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Foreword

“Everything should be made as simple as possible, but not simpler”
A. Einstein

When the first PA-RISC systems were shipped in 1986, the architecture was clearly recognized as a
break with the past, with regular, hardware-inspired instructions rather than variable, interpretive forms.
But its simple instructions were somewhat richer than other RISC designs, providing basic support for
operations on strings and other data types prevalent in commercial applications. This semantic richness,
unusual in the RISC designs of the time, was a direct result of the breadth of markets for HP computers
and the decision to optimize PA-RISC for the full range of technical and commercial applications.

In the intervening years, PA-RISC has become the basis of a large family of computer systems,
currently spanning a capacity range of over two orders of magnitude. As the product family has grown,
the range of applications has also expanded geometrically. PA-RISC workstations now host applications
which were once the province of supercomputers. Database servers now supply realtime streams of
compressed video and audio. And PA-RISC has evolved to meet the demands for leadership
performance in these emerging application domains.

The purpose of a processor architecture is to define a stable interface which can efficiently couple
multiple generations of software investment to successive generations of hardware technology. Stability
and efficiency are the goals, and the range of software and hardware technologies expected during the
architecture’s life determine the scope for which the goals must be achieved.

The desired stability does not rule out change, but it does require that any evolution of the architecture
contain the prior definition as a subset. This is the principle of “forward compatibility” which ensures
that all prior software will continue to work on all later machinesstraightforward idea whose value

to users is obvious. Over the last decade, PA-RISC has evolved in response both to significant changes
in the nature of customer applications and to rapid advances in technology, particularly chip fabrication
technology and compiler technology.

Efficiency also has evident value to users, but there is no simple recipe for achieving it. Optimizing
architectural efficiency is a complex search in a multidimensional space, involving disciplines ranging
from device physics and circuit design at the lower levels of abstraction, to compiler optimizations and
application structure at the upper levels.

Because of the inherent complexity of the problem, the design of processor architecture is an iterative,
heuristic process which depends upon methodical comparison of alternatives (“hill climbing”) and upon
creative flashes of insight (“peak jumping”), guided by engineering judgement and good taste.

To design an efficient processor architecture, then, one needs excellent tools and measurements for
accurate comparisons when “hill climbing,” and the most creative and experienced designers for
superior “peak jumping.” At HP, this need is met within a cross-functional team of about twenty
designers, each with depth in one or more technologies, all guided by a broad vision of the system as a
whole.

Since the inception of PA-RISC, nearly fifty people have contributed directly to its definition as
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members of the architecture team. With the generous support of colleagues and managers in their
respective organizations, they have made careful measurements of application workloads, designed
ingenious tools and methods to analyze data, created novel semantics and encodings, deliberated
intently to hone the best cost-performance design, and crafted clear, unambiguous descriptions. It was
my great privilege and pleasure to lead this team of talented designers, and it is their achievement which
is documented in this book.

O Michael Mahon
Principal Architect
Hewlett-Packard
August, 1995
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Preface

Hewlett-Packard’s PA-RISC architecture was first introduced in 1986. Although there have been interim
improvements in the intervening years, the PA-RISC 2.0 architecture described in this book is the most
significant step in the evolution of the PA-RISC architecture. While the primary motivation for PA-
RISC 2.0 was to add support for 64-bit integers, 64-bit virtual address space offsets, and greater than 4
GB of physical memory, many other more subtle enhancements have been added to increase the
performance and functionality of the architecture.

Compatibility with PA-RISC 1

From an unprivileged software perspective, PA-RISC 2.0 is forward compatible with the earlier PA-
RISC 1.0 and PA-RISC 1.1 architectures — all unprivileged software written to the PA-RISC 1.0 or PA-
RISC 1.1 specifications will run unchanged on processors conforming to the PA-RISC 2.0 specification.

However, unprivileged software written to the PA-RISC 2.0 specification will not run on processors
conforming to the PA-RISC 1.0 or PA-RISC 1.1 specifications.

PA-RISC 2.0 Enhancements

PA-RISC 2.0 contains 64-bit extensions, instructions to accelerate processing of multimedia data,
features to reduce cache miss and branch penalties, and a number of other changes to facilitate high
performance implementations. The 64-bit extensions have the highest profile and the greatest impact on
the programming model for both applications and system programs. The paragraphs that follow provide
thumbnail sketches of some of the more significant features of PA-RISC 2.0.

64-bit Extensions

PA-RISC has always supported a style of 64-bit addressing known as “segmented” addressing. In this
style, many of the benefits of 64-bit addressing were obtained without requiring the integer datapath to
be larger than 32 bits. While this approach was cost-effective, it did not easily provide the simplest
programming model for single data objects (mapped files or arrays) larger than 4 billion bytes (4GB).
Support of such objects calls for larger-than-32-bit “flat” addressing, that is, pointers longer than 32 bits
which can be the subject of larger-than-32-bit indexing operations. Since nature prefers powers of two,
the next step for an integer data path width greater than 32 bits is 64 bits. PA-RISC 2.0 provides full 64-
bit support with 64-bit registers and data paths. Most operations use 64-bit data operands and the
architecture provides a flat 64-bit virtual address space.

Multimedia Extensions

Since multimedia capabilities are rapidly becoming universal in desktop and notebook machines, and
since general purpose processors are becoming faster than specialized digital signal processors, it was
seen as critical that PA-RISC 2.0 support these multimedia data manipulation operations as a standard
feature, thus eliminating the need for external hardware.
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PA-RISC 2.0 contains a number of features which extend the arithmetic and logical capabilities of PA-
RISC to support parallel operations on multiple 16-bit subunits of a 64-bit word. These operations are
especially useful for manipulating video data, color pixels, and audio samples, particularly for data
compression and decompression.

Cache Prefetching

Because processor clock rates are increasing faster than main memory speeds, modern pipelined
processors become more and more dependent upon caches to reduce the average latency of memory
accesses. However, caches are effective only to the extent that they are able to anticipate the data and
instructions that are required by the processor. Unanticipated surprises result in a cache miss and a
consequent processor stall while waiting for the required data or instruction to be obtained from the
much slower main memory.

The key to reducing such effects is to allow optimizing compilers to communicate what they know (or
suspect) about a program's future behavior far enough in advance to eliminate or reduce the “surprise”
penalties. PA-RISC 2.0 integrates a mechanism that supports encoding of cache prefetching
opportunities in the instruction stream to permit significant reduction of these penalties.

Branch Prediction

A “surprise” also occurs when a conditional branch is mispredicted. In this case, even if the branch
target is already in the cache, the falsely predicted instructions already in the pipeline must be discarded.
In a typical high-speed superscalar processor, this might result in a lost opportunity to execute more
than a dozen instructions. This is known as the mispredicted branch penalty.

PA-RISC 2.0 contains several features that help compilers signal future data and likely instruction needs
to the hardware. An implementation may use this information to anticipate data needs or to predict
branches more successfully, thus avoiding the penalties associated with surprises.

Some of these signals are in the nature of “hints” which are encoded in “don't care” bits of existing
instructions. These hints are examples of retroactive additions to PA-RISC 1.1, since all existing code
will run on newer machines, and newly annotated code will run correctly (but without advantage) on all
existing machines. The benefit of making such retroactive changes is that compilers are thereby
permitted to implement the anticipatory hints at will, without “synchronizing” to any particular
hardware release.

Memory Ordering

When cache misses cannot be avoided, it is important to reduce the resultant latencies. The PA-RISC 1
architecture specified that all loads and stores are observed to be performed “in order,” a characteristic
known as “strong ordering.”

Future processors are expected to support multiple outstanding cache misses while simultaneously
performing loads and stores to lines already in the cache. In most cases this effective reordering of loads
and stores causes no inconsistency, and permits faster execution. The latter model is known as “weak
ordering,” and it is intended to become the default model in future machines. Of course, strongly
ordered variants of loads and stores must be defined to handle contexts in which ordering must be
preserved — mainly related to synchronization among processors or with I/O activities.
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Coherent I/O

As the popularity and pervasiveness of multiprocessor systems increase, the traditional PA-RISC model
of 1/0O transfers to and from memory without cache coherence checks has become less advantageous.
Multiprocessor systems require that processors support cache coherence protocols. By adding similar
support to the 1/0 subsystem, the need to flush caches before and/or after each 1/0O transfer can be
eliminated. As disk and network bandwidths increase, there is increasing motivation to move to such a
cache coherent I/O model. The incremental impact on the processor is small, and is supported in PA-
RISC 2.0.

How This Book is Organized

The audience for this book might be divided into the following broad categories (listed in decreasing
order of probable size — though, one hastens to add, not in any presumed order of importance):

* application programmers

* operating system programmers

» compiler programmers

* hardware/system designers.

The book has been organized to make information easily accessible to each of these audience categories
based on the assumption that each category requires an additional level of detail. For example, applica-
tion programmers are primarily concerned with such things as data types, addressing capabilities, and the
instruction set. Operating system programmers need all of that information and also must concern them-
selves with such things as page table structures and cache operations, topics that application program-
mers do not usually need to worry about. Accordingly, chapters are generally structured so that the
information that is of interest to the broadest audience is presented at the beginning, and details that have
a more limited audience come later. Similarly, the book contains a rather large number of appendices:
they are used to provide specialized information which, if included in the main body of the book, might
add unneeded complexity to topics that are otherwise of broad interest.

Conventions Used in This Book

Several typographical and notation conventions are used throughout this book to simplify, emphasize,
and standardize presentation of information.

Fonts

In this book, fonts are used as follows:

Italic is used for instruction fields and arguments. For example: “The comuetepte
encoded in the andm fields of the instruction,...”.

Italic is also used for references to other parts of this and other books or manuals. For
example: “As described i@hapter 4, Flow Control and.”.

Bold is used for emphasis and the first time a word is defined. For example:
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“Implementations provide seven registers called shadow registers ...".

UPPER CASE is used for instruction names, instruction mnemonics, short (three characters or less)
register and register field names, and acronyms. For example: “The PL field in the
IIAOQ register ...".

Underbar () characters join words in register, variable, and function names. For example: “The
boolean variable cond_satisfied in the Operation section ...“.

Numbers

The standard notation in this book for addresses and data is hexadecimal (base 16). Memory addresses
and fields within instructions are written in hexadecimal. Where numbers could be confused with
decimal notation, hexadecimal numbers are preceded with Ox. For example, 0x2C is equivalent to
decimal 44.

Instruction Notations

Instruction operation is described in a C-like algorithmic language. This language is the same as the C
programming language with a few exceptions. These are:

* The characters “{}" are used to denote bit fields.

« The assignment operator used is™instead of “=".

« The functions “cat” (concatenation), and “xor” (logical exclusive OR) take a variable number of
arguments, for which there is no provision in C.

* The switch statement usage is improper because we do not use constant expressions for all the
cases.

« The keyword “parallel” may appear before loop control statements such as “for” and “while” and
indicates that the loop iterations are independent and may execute in parallel.

Bit Ranges

A range of bits within a larger unit, is denoted by “unit{range}”, where unit is the notation for memory,
a register, a temporary, or a constant; range is a single integer to denote one bit, or two integers

separated by “.." to denote a range of bhits.

For example, “GR[1]{0}" denotes the leftmost bit of general register 1, “CR[24]{59..63}" denotes the
rightmost five bits of control register 24, and “5{0..6}" denotes a 7-bit field containing the number 5. If
m > n, then {m..n} denotes the null range.

Registers

In general, a register name consists of two or three uppercase letters. The name of a member of a
register array consists of a register name followed by an index in square brackets. For example, “GR[1]"
denotes general register 1.

The named registers and register arrays are:
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Register Range Description

GR[t] t=0.31 General registers

SHRYt] t=0..6 Shadow registers

SRt t=0.7 Space registers

CRJi] t=0,8..31 | Control registers

CPR[uid][t] | t=0..31 Coprocessor “uid” registers

FPRt] t=0..31 Floating-point coprocessor registers

The Processor Status Word and the Interruption Processor Status Word, denoted by “PSW” and
“IPSW”, are treated as a series of 1-bit and multiple-bit fields. A field of either is denoted by the register
name followed by a field name in square brackets, and bit ranges within such fields are denoted by the
usual notation. For example, PSW[C/B] denotes the 16-bit carry/borrow field of the PSW and PSWI[C/
B]{0} denotes bit O of that field.

