
PA-RISC 2.0 Firmware Architecture
Reference Specification

Version 1.1E Printed in U.S.A. July 22, 2004

Notice
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information that is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced, or translated to another language without the
prior written consent of Hewlett-Packard Company.

Copyright  1983-2003 by HEWLETT-PACKARD COMPANY All Rights Reserved
LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
__

LL
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L__

2. Firmware Objectives Overview
The purpose of the PA-RISC Firmware Architecture is to specify the architectural requirements for writing PDC
and IODC which will allow generic software to run across a wide range of processors, some of which may be
implemented in different technologies.

To accomplish this purpose, the PA-RISC Architecture specifies the functions required to accomplish the following
goals:

• Initialize the hardware and boot the machine from the point a reset is received or a power on sequence is
initiated until generic software is given control (PDC Entry Points).

• Respond to a hardware triggered event, such as a reset, machine check, or the detection of an impending power
failure (PDC Entry Points).

• Provide processor specific services for generic software (PDC Procedures).

• Provide services to allow the identification, configuration, and initialization of I/O modules (IODC Data and
IODC Entry Points).

• Allow the OS to be handed control from firmware to do further processing related to a hardware triggered event
(OS Interfaces).

These specifications are contained in Part II of this manual (Chapter 3 through Chapter 6).

The PA-RISC Firmware Architecture employs many concepts from the PA-RISC Processor Architecture and PA-
RISC I/O Architecture as a base for defining its specifications. The remainder of this chapter defines the concepts
and specifies the Processor and I/O Architecture components necessary to specify the firmware.

The functionality described for the PA-RISC I/O Architecture assumes a specific model for the mapping of the I/O
address space, and the addressing of I/O modules in that space. In the specific case where a PA-RISC processor is
connected to a foreign bus through a bus adapter, the algorithm for locating I/O modules may change from the PA-
RISC algorithm. However, the IODC functionality to identify, configure, and initialize those modules must still be
provided. Note that the specifications in the following sections assume a fully native PA-RISC model.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-1

2.1 Module Addressing
Module addressingrefers to the address spaces used by various modules and the general characteristics of each
address space. It should be noted that module addressing deals solely with physical addresses, not virtual
addresses. As such, "physical" is implied whenever "address" is used by itself.

The system address space is logically subdivided intopages, each 4 Kbytes in size and aligned on a 4-Kbyte
boundary. When these pages are associated with modules in the system, they are grouped intoaddress spacesfor
reference purposes. There are three possible address spaces which may be recognized by a given module: the hard,
extended, and broadcast physical address spaces. Every module recognizes a unique hard physical address space
and the broadcast physical address space. There are two kinds of extended address spaces; bus converter ports have
I/O range spaces while other module types may have a soft physical address space. These three address spaces are
described in the following sections.

In addition to pages and address spaces, the architecture also divides the I/O and broadcast address spaces into two
other units termedI/O registers (or registers for short) andregister sets. The I/O address space is byte
addressable; however, the architected unit of addressability in the I/O space is a word-sized, word-aligned quantity
called a register. Every register set consists of 16 registers (numbered 0 - 15), and is aligned on a 16-word
boundary. There are 64 register sets in each page (numbered 0 - 63).

2.1.1 Hard Physical Address (HPA) Space

Every native module responds to (i.e., slave acknowledges) a 4-Kbyte address range in the I/O address space called
its hard physical address (HPA) space. The HPA space must be implemented and privileged for all native
modules. The HPA space allows access to functionality which is architecturally required of all native modules.

HPA space need not be implemented for fixed address modules and for PCI devices. For fixed address modules, the
HPA address must still be a valid address in the I/O space of the platform, however no registers need be
implemented in the space, and the HPA address can simply be used as a handle to obtain IODC information using
PDC_IODC.

For PCI modules, not only must the IODC information be obtained by calling PDC_IODC, but the the HPA is not
an actual (64-bit) I/O address, but is a 32-bit PCI Function address (PFA). Bit 0 of the PFA must always be zero.
For the format of a PFA see theLocal PCI Bus Interface Specification, Version 2.1.

The register set layout of the HPA is shown in Figure 2-1.

The first register set in the HPA of every module is theSupervisor Register Set(SRS). Registers in the SRS are
used to configure and control the module as a whole. For example, the registers used to identify the module and to
reset the entire module are located in the SRS.

The second register set in the HPA of every module is theAuxiliary Register Set (ARS). The ARS contains
additional module-type dependent registers related to the operation of the module as a whole. For example, the
registers which control the size and location of the extended address space of a bus converter port are located in the
ARS as are the extended error logging registers for memory modules.

Register sets labeled HVRS in the figure areHVERSION-Dependent Register Sets. No architected function can
be implemented in an HVRS. These register sets contain only HVERSION-dependent registers.

Register sets labeled BSRS in the figure areBus Specification-Dependent Register Sets. These register sets are
defined by the bus specification on which the module resides and are typically used to implement a common
functionality among all modules on a given bus. The bus specification may optionally delegate their definition to
the module SVERSION or HVERSION.

Register sets labeled TRS in the figure areType-Dependent Register Sets. There are two kinds of TRS:

• SVERSION-Dependent Register Set(SVRS)

An SVRS contains only SVERSION-dependent registers. No architected function can be implemented in an
SVRS.

• HVERSION-Dependent Register Set(HVRS)

2-2 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

SRS
ARS

TRSes

HVRSes

BSRSes

TRSes

0
1
2

11
12

29
30
31
32

63

Figure 2-1. HPA Space Layout

See Section 2.2, I/O Register Properties, for a discussion of register properties, including SVERSION and
HVERSION dependent.

During configuration, each native bus is allocated 256 Kbytes of HPA space in the I/O address space. This 256
Kbytes of address space is subdivided into 64 4-Kbyte units which have a one-to-one correspondence with the 64
possible modules that can be connected to each native bus. Thus, every module has one and only one of these 4-
Kbyte units allocated for its HPA. The HPA space of a native bus must be 256-Kbyte aligned; the HPA space of a
module must be 4-Kbyte aligned.

Hard physical addresses to architected I/O registers are of the form:

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-3

1111 flex fixed reg-set register 00

0 3 4 45 46 51 52 57 58 61 62 63

1111 address is an I/O address

flex bus to which the module is connected

fixed module’s location on the bus

reg-set register set offset within the HPA

register register offset within the register set

00 all architected HPA registers are word aligned

Figure 2-2. Hard Physical Addresses

For the addresses in a module’s HPA space, theflexfield specifies the native bus to which the module is connected.
All modules on any given bus have the sameflex value. That is, theflex field identifies the 256-Kbyte HPA space
associated with each bus. Each native bus has a uniqueflexvalue assigned to it by software during configuration.

On some native busses, theflex field address comparison hardware may be shared by multiple modules. Before
indicating a valid flex comparison, this shared hardware must also check that the address is in the I/O space (i.e.,
the upper four bits are ones) if the modules sharing the comparison logic do not make this check. Similarly, this
shared hardware must also ensure that the address precedence rules specified in Section 2.1.4, Address Space
Conflicts, are obeyed (e.g., a valid flex comparison must never be asserted for any broadcast transaction even if the
flex address of the bus overlaps the broadcast address space). See the appropriate bus specification for further
details.

