.

PROGRAMMING NOTE

A recommended sequence of steps for ENTRY_TEST is as follows:

1. Test the upper bus converter port.

2. Issue a CMD_CLEAR to the upper bus converter port and put it in PEEK mode.

3. Initialize the HPAs and disable mastership on the lower bus.

4. Identify the bus converter lower port (this step is easy if its fixed address is hardwired).

5. Put the upper port in INCLUDE mode.

6. Test the lower bus converter port.

ENTRY_TLB is used to inform the operating system the number of TLB entries contained in the upper port of the
translating bus converter.

5-84 IODC Firmware Architecture, Ver 1.1E

5.5.8 Console Pseudo-Module Specific IODC

5.5.8.1 IODC Data Bytes

A Console psuedo-module must implement the first 16 bytes of IODC, as described below:

• IODC_HVERSION must be implemented as already defined for other module types.

• The shift field in the IODC_SPA byte must always be zero, since a Console pseudo-module can never have an
SPA.

• IODC_TYPE must be implemented as already defined for other module types. The IODC_TYPE[type] field
must equal TP_CONSOLE, value 9.

• IODC_SVERSION must be implemented as already defined for other module types. The
IODC_SVERSION[model] field must equal 0x0001C, since all current Console pseudo-modules have the same
software interface, and hence the same SVERSION.

• The definition of the IODC_SVERSION[opt] byte for console modules is as follows:

R 0 R

24 26 27 28 31

• IODC_REV, IODC_DEP, IODC_CHECK, and IODC_LENGTH must be implemented as already defined for
other module types.

5.5.8.2 IODC Entry Points

The following table describes the IODC entry points defined for Console Pseudo-modules:

Index Mode Name

0-2 R Obsolete
3 A ENTRY_INIT
4 A ENTRY_IO
5 R Reserved for entry points.
6 HV ENTRY_CONFIG
7 R Obsolete
8 HV ENTRY_TEST

9-127 R Reserved
128-255 HV Allocated for HVERSION-dependent use

A Console pseudo-module must implement its IODC entry points as follows:

• A Console pseudo-module must implement ENTRY_INIT as currently defined, except that it must ignore the
hpaandspaarguments to each option.

• A Console pseudo-module must implement ENTRY_IO as currently defined, but with the following
restrictions:

• A Console pseudo-module must implement options ARG1=2 (Console input) and ARG1=3 (Console
output).

• A Console pseudo-module may optionally implement option ARG1=9 (Return message).

• A Console pseudo-module must not implement options ARG1=0 (Boot input) or ARG1=1 (Boot output).

• A Console pseudo-module must ignore thehpaandspaarguments to each option.

• If a Console pseudo-module implements ENTRY_TEST, it must implement it as currently defined, except that it
must ignore thehpa, spa, andEIM_addrarguments to each option.

• The ARG1=0 option of PDC_IODC must be used to fetch IODC from a Console pseudo-module by passing in
its pseudo-HPA.

Firmware Architecture, Ver 1.1E IODC 5-85

5.5.9 Independently-developed Module Specific IODC

The IODC_SVERSION[model] value 0x00FFF is allocated for use by Type A-Direct, Type A-DMA, and Type B-
DMA I/O modules developed independent of HP. This SVERSION differs from all other SVERSIONs in that it
does not correspond to a unique software interface.

Modules with this IODC_SVERSION[model] value must have an IODC_SVERSION[rev] value of 0. For these
modules, the contents and meaning of the IODC_HVERSION[model] field are dependent on the particular module
implementation, and do not have their normal architectural definition.

All other IODC fields, for example, IODC_TYPE, IODC_SPA, IODC_SVERSION[opt], must be implemented as
already defined in the I/O Architecture.

ENGINEERING NOTE

Unique SVERSIONs are available to both internal HP developers and outside vendors. An outside
vendor who contacts HP will be allocated a unique SVERSION.

The IODC_SVERSION[model] value of 0x00FFF is intended exclusively for use by outside vendors
who wish to develop modules independent of HP, and who do not wish to contact HP for a unique
SVERSION.

5-86 IODC Firmware Architecture, Ver 1.1E

TABLE OF CONTENTS

5. IODC . 5-1
5.1 IODC Data Bytes . 5-2
5.2 IODC Entry Point Table . 5-13
5.3 IODC Calling Conventions . 5-14

5.3.1 Processor Entry/Exit State. 5-14
5.3.2 Use of the EIR and EIEM by IODC 5-16
5.3.3 IODC and Interruptions. 5-17
5.3.4 Online IODC . 5-17
5.3.5 IODC and the Operating System. 5-18
5.3.6 IODC and PDC . 5-18
5.3.7 Standard Arguments. 5-19
5.3.8 Data Types . 5-19
5.3.9 Return Parameters . 5-19
5.3.10 Status . 5-20

5.4 IODC Entry Points . 5-21
5.5 Module Specific IODC . 5-73

5.5.1 Native Processor Specific IODC. 5-73
5.5.1.1 IODC Data Bytes . 5-73
5.5.1.2 IODC Entry Points . 5-73

5.5.2 Memory Module Specific IODC 5-74
5.5.2.1 IODC Data Bytes . 5-74
5.5.2.2 IODC Entry Points . 5-74

5.5.3 Type-B DMA Specific IODC 5-76
5.5.3.1 IODC Data Bytes . 5-76
5.5.3.2 IODC Entry Points . 5-76

5.5.4 Type-A DMA Specific IODC 5-77
5.5.4.1 IODC Data Bytes . 5-77
5.5.4.2 IODC Entry Points . 5-77

5.5.5 Type-A Direct Specific IODC 5-78
5.5.5.1 IODC Data Bytes . 5-78
5.5.5.2 IODC Entry Points . 5-78

5.5.6 Bus Converter Port Specific IODC 5-79
5.5.6.1 IODC Data Bytes . 5-79
5.5.6.2 IODC Entry Points . 5-79

5.5.7 Translating Bus Converter (IOA) Specific IODC 5-82
5.5.7.1 IODC Data Bytes . 5-82
5.5.7.2 IODC Entry Points . 5-82

5.5.8 Console Pseudo-Module Specific IODC. 5-85
5.5.8.1 IODC Data Bytes . 5-85
5.5.8.2 IODC Entry Points . 5-85

5.5.9 Independently-developed Module Specific IODC. 5-86

Firmware Architecture, Ver 1.1E Contents iii

LIST OF FIGURES

Figure 5-1. Entry Point Table Word . 5-13

Figure 5-2. Entry Point Code Block . 5-13

iv Contents Firmware Architecture, Ver 1.1E

LIST OF TABLES

TABLE 5-1. IODC Data Bytes . 5-2

TABLE 5-2. IODC Entry Points . 5-21

TABLE 5-3. Standard Test Lists . 5-63

Firmware Architecture, Ver 1.1E Contents v

This page intentionally left blank

vi Contents Firmware Architecture, Ver 1.1E