Temporaries

A temporary name comprises three or more lowercase letters and denotes a quantity which requires
naming, either for clarity, or because of limitations imposed by the sequential nature of the operational
notation. It may or may not represent an actual processing resource in the hardware. The length of the
guantity denoted by a temporary is implicitly determined and is equal to that of the quantity first
assigned to it in an operational description.

Operators

The operators used and their meanings are as follows:

- assignment | bitwise or
+ addition == equal to
subtraction < less than
* multiplication > greater than
~ bitwise complement I= not equal to
&& logical and <= less than or equal to
& bitwise and >= greater than or equal to
Il logical or

All operators are binary, except thaf’‘is unary and “~” is both binary and unary, depending on the
context.

Control Structures and Functions

The control structures used in the instruction notation are relatively standard and are described in
Appendix E, “Instruction Notation Control Structures”.
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1 Overview

In the mid 1980s, there was much heated discussion on the subject of the RISC (Reduced Instruction Set
Computer) versus CISC (Complex Instruction Set Computer) approach to computer architecture and
design. Those arguments have mostly been put to rest and the viability of RISC is universally
acknowledged. Now, the argument is usually RISC versus RISC and often, “who is RISC-iest?”

During these more recent arguments, the first three letters of RISC - “Reduced Instruction Set’- are
sometimes given undo emphasis when evaluating architectures. This rather simplistic method of
evaluating an architecture (how many different instructions does a machine support) does a general
disservice to the concept of RISC and can especially distort the value of mature RISC architectures such
as PA-RISC. Although it has not yet caught on as a buzzword in the way that RISC has, it can certainly
be argued that the term “Precision Architecture” - as in PA-RISC - is actually a much better description
of what the design technique known as RISC is all about. This overview chapter will briefly describe the
traditional RISC characteristics that are shared by PA-RISC and then provide some detail on the
differences between the precision PA-RISC approach and other RISC architectures.

Traditional RISC Characteristics of PA-RISC

There are number of specific characteristics that have come to be associated with most RISC
architectures. PA-RISC supports the following traditional RISC features:

« Direct hardware implementation of instruction set — The instruction set can be hardwired to speed
instruction execution. No microcode is needed for single cycle execution. Conventional machines
require several cycles to perform even simple instructions.

« Fixed instruction size — All instructions are one word (32-bits) in length. This simplifies the
instruction fetch mechanism since the location of instruction boundaries is not a function of the
instruction type.

« Small number of addressing modes — The instruction set uses only short displacement, long
displacement, and indexed modes to access memory.

* Reduced memory access — Only load and store instructions access memory. There are no
computational instructions that access memory; load/store instructions operate between memory
and a register. This simplifies control hardware and minimizes the machine cycle time.

» Ease of pipelining — The instructions are designed to be easily divisible into parts. This and the
fixed size of the instructions allow the instructions to be easily pipelined.

« Optimizing compilers — The PA-RISC instruction set is designed to be an excellent target for
optimizing compilers and is optimized for simple, frequently used instructions that execute in one
CPU cycle. Implementation of more complex functions is assigned to system software or to assist
processors such as the floating-point coprocessor.

* A floating-point coprocessor for IEEE floating-point operations.
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PA-RISC - The Genius is in the Details

There is no single aspect of PA-RISC that can be pointed to as making it radically different from other
RISC architectures. However, there are a myriad of details that combine to enable implementation of
PA-RISC machines that are significantly more efficient than competing RISC machines. The essence of
the “precision” approach is that the architecture should be designed precisely to support the operations
of applications that will run on a given machine in the most efficient possible manner. Additionally, in
order to keep pace with evolving demands, that architecture must also be simple to implement and
manufacture. Although it could be argued that these same “essential” statements could be made about
other architectures, there are three general categories of features that define the key differences between
PA-RISC and other RISC architectures:

« Pathlength reduction features
« Integrated CPU features
« Extensibility and longevity features

The sections that follow will provide details for each of these feature categories.

A Critical Calculus: Instruction Pathlength

All RISC architectures strive to enhance performance by including only those features that allow
simple, pipelined implementations with very short cycle times and an instruction execution rate of one
per CPU cycle. However, since RISC machines provide a simpler and less varied set of instructions than
CISC machines, they are often criticized for instruction pathlength expansion: since fewer and simpler
instructions are supported, more of these instructions must be executed to accomplish the same task as
compared to a CISC machine. This effect mitigates some of the performance advantages of RISC
machines and can also increase memory requirements and, therefore, system costs.

Most RISC architectures, including PA-RISC, combat this valid criticism by using optimizing
compilers. PA-RISC goes further, however, by providing efficient instruction-level parallelism: frequent
operations are combined into single instructions and sub-word data are operated on in parallel. These
techniques enable PA-RISC to reduce instruction pathlength without impacting either the cycle time or
the cycles-per-instruction goals of RISC architectures.

Reducing the number of instructions required to perform a given function benefits applications in two
ways. First, less code space is required which reduces memory requirements and therefore can reduce
the hardware cost of complete systems. Second, reducing the number of instructions in programs
provides higher performance or lets the system run at a lower frequency, thus permitting the use of
cheaper components.

PA-RISC achieves reductions in instruction pathlength in four different areas:
* Memory accessing instructions
» Functional operation instructions
* Instruction sequencing techniques

« Simple hardware requirements
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The sections that follow provide more details on these mechanisms.

Memory Accessing Features for Pathlength Reduction

Like most RISC architectures, PA-RISC is a load-store architecture. Therefore, making these memory
access operations efficient is critical in reducing the instruction pathlength since these operations are
performed so frequently. The following table highlights some of the features provided to optimize the

load-store operations.

Feature

Discussion

Indexed Loads

The most common addressing mode for loads adds the contents of a base and
index register to obtain the effective address. Most RISC machines require
two instructions for this operation. PA-RISC implements indexed loads with a
single instruction.

Scaled-Indexed
Loads

A single PA-RISC instruction provides index scaling into a data structure to
easily accommodate loading of bytes, halfwords, words, or doublewords -
operations typically requiring three instructions in other RISC machines.

Address Updates

Operations that repetitively access every nth item in an array or other data
structure are quite common and in most RISC machines require two instruc-
tions - one to load the data and a second to update the base address register.
PA-RISC performs this operation with a single load or store instruction.

32-bit Static Dis-
placements

A 2-instruction sequence in PA-RISC permits specification of a full 32-bit
static displacement from a base address. This sequence typically requires 3
instructions in other RISC machines.

Functional Operation Features for Pathlength Reduction

Some critical or frequently performed functional operations that often require more than one instruction
are combined in PA-RISC, often by judicious use of existing hardware. The following table briefly
describes some of the functional operations where pathlength reduction features are implemented.

Feature

Discussion

Shift and Add

Integer multiplication by a constant can be accomplished using a sequence of
a shift left instruction and an add instruction. PA-RISC combines these two
operations into a single shift-left-and-add instruction for the most common
cases - shift by 1, 2, or 3 bit positions. Other RISC machines typically require
two instructions for the shift-and-add operation. Some RISC machines
(including PA-RISC) provide an integer multiply instruction, but this instruc-
tion typically has a longer latency than shift-and-add.

Bit-Field
Instructions

Bit-field operations can be unwieldy and require multiple instructions in most
RISC machines. PA-RISC provides a powerful set of bit-field instructions
such as the Extract and Deposit instructions which combine a shift operation
with a mask or merge operation. Additionally, a double shift instruction
which simplifies dealing with operands that cross word boundaries is pro-
vided and conditional branches based on a single bit are also supported.
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Feature Discussion

Within the large class of applications that make significant use of floating-
point arithmetic, the most frequent floating-point operations are multiply and
add (or subtract) which require two separate instructions in most machines.
PA-RISC combines these operations into a single multiply-add or multiply-
subtract instruction.

Floating-Point
Multiply and Fused
Add

Although applications frequently operate on a mix of 4-bit decimal numbers,
8-bit characters, and 16-bit international characters, most RISC machines do
not use their data path efficiently for these subword operations. PA-RISC,
however, samples carry out bits at 4-bit boundaries of the data path. This
allows parallel operation on subword data and can result in requiring signifi-
cantly fewer instructions to operate on characters and BCD numbers.

Parallel Subword
Operations

Processing multimedia data requires arithmetic operations and flexible
manipulation of subword data. PA-RISC provides a compact set of instruc-
tions with minimal architectural impact to support processing of multimedia
data in single instruction operations.

Multimedia Audio
and Video

Conditional Instruction Sequencing Features for Pathlength Reduction

Control flow instructions are very common in most programs, and complicate the desired smooth flow
of instructions through the pipeline. PA-RISC provides a number of features that mitigate the impact of
control flow instructions and result in requiring execution of fewer instructions. The following table

summarizes the pathlength reduction features provided for conditional instruction sequencing.

Feature

Discussion

Combined
Operation and
Conditional Branch

A significant percentage of dynamic instruction paths consist of conditional
branch instructions - many with short branch distances. Most RISC machines
require two instructions for this operation: a functional operation which sets a
condition code and a conditional branch based on that code. PA-RISC pro-
vides eight conditional branch instructions covering the most frequent cases
which combine the functional operation and the conditional branch in a single
instruction.
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Feature Discussion

Branches with Many RISC machines require that the delay slot of a conditional branch
Conditional instruction be filled with a NOP instruction - needlessly increasing path-
Nullification length. In PA-RISC, each conditional branch instruction contains a “nullify”

bit that selects whether the next instruction (in the delay slot) is always exe-
cuted or conditionally executed. This approach ensures that delay slots can
always be filled with useful operations.

Operation with Con-| PA-RISC arithmetic, logical, and bit-manipulation instructions also include
ditional the mechanism for conditionally nullifying the next instruction. The condi-
Nullification tion is evaluated in the same cycle as the data operation and, if true, causes
the following instruction to be skipped. This technique allows generation of
“in-line” conditional execution without the pipeline penalties normally asso-
ciated with conditional branching, thus allowing optimal operation of the
instruction pipelining and prefetch mechanisms.

Operation and High-level languages often require a range-checking capability to ensure that
Conditional Trap addresses are within set boundaries. PA-RISC provides trapping variants of
Add, Subtract, and Shift-and-Add instructions which cause a software trap to
occur on overflow or a condition being met. These instructions allow simple,
compact implementation of such operations as range-checking.

Simple Hardware Required to Enable Pathlength Reduction Features

Many of the pathlength reduction features described in the preceding paragraphs could be implemented
in other RISC machines - by adding significant amounts of silicon and complexity. A key to the
efficiency of PA-RISC is that these features are enabled with minimal additional hardware complexity.
The following table briefly describes the simple hardware used to implement some of the pathlength
reduction features. In each case, the additional hardware requirements are minimal compared to the
improved performance that is obtained. Figure 1-1 illustrates the PA-RISC datapath.

Feature Discussion
Scaled Indexing & | Typical RISC processors require an adder unit to perform basic address calcu-
Shift-and-Add lations such as base+displacement for loads and stores. Both of these

enhanced features are accommodated in PA-RISC by simply widening the
multiplexor in front of one port to the ALU that performs a shift of one, two,
or three bits.

Parallel Subword These single-instruction-multiple-data type of instructions are supported by
Operations just sampling the ALU carry-out bits at intervals of 4 bits. Since many 32-bit
ALUs are designed by replicating 4-bit ALU slices, this has no impact on the
speed or complexity of the ALU.

Combined Typical RISC processors include a separate branch adder, in addition to the
Operation and ALU, to quickly calculate target addresses for better pipeline architecture.
Conditional Branch | PA-RISC makes additional use of this already available branch adder to cal-
culate program-counter relative branch addresses during the same cycle as the
functional operation is being performed.
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Feature Discussion

Bit-Field Operations| In typical RISC machines, a multiplexor is provided at the output of the
shifter used for sign extension for right shifts. Support for bit-field operations
is obtained simply by slightly widening the multiplexor already provided to
perform a masking operation for extracts and deposits.