Note that due to other architectural restrictions (PDC and broadcast address spaces), theflex field does not have a
full range of values. In particular, the range of I/O addresses available for use by HPA spaces is 0xF1000000
00000000 through 0xFFFFFFFF FFFBFFFF Theflexvalue of the central bus is always 0x3FFFFFFFFFFE (42 bits).

For the addresses in a module’s HPA space, thefixed field distinguishes each module from other modules on the
same bus (i.e., with the sameflex value). Thefixedfield of an HPA must not vary across power failures or boots,
and must be independent of configuration changes. For each bus transaction to the I/O address space, a module
must compare thefixedvalues for each slave address where theflexvalues match.

Thereg-setandregisterfields indicate the desired register set and register, respectively.

2.1.2 Extended Address Space

A module’s extended address spaceallows the module to extend the range of addresses to which it responds
beyond the range provided by its HPA space. The kind of extended address space available to a module is
dependent on the module’s type and is illustrated in the table below.

TABLE 2-1. Extended Address Space Availability

Module Type(s) Extended Address Space

TP_B_DMA, TP_A_DMA,
TP_A_DIRECT, TP_CIO,
TP_MEMORY

soft physical address space

TP_BCPORT I/O and memory range spaces
TP_NPROC PDC address space
TP_CONSOLE none

2.1.2.1 Soft Physical Address (SPA) Space

If an I/O , memory, or CIO adapter module requires a larger address range than that provided by its HPA space, the
module needs somesoft physical address (SPA) space. All the information needed by generic software to allocate
SPA space to a module is contained in the module’s IODC (see Chapter 5, IODC, for details on the IODC_SPA byte
and the ENTRY_SPA entry point).

2-4 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

2.1.2.1.1 Memory SPAs

The SPA space of a memory module or processor-dependent interleave group must be 2n Kbytes (n > 1) in size, and
it must be aligned on a boundary which is a multiple of its size. The SPA space must reside in the memory address
space.

The pages in the memory SPA space of a memory module or processor-dependent interleave group can be either
implemented or unimplemented. The implemented pages must be contiguous, greater than one-half of the value of
max_spa, and start at the base address of the SPA space.

When the SPA space of a module resides in the memory address space, all addresses to the module’s SPA space are
of the form:

memory-page offset

0 51 52 63

memory-page physical memory page

offset offset within the page

Figure 2-3. Memory Soft Physical Addresses

Note that due to other architectural restrictions (e.g., the PDC space and the size of the system memory space), the
memory-pagefield does not have a full range of values. In particular, the range of system memory addresses
available for use by SPA spaces is 0x00000000 00000000 through 0xEFFFFFFF FFFFFFFF.

2.1.2.1.2 I/O SPAs

An I/O module (Type-B DMA, Type-A DMA, or Type-A Direct) may have up to two SPA spaces (as specified by
its SVERSION). Each of the SPA spaces must be a multiple of 4K bytes in size and must reside in the I/O address
space. All pages in the SPA space(s) must be implemented.

The base address, bound address, and alignment of the SPA spaces allocated to a module is SVERSION dependent.

The register set layout of an I/O SPA space is shown below:

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-5

TRSes

.

.

.

TRSes

0

63

0

63

Page
0

Page
N - 1

Figure 2-4. I/O SPA Space Layout

All register sets in an I/O SPA space are TRSes (see Section 2.1.1, Hard Physical Address (HPA) Space, for a
description of the different kinds of TRSes).

I/O soft physical addresses are of the form:

1111 io-page reg-set register mode

0 3 4 51 52 57 58 61 62 63

1111 address is an I/O address

io-page page in the I/O address space

reg-set register set offset within the page

register register offset within the register set

mode addresses are aligned as per the bus operation’s mode

Figure 2-5. I/O Soft Physical Addresses

Note that due to other architectural restrictions (e.g., the PDC and broadcast spaces and the HPA space of the
central bus) theio-pagefield does not have a full range of values. In particular, the range of system I/O addresses
available for use by SPA spaces is 0xF1000000 00000000 through 0xFFFFFFFF FFF7FFFF

Thereg-setandregisterfields indicate the desired register set and register, respectively.

Themodefield aligns the address as appropriate for the type of bus operation being used. All architected registers
must be accessed as a word (i.e.,mode= 0b00).

2-6 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

2.1.2.2 I/O Range Address Spaces

Bus converters have the I/O address spaces used by all the modules "behind" them as their extended address space,
and is called theI/O range address space.

2.1.2.3 PDC Address Space

Native processors have the PDC address space as their extended address space.

Other modules must not prevent themselves from issuing operations to the PDC address space.

2.1.3 Broadcast Physical Address (BPA) Space

The I/O addresses in the range 0xFFFFFFFF FFFC0000 through 0xFFFFFFFF FFFFFFFF are called thebroadcast
physical address (BPA) space. All pages in the BPA space must be implemented and privileged.

The register set layout of the BPA is shown below:

LBRS
ALBRS

HVRSes

BSRS

HVRSes

HVRSes

GBRS
AGBRS

HVRSes

HVRSes

0
1
2

30
31
32

63

0
1
2

63

Local
Page

0

Local
Pages
1 - 31

Global
Page

0

Global
Pages
1 - 31

Figure 2-6. BPA Space Layout

The first register set in the local half of the BPA is theLocal Broadcast Register Set(LBRS). Issuing a WRITE
operation to this register set affects every module on the local bus. One important use of this register set is to set
the flex address of each bus during configuration, using the IO_FLEX register in the LBRS. The second register set

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-7

in the local half of the BPA is theAuxiliary Local Broadcast Register Set(ALBRS).

The first register set in the global half of the BPA is theGlobal Broadcast Register Set(GBRS). Issuing a WRITE
operation to this register set affects every module on all busses (assuming the bus converters are appropriately
configured). For example, a reset command (CMD_RESET) written to the IO_COMMAND register in the GBRS is
used to reset all processors in the entire system, causing the system to reboot. The second register set in the global
half of the BPA is theAuxiliary Global Broadcast Register Set(AGBRS).

Register sets labeled HVRS in the figure are HVERSION-dependent register sets. These register sets contain only
HVERSION-dependent registers (see Section 2.2, I/O Register Properties, for a discussion of register properties,
including HVERSION dependent).

All addresses in the BPA space are of the form:

3FFFFFFFFFFF g broad-page reg-set register 00

0 45 46 47 51 52 57 58 61 62 63

3FFFFFFFFFFF address is a broadcast address

g global (1) or local (0) broadcast space

broad-page page in the selected broadcast space

reg-set register set offset within the page

register register offset within the register set

00 all BPA space registers are word aligned

Figure 2-7. Broadcast Physical Addresses

The g bit is used to distinguish between local and global broadcasts in the BPA space. Thebroad-page, reg-set,
and register fields indicate the desired page, register set, and register, respectively, being addressed in the
appropriate half of the BPA space.

The actions taken by a module with respect to the BPA space are module-type dependent.

2.1.4 Address Space Conflicts

As previously mentioned, a module may recognize as many as three different address spaces:

1. its hard physical address (HPA) space

2. its extended address space

3. the broadcast physical address (BPA) space

For each transaction, a module determines if the slave address matches the broadcast physical address (BPA) space,
its hard physical address (HPA) space, or its extended address space.

In a correctly configured system, at most one of these address spaces is matched for any given transaction; if more
than one matches, it is potentially due to an error in the system’s configuration or because the system is being
reconfigured. If overlap does occur, a broadcast flex transaction will correct any overlap of the HPA space of a
module with the broadcast space. A directed CMD_RESET will correct any extended space overlap by disabling
the module’s extended address space, except a native processor’s.

2.1.4.1 Address Decode Requirements

In order to correct any address space overlap, the following transactions must not be ignored by a module:

1. WRITE to the LBRS IO_FLEX register

2. directed CMD_RESET to the IO_COMMAND register in the SRS

In addition to ensuring that the above transactions are not ignored by a module, the integrity of these transactions
must be protected from being corrupted by modules which do not normally recognize these transactions. In

2-8 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

particular, broadcast transactions are not required to be recognized by Type-A Direct modules on busses with a
centralized "flex" decode (as described in Section 2.1.1, Hard Physical Address (HPA) Space) since only the local
broadcast transaction to the IO_FLEX register would normally be required and the centralized decode mechanism
relieves these modules of this responsibility.

In order to protect broadcast transactions from being corrupted, all modules with an SPA space must decode the
broadcast space.

All modules on a bus which does not do centralized "flex" decoding must decode the broadcast space. On busses
with the "flex" decode centralized (e.g., HP-PB), any module which does the decode must NOT assert "HPA valid"
for broadcast transactions even if its IO_FLEX register is incorrectly configured to overlap the broadcast space.

If a module is configured such that its HPA or SPA space overlaps the PDC address space, the subsequent behavior
of that module is HVERSION dependent, and, as a consequence, the behavior of the entire system may be affected.

2.1.4.2 Address Decode Model

In order to ensure that a system can be properly configured, the address spaces recognized by a module are
prioritized to handle any case of overlap. The BPA space takes precedence over the HPA space which takes
precedence over the extended space. For I/O modules, software must prevent SPA address overlaps among the SPA
spaces for a given module; otherwise, the operation of the module’s SPA spaces is HVERSION dependent.

SUPPORT NOTE

For diagnostic purposes, implementations detecting accesses to overlapping

The address decode precedence is required to guarantee that a system can be reset and new addresses correctly
assigned, independent of incorrect addresses previously set by transient hardware or software errors. The address
decode precedence provides this guarantee, when the following initialization sequence is assumed:

1. A broadcast IO_FLEX transaction is issued to every bus in the system to relocate the HPA spaces of all
modules on each bus.

2. A CMD_RESET is written to the IO_COMMAND register in the SRS of every module on each bus to disable
every module’s extended address space.

The address precedence must be maintained even on modules which do not implement broadcast I/O registers. For
instance, every module which has an extended address space must decode broadcast transactions, even if they do
not implement broadcast transactions, in order to ensure that the precedence rules are followed. Similarly for HPA
space decoding, any bus (like HP-PB) which allows for bus level address decode (e.g., HPA_VALID_L) must also
ensure the address precedence rules are obeyed (e.g., HPA_VALID_L must never be asserted for any broadcast
transaction even if the "flex" address of the bus overlaps the broadcast address space).

The model below shows the expected precedence behavior (but in no way implies any particular implementation):

BROAD_MATCH BROAD_sel

FIXED_MATCH

FLEX_MATCH

EXTEND_MATCH

EXTEND_ENB

•

•

•
HPA_sel

EXTEND_sel

Figure 2-8. Address Decode Model

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-9

BROAD_MATCH: True when the transaction address is in the broadcast space (PATH_SADD{0..45} ==
0x3FFFFFFFFFFF). This line need not be implemented if the module does not recognize
any broadcast transactions, does not have an extended address space, and the bus does a
centralized FLEX_MATCH for the module’s HPA space.

FIXED_MATCH: True when the transaction address bits 14 through 19 equal the module’s fixed field
(PATH_SADD{14..19} ==fixed).

FLEX_MATCH: True when the transaction address matches the FLEX value of the local bus. There are
exactly three choices:

• PATH_SADD{0..45} == IO_FLEX{0..45}

• PATH_SADD{0..3} == 0xF and PATH_SADD{4..45} == IO_FLEX{4..45}

• PATH_SADD{0..3} == IO_FLEX{0..3} == 0xF and
PATH_SADD{4..45} == IO_FLEX{4..45}

ENGINEERING NOTE

For HP-PB transactions, the HPA_VALID_L line denotes (FLEX_MATCH) and
(not BROAD_MATCH).

EXTEND_MATCH: True when the transaction address matches the extended address space of the module. This
indicator is only implemented by modules which have an extended address space.

For memory modules, EXTEND_MATCH is true if either of the following is true:

• PATH_SADD{0..N} == IO_SPA{0..N}

• PATH_SADD{0..N} == IO_SPA{0..N} and IO_SPA{0..3} != 0xF

where N equals 31 - IODC_SPA[shift].

For I/O modules which have an SPA space, EXTEND_MATCH is dependent on the base and
bounds of each of the module’s SPA spaces.

For bus converter ports, EXTEND_MATCH is based on the mode of the port, whether the
port is an upper or lower port, and the values in the I/O range registers (IO_IO_LOW and
IO_IO_HIGH).

EXTEND_ENB: True when the extended address space of the module is enabled. This indicator is only
implemented by modules which have an extended address space.

For I/O and memory modules, EXTEND_ENB is true if their SPA space is enabled.

For bus converter ports, EXTEND_ENB is true if the bus converter port mode is not OFF
(IO_CONTROL[mode] != OFF).

BROAD_sel: The module’s BPA space has been selected. This line is not implemented by modules which
do not recognize the BPA space.

HPA_sel: The module’s HPA space has been selected.

EXTEND_sel: The module’s extended space has been selected. This line is only implemented on modules
which have an extended address space.

2-10 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

2.2 I/O Register Properties
The unit of addressability in the I/O and broadcast address spaces is theI/O register. Each I/O register is 32 bits
wide and is word aligned. All architected registers must be accessed as a word. Non-architected (e.g., SVERSION
dependent) registers may also be accessed on byte or halfword boundaries as allowed by the module’s
SVERSION/HVERSION.

For architecturally defined registers, the values obtained by reading from the I/O address and the effects of writing
to the address are architected; however, the physical implementation of any I/O register (a microprocessor control
port, MSI register, network, or memory) is not specified by the architecture.

2.2.1 Register Accessibility and Validity

A register is defined to beaccessibleif an attempt to read or write it does not generate an addressing error. A
register is defined to bevalid if, on a read, the data returned has its defined meaning, and on a write, the value
written causes its defined effect.

In ST_OFF, the accessibility of any module state is HVERSION dependent and bus mastership is disabled. If
BUS_POW_VALID is asserted, and the bus init time has elapsed, the accessibility of the module state is as follows:

• The BPA space must be accessible.

• The HPA space must be accessible after the first WRITE transaction to the IO_FLEX register.

• The SPA space must be accessible when it is enabled, and must be inaccessible when disabled.

• The PDC address space must be accessible.

The validity of a register is primarily determined by the module’s operating state and is listed as one of the
following:

A WRITEs have the architected effect; READs return the architected data.