Floating-Point Since floating-point units typically have separate multiplier and adder func-
Multiply and Add tional units, adding a dual-operation multiply-and-add instructions requires
only two extra ports on the floating-point register.

Address Updates on Since loads have a longer latency than ALU operations, typical RISC designs
Loads use a dedicated general register write port to avoid the complications of arbi-
trating with ALU operations for the port. This typically leaves the normal
write port unused on loads. PA-RISC exploits this situation and makes use of
this unused write port for address updates.

Figure 1-1. PA-RISC Datapath
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Multimedia Support: The Precision Process Illustrated

PA-RISC’s implementation of multimedia support provides an excellent illustration of how the
precision architecture approach works. The process begins with the recognition of a significant need —
that is, a need that is deemed to be long-lasting and broad-based. Multimedia support meets these
criteria since it is becoming obvious that scalable multimedia interfaces will replace current graphical
interfaces, and multimedia communications and databases are already beginning to replace text-based
systems. Soon, most systems will be expected to handle the ubiquitous transmission, storage and
processing of different information media such as audio, video, images, graphics and text.

When this significant need was identified, the PA-RISC team began a thorough investigation of what
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would be required to provide efficient multimedia support. Although separate specialized hardware
units had been previously used to support such operations as video compression, it seemed that the time
was right to make efficient support of multimedia a standard feature in the microprocessor rather than an
optional hardware feature tacked on with additional cost. Further, the fact that multimedia standards and
algorithms are continually changing argued for flexible hardware primitives that could be used by
software.

Next, it was determined that the most computation-intensive algorithms are based on such video
decompression standards as MPEG and JPEG. These standards needed halfword (16-bit) arithmetic to
provide sufficient dynamic range for internal pixel computations but further investigation suggested that
they did not usually require byte arithmetic. This latter fact was used to minimize hardware changes
since the implementation would be simpler if not all possible subword sizes needed to be
accommodated.

The final stage of the process was to determine what instructions were needed to provide the most
efficient support and how to implement these instructions with minimum impact on existing hardware
resources. Of the multimedia algorithms studied, the most common operations on pixeddere
SUBTRACT, AVERAGE andMULTIPLY of two numbers. The first three operations could be readily
implemented using the existing ALU datapath to operate on two pairs of halfwords in parallel using a
single instruction in a single cycle. Thus, tH&DD, HSUB, and HAVG instructions were easily
provided.

Halfword multiplication could not be implemented in a single cycle and would have required new
datapaths separate from the ALU datapath. The solution was to provide partial support using halfword
multiplication by constants with parallel Halfword-Shift-and-Add instructiorssHLADD and
HSHRADD.) These instructions could be implemented using existing hardware that was already being
used for scaled indexing, word and doubleword shift-and-add, and parallel subword operations (as
described in the previous section) and, when used as primitives to do constant multiplication, resulted in
efficient support for the key compression algorithms.

The architecture team then went one step further. Their investigations made it clear that to fully utilize
halfword parallel arithmetic instructions in a 64-bit architecture, it is desirable to be able to rearrange
halfwords in registers without incurring the overhead of memory load and store instructions. Since
processing of multimedia data often requires rearrangement of packed pixel data structures, the team
determined that they could provide support for these operations at very little cost in complexity.
Accordingly, thePERMH, MIXH, MIXW instructions were implemented to support rearrangement of
words and halfwords in registers with no memory load/store overhead. This support was provided with
minimal hardware changes since the existing shift-merge-unit datapath already handled a general 4-to-1
MUX for each result halfword with some restrictions.

The end result of this process was significant performance gains for critical multimedia algorithms with
only small changes being required to the existing datapaths.

Integrated CPU

In addition to the instruction set features which reduce the execution time and pathlength of programs,
PA-RISC integrates the following features into the CPU which reduce the hardware and development
costs of a system:
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« Security and protection

« Uniquely powerful interrupt system

« Debugging aids

Security and Protection Features

Controlling access to data in a multi-user environment is an essential requirement in most systems. PA-
RISC provides a comprehensive set of protection and security features to simplify these critical

requirements.

Feature

Discussion

Four Privilege Lev-
els

Most architectures have two privilege levels - user and supervisor. PA-RISC
defines four distinct privilege levels to enable implementation of multiple
hierarchical rings of security in very secure environments. This would allow,
for example, an operating system microkernel to run at privilege level 0, the
surrounding system services at levels 1 and 2, and user processes at level 3.

Access Rights on a
Per-Page Basis

Access rights determine the privileges needed to read, write or execute a
memory page. In PA-RISC, these rights are embedded for each virtual page in
the page directory and TLB entry which contain the Access Rights and
Access ID for that page. The Access ID, which is enabled by a bit in the Pro-
cessor Status Word, is compared against four Protection IDs associated with
the current process to determine if access should be allowed.

Gateway
Instruction

This instruction performs a branch and promotes the privilege level of the
current process to that specified in the access ID for the destination page. This
provides an efficient mechanism to perform operating system calls without
the need for a software interrupt, process switch, or passing through the most
privileged level.

Interrupt System Features

The PA-RISC interrupt system is simpler yet more flexible than those provided in most other RISC
machines. It provides fast, single-cycle context switching and precise interruptions even with delayed
branching. The following table describes several interrupt system features that particularly distinguish

PA-RISC.

Feature

Discussion

Software Control of
Interrupt Groups

Most architectures set interrupt priorities in special purpose hardware. In PA-
RISC, software can independently disable one or more interrupt groups,
delaying their processing to a more convenient time. Software can also select
the order, and hence the priority, in which it services unmasked interrupts.

Logging of Low-
priority Interrupts

Most architectures interlock low-priority devices while higher priority inter-
rupts are being handled thus requiring low-priority devices to continue
requesting interrupts until they are recognized. PA-RISC logs low-priority
interrupts even while higher priority interrupts are being handled.
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Debugging Features

A significant portion of any software development project is the debugging process. PA-RISC includes a
unique set of features to aid in system-level debugging.

Feature Discussion
Program Tracing The Processor Status Word (PSW) contains three bits that can be set to cause
Assistance a trap on any taken branch, on transfers to a higher privilege level, or a trans-

fer to a lower privilege. This permits program flow to be traced and allows for
auditing of the interface between programs and more privileged code in sys-
tem calls.

Specialized The Recovery Counter is a special mechanism that can be programmed to
Breakpoint Support | produce a trap after a specified number of instructions have been executed.
This is useful for breaking at a particular point in execution, as opposed to
when a particular instruction address is reached.

Breakpoint Support | ThBREAK instruction can be used for straightforward breakpoint capability.
The instruction also contains a parameter field, which is ignored by the hard-
ware, and lets it be used as a fast Supervisor Call instruction.

Trapping on Page | Each page in the virtual address space can be tagged to enable traps when any

Accesses references are made to the page or only when the page is modified.
Special Diagnostic | TheDIAGNOSE instruction provides access to processor state not normally
Instructions directly accessible to software. The instruction has a parameter field to

encode implementation-dependent operations relating to initialization, recon-
figuration, or diagnostics.

Extensibility and Longevity

An architecture that can not be extended has a limited life and is a technological dead end. It is also
critical that extensibility be an inherent part of the architecture - attempts to tack it on as an afterthought
inevitably result in inefficient jury rigs. PA-RISC has, from the outset, incorporated several architectural
features to ensure that this architecture will have a long life and enable future growth and extensions.
These features include an assist architecture that supports incorporation of the special function unit and
coprocessor interfaces, and the large, scalable virtual physical address space. These features are briefly
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described in the following table.

Feature Discussion

Assist Architecture PA-RISC includes instructions to invoke special, optional, hardware func-
tions provided by two types of processor assists: Special Function Units
(SFUs) and Coprocessors. SFUs are tightly coupled to the main processor and
use its general registers as the operands and targets of operations. Coproces-
sors are less tightly coupled to the main processor and use either memory (via
the cache) or their own registers for the operands and targets of operations.
PA-RISC supports up to eight each of SFUs and coprocessors. Two coproces-
sors, the Floating-point and Performance Monitor coprocessors, are already
defined.

Address Space Virtual address space requirements have been increasing unpaced as memory
demands of software systems accelerate. PA-RISC accommodates scalable
virtual memory systems ranging from 64 to 96 bits of virtual address space.

The smaller virtual address spaces permit lower cost processors. The same
address space image is presented to a program independent of the virtual
address space supported by a particular system.

Physical address spaces ranging from 32 to 64 bits are accommodated and the
same image and the same image is presented to software independent of the
physical space supported by a particular system.

System Organization

The PA-RISC processor is only one element of a complete system. A system also includes memory
arrays, 1/0 adapters, and interconnecting busses. The processor module is organized to provide a high-
performance computation machine. The Central Processing Unit (CPU) includes a general register set,
virtual address registers and machine state registers. A cache is optional, but it is such a cost-effective
component that nearly all processors incorporate this hardware. To support virtual memory addressing,
a hardware translation lookaside buffer (TLB) is included on processors to provide virtual to absolute
address translations.

Any processor may include Special Function Units (SFUs) and coprocessors. These dedicated hardware
units substantially increase performance when executing selected hardware algorithms. Collectively,
SFUs and coprocessors are called assist processors. For example, floating-point functions are provided
by a coprocessor, while a signal processing algorithm could be enhanced with a specialized SFU.

Figure 1-2 shows a typical processor module with a cache, a TLB, one coprocessor and one SFU.
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Figure 1-2. Processor Organization

Register-intensive computation is central to the architecture. Calculations are performed only between
high-speed CPU registers or between registers and immediate constants. Register-intensive operation
simplifies data and control paths thereby improving processor performance.

Load and store instructions are the only instructions that reference main memory. To minimize the
number of memory references, optimizing compilers allocate the most frequently used variables to
general-purpose registers.

Storage System

The PA-RISC storage system is an explicit hierarchy that is visible to software. The architecture
provides for buffering of information to and from main memory in high-speed storage units (visible
caches).

The memory hierarchy achieves nearly the speed of the highest (fastest and smallest) memory level with
the capacity of the lowest (largest and slowest) memory level. The levels of this memory hierarchy from
highest to lowest are the general registers, caches (if implemented), main memory and direct access
storage devices such as disks. Figure 1-3 illustrates the hierarchical speed/size relationship between the
various elements of a typical memory system.
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Figure 1-3. Memory Hierarchy
A cache system, when implemented, is an integral part of the processor. Caches hold frequently
accessed data and instructions in order to minimize access time to main memory. A system may have a
separate instruction cache (I-cache) and data cache (D-cache), or may have a single, combined cache
that holds both instructions and data.

System support of virtual addressing is provided by a hardware feature called the Translation Lookaside
Buffer (TLB) which performs translations from virtual addresses to absolute addresses. The TLB
contains translations for recently accessed virtual pages. Each TLB entry also contains information used
to determine valid access to that memory page and the type of access permitted. While the TLB
determines the proper translation of the virtual address, access information is checked and access is
either granted or denied. TLBs may be split on a processor, one for instructions (ITLB) and one for data
(DTLB).

Virtual Addressing

A generalized virtual memory system is an integral part of the architecture on all PA-RISC systems. The
virtual memory system supports virtual addresses between 64 and 96 bits wide. Program-supplied
addresses are treated as logical addresses and translated to absolute addresses by the TLB when
memory is referenced. Address translations are made at the page level. Direct access to physical
memory locations is also supported in the instruction set.

The global virtual memory is organized as a set of linear spaces with each space being between 4
Gbytes and 16 Exabytes long. Each space is specified with a space identifier and divided into variable
sized pages with each page being between 4 Kbytes and 64 Mbytes in size.

Input/Output Organization

The PA-RISC 1I/O architecture is memory-mapped, which means that complete control of all attached
modules is exercised by the execution of memory read and write commands. Processors invoke these
operations by executing load and store instructions to either virtual or absolute addresses.

This approach permits I/O drivers to be written in high-level languages. Since the usual page-level
protection mechanism is applied during virtual-to-absolute address translation, user programs can be
granted direct control over particular I/O modules without compromising system integrity.
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Direct 1/O is the simplest and least costly type of system I/O interface because it has little or no local
state and is controlled entirely by software. Since direct I/O responds only to load and store instructions
and never generates memory addresses, it may be mapped into virtual space and controlled directly by
user programs.

Direct Memory Access (DMA) I/0 adapters contain sufficient state to control the transfer of data to or
from a contiguous range of absolute addresses and to perform data chaining. This state is initialized
prior to the start of a transfer by a privileged driver which is responsible for the mapping and validation
of virtual addresses. During the transfer, the virtual page(s) involved must be locked in physical
memory and protected from conflicting accesses through software.

Assist Processors

Assist processors are hardware units that can be added to the basic PA-RISC system to enhance its
performance or functionality. Two categories of assist processors are defined and are distinguished by
the level at which they interface with the memory hierarchy.

The first type of assist processor is the special function unit (SFU) which interfaces to the memory
hierarchy at the general register level. This acts as an alternate ALU or as an alternate path through the
execution unit of the main processor. It may have its own internal state.

The second type of assist processor is the coprocessor, which shares the main processor caches.
Coprocessors are typically used to enhance performance of special operations such as high-performance
floating-point calculations. Coprocessors generally have their own internal state and hardware
evaluation mechanism. The floating-point coprocessor is defined in Chapter 8, “Floating-point
Coprocessor”, and the performance monitor coprocessor is defined in Chapter 11, “Performance
Monitor Coprocessor”.

Multiprocessor Systems

Multiprocessor support for various types of multiprocessor systems is built into the architecture.
Multiprocessors can be configured to provide incremental performance improvement via distribution of
the system workload over multiple CPUs, or can be configured redundantly to provide fault-tolerance in
the system. In systems sharing a single virtual address space, the architecture defines a model of a single
consistent cache and TLB. Software is still responsible for maintaining coherence for modifying
instructions, and for virtual address mapping. Systems may choose to only share physical memory and
form more loosely-coupled configurations. All multiprocessor systems synchronize using a semaphore
lock in shared main memory.
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Instruction Set Overview

PA-RISC provides a compact, yet full-functioned instruction set. The following table summarizes the
capabilities provided by the various categories of instructions.

Category Discussion
Memory Reference | Transfer data between the general registers and main memory or the /O sys-
Instructions tem. Load and store instructions are the only instructions that reference mem-

ory. Operands required for a given operation are first brought into a CPU
register from memory with a load instruction. The result of the operation is
explicitly saved to memory with a store instruction. There are two primary
addressing modes for memory accesses: base relative and indexed. Memory
references can be specified by either virtual or absolute addressing.

System I/O is memory-mapped: that is, I/O modules are mapped into physical
pages which are not part of the main memory, but which are addressed in the
same way. This provides the same flexibility, security, and protection mecha-
nisms for 1/O operations as are provided for main memory.

Arithmetic and Provide a simple but powerful set of functions. Besides the usual arithmetic
Logical Instructions | and logical operations, there are shift-and-add instructions to accelerate inte-
ger multiplication, extract and deposit instructions for bit manipulations, and
several instructions to provide support for packed and unpacked decimal

arithmetic.
Special Arithmeti- | These include saturating arithmetic, averaging, shifting, and permuting,
cal and Logical which operate on packed 16-bit integers four at a time. These instructions are
Instructions particularly valuable in multimedia applications such as video decompres-
sion.
Multiple-precision | Carry-sensitive instructions support multi-precision arithmetic. More com-
Arithmetic plex arithmetic functions (including packed, unpacked and zoned decimal

operations) are supported by language compilers through execution of a
sequence of simple instructions.

Program Control Branch instructions and instructions that conditionally skip the following

Flow Instructions instruction affect the control flow of a program. The condition resulting from
an operation can immediately determine whether or not a branch should be
taken. Unconditional branch and procedure call instructions are provided to
alter control flow. The need for some branch sequences is eliminated as most
computational instructions can specify skipping of the next instruction. This
permits such common functions as range checking to be performed in a sim-
ple, non-branching instruction sequence.
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Category Discussion

Multimedia Instruc- | Provide efficient support for the most frequent multimedia operations since
tions these operations are assuming greater importance in many applications. The
multimedia instructions in PA-RISC perform multiple parallel computations,
with each of the results being tested and forced to the appropriate value if
necessary, in a single cycle. The result is a sizeable reduction in pathlength
and fewer disruptive breaks in control flow in multimedia algorithms.

Floating-point Support the defined IEEE standard operations of addition, subtraction, multi-
Instructions plication, division, square root, conversions, and round-to-integer.

System Control Provide the support needed to implement an operating system including:
Instructions returning from interruptions, executing instruction breaks and probing access

rights. They also control the Processor Status Word, special registers, caches,
and translation lookaside buffers.
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2 Processing Resources

The PA-RISC instruction set is only one aspect of the processor architecture; the following components
are also specified:

* Processing Resources — what registers and register sets are available to the user and to system
software

« Data Types — how data is organized and what data types are available to the user

* Memory and I/0O Addressing — how system memory and the input/output facilities are organized
and accessed.

This chapter describes the processing resources and data types in a PA-RISC system. The memory and
I/O addressing aspects are described in Chapter 3, “Addressing and Access Control”.

The software-accessible registers (that is, the processing resources) are the storage elements within a
processor that are manipulated by the instructions. These resources participate in instruction control
flow, computations, interruption processing, protection mechanisms, and virtual memory management.
The software-accessible registers can be divided into two groups: non-privileged registers and
privileged registers. Privileged registers are those that generally can be accessed using instructions that
can be executed only when at the most privileged level. Figure 2-1 illustrates the registers provided in
the PA-RISC architecture.

General Registers Program Status Word Control Registers
- GRO — cro
Shadow Registers_

SHROT |4 + Instruction Address

& Queues

- — Tl

i
SHRe GR31 — ) CR31

Space Registers i Special Function
. R0 Coprocessor Registers Unit Registers

[ privileged
[non-privileged

SR7

Figure 2-1. Software Accessible Registers
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Non-Privileged Software-Accessible Registers

These registers can be accessed by any program at any time, regardless of the current privilege level and
include those typically needed by application software (as opposed to system software.)

* General Registers (GR 0..GR 31)

» Space Registers (SR 0..SR 7 - SR5-SR7 are privileged.)
« Instruction Address Queues

 Coprocessor Registers

» Special Function Unit Registers

« subset of Control Registers (Timer, SAR, CR26,27))

General Registers

Thirty-two 64-bit general registers provide the central resource for all computation (Figure 2-2).
They are numbered GR 0 through GR 31, and are available to all programs at all privilege levels.

GR 0, GR 1, GR2, and GR 31 have special functions.

* GR 0, when referenced as a source operand, delivers zeros. When GR 0 is used as a destination, the
result is discarded.

* GR 1is the implicit target of th&DD IMMEDIATE LEFT instruction.

* GR 2 is the instruction address offset link register for the long displacement form of the normal call
instruction BRANCH AND LINK).

* GR 31 is the instruction address offset link register for the base-relative interspace procedure call
instruction BRANCH EXTERNAL instruction with the (optional) (for link) completer].

GR 1, GR2, and GR 31 can also be used as general registers; however, software conventions may at
times restrict their use.
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GRO Permanent zero
GR1 Target for ADDIL or General use
GR 2 Target for long displacement form of B,L or General use
GR 3 General use
GR 30 General use
GR 31 Link register for BLE or General use

Figure 2-2. General Registers

Space Registers

A PA-RISC system provides eight space registers, numbered SR 0 through SR 7, which contain space
IDs for virtual addressing. Instructions specify space registers either directly in the instruction or
indirectly through general register contents.

Instruction addresses, computed by branch instructions, may use any of the space registers. SR 0 is the
instruction address space link register for the base-relative interspace procedure call instruction
[BRANCH EXTERNAL instruction with the (optional) (for link) completer]. Data operands can specify

SR 1 through SR 3 explicitly, and SR 4 through SR 7 indirectly, via general registers.

SR 1 through SR 7 have no special functions; however, their use will normally be constrained by
software conventions. For example, the following convention supports non-overlapping process groups.
SR 1 through SR 3 provide general-use virtual pointers. SR 4 tracks the instruction address (1A) space
and provides access to literal data contained in the current code segment. SR 5 points to a space
containing process private data, SR 6 to a space containing data shared by a group of processes, and SR
7 to a space containing the operating system’s public code, literals, and data. Figure 2-3 illustrates this
convention.

SRs 5 through 7 can be modified only by code executing at the most privileged level.
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SRO Link code space ID

SR1 General use

SR 2 General use

SR 3 General use

SR 4 Tracks IA space

SR 5 Process private data

SR 6 Shared data

SR 7 Operating system’s public code, literals, and data

Figure 2-3. Example Space Register Usage Convention

Space registers, as well as IASQ, IIASQ, and ISR which are described later, may be any size between
32 bits and 64 bits to support a virtual address size between 64 and 96 bits.

Instruction Address Queues

The Instruction Address Queues hold the address of the currently executing instruction and the address
of the instruction that will be executed after the current instruction, termed the following instruction.
Note that the following instruction is not necessarily the next instruction in the linear code space. These
two queues are each two elements deep. The Instruction Address Offset Queue (IAOQ) elements are
each 64 bits wide. The high-order 62 bits contain the word offset of the instruction while the 2 low-order
bits maintain the privilege level of the corresponding instruction. There are four privilege levels: 0, 1, 2,
and 3 with 0 being the most privileged level.

The Instruction Address Space Queue (IASQ) contains the space ID of the current and following
instructions. The IASQ may be from 32 to 64 bits in size. The space ID of the current instruction, when
executing without instruction address translation enabled, is not specified and may contain any value.

The front elements of the two queues (IASQ_Front and IAOQ_Front) form the virtual address of the
current instruction while the back elements of the two queues (IASQ_Back and IAOQ_Back) contain
the address of the following instruction. Figure 2-4 shows this structure. Two addresses are maintained
to support the delayed branching capability (See “Concept of Delayed Branching” on page 4-1).

6 6
0 1 3
IACQ Offset PL
Offset PL
0 63
IASQ Space ldentifier
Space ldentifier

Figure 2-4. Instruction Address Queues
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Control Registers (non-privileged)

Although most of the Control Registers can be accessed only by privileged instructions, the Shift
Amount Register (SAR), Interval Timer, and temporary registers CR26,27 are accessible at any time
and are described in the paragraphs that follow.

Shift Amount Register

The Shift Amount Register or SAR (CR 11), is a 6-bit register used by the variable shift, extract,
deposit, and branch on bit instructions. It specifies the number of bits a quantity is to be shifted. The
remaining 58 bits are ignored bits.

Interval Timer

The Interval Timer (CR 16) consists of two internal registers. One of the internal registers is a 64-bit
counter which continually counts up by 1 at a rate which is implementation-dependent and between
twice the “peak instruction rate” and half the “peak instruction rate”. Reading the Interval Timer returns
the value of this internal 64-bit register. The other internal register contains a 32-bit comparison value
and is set by writing to the Interval Timer. When the least significant 32 bits of the counter register and
the comparison register contain identical values, a bit in the External Interrupt Request Register is set to
1. This causes an external interrupt, if not masked. The W bit (Wide enable) in the Processor Status
Word (PSW - see Table 2-1) determines which bit of the EIRR is set. If the W bit is 0, the timer
comparison causes bit 32 to be set to 1. If the W bit is 1, the timer comparison causes bit 0 of the EIER
to be set to 1.

The Interval Timer can only be written by code executing at the most privileged level. If the PSW S-bit
is 1, the Interval Timer can only be read by code executing at the most privileged level; otherwise, it can
be read by code executing at any privilege level.

In a multiprocessor system, each processor must have its own Interval Timer. Each Interval Timer need
not be synchronized with the other Interval Timers in the system, nor do they need to be clocked at the
same frequency.

If, as part of a power-saving mode, the processor clock is reduced below the “peak instruction rate”, the
Interval Timer continues to count at its peak rate. If the processor clock is stopped, the Interval Timer
may also stop.

Temporary Registers

Two of the eight 64-bit temporary registers (CRs 26 and 27) are readable by code executing at any
privilege level and writable only by code executing at the most privileged level.