SV WRITEs have an SVERSION-dependent effect (within the privilege of the page); READs return
SVERSION-dependent data.

HV WRITEs have an HVERSION-dependent effect (within the privilege of the page); READs return
HVERSION-dependent data.

- Register is inaccessible.

2.2.2 Register Access Modes

One set of characteristics associated with each I/O register is the ability of software to read or write the register.
The register access modes defined by the architecture are read (R) and write (W).

A register isnon-readable if all READ operations issued to the register return HVERSION-dependent data;
otherwise, the register isreadable. A register isnon-writable if all WRITE operations issued to the register have
HVERSION-dependent effects; otherwise, the register iswritable .

Even though the effect of a WRITE operation issued to a non-writable register is HVERSION dependent, the actual
effects must adhere to the attributes of the page in which the register resides.

Only software which is HVERSION dependent (e.g., diagnostic software) should read a non-readable register or
write to a non-writable register.

SUPPORT NOTE

While the architecture allows registers to be specified as non-readable or non-writable, a module may
allow the actual storage locations to be read or written. Making all registers in a module readable and
writable, even if the data involved is HVERSION dependent, improves the testability of the design.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-11

2.2.3 Register Fields

The bits in a register are grouped by the architecture intofields. A field allows bits which are functionally
indistinguishable by the architecture to be treated as a single unit. There are five main classifications of register
fields: architected, constant, reserved, SVERSION dependent, and HVERSION dependent. In addition, there are
classifications that are composites of the base types (e.g., module type dependent) which are used as shorthand
notation by the architecture.

2.2.3.1 Architected Fields

An architected field is one whose functionality is specified by the architecture. The architected data must be
returned in all architected fields for reads from readable registers. For writes to writable registers, the data written
in each architected field must conform to the architectural specifications for that field.

Writes of an architected value to an architected field must perform the architected actions.

2.2.3.2 Constant Fields

A variation on architected fields in a register is theconstant field. A constant field in a register is one which has
only one architecturally allowed value. For writes to a writable register, software must write the architected value
appropriate for any constant field in the register, and hardware may assume that the value written in each field is the
architecturally specified value. If software writes any other value to a constant field, hardware may do anything
allowed by the privilege of the page, although it is recommended that ERR_IMPROP be logged. For reads of a
readable register, hardware must return the architected value appropriate for any constant field in the register.

2.2.3.3 Reserved Fields

A reserved field in a register is one which is not currently architected, but which may be architected in the future
without further qualification. As such, the read data and write effects are specified by the architecture to allow for
this expansion. If a register with reserved fields is readable, the hardware must return the value 0 for each reserved
field. For writable registers with reserved fields, the software must write the value 0 to each reserved field;
however, the hardware can not depend on this value being written since the field may become architected in the
future, thus allowing software to write nonzero values. A write to a reserved field must have no effects on the
module. In addition, a reserved field is unchanged by hard and soft power-on.

2.2.3.4 SVERSION-Dependent Fields

The architecture does not define the functionality ofSVERSION-dependent fieldsin any register. SVERSION
documentation is free to specify the exact usage of these fields as long as its functionality does not violate any
architectural rule (e.g., the field must conform to the attributes of the page in which the register resides, and it can
not implement an architected function). As such, SVERSION-dependent fields are not architected, nor will they
ever be architected in the future.

2.2.3.5 HVERSION-Dependent Fields

The architecture does not define the functionality ofHVERSION-dependent fieldsin any register. HVERSION
documentation is free to specify the exact usage of these fields as long as each field adheres to the attributes of the
page (register) in which the field resides. HVERSION-dependent fields are not architected, but they may become
architected in the future with further qualification.

The architecture uses HVERSION-dependent fields to reserve space for future expansion in such a way as to
maintain forward compatibility for present implementations without being as restrictive as reserved fields. When
the HVERSION-dependent fields becomes architected, the existence of the fields’s architected functionality will be
indicated via some IODC mechanism.

In addition to the HVERSION-dependent fields specified by the architecture, SVERSION documentation can also
specify HVERSION-dependent fields by choosing to reclassify an SVERSION-dependent field as HVERSION
dependent.

2.2.3.6 Composite Field Definitions

The following field definitions are useful for notational purposes by the architecture when some decision is required
in order to determine the final (non-composite) field definition. Composite field definitions do not exist in actual

2-12 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

register implementations.

2.2.3.6.1 Optional Fields

Optional fields are used in architected registers to allow for functions to be optionally incorporated into different
implementations. If a given implementation chooses to utilize the function, the field must adhere to its architected
definition; otherwise, the module must use the other field option allowed by the architecture.

2.2.3.6.2 Module Type Dependent Fields

A module type dependent fieldis one whose architectural definition is dependent on the type of module being
considered. For example, a register field may be used differently by an I/O module than by a memory module. The
module type dependent field classification is used only by generic documentation and is replaced by the actual
definition by the module type documentation.

2.2.4 Register Classes

Each I/O register can be classified by the allowable actions which can occur when the register is accessed.
Basically, there are four main classes of registers: architected, reserved, SVERSION dependent, and HVERSION
dependent. Similar to register fields, there are composite types used by the architecture as shorthand notation.

2.2.4.1 Architected Registers

An architected register is a register whose functionality is specified by the architecture and contains at least one
architected field. A read of a readable architected register must return the architected data, while a write to a
writable architected register must cause its architected effects.

All writes to architected registers by generic software (i.e., with all SVERSION/HVERSION-dependent fields set to
0) must only affect the module state specified by the architecture, or as needed to implement the architected
functionality (e.g., issuing a flex disable may require some signal being sent to the device so it will stop sending
requests to the module).

Reads and writes by SVERSION/HVERSION-dependent software can have any effect on the
SVERSION/HVERSION-dependent state (within the limits on privileged pages) but they must not have any effect
on architected state, unless explicitly allowed by the architecture.

All architected registers which are not explicitly specified as readable (writable) are non-readable (non-writable).

2.2.4.2 Reserved Registers

A reserved register is one which consists of a single reserved field. Software must never access a reserved
register. Hardware must, however, handle accesses to these registers since in the future they may be reclassified.

2.2.4.3 SVERSION-Dependent Registers

An SVERSION-dependent registeris one which consists of a single SVERSION-dependent field.

2.2.4.4 HVERSION-Dependent Registers

An HVERSION-dependent register is one which consists of a single HVERSION-dependent field.

ENGINEERING NOTE

To simplify hardware, the HVERSION documentation can specify that an HVERSION-dependent
register is aliased (i.e., not uniquely decoded).

An HVERSION-dependent register is both non-readable and non-writable.

2.2.4.5 Composite Register Definitions

The following register class definitions have characteristics which must be selected. Composite registers do not
exist in implementations, but rather they exist in architectural documentation as shorthand notation for the purpose
of consolidated and generalized presentations.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-13

2.2.4.5.1 Optional Registers

The architecture usesoptional registers to denote registers whose architected functionality need not be
implemented by all modules of a given module type. Here, optional implies the ability to choose between an
architected register and one of the other base (non-composite) classes. If a module desires the architected
functionality of the register, the register’s implementation must conform to the architecture; otherwise, the module
must implement the other register class allowed by the architecture.

2.2.4.5.2 Module Type Dependent Registers

A Module type-dependent registeris one which consists of a single module type-dependent field.