Coprocessor Registers

Each coprocessor may have its own register set. The coprocessor mechanism is described in “Assist
Instructions” on page 6-19. The floating-point coprocessor registers are described in Chapter 8,
“Floating-point Coprocessor”. The performance monitor coprocessor registers are described in Chapter
11, “Performance Monitor Coprocessor”.
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SFU Registers

Each special function unit may have its own register set. The SFU mechanism is described in “Assist
Instructions” on page 6-19.

Branch Target Stack

The Branch Target Stack (or BTS) is an optional processing resource which is used to accelerate
indirect branches, such as subroutine returns. The BTS is managed by software, and in processors which
implement it, can provide the branch target address in place of the general register specified in the
branch instruction.

Conceptually, the BTS is a stack of 63-bit registers. The number of registers is implementation
dependent, and can be 0. Each register holds an instruction address plus a valid bit. Although the BTS is
not directly readable, it can be thought of as being laid out as in Figure 2-5.

0 6162

Top of stack target address Y

Bottom of stack

Figure 2-5. Branch Target Stack

Certain instructions push an address onto the top of the stack, forcing all other entries down one register,
with the old value of the last register (bottom of stack) being discarded. When a value is pushed onto the
stack, the valid bit is set to 1 for that entry.

Other operations pop an address from the top of the stack. If the valid bit associated with the address is
1, the address may be used as a branch target, to decrease the latency of the branch. If the entry is
invalid, it is ignored, and the branch target is calculated the normal way (using the specified general
register). When the stack is popped, each entry moves up one register, and the register at the bottom of
the stack is marked invalid.

The Branch Nomination Register (or BNR) is a register which holds one instruction address. It also has
a valid bit associated with it. The BNR allows software to make use of the BTS in a called function,
even though the caller function does not attempt to use the stack (perhaps because it is older code).

0 6162
target address ‘ ‘v

Figure 2-6. Branch Nomination Register

Implementation of the BTS is optional. Hardware may invalidate entries in the stack at any time, so
software may not rely on entries remaining valid.
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For more details, see the related instruction pages.

Privileged Software-Accessible Registers

These registers can be accessed only when the processor is in the most privileged mode and are intended
for use by system software.

» Processor Status Word (PSW)
» Shadow Registers (SHR 0..SHR 6)
« Control Registers (CR 0..CR 31)

Processor Status Word (PSW)

Processor state is encoded in a 64-bit register called the Processor Status Word (PSW). When an
interruption occurs, the current value of the PSW is saved in the Interruption Processor Status Word
(IPSW) and usually all defined PSW bits are set to 0. The format of the PSW is shown in Figure 2-7.

1 2 3 4 5 6
0123456789123456789123456789123456789123456789123456789123
rv C/B rv. WESTHUNXBCWYWM C/B  |OrHRQRDI
\%

Figure 2-7. Processor Status Word

The PSW is set to the contents of the IPSW byRIEEURN FROM INTERRUPTIONNstruction. The
interruption handler may restore the original PSW, modify selected bits, or may change the PSW to an
entirely new value.

The E, O, W, F, R, Q, P, D, and | bits of the PSW are known as the system mask. Each of these bits, with
the exception of the Q-bit, may be set to 1, set to 0, written, and read by the system control instructions
that manipulate the system mask. The Q-bit is specially defined. It can be set to 0 by system control
instructions that manipulate the system mask, but setting it to 1 when the current value is 0 is an
undefined operation. The only instruction that can set the Q-bit to 1 IREM&RN FROM
INTERRUPTIONInstruction.

Some of the PSW bits are termed mask/unmask bits whereas others are termed disable/enable bits.
Interruptions that are masked remain pending whereas those that are disabled are ignored.
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The PSW fields are described in Table 2-1.

Table 2-1. Processor Status Word

Field | Description

rv Reserved bits.

W Wide 64-bit address formation enable. When 1, full 64-bit-offset addressing is enabled.
When 0, addresses are truncated to 32-bit offsets, for compatibility with existing PA-RISC
1.0 and 1.1 applications.

E Little endian memory access enable. When 0, all memory references are big endian. When
1, all memory references are little endian. Implementation of this bit is optional. If it is not
implemented, all memory references are big endian and this bit is a reserved bit.

S Secure Interval Timer. When 1, the Interval Timer is readable only by code executing at the
most privileged level. When 0, the Interval Timer is readable by code executing at any privi-
lege level.

T Taken branch trap enable. When 1, any taken branch is terminated with a taken branch trap.

H Higher-privilege transfer trap enable. When 1, a higher-privilege transfer trap occurs when-
ever the following instruction is of a higher privilege.

L Lower-privilege transfer trap enable. When 1, a lower-privilege transfer trap occurs when-
ever the following instruction is of a lower privilege.

N Nullify. The current instruction is nullified when this bit is 1. This bit is set to 1 by an
instruction that nullifies the following instruction.

X Data memory break disable. The X-bit is set to O after the execution of each instruction,
except for the(RETURN FROM INTERRUPTIONNstruction which may set it to 1. When 1,
data memory break traps are disabled. This bit allows a simple mechanism to trap on a data
store and then proceed past the trapping instruction.

B Taken branch. The B-bit is set to 1 by any taken branch instruction and set to 0 otherwise.
This is used to ensure that tBRANCH instruction with theGATE completer (the privilege
increasing instruction) cannot be used to compromise system security.

C Code (instruction) address translation enable. When 1, instruction addresses are translated
and access rights checked.

\% Divide step correction. ThBIVIDE STEP (integer division primitive) instruction records
intermediate status in this bit to provide a non-restoring divide primitive.

M High-priority machine check mask. When 1, high-priority machine checks (HPMCs) are
masked. Normally 0, this bit is set to 1 after an HPMC and set to 0 after all other interrup-
tions.
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Table 2-1. Processor Status Word (Continued)

C/B | Carry/borrow bits. The following instructions update the PSW carry/borrow bits from the
corresponding carry/borrow outputs of the 4-bit digits of the ALU:

ADD* ADDI DS
SHLADD* SUB SUBI

The instructions marked with an asterisk set the carry/borrow bits only if {fagical)
completer is not specified.

After an add which sets them, each bit is set to 1 if a carry occurred out of its corresponding
digit, and set to 0 otherwise. After a subtract which sets them, each bit is set to 0 if a borrow
occurred into its corresponding digit, and set to 1 otherwise. Bits {24..31} hold the digit car-
ries from the upper half of the ALU, and bits {48..55} hold the digit carries from the lower
half.

O Ordered references. When 1, virtual memory references to pages with the corresponding
TLB O-bit 1, and all absolute memory references, are ordered. When 0, memory references
(except those explicitly marked as ordered or strongly ordered) may be weakly ordered.
Note that references to 1/0 address space, references to pages with the TLB U-bit 1, sema-
phore instructions, and TLB purge instructions are always strongly ordered.

F Performance monitor interrupt unmask. When 1, the performance monitor interrupt is
unmasked and can cause an interruption. When 0, the interruption is held pending. Imple-
mentation of this bit is required only if the performance monitor is implemented and the per-
formance monitor has the ability to interrupt. If it is not implemented, this bit is a reserved
bit.

R Recovery Counter enable. When 1, recovery counter traps occur if bit O of the recovery
counter is a 1. This bit also enables decrementing of the Recovery Counter.

Q Interruption state collection enable. When 1, interruption state is collected. Used in process-
ing the interruption and returning to the interrupted code, this state is recorded in the Inter-
ruption Instruction Address Queue (11AQ), the Interruption Instruction Register (IIR), the
Interruption Space Register (ISR), and the Interruption Offset Register (IOR).

P Protection identifier validation enable. When this bit and the C-bit are both equal to 1,
instruction references check for valid protection identifiers (PIDs). When this bit and the D-
bit are both equal to 1, data references check for valid PIDs. When this bit is 1, probe
instructions check for valid PIDs.

D Data address translation enable. When 1, data addresses are translated and access rights
checked.

I External interrupt, power failure interrupt, and low-priority machine check interruption
unmask. When 1, these interruptions are unmasked and can cause an interruption. When O,
the interruptions are held pending.
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Shadow Registers

There are seven registers shadow registers. Upon interruption, if the PSW Q-bit was 1, the contents of
GRs 1, 8, 9, 16, 17, 24, and 25 are copied into shadow registers SHR 0, 1, 2, 3, 4, 5, and 6, respectively.
If an interruption is taken with the PSW Q-bit equal to 0, the shadow registers are unchanged. The
contents of these general registers are restored from their shadow registers REWSRA FROM
INTERRUPTIONInstruction with the (optionaR (for restore) completer is executed.

Control Registers

There are twenty-five defined control registers, numbered CR 0, and CR 8 through CR 31, which
contain system state information.

The control registers are shown in Figure 2-8 and described in the following sections. (The control
registers that can be accessed in the non-privileged state are described earlier in the section “Control
Registers (non-privileged)” on page 2-5.) Moving the contents of a control register to a general

register copies the register contents right aligned into the general register. Moving the contents of a
general register to a control register copies the entire general register into the control register.

Control registers 1 through 7 are reserved registers.
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0 3132 63

CRO nonexistent Recovery Counter

reserved
CR8 Protection ID 1 wD Protection ID 2 WD
CR9 Protection ID 3 wD Protection ID 4 WD
CR 10 reserved ‘ SCR ‘ CCR
CR 11 ignored | SAR
CR 12 Protection ID 5 wD Protection ID 6 WD
CR 13 Protection ID 7 WD Protection ID 8 WD
CR 14 Interruption Vector Address ‘ reserved
CR 15 External Interrupt Enable Mask
CR 16 Interval Timer
CR 17 Interruption Instruction Address Space Queue
CR 18 Interruption Instruction Address Offset Queue
CR 19 reserved Interruption Instruction Register
CR 20 Interruption Space Register
CR 21 Interruption Offset Register
CR 22 Interruption Processor Status Word
CR 23 External Interrupt Request Register
CR 24 Temporary Register
CR 31 Temporary Register

Figure 2-8. Control Registers

Recovery Counter

The Recovery Counter (CR 0) is a 32-bit counter that can be used to provide software recovery of
hardware faults in fault-tolerant systems, and can also be used for debugging purposes. CR 0 counts
down by 1 during the execution of each non-nullified instruction for which the PSW R-bit is 1. The
Recovery Counter is restored if the instruction terminates with a group 1, 2, or 3 interruption (see
Chapter 4, “Control Flow”). When the leftmost bit of the Recovery Counter is 1, a recovery counter trap
occurs. The trap and the decrement operation can be disabled by setting the PSW R-bit to 0. The value
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of the Recovery Counter may be read reliably only when the PSW R-bit is 0. (Reading the Recovery
Counter when the PSW R-bit is 1 returns an undefined result.) The Recovery Counter may be written
reliably only when the PSW R-bit is 0. (Writing the Recovery Counter when the PSW R-bit is 1 is an
undefined operation.) If the PSW R-bit is set to 0 by eitheREE®ET SYSTEM MASKor theMOVE TO

SYSTEM MASK instruction, the Recovery Counter may not be read or written reliably prior to the
execution of the eighth instruction after tRESET SYSTEM MASKor theMOVE TO SYSTEM MASK
instruction. An interruption, or RETURN FROM INTERRUPTIONNSstruction which sets the PSW R-bit

to 0, does not have this restriction.

Protection ldentifiers

The protection identifiers (CRs 8, 9, 12, 13) designate up to eight groups of pages which are accessible
to the currently executing process. When translation is enabled, the eight protection identifiers (PIDs)
are compared with a page access identifier in the TLB entry to validate an access. (See “Access Control”
on page 3-11.) The rightmost bit of each of the eight PIDs is the write disable (WD) bit. When the WD-
bit is 1, that PID cannot be used to grant write access. This allows each process sharing memory to have
different access rights to the memory without the overhead of changing the access identifier and access
rights in the TLB. When the PSW P-bit is 0, the PIDs, including the WD-bits, are ignored.

Each of the 8 PID registers can be from 16 to 32 bits wide (including the WD bit), with the remaining
bits being reserved bits. The length of the PIDs is implementation dependent.