2-14 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

2.3 Module Operating States
The operating states of a module are given below; only ST_OFF is applicable for native processors.

A non-processor module may be in any of seven operating states. This state is defined by the value of the SRS
IO_STATUS register. Since the SRS of an Type-A Direct module may not have IO_STATUS register, its state must
be determined in an SVERSION-dependent manner. These operating states are defined below:

• ST_OFF

The BUS_POW_VALID signal is deasserted or the signal is asserted but the bus init time has not elapsed. The
accessibility of a module in the ST_OFF state is HVERSION dependent. A module enters the ST_ACTIVE
state when the bus init time has elapsed.

• ST_ACTIVE

The module is actively processing a command, or is performing a power-on reset. IO_STATUS[ry] = 0. When
the module is ready to accept a new command, the module goes to either ST_READY (if no error), ST_AERR
(advisory error), ST_SERR (soft error), ST_HERR (hard error), or ST_FERR (fatal error).

• ST_READY

The module is ready for a command and is not in any error or diagnostic state. IO_STATUS[estat] =
IO_STATUS[se] = IO_STATUS[he] = IO_STATUS[fe] = 0, IO_STATUS[ry] = 1. When a command is
received, the module enters ST_ACTIVE. If an error condition is detected in this state, the register set
transitions to the appropriate error state.

• ST_AERR

An advisory error has occurred and has not yet been cleared. IO_STATUS[estat] != 0, IO_STATUS[se] =
IO_STATUS[he] = IO_STATUS[fe] = 0, IO_STATUS[ry] = 1. When a command is received, the module enters
ST_ACTIVE. If an error condition of higher severity is detected in this state, the module transitions to the
appropriate error state.

• ST_SERR

A soft error has occurred and has not yet been cleared. IO_STATUS[se] = 1, IO_STATUS[he] =
IO_STATUS[fe] = 0, IO_STATUS[ry] = 1. When a command is received, the module enters ST_ACTIVE. If
an error condition of higher severity is detected in this state, the module transitions to the appropriate error
state.

• ST_HERR

A hard error has occurred and has not yet been cleared. IO_STATUS[he] = 1, IO_STATUS[fe] = 0,
IO_STATUS[ry] = 1. When a command is received, the module enters ST_ACTIVE. If a fatal error condition
is detected in this state, the module goes to ST_FERR.

• ST_FERR

A fatal error has occurred and has not yet been cleared. IO_STATUS[fe] = IO_STATUS[ry] = 1. When a
command is received, the module enters ST_ACTIVE.

Although a module in the ST_READY, ST_AERR, ST_SERR, ST_HERR, or ST_FERR states goes to the
ST_ACTIVE state upon receipt of any command, not all commands are defined to execute normally when written
to a register set in either the ST_HERR or ST_FERR states. Refer to the description of the IO_COMMAND
register for details.

In general, the architecture defines module operation when the module is powered (BUS_POW_VALID asserted).
As such, except for discussions pertaining to boot and powerfail, the possibility of a module being in ST_OFF is
usually not considered and is provided only for the sake of completeness.

The following table indicates how the operating state of a module can be identified via the SRS IO_STATUS
register The ‘---’ entries indicate that the field is not used to determine the module’s operating state (i.e., it’s a
‘‘don’t care’’).

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-15

TABLE 2-2. Non-Processor Module Operating States

State estat se he fe ry

ST_OFF --- --- --- --- ---
ST_ACTIVE --- --- --- --- 0
ST_READY 0 0 0 0 1
ST_AERR Nonzero 0 0 0 1
ST_SERR --- 1 0 0 1
ST_HERR --- --- 1 0 1
ST_FERR --- --- --- 1 1

The transitions between operating states caused by commands are defined by the following figure:

ST_AERR ST_OFF ST_SERR

ST_ACTIVE

ST_HERR ST_READY ST_FERR

Power
On

Any
Command

Ready
For New

Command,
No Error

Any
Command

Ready
For New

Command,
Advisory

Error

Any
Command

Ready
For New

Command,
Hard Error

Any
Command

Ready
For New

Command,
Soft Error

Any
Command

Ready
For New

Command,
Fatal Error

Figure 2-9. Non-Processor Operating State Transitions

In addition, the following transitions are also possible:

• from ST_READY, ST_AERR, and ST_SERR to ST_HERR

• from ST_READY, ST_AERR, ST_SERR, and ST_HERR to ST_FERR

• from any state to ST_OFF when BUS_POW_VALID is deasserted

• from ST_READY to ST_AERR and ST_SERR as well as from ST_AERR to ST_SERR when a bus transaction
error is logged as a slave

2.3.1 HVERSION-Dependent Operation

Certain modules test their error detection circuitry using an HVERSION-dependent operating mode. For example,
ENTRY_TEST on a memory module might place the module in an HVERSION-dependent operating mode that
inserts double-bit errors.

Whenever a module enters an HVERSION-dependent operating mode using an architected mechanism (e.g.,
ENTRY_TEST), the following requirements must be met:

• The operations that are required to complete normally when the module is in ST_FERR must still do so while
the module is in an HVERSION-dependent operating mode.

• While the module is in an HVERSION-dependent operating mode, both CMD_RESET and power-on must
return the module to normal operation.

2-16 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

• The module must be returned to normal operation when the HVERSION-dependent operating mode is exited.

When normal operation is restored the following are true:

• The HPA of the module is accessible.

• IO_STATUS indicates the true operating state of the module.

• The operations that are required to complete normally when the module is in ST_FERR must work.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-17

2.4 Command Properties
2.4.1 Command-Dependent Values

Values in the command-dependent field of the IO_COMMAND register are classified as follows:

DEFAULT Value 0 is the DEFAULT architected functionality which is always required to be implemented by
the module.

A Values which have functionality specified by the architecture are classified as architected (A)
command variants and must be implemented by the module.

R Values which are not currently architected, but may be architected in the future are classified as
reserved (R). The module must execute the DEFAULT architected functionality when a reserved
(R) value is written.

OR Values which were once reserved (R) and are now defined with extended architected functionality
are classified as optional reserved (OR). The module must either execute the extended architected
functionality or execute the DEFAULT architected functionality. The choice is SVERSION
dependent.

SV Values that are SVERSION dependent (SV) do not have any architected functionality. It is the
responsibility of the SVERSION documentation to define the actions taken by the module when this
value is written.

HV Values that are HVERSION dependent (HV) do not have any architected functionality. It is the
responsibility of the HVERSION documentation to define the actions taken by the module when this
value is written.

2.4.2 Interaction BetweencmdAnd cmd-depFields

When an architectedcmd and cmd-deppair is written with the SV field set to zero, no SVERSION-dependent
effects are allowed as a direct result of the command, unless explicitly stated by the architecture (e.g.,
CMD_RESET).

In the case where an architectedcmd and cmd-deppair is written with the SV field set to a nonzero value,
SVERSION-dependent effects on the SVERSION-dependent state are allowed in addition to the required
functionality of the architected command.

When an architectedcmd is written with thecmd-depfield set to an SVERSION-dependent value, SVERSION-
dependent effects on the SV state are allowed in addition to the required functionality of the DEFAULT architected
command (i.e., IO_COMMAND[cmd-dep] = 0).

If a value that is defined to be SVERSION dependent is written to the IO_COMMAND[cmd] field, SVERSION-
dependent effects on the SVERSION-dependent state are allowed.

The relationship between the register fields is summarized below.

TABLE 2-3. Relationship Between the SV,cmd, andcmd-depFields in IO_COMMAND

SV field cmd-depfield cmdfield effect

0 A A Architected effect, no SV effect
≠ 0 A A Architected effect and SV effect on SV state
X SV A Architected DEFAULT and SV effect on SV state
X X SV SV effects on SV state, no architected effects

Where: X = any possible value

A reserved (R) value written to IO_COMMAND[cmd] is a special case of an architected (A) command. All of the
actions which are allowed/required when an architected command is written to IO_COMMAND[cmd] still apply in
the case of reserved commands (e.g., the module may temporarily clear the IO_STATUS[ry] bit, an interrupt may
optionally be generated if IO_COMMAND[ie] is set (for those modules with anie bit), and SVERSION-dependent
effects are allowed on the SVERSION-dependent state when the IO_COMMAND[SV] field is nonzero).

2-18 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

However, for reserved commands the module is required to execute a null command (i.e., NOP) and may optionally
log an error (ERR_IMPROP). During the course of executing a null command, no architected effects are allowed
unless explicitly stated by the architecture.

In all instances where a reserved value is written to the IO_COMMAND[cmd] field, all values of
IO_COMMAND[cmd-dep] are reserved.

When a reserved value is written to IO_COMMAND[cmd-dep], the module must execute the DEFAULT
architected functionality. If the IO_COMMAND[SV] field is nonzero, SVERSION-dependent effects on the
SVERSION-dependent state are allowed in addition to the DEFAULT architected functionality. When the
IO_COMMAND[SV] field is zero, the DEFAULT architected functionality must occur and no SVERSION-
dependent effects are allowed.

2.4.3 Non-Overwriting Commands

Non-overwriting commands must only be written to the IO_COMMAND register when IO_STATUS[ry] is 1. All
reserved commands are non-overwriting.

The general structure of a non-overwriting command is:

if (IO_STATUS[ry] == 1) {
IO_STATUS[ry] ← 0;

/* delay until interrupt posting from previous cmd completes */

if (IO_STATUS[fe] == 0 && IO_STATUS[he] == 0) {
IO_STATUS[se,estat] ← 0;
/* command specific processing goes here */

} else
nop();

IO_STATUS[ry] ← 1;

if (interrupting command) {
/* module type specific interrupt posting goes here */

}
} else

SV();

Figure 2-10. Non-Overwriting Command Structure

2.4.4 Overwriting Commands

Overwriting commands may be written to the IO_COMMAND register regardless of the state of IO_STATUS[ry].

All bits in the overwriting command overwrite and take precedence over all bits in the overwritten command. So,
for example, theie (interrupt enable) bit of an overwriting command takes precedence over theie bit of the
previous command.

When a second command overwrites the first, thery bit must not be falsely set to 1 by the completion of the first
command.

The fetching and decoding of the command by the module hardware and/or firmware must be atomic. Any
interruption in the fetching and decoding must be detected before any action is taken.

ENGINEERING NOTE

A simple sequence would be for the module to clear a bit each time a command is written to the
IO_COMMAND register. Clearing the bit and changing IO_COMMAND must be atomic. The backend
would then set that bit, read the command out of the command register, and then retest the bit. Repeat
this sequence of operations until the read of the bit returns a 1.

Note that the command may need to be saved in temporary storage while it is being executed.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-19

ENGINEERING NOTE

The fetching and decoding of any register must be atomic with respect to the system; no action must be
taken by the module on an inconsistent register. For most registers, because of the system to module
protocol, there is no race between the system writing a register and the module fetching and decoding it.
That is, the module is not trying to fetch and decode a register while the system is writing it. There are,
however, situations where races may exist. If, for instance, an overwriting command also requires other
registers to be set up before the command is given (for example, the address of a DMA chain must be
written to the IO_DMA_LINK register before CMD_CHAIN is written to the IO_COMMAND register)
and the registers to be set up are being used by a currently active command, races may exist in fetching
and decoding those registers.

Any overwriting command must be defined such that it functions correctly irrespective of the overwritten command
being decoded or executed before the overwriting command was received.

ENGINEERING NOTE

For example, suppose that CMD_XXX is intended to modify but not abort a previously initiated
CMD_CHAIN. In this case, a CMD_XXX may need to act as a CMD_CHAIN-AND-XXX in case it
overwrites a CMD_CHAIN before the CMD_CHAIN is decoded and chaining started. It is particularly
important that software can determine whether the module is still working on any of the outstanding
DMA chains.

When a command is written to the IO_COMMAND register, the interrupt posting activity from a previous
command must be completed before the new command is started. Note that this means that when thery bit is set
for a command, the interrupt from the previous command is guaranteed to be complete.

Overwriting commands start executing before the previous command is complete, but they complete the activity
from the previous command before initiating any new actions. Therefore, an overwriting command will also
display the property of not completing before all activity from the previous command is complete.

When an overwriting command is defined, it must state what commands it can overwrite, and what effect it has if
the command it overwrote has not been decoded yet.

2-20 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

2.5 Module State
Thesoft power-on stateof a module is its state at the instant a soft power-on occurs. Thehard power-on stateof
a module is its state at the instant a hard power-on occurs.

The soft or hard power-on value for some module state must either be Constant, Unchanged, Defined (as a function
of some other state), SVERSION dependent, or HVERSION dependent. A value of Unchanged means that the state
is the same as it was just before BUS_POW_VALID was deasserted. A value of SVERSION dependent or
HVERSION dependent means that the SVERSION/HVERSION documentation has the responsibility of defining
the soft or hard power-on value. The SVERSION documentation must specify Constant, Unchanged, Defined, or
HVERSION dependent. The HVERSION documentation must specify Constant, Unchanged, Defined, or Random.

A soft reset must leave the architected module state in the same state as its soft power-on state, except where
required functionality precludes it. In addition, a hard reset must leave the architected module state in the same
state as its hard power-on state, except where required functionality precludes it.

All state in a module is divided into three types of state: primary state, secondary state, and tertiary state.

Primary state is defined to be that state whose soft power-on value is either Constant, Random, or Defined. If
Defined, the state must be a function of other primary state, and secondary or tertiary state. Primary state may be
lost when BUS_POW_VALID is deasserted.

Secondary stateis defined to be that state whose soft power-on value is Unchanged and whose hard power-on
value is Constant, Random, or Defined. If Defined, the state must be a function of secondary and tertiary state.
Secondary state is independent of BUS_POW_VALID.

Tertiary state is defined to be that state which is neither primary state nor secondary state. Tertiary state is
independent of both BUS_POW_VALID and BUS_SEC_VALID (i.e., the soft and hard power-on value of tertiary
state must be Unchanged). An example of tertiary state is the contents of a module’s IODC.

SUPPORT NOTE

If a power failure occurs during an update of a module’s tertiary state, tertiary state should be
recoverable to the condition it was in prior to the power failure if the update fails.

The contents of the memory SPA space may be either primary or secondary state. The type of state of the memory
IO_STATUS[sl] bit must be the same as the type of state of the memory SPA space.