Coprocessor Configuration Register (CCR)

The Coprocessor Configuration Register or CCR (bits 56..63 of CR 10) is an 8-bit register which
records the presence and usability of coprocessors. The bit positions are numbered 0 through 7, and
correspond to a coprocessor with the same unit identifier. Bits 0 and 1 correspond to the floating-point
coprocessor, and bit 2 corresponds to the performance monitor coprocessor. Bit 7 is the rightmost bit of
the CCR. It receives bit 63 from a general register when a general register is written to CR 10. The
upper 48 bits of CR 10, and bits within the CCR corresponding to coprocessors which are not present,
are reserved bits.

The behavior of the floating-point coprocessor with respect to the state of CCR bits 0 and 1 and the
behavior of the performance monitor coprocessor with respect to the state of CCR bit 2, are specified in
“Coprocessor Instructions” on page 6-22. For other coprocessors, setting a bit in the CCR to 1 enables
the use of the corresponding coprocessor, if present and operational. If a CCR bit is 0, the corresponding
coprocessor, if present, is logically decoupled. This decoupling must ensure that the state of a
coprocessor does not change as long as its corresponding CCR bit is 0. When a CCR bit is set to 0 and
an attempt is made to execute an instruction which references the corresponding coprocessor, it causes
an assist emulation trap. It is an undefined operation to set to 1 any CCR bit corresponding to a
coprocessor which is not present.

SFU Configuration Register (SCR)

The SFU Configuration Register or SCR (bits 48..55 of CR 10), is an 8-bit register which records the
presence and usability of special function units. The bit positions are numbered 0 through 7, and
correspond to an SFU with the same unit identifier. Bit 7 is the rightmost bit of the SCR. It receives bit
55 from a general register when a general register is written to CR 10. The upper 48 bits of CR 10, and
bits within the SCR corresponding to SFUs which are not present, are reserved bits.
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For all SFUs, setting a bit in the SCR to 1 enables the use of the corresponding SFU, if present and
operational. If an SCR bit is 0, the corresponding SFU, if present, is logically decoupled. This
decoupling must ensure that the state of an SFU does not change as long as its corresponding SCR bit is
0. When an SCR bit is set to 0 and an attempt is made to execute an instruction which references the
corresponding SFU, it causes an assist emulation trap. The operation of an SFU when its corresponding
SCR bit is 0 is explained in more detail in “Special Function Unit (SFU) Instructions” on page 6-20. It

is an undefined operation to set to 1 any SCR bit corresponding to an SFU which is not present.

Interruption Vector Address (IVA)

The Interruption Vector Address or IVA (CR 14) contains the absolute address of the base of an array of
service procedures assigned to the interruption classes. The lower 11 bits of the IVA are reserved
Therefore, the address written to it must be a multiple of 2048. For implementations with fewer than 64
bits of physical address, the upper bits of the IVA corresponding to unimplemented physical address bits
are reserved. The array of interruption service procedures is indexed by the interruption numbers

given in Chapter 4, “Control Flow”.

External Interrupt Enable Mask (EIEM)

The External Interrupt Enable Mask or EIEM (CR 15), is a 64-bit register containing a bit for each of
the 64 external interrupts. Each 0 bit in the EIEM masks external interrupts corresponding to that bit
position.

Interruption Instruction Address Queues

The Interruption Instruction Address Space Queue or IIASQ (CR 17) and the Interruption Instruction
Address Offset Queue or IIAOQ (CR 18) are collectively termed the interruption instruction address or
IIA queues. They are used to save the Instruction Address and privilege level information for use in
processing interruptions. The registers are arranged as two two-element deep queues. The queues
generally contain the addresses (including the privilege level field in the rightmost two bits of the offset
part) of the two instructions in the IA queues at the time of the interruption. The IIASQ may be from 32

to 64 bits wide.

The IlA queues are continually updated whenever the PSW Q-bit is 1 and are frozen by an interruption
(PSW Q-hit becomes 0). After such an interruption, the lIA queues contain copies of the information
from the IA queues. The IIAOQ contains the address offsets of the interruption point in the same format
as the IAOQ. The IIASQ has a different format from that of the IASQ. The IIASQ contains the upper
portion of the GVA (global virtual address) of the interruption point, if code address translation was
enabled. (Note that if the PSW W-bit was 0, the upper portion of the GVA is simply the space ID.)
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3 6 6
0 1 1 3
Offset PL
IHAOQ
Offset PL
6
0 3
Global Virtual Address {0..63}
IASQ ,
Global Virtual Address {0..63}
Figure 2-9. Interruption Instruction Address Queues with Wide Virtual Addresses
3 6 6
0 1 1 3
0 Offset PL
IHAOQ
0 Offset PL
6
0 3
Space ldentifier
IIASQ =
Space ldentifier

Figure 2-10. Interruption Instruction Address Queues with Narrow Virtual Addresses

If code address translation was disabled at the time of the interruption, then the IIAOQ contains the

absolute offsets of the interruption point, and the IIASQ contains zeros. (Note that if the PSW W-bit was

0, the absolute offsets in the IIAOQ may be truncated to only those bits of the physical address space
that are implemented, and the upper bits forced to zeros.)

3 6 6
0 1 1 3
A0Q Offset PL
Offset PL
6
0 3
0
IHASQ 0

Figure 2-11. Interruption Instruction Address Queues with Absolute Addresses

On a return from interruption, the values in the IIA queues are used to reform the IA queues for the
return point. The values in the IIAOQ are copied to the IAOQ. The new values for the IASQ are formed
as follows (see also Figure 2-12): the lower 30 bits of the IASQ are formed by taking the bitwise AND
of the lower 30 bits of the values in the IIASQ with the complement of bits {2..31} of the values in the
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IIAOQ. Bits {32..33} of the IIASQ are copied to the same bits in the IASQ. The upper 32 bits of the
IIASQ (or as many as are implemented) are copied to the corresponding bits of the IASQ. This reforms
the original space identifiers.

[] | Offset | naoQ
GVA | | IASQ
Sampern
Space Ildentifier | Restored IASQ value

Figure 2-12. Reforming Space ldentifiers

Reading the 11AOQ (CR 18) while the PSW Q-bit is O retrieves the offset and privilege level portions of
the front element in the 11AOQ. Writing into IAOQ while the PSW Q-bit is 0 advances the I1AOQ and
then sets the offset and privilege level portions of the back element of the IIAOQ. Reading the 11ASQ
(CR 17) while the PSW Q-bit is O retrieves the GVA portion of the front element of the IIASQ. Writing
into IIASQ while the PSW Q-bit is 0 advances the IIASQ and then writes into the back element of the
IIASQ. The effect of reading or writing either queue register while the PSW Q-bit is 1 is an undefined
operation.

The state contained in the IlA queues is undefined wHRET&IRN FROM INTERRUPTIONNStruction
sets the PSW Q-bit to 0, or when system control instructions are used to set the PSW Q-bit to 0. If an
interruption is taken with the PSW Q-bit equal to 0, the IIA queues are unchanged.

Interruption Parameter Registers (IPRs)

The Interruption Parameter Registers (IPRs) are used to pass an instruction and a virtual address to an
interruption handler. Three registers comprise the IPRs: the Interruption Instruction Register or IIR (CR
19), Interruption Space Register or ISR (CR 20), and Interruption Offset Register or IOR (CR 21). They
are used to pass an instruction and a virtual address to an interruption handler. The values in these
registers for each interruption class are specified in Chapter 4, “Control Flow”. These values are set (or
frozen) at the time of the interruption whenever the PSW Q-bit is 1. The ISR may be from 32 to 64 bits
wide.

The value loaded into the IOR is the lower 32 bits of the virtual address offset without truncating the

rightmost bits or setting them to O, plus the 2 bits of the base register which was used to form the
address. If the PSW W-bit was 1, the upper 2 bits of the IOR (called the b field) are equal to bits {0..1}
from the base register. If the PSW W-bit was 0, the b field is equal to bits {32..33} from the base

register. The other bits of the IOR are forced to O.
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The value loaded into the ISR is the upper portion of the GVA, if data translation was enabled. (Note
that if the PSW W-bit was 0, the upper portion of the GVA is simply the space ID.)

3 6
0 2 1 3
IOR \ b \ 0 \ Offset {32..64}
0 3

ISR Global Virtual Address ‘

Figure 2-13. Interruption Space and Offset Registers with Virtual Address

If data translation was disabled at the time of the interruption, the IOR contains the lower 32 bits of the
absolute offset. The upper 2 bits of the IOR are undefined, and may be set to any value. The other bits in
the IOR are forced to 0. The ISR contains the upper portion of the absolute offset, zero-extended. If the
PSW W-bit was 0 as well, the ISR contains 0.

3 6

0 2 1 3

IOR \ un‘ 0 \ Absolute Offset {32..64}
6
0 3
ISR 0 \ o\ Absolute Offset {2..31}\

Figure 2-14. Interruption Space and Offset Registers with Absolute Address

The interruption parameter registers can be read or written reliably only when the PSW Q-bit is O.
(Reading an interruption parameter register when the PSW Q-bit is 1 returns an undefined result.) The
state contained in the IPRs is undefined wh&EBURN FROM INTERRUPTIONInstruction sets the

PSW Q-bit to 0, or when system control instructions are used to set the PSW Q-bit to 0. If an
interruption is taken with the PSW Q-bit equal to 0, the IPRs are unchanged.

Interruption Processor Status Word (IPSW)

The Interruption Processor Status Word or IPSW (CR 22) receives the value of the PSW when an
interruption occurs. The format of the IPSW is identical to that of the PSW. The IPSW always reflects

the state of the machine at the point of interruption, regardless of the state of the PSW Q-bit. As in the
PSW, the unnamed bits are reserved bits.

The IPSW can be read or written reliably only when the PSW Q-bit is 0. (Reading the IPSW when the
PSW Q-bit is 1 returns an undefined result.) The state contained in the IPSW is undefined when a
RETURN FROM INTERRUPTIONInstruction sets the PSW Q-bit to 0, or when system control
instructions are used to set the PSW Q-bit to 0.

External Interrupt Request Register (EIRR)

The External Interrupt Request register or EIRR (CR 23) is a 64-bit register containing a bit for each
external interrupt. When 1, a bit designates that an interruption is pending for the corresponding
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external interrupt. Both the PSW I-bit (external interrupt, power failure interrupt, and low-priority
machine check unmask) and the corresponding bit position in the External Interrupt Enable Mask (CR
15) must be 1 for an interruption to occur.

A MOVE TO CONTROL REGISTERNstruction with CR 23 as its target bitwise ANDs the complement
of the contents of the source register with the previous contents of CR 23, and places this result in CR
23. Thus the processor can only set the EIR register bits to 0.

A processor’s EIR register is also memory mapped into the physical address space as the II0_EIR
register to enable other processors and 1/0O modules to interrupt the processor. When a module writes to
it, the bit specified by the value written is set to 1. The W bit (Wide enable) in the Processor Status Word
(PSW - see Table 2-1) determines whether the EIRR operates as a 32-bit register or a 64-bit register.
When the W bit is 0, the EIRR operates effectively as a 32-bit register. Values written to the IO_EIR are
interpreted as 5-bit numbers, which cause one of the bits in the range {32..63} to be set to 1. When the
W bit is 1, the EIRR operates as a 64-bit register. Values written to the IO_EIR are interpreted as 6-bit
numbers, which cause one of the bits in the range {0..63} to be set to 1.

Temporary Registers

Six of the eight 64-bit temporary registers (CRs 24, 25, 28..31) are accessible only by code executing at
the most privileged level. They provide space to save the contents of the general registers for
interruption handlers in the operating system kernel.

The other two temporary registers (CRs 26 and 27) are readable by code executing at any privilege level
and writable only by code executing at the most privileged level.

Unused Registers and Bits

Currently, there are several registers and bit-fields within registers that do not have any function
assigned to them. All such processing resources are classified into four categories:

1. Reserved bits — Currently unused bits, but reserved for possible future use. A READ operation is
legal, and the value read back is all zeros. A WRITE operation is legal but the value written must be
all zeros. Writing ones is an undefined operation. (For example, writing ones may cause these bits
to no longer read as zeros.)