An operation is said to have aneffect on a module if any software observable module state is changed as a result of
that transaction. For I/O modules, the software observable module state includes any software observable state
from anything "behind" the module (e.g., device state, controller state, link state, etc.). In general, READ
operations must have no effect on the slave module. The only exception is a read of an SVERSION/HVERSION-
dependent register in a Type-A module; these reads have SVERSION/HVERSION-dependent effects on the
module.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-21

2.6 Power
All modules must perform a reset when they are powered on. Power-on is indicated when the BUS_POW_VALID
signal is asserted.

A module which is reset by power-on is required to have interrupts disabled, not request any operation until
enabled by software, and enter the active state, ST_ACTIVE.

ENGINEERING NOTE

Architecturally, the HPA must be immediately accessible and thery bit valid at power-on. In reality,
each bus specification defines a time, the bus init time, during which the bus is guaranteed to be idle.
Modules may use this time to do any initialization required to make the HPA accessible and thery bit
valid.

Modules which do not know when the bus power was restored must wait the entire init time for that bus before
initiating a system operation.

ENGINEERING NOTE

Implementations which wish to scan state into modules prior to running a system may define the bus init
time to accommodate this activity, or use additional bus signals prior to BUS_POW_VALID to
coordinate the initialization of parts of the system.

Modules which do not slave acknowledge transactions sent to them after the bus init time has elapsed are not
architecturally visible. Architecturally, these modules do not exist.

For a module not in a module set, if the secondary state of the module survived the loss of primary power, the
power-on reset performed must be a module-level soft reset with test, equivalent to CMD_RESET.ST. If the
secondary state of the module did not survive the loss of primary power, the power-on reset performed must be a
hard reset with test, equivalent to CMD_RESET.HT.

The same aliasing rules for command triggered module-level resets apply to resets triggered by power-on. If the
module has no test, a reset with initialize (CMD_RESET.SI) is done. If the module has no secondary state, a hard
reset with test (CMD_RESET.HT) is done. If the module has neither test nor secondary state, a hard reset with
initialize (CMD_RESET.HI) is done.

For a module in a module set, if the secondary state of the module survived the loss of primary power, the power-on
reset performed must be a card-level soft reset with test, equivalent to CMD_RESET.CST. If the secondary state of
the module did not survive the loss of primary power, the power-on reset performed must be a hard reset with test,
equivalent to CMD_RESET.CHT. The same aliasing rules apply to CMD_RESET.Cxx as for CMD_RESET.xx.

No status bits are preserved through a loss of primary power. As with other commands,se, he, fe, andestatindicate
the success or failure of the power-on.

A module may use the BUS_POW_WARN signal to do powerfail preparation. The mechanisms used by a module
to do its powerfail preparation are almost completely SVERSION dependent. The only requirement is that the
module cannot request an operation when IO_FLEX[enb] bit is 0.

Modules must be able to detect the deassertion of BUS_POW_VALID during a transaction, and take the
appropriate action to prevent data corruption before primary power is lost.

If primary power fails while a module is issuing a transaction, the module must either guarantee that its secondary
state is unaffected, or it must indicate that secondary state was lost via an SVERSION-dependent mechanism (see
Section 2.6, Module State).

If primary power fails while a module is slave to a transaction, the requirements on the module depend on its type.
Furthermore, the slave must guarantee that its secondary state is not modified by a partial transaction which was not
addressed to that module, but which was corrupted by the deassertion of BUS_POW_VALID.

2-22 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

ENGINEERING NOTE

On a bus with asynchronous BUS_POW_VALID, this can be implemented by providing a parity check
to detect most bad addresses, or by delaying the effects of a transaction until the address is verified.

On a bus with synchronous BUS_POW_VALID, this can be implemented by nullifying the address
compare if BUS_POW_VALID is deasserted during the SADD phase.

A DMA module must stop all DMA activity until it is explicitly restarted by its driver. If the module had a
semaphore before power failed, it must lose that semaphore. (A reset always causes a module to lose any
semaphore it holds.)

2.6.1 Modules with Secondary State

Modules with secondary state must be prepared for the possibility that bus operations were lost during the power
failure. Those that have established checkpoints will roll back to the last valid checkpoint.

For modules with secondary state, an SVERSION-dependent mechanism must exist to indicate the validity of the
secondary state.

When power fails somewhere in the system, a module may receive some indication or it may receive no indication.
A module will receive the BUS_POW_WARN signal if power is failing on its local bus. However, it is possible
that a module will receive no indication if power fails on some other remote bus.

On an I/O module with secondary state, if BUS_POW_VALID is deasserted while the module is slave to a
transaction, the module must either guarantee that the secondary state is unaffected or set an SVERSION-dependent
indication that secondary state is invalid.

If the module sees the BUS_POW_WARN signal, it must finish its current bus activity and save state. (Note that
BUS_POW_WARN does not disable bus requestorship.) If the module receives no powerfail indication, it will
most likely receive a bus error when it tries to read through a bus converter which has lost power on its adjacent
port. The bus error will cause a fatal error to be set and bus activity to stop in that register set. (A module might
want to set a hard error in the SRS and stop all module activity, or it might allow activity to occur on its other
register sets. Further bus activity would most likely result in other bus errors.) If the system experiences partial
powerfail, and the module does not receive the BUS_POW_WARN signal, and the module has a timer running
against the driver, the timer may expire.

A normal powerfail cycle for an I/O module with secondary state is: receipt of BUS_POW_WARN, saving state,
loss of primary power, restoration of primary power and power-on reset, establishing initial state, setting
IO_STATUS[ry] in the SRS, and waiting for a command from its driver. A module with secondary state may wish
to treat a soft reset similar to a powerfail cycle. (Note that a module must be able to handle multiple powerfails and
soft resets. These may be handled equivalently.)

A soft reset forces the module to a known state but does not cause loss of secondary state: the module stops being a
bus master, disables interrupts and SPA space, discards any owned semaphores, and waits for the driver to
command the module. Architected registers which are HVERSION dependent after a soft reset may be considered
part of the module’s secondary state and therefore keep their previous values. Although the architecture places no
requirement on backing up these registers, a module may choose to do so.

2.6.2 Implications of Lost Operations

WRITE operations initiated by DMA modules may be lost during powerfail. If the DMA module has no secondary
state, there is no problem. The module will be given a soft reset, which will cause it to lose all knowledge of the
operation active at the time of the powerfail. If the DMA module does have secondary state, that state will be
preserved throughout the powerfail and after the soft reset.

Operations besides DMA writes can be lost during powerfail. Some cases cause no problems. For example, an
interrupt message from an I/O module to a processor can be lost without consequence, as the recovery process will
simulate an interrupt on each EIR bit. Similarly, a CLEAR system operation that fails (where the bus operation on

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-23

the bus with the memory module completes, but a bus operation on one of the intermediate busses fails) is also no
problem. Losing the operation causes a semaphore to be lost, but the recovery process will restore all semaphores
in any case.

Commands from a driver to its module can also be lost. Recovery procedures must allow for that eventuality.

2-24 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

2.7 Module Visual Indicators
Native processor modules may optionally implement visual indicators in the form of chassis displays. The number
of chassis displays, the rules governing their use and interpretation, and the mechanisms by which they are shared
in a multiprocessor system are defined by theChassis I/O Standard.

Although implementation of chassis displays is not required, all processor modules are required to implement the
PDC procedure PDC_CHASSIS. PDC_CHASSIS is the only mechanism that allows access to the chassis displays
(see Chapter 4, PDC Procedures).

Other module types may optionally implement visual indicators, but their use and interpretation is HVERSION
dependent.

SUPPORT NOTE

The Support organizations may require the implementation of visual indicators on a particular module.
The implementation is based on the diagnosability and error coverage requirements that Support places
on each module and/or system.

The interpretation of the module’s visual indicators is HVERSION dependent and is described in the
module’s HVERSION documentation. However, module designers should refer to theChassis I/O
Standardand the module’s bus specification where standardized visual indicators may be defined.

Firmware Architecture, Ver 1.1E Firmware Objectives Overview 2-25

2.8 I/O Registers Required for Firmware
The PA-RISC I/O Architecture requires several I/O Registers to be accessed by PDC and IODC during system
configuration. These registers which are used by the firmware are described in the following paragraphs.

2.8.1 HPA Space Registers

2.8.1.1 IO_DC_ADDRESS and IO_DC_DATA

The IO_DC_ADDRESS Register is a writable register and IO_DC_DATA is a readable register. Both registers for
a particular reside at module HPA word offset 2 (that is: HPA + 0x8). These registers are used to return to the
processor module dependent data and coded needed to configure and initialize the module. An address is written to
IO_DC_ADDRESS which is an offset into the modules IODC space. A read from IO_DC_DATA, then returns the
information at that location. For a complete description of the layout of a module’s IODC space, see Chapter 5,
IODC.

The IO_DC_ADDRESS and IO_DC_DATA Registers are required only for add-on I/O modules which may or may
not be attached to a particular system. For modules which are hardwired to the system board they are optional. If
they are not implemented, they must be emulated through the PDC_IODC procedure.

2.8.1.2 IO_COMMAND

The IO_COMMAND Register is a writable register at HPA word offset 12 (HPA + 0x30). This register is used to
reset a module into a known state, either during module initialization, or after an error has occured. It can also be
used to perform selftest of the module.

2.8.1.3 IO_STATUS

The IO_STATUS is a readable register at HPA word offset 13 (HPA + 0x34). It is used to determine the operating
state of an I/O module. It is accessed during system intitialization and error recovery.

2.8.2 BPA Space Registers

2.8.2.1 IO_FLEX

The IO_FLEX Register is located at word offset 8 in the Local Broadcast Physical Address Space (LBPA + 0x20),
and is used to determine the physical address of all I/O modules on a particular bus. The IO_FLEX register value is
set during bus initializaton.

2.8.2.2 IO_COMMAND

There is an IO_COMMAND register at word offset 12 in both the Local and Global Physical Address Spaces
(LBPA + 0x30 and GPBA + 0x30). The LBPA IO_COMMAND Register is used to reset all modules on a
particular bus during system initialization, and the GBPA IO_COMMAND Register is used when a broadcast
CMD_RESET is used to reboot a machine without powering it off.

2-26 Firmware Objectives Overview Firmware Architecture, Ver 1.1E

TABLE OF CONTENTS

2. Firmware Objectives Overview. 2-1
2.1 Module Addressing . 2-2

2.1.1 Hard Physical Address (HPA) Space. 2-2
2.1.2 Extended Address Space. 2-4

2.1.2.1 Soft Physical Address (SPA) Space. 2-4
2.1.2.1.1 Memory SPAs 2-5
2.1.2.1.2 I/O SPAs . 2-5

2.1.2.2 I/O Range Address Spaces. 2-7
2.1.2.3 PDC Address Space. 2-7

2.1.3 Broadcast Physical Address (BPA) Space. 2-7
2.1.4 Address Space Conflicts. 2-8

2.1.4.1 Address Decode Requirements 2-8
2.1.4.2 Address Decode Model. 2-9

2.2 I/O Register Properties . 2-11
2.2.1 Register Accessibility and Validity. 2-11
2.2.2 Register Access Modes . 2-11
2.2.3 Register Fields. 2-12

2.2.3.1 Architected Fields . 2-12
2.2.3.2 Constant Fields . 2-12
2.2.3.3 Reserved Fields . 2-12
2.2.3.4 SVERSION-Dependent Fields. 2-12
2.2.3.5 HVERSION-Dependent Fields 2-12
2.2.3.6 Composite Field Definitions 2-12

2.2.3.6.1 Optional Fields 2-13
2.2.3.6.2 Module Type Dependent Fields 2-13

2.2.4 Register Classes . 2-13
2.2.4.1 Architected Registers 2-13
2.2.4.2 Reserved Registers. 2-13
2.2.4.3 SVERSION-Dependent Registers. 2-13
2.2.4.4 HVERSION-Dependent Registers. 2-13
2.2.4.5 Composite Register Definitions 2-13

2.2.4.5.1 Optional Registers 2-14
2.2.4.5.2 Module Type Dependent Registers. 2-14

2.3 Module Operating States . 2-15
2.3.1 HVERSION-Dependent Operation. 2-16

2.4 Command Properties. 2-18
2.4.1 Command-Dependent Values 2-18
2.4.2 Interaction BetweencmdAnd cmd-depFields 2-18
2.4.3 Non-Overwriting Commands 2-19
2.4.4 Overwriting Commands . 2-19

2.5 Module State . 2-21
2.6 Power . 2-22

2.6.1 Modules with Secondary State. 2-23
2.6.2 Implications of Lost Operations. 2-23

2.7 Module Visual Indicators . 2-25
2.8 I/O Registers Required for Firmware. 2-26

2.8.1 HPA Space Registers. 2-26
2.8.1.1 IO_DC_ADDRESS and IO_DC_DATA. 2-26
2.8.1.2 IO_COMMAND . 2-26
2.8.1.3 IO_STATUS . 2-26

2.8.2 BPA Space Registers. 2-26
2.8.2.1 IO_FLEX . 2-26
2.8.2.2 IO_COMMAND . 2-26

Firmware Architecture, Ver 1.1E Contents iii

LIST OF FIGURES

Figure 2-1. HPA Space Layout . 2-3

Figure 2-2. Hard Physical Addresses. 2-4

Figure 2-3. Memory Soft Physical Addresses. 2-5

Figure 2-4. I/O SPA Space Layout . 2-6

Figure 2-5. I/O Soft Physical Addresses. 2-6

Figure 2-6. BPA Space Layout . 2-7

Figure 2-7. Broadcast Physical Addresses. 2-8

Figure 2-8. Address Decode Model . 2-9

Figure 2-9. Non-Processor Operating State Transitions. 2-16

Figure 2-10. Non-Overwriting Command Structure. 2-19

iv Contents Firmware Architecture, Ver 1.1E

LIST OF TABLES

TABLE 2-1. Extended Address Space Availability. 2-4

TABLE 2-2. Non-Processor Module Operating States. 2-16

TABLE 2-3. Relationship Between the SV,cmd, andcmd-depFields in IO_COMMAND 2-18

Firmware Architecture, Ver 1.1E Contents v

This page intentionally left blank

vi Contents Firmware Architecture, Ver 1.1E