2. Nonexistent bits — Architecturally these bits do not exist. A READ operation is legal and may
return zeros or what was last written. A WRITE operation is also legal but does not have any effect
on system functionality.

3. Undefined bits — Architecturally these bits are undefined. A READ operation is legal and the value
read is undefined. A WRITE operation is also legal but does not have any effect on system
functionality.

4. Ignored bits — Architecturally these bits are ignored. A READ operation is legal and the value read
is all zeroes. A WRITE operation is also legal but does not have any effect on system functionality.

5. Reserved registers — A register that is numbered but currently unused. Both READ and WRITE
operations are undefined operations.
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Data Types

The fundamental data types that are recognized are bits, bytes, integers, floating-point numbers, and
decimal numbers. Their formats are described briefly in this section. Each item of data is addressed by
its lowest-numbered byte.

Bits Memory is not addressed to the resolution of bits; however, efficient support is
provided to manipulate and test individual bits in the general registers.

Bytes Bytes are signed or unsigned 8-bit quantities:

Signed Byte

value

1 7

Unsigned Byte

value

8

Bytes are packed four to a word and may represent a two’s complement signed value
in the range -128 through +127, an unsigned value in the range 0 through 255, an
arbitrary collection of eight bits, or an ASCII character.

Integers Integers may be 16, 32, or 64 bits wide, signed or unsigned:
Signed Halfword

‘ s‘ value
1 15

Unsigned Halfword

‘ value ‘
16
Signed Word
s] value
31
Unsigned Word
\ value |
32
Signed Doubleword
s] value
1 63
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Unsigned Doubleword
\ value |
64

Signed integers are in two's complement form. Halfword integers can be stored in
memory only at even byte addresses, word integers only at addresses evenly divisible
by four, and doubleword integers only at addresses evenly divisible by eight.

Floating-Point Numbers

The binary floating-point number representation conforms to the ANSI/IEEE 754-
1985 standards. Single-word (32-bit), double-word (64-bit), and quadruple-word
(128-bit) binary formats are supported.

Single-precision floating-point numbers must be aligned on word boundaries.
Double-precision and quad-precision numbers must be aligned on doubleword
boundaries. See Chapter 8, “Floating-point Coprocessor”, for detailed information on
the floating-point formats.

Packed Decimal Numbers

Packed decimal data is always aligned on a word boundary. It consists of 7, 15, 23, or
31 BCD digits, each four bits wide and having a value in the range of 0x0 to 0x9,
followed by a 4-bit sign as shown in the following figure:

MSD | | co | LsD | sign
4 4 4 4

The standard sign for a positive number is 0xC, but any value except OxD will be
interpreted as positive. OxD indicates a minus sign for a negative number. 0xB is not
supported as an alternative minus sign.

Byte Ordering (Big Endian/Little Endian)

The optional E-bit in the PSW controls whether loads and stores use big endian or little endian byte
ordering. When the E-bit is 0, all larger-than-byte loads and stores are big endian — the lower-
addressed bytes in memory correspond to the higher-order bytes in the register. When the E-bit is 1, all
larger-than-byte loads and stores are little endian — the lower-addressed bytes in memory correspond to
the lower-order bytes in the register. Load byte and store byte instructions are not affected by the E-bit.
The E-bit also affects instruction fetch.

Processors which implement the PSW E-bit must also provide an implementation-dependent, software
writable default endian bit. The default endian bit controls whether the PSW E-bit is set to 0 or 1 on
interruptions and also controls whether data in the page table is interpreted in big endian or little endian
format by the hardware TLB miss handler, if implemented (See “Hardware TLB Miss Handling” on
page F-3).

Figure 2-15 shows various loads in big endian format. Figure 2-16 shows various loads in little endian
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format. Stores are not shown but behave similarly.

Memory Registers
0o 7 0 31
0| a LDBS 1(0,0)t{| 0| 0| 0O | b
1| b
2| ¢ 0 31
3l g LDHS 2(0,0)t| 0| 0| c | d
4Le 0 31
5 f LDWS 4(0,0)t| e | f | g | h
6|9
7| h 0 63
FLDDS 0(0,0)f§ a|b|c|d|e|f|g]|h
Figure 2-15. Big Endian Loads
Memory Registers
0o 7 0 31
0| a LDBS 1(0,0)t| 0| 0| O | b
1| b
ol ¢ 0 31
3l 4 LDHS 2(0,0)t| 0| 0| d | c
4Le 0 31
5| f Lows 40.0)t| h [ g| [ e
6|9
7| h 0 63

FLDDS 00,0) h |g| f|e|d|c|b]|a

Figure 2-16. Little Endian Loads

The E-bit also affects instruction fetch. When the E-bit is 0, instruction fetch is big endian — the lower-
addressed bytes in memory correspond to the higher-order bytes in the instruction. When the E-bit is 1,
instruction fetch is little endian — the lower-addressed bytes in memory correspond to the lower-order
bytes in the instruction.
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Architecturall, the instruction byte swapping can occur either when a cache linevednmdo the
instruction cache (I-cache) or as instructions are fetched from the I-cache into the pipeline.

Processors must support running code with either endian form from the same cache line evéss reli
software of the responsibility of keeping track of what mightehbeen brought in underffiirent
forms.

Engineering Note
For processors which swap instructions on I-cacheesin, one way to meet this requirement
is to implement endian tag bits and force a miss if the tag does not match thealue of
PSWIE].

Processors which swap instructions asy tare fetched from the I-cache do not need to do
anything extra to meet this requirement.

Since the PSW E-bit is an instruction fetch resource (see “Instruction Pipelining” ed-padgSET
SYSTEM MASK, RESET SYSTEM MASK or ®@VE TO SYSTEM MASK instructions which change the
PSW E-bit must be fatived by gven palindromic NOP instructions — that is, instructions which are
NOPs when interpreted in either big or little endian order

Programming Note
Oneexample of a palindromic NOP instructicgiLiDl 26,0 (opcode 0x34000034)
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3 Addressing and Access Control

Data storage is organized as a storage hierarchy based on speed of access: user-accessible registers ar
at the highest level followed by the memory system which consists of high-speed buffers that hold
recently referenced instructions and/or data, and main memory. The high-speed buffers, called
instruction and/or data caches, reduce the effective access time to main memory.

The 1/0 system is memory-mapped with I/O modules mapped into physical pages that, although not

part of the main memory, are addressed in the same way. With virtual pages mapped into physical pages
and I/O registers represented by words in a page, communication between a processor and an I/O
module can be performed with load and store instructions to virtual addresses. The privilege level and

access rights of such a page provide versatile protection. Non-privileged code may therefore be given

direct access to some I/0O modules without compromising system security.

PA-RISC processors use byte addressing to fetch instructions and data from main memory or the 1/10
registers. The byte addresses may be either virtual addresses or absolute addresses. Virtual addresses are
translated to absolute addresses and undergo protection and access rights checking. Memory accesses
using virtual addresses are called virtual accesses. When absolute addresses are used directly, no
protection or access rights checks are performed. Memory accesses using absolute addresses are called
absolute accesses.

The instructions that reference memory are load (memory-to-register), store (register-to-memory), and
semaphore instructions. Additionally, several system control and cache-related instructions generate
addresses that use the address translation, protection, and access rights checking mechanisms.
Computation instructions do not reference memory, but perform data transformations by using values
obtained from general registers and returning results to these registers.

Physical and Absolute Addressing

Objects in the main memory and 1/O system reside in a 64-bit physical address space and can be
accessed using byte addresses which may be either virtual addresses or absolute addresses. The physica
address space and absolute accesses are described in the paragraphs that follow. Virtual accesses are
described later in this chapter.

Physical Address Space
The Physical Address Space is 64 bits in size as shown in Figure 3-1 and has three components:

e Memory Address Space - Addresses 0 through OxEFFFFFFF FFFFFFFF can reference 15
Exabytes of memory. This space represents 15/16ths of the Physical Address Space.

« PDC Address Space - Addresses 0xF0000000 00000000 through OxFOFFFFFF FFFFFFFF
reference Processor Dependent Code (PDC) and it associated resources. This space represents 1/
256th of the Physical Address Space.

« 1/0O Address Space - Addresses 0xF1000000 00000000 through OxFFFFFFFF FFFFFFFF can
reference nearly 1 Exabyte of I/O registers. The I/0O and PDC Address Spaces together represent
1/16th of the Physical Address Space.
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0x0000000 O 00000000 A

Memory 15
Address Space 16

0xFO00000 0 00000000 | ppDC Address| 4 1

Space y 256
0xF100000 0 00000000 1
I/O Address 16
Space

OXFFFFFFFF FFFFFFFF

Figure 3-1. 64-bit Physical Address Space

Although software \d@ws the Physical Address Space as being 64 bits in size, implementations are only
required to support physical address spaces between 32 and 64 bits in size. If less than 64 bits of
physical address space are supported, thefiolfy rules must be obsexd:

« The Memoy, PDC, and I/O Address Spaces must each occupy the same fraction of the
implemented physical address space ag tlo in the 64-bit physical address space, ag/shin
Figure 3-2.

e In an n-bit physical address space implementation, implementations must ignore the most
significant 64-n bits of a 64-bit physical address for references to the Memory and I/0O Address
Spaces.For references to the PDC Address Space, implementations may transform a 64-bit
physical address into an n-bit physical address in a praegssadfic fashion mvided the eight
most significant bits of both addresses are identical.
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Memory 15
Address Space 16

2"-2™ "ppDC Address| 4 1

Space y 256
2n.o n-4 +2n-8 i
I/O Address 16
Space

2"-1

Figure 3-2. n-bit Physical Address Space Implementation

Absolute Accesses

Accesses made withOAD WORD ABSOLUTE and STORE WORD ABSOLUTEinstructions, or when
virtual address translation is disabled (the PSW D-bit is O for data accesses or the PSW C-bit is O for
instruction accesses) are called absolute accesses.

Absolute Accesses when PSW W-bit is 1

When the PSW W-bit is 1 (see “Processor Status Word (PSW)” on page 2-7 for the definition of the
PSW W-bit), an absolute address is a 62-bit unsigned integer whose value is the address of the lowest-
addressed byte of the operand it designates (see Figure 3-3).

n# Absolute Byte Address
2 62

Figure 3-3. 62-bit Absolute Pointer
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Refer to “Absolute Accesses when PSW W-bit is 1” on page H-10 for details on address formation for
these accesses.

Absolute Accesses when PSW W-bit is 0

When the PSW W-bit is 0, an absolute address is a 32-bit unsigned integer whose value is the address of
the lowest-addressed byte of the operand it designates (see Figure 3-4)

non-existent Absolute Byte Address
32 32

Figure 3-4. 32-bit Absolute Pointer

Refer to “Absolute Accesses when PSW W-bit is 0” on page H-11 for details on address formation for
these accesses.

Memory Addressable Units and Alignment

Memory is always referenced with byte addresses, starting with address 0 and extending through the
largest defined non-1/O address (OXEFFFFFFF FFFFFFFF). Addressable units are bytes, halfwords (2
bytes), words (4 bytes), and doublewords (8 bytes). A comparison of the addressable units is shown in
Figure 3-5 with the relative byte numbers indicated inside the blocks.

increasing byte

addresses
Bytes 0 1 2 3 4 5 6 7
Halfwords 0 2 4 6
Words 0 4
Doublewords 0

Figure 3-5. Physical Memory Addressing and Storage Units

All addressable units must be stored on their naturally aligned boundaries. A byte may appear at any
address, halfwords must begin at even addresses, words must begin at addresses that are multiples of 4,
and doublewords must begin at addresses that are multiples of 8. If an unaligned virtual address is used,
an interruption occurs.

Bits within larger units are always numbered from O starting with the most significant bit.

I/O address space is referenced in doublewords, words, halfwords, and bytes. I/O registers are accessed
using the normal load and store instructions.

3-4 Addressing and Access Control PA-RISC 2.0 Architecture



Virtual Addressing

Virtual memory is organized into linear spaces. These spaces can range in siz%sztytfﬁeach to

264 bytes each. The object within the space is specified by a 32-bit to 64-bit offset. The space identifier
is combined with the offset to form a complete global virtual address (GVA.) The offset and space
portions are aligned as shown, and bits 34..63 of the space are ORed together with bits 2..31 of the
offset to form the GVA. The lower 32 bits of the GVA come directly from the offset, and the upper 34
bits come directly from the space.

3 6 6
0 2 1 1 3
offset ‘a‘ A ‘ B
3 3 6
0 2 4 3
space C | d D |
GVA‘ C ‘d‘ A|D ‘ B

Figure 3-6. Global Virtual Address Formation

A bit in the Processor Status Word (PSW[W]) provides compatibility with older programs. When
PSWI[W] is 0, offsets are truncated to 32 bits (the upper 32 bits of the offset are forced to 0). The GVA
is then formed in the same way, by ORing the offset with the space. Since the offset is truncated,
though, this is simply equivalent to concatenating the space with the lower 32 bits of the offset.

Implementations also provide an implementation-dependent, software-writable default width bit. The
default width bit controls whether the PSW W-bit is set to 0 or 1 on interruptions, and also whether the
EIRR is treated as a 32-bit or a 64-bit register. (See “Processor Status Word (PSW)” on page 2-7.)

Translation from virtual to absolute addresses is accomplished by translation lookaside buffers (TLBs),
which are described in Chapter 3, “Addressing and Access Control”. Fields in the TLB entry for a
particular page permit control of access to the page for reading, writing or execution. Such access may
be restricted to a single process, or a set of processes, or may be permitted to all processes.

To a user application, the virtual address space appears to be flatly addressable and 64 bits in size. User
applications are concerned only with the 64-bit address offset. Full support for 32-bit applications with
32-bit pointers is also provided.

To Operating System software, the address space can be thought of as consisting of a set of address
spaces, each with its own space identifier, and where each address space can be between 32 and 62 bits
in size, depending on the needs of the individual application. For example, an implementation with 32-

bit space identifiers would allow for 4 billion 32-bit spaces, or 1 million 44-bit spaces, or 4 62-bit
spaces, or any combinations of these. Space identifiers can range up to 64 bits in size, allowing for a 96-
bit virtual address. The virtual address model in PA-RISC provides a powerful means for efficiently
managing a large address space.
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For memory management purposes, the address space is logically subdivided into pages, each of which
can range in size from 4 Kbytes to 64 Mbytes in length. The byte offset into the page is specified by the
least significant 12 to 26 bits of the virtual address, depending on the page size. Figure 3-7 illustrates the
structure of spaces, pages, and offsets.

| |  Offset

Space ID ! |

Virtual Address

Virtual Memory

296 Bytes< 4 KB - 64 MB Pagels_

Figure 3-7. Structure of the Virtual Address Space

Pointers and Address Specification

For virtual accesses, addresses can be specified two different ways. With explicit pointers, an instruction
computes an address offset and explicitly specifies a space identifier. This provides efficient access to
the entire global virtual address space. With implicit pointers, an instruction computes an address offset,
and this offset calculation implicitly specifies a space ID. This provides the appearance of a single 64-
bit (or 32-bit) flat address space. The offset and space ID are combined to form the full virtual address.

Eight Space Registers hold space identifiers used in forming virtual addresses. Additionally, the
Instruction Address Space Queue holds the space ID for the current instruction address, and two control
registers are used to hold space ID information after interruptions.

Data Addresses

Data addresses are computed for regular memory reference instructions (load, store, and semaphore
instructions) and for system instructions used in managing the address space (access probe, and data
cache and data TLB control instructions). A 64-bit offset is calculated by adding a 64-bit base register
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plus a 64-bit index register or a sign-extended immediate displacement. One of the Space Registers is
selected, either implicitly, by the top two bits of the base register, or explicitly, by a field in the
instruction. The space ID is then logically ORed with the offset of form the virtual address.

The space identifier is selected from Space Registers 1 through 7 as follows, based on the presence and
value of the 2-bis field in the memory reference instruction.

« If the instruction does not have affield, or if the value of thefield is zero, space ID selection is
implicit. The top two bits of the base register are used to select one of Space Registers 4 through 7.
This permits the addressing of four distinct spaces selected by program data, and is called implicit
pointer addressing, since a regular 64-bit value specifies the offset and space ID for a full virtual
address.

« If the instruction does have arfield, and the value of thefield is non-zero, the s-field explicitly
selects one of Space Registers 1, 2 or 3. Figure 3-8 illustrates space identifier selection.

Instruction Addresses

Instruction addresses for instruction fetch are computed from the IA queues and as a result of branch
target calculations. Instruction addresses are also computed for system instructions used in managing
the address space (instruction cache and instruction TLB control instructions).

The current instruction address (IA) consists of a space identifier and a 64-bit byte offset. The byte
offset is a word-aligned address and contains, in its least significant two bit positions, the current
privilege level. This privilege level controls both instruction and data references. The current instruction
address is maintained in the front elements of the Instruction Address Queues (IA queues).

In forming instruction addresses, the space ID can either remain unchanged from the last address (as
with in-line instruction fetching and with intraspace branches), or the space ID can be selected from one
of the Space Registers. The selection of the Space Register is either implicit (one of Space Registers 4
through 7 selected by the top two bits of the base register), explicit with asZibitl, like data
addressing (one of SRs 1, 2 or 3 selected by the instruction), or explicit with @fieldifone of SRs 0

through 7 selected by the instruction). See Figure 3-8.

As with data addresses, the space ID is logically ORed with the offset to form the virtual address.

Executing or branching beyond the end of the current space is undefined.
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s-field s-field

Space Registers Space Registers Space Registers
5 3 SR[0]
SR[1] SR[1]
SR[2] SR[2]
SR[3] SR[3]
<
SR[4] SR[4]
SR[5] SR[5]
SR[6] SR[6]
SR[7] SR[7]
Implicit pointer Explicit pointer Explicit pointer
addressing addressing addressing
with 2-bit s-field with 3-bit s-field

Figure 3-8. Space Identifier Selection

32-bit Addresses

Programs which use 32-bit data and 32-bit pointers are fully supported. A bit in the Processor Status
Word (PSW W-bit) is used to control address formation. For 32-bit programs, address offset
calculations are done just as for 64-bit programs, but then the offset is truncated to a 32-bit value. Space
identifier selection for implicit pointers is done with the upper two bits of the lower 32-bits, just as in
PA-RISC 1.1.

For 32-bit PA-RISC 1.1 programs that directly manipulate space identifiers to gain access to an address
space larger than 32 bits, Space Registers appear to be 32 bhits in size, and the virtual address is formed
just as in PA-RISC 1.1. (The space identifier is concatenated with the lower 32-bits of the address offset
to form the virtual address. This happens automatically as a result of the offset being truncated to a 32-
bit value.)

In brief, the addressing model of PA-RISC 2.0 is fully compatible with 32-bit programs written for PA-
RISC 1.1.
Absolute Addresses

For absolute accesses, the space identifiers are unused, and the absolute address is calculated from the
offset alone. If the most significant 4 bits of the offset are 1, the address accesses the 1/0 address space
and the absolute address is simply equal to the offset. (See “Absolute Accesses” on page 3-3.) If not all
of the most significant 4 bits of the offset are 1, the address accesses the memory address space, and the
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absolute address is formed by taking the offset and forcing the most significant 2 bits to 0.

This way of forming absolute address for memory allows software more flexibility in address space
layout. Note that this has no impact on machine implementing fewer than 62 bits of physical address.

Address Resolution and the TLB

Virtual addresses are translated to absolute addresses using a hardware structure called the Translation
Lookaside Buffer (TLB). A TLB accepts a Virtual Page Number and returns the corresponding Physical
Page Number. The TLB is organized as two parts. The instruction TLB (ITLB) is only used for
instruction references, while the data TLB (DTLB) is only used for data references. A system may
implement a combined TLB which is used for both instruction and data references.

A TLB is typically not large enough to hold all the current translations. Translations for all pages in
memory are stored in a memory structure called the Page Table. Multiple page sizes are supported, from
4 Kbytes to 64 Mbytes. This allows large contiguous regions to be mapped with a single TLB entry.
This increases the virtual address range of the TLB, thereby minimizing the virtual address translation
overhead.

Given a virtual address, the selected TLB is searched for an entry matching the Virtual Page Number. If
the entry exists, the 38 to 52-bit Physical Page Number (contained in the TLB entry) is concatenated
with the original 12 to 26-bit page offset (depending on the page size in the matching entry) to form a
64-bit absolute address. If no such entry exists, the TLB is updated by either software TLB miss
handling or hardware TLB miss handling.

In systems with software TLB miss handling, a TLB miss fault interruption routine performs the
translation, explicitly inserts the translation and protection fields into the appropriate TLB, and restarts
the interrupted instruction. To insure the completion of instructions, the TLBs must be organized to
simultaneously hold all necessary translations.

In implementations that provide hardware for TLB miss handling, the hardware attempts to find the
virtual to physical page translation in the Page Table. If the hardware is successful, it inserts the
translation and protection fields into the appropriate instruction or data TLB. No interruption occurs in
this case. If hardware is not successful, due to a search of the Page Table that was not exhaustive or due
to the appropriate translation not existing in the Page Table, an interruption occurs so that the software
can complete the process.

The translation lookaside buffer performs other functions in addition to the basic address translation.
The other functions include access control, program debugging support and operating system support
for virtual memory. Figure 3-9 summarizes the information maintained for each TLB entry.
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‘ Virtual Page Number

52 to 84 bits
‘ Physical Page Number
52 bits
4 bits
‘ Access Rights‘
7 bits
Access ID
15 to 31 bits

0|U[T|D|B| P| Single-Bit Flags

Figure 3-9. TLB Fields

The following describes the function of each of the 1-bit fields.

0] Ordered. When 0, data memory references using this translation (except those explicitly
marked as ordered or strongly ordered) may be weakly ordered. When 1 and the PSW[O] bit is
1, data memory references using this translation are ordered. See “Ordering of References” on
page G-1.

U Uncacheable. When 0, data references to a page from memory address space may be moved
into the cache. When 1, data references to a page from 1/0O address space or memory address
space must not be moved into the cache. The U-bit must be set to 1 for pages which map to the
I/O address space, and is commonly set to 1 for pages in the memory address space where 1/0O
module written data and processor written data must co-exist within the same cache line.
Referencing a page which maps to the 1/0 address space and for which the U-bit is O is an
undefined operation. Implementation of the U-bit is optional. See “Data Cache Move-In" on
page F-8 for additional details.

T Page Reference Trap. When 1, data references using this translation cause a page reference
trap. The T-bit is most commonly used for program debugging.

D Dirty. When 0, store and semaphore instructions cause a TLB dirty bit trap. When 1, no trap
occurs. The D-bit may be used by the operating system to determine which pages have been
modified.

B Break. When 1, instructions that could modify data using this translation (store and semaphore

instructions, and th@URGE DATA CACHE instruction) cause a data memory break trap, if
enabled. The B-bit is most commonly used for program debugging.

P Prediction method for branching. When 0, branch prediction is performed based on static
prediction hints encoded in the instructions. When 1, branch prediction is performed based on
dynamic prediction hardware, on implementations so equipped. This bit functions solely as a
performance hint. Implementation of the P-bit is optional.

Since the ITLB is not used for data operands, the O, U, T, D, and B bits are only implemented in the
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DTLB or a combined TLB. Similarly, since the P-bit controls branch prediction, it is only implemented
in the ITLB or combined TLB.

The TLB is managed by a mixture of hardware and software mechanisms. Translations are brought into
the TLB by either hardware or software when a TLB miss occurs. In systems which provide hardware
for TLB miss handling, the Page Table holds the information needed for the TLB. For systems with
software TLB miss handling, and for explicit insertion of a translation by systems with hardware TLB
miss handling, TLB management instructions provide the TLB with this information INSERT
INSTRUCTION TLB TRANSLATION instruction places the complete translation and access control
information into the ITLB. A similar instructionINSERT DATA TLB TRANSLATION) places the
complete translation and access control information and also initializes the system software and
debugging support bit fields in the DTLB.

TLB miss traps do not occur on nullified instructions.

Page Size

The TLBs support a range of page sizes, in multiples of four, from 4 Kbytes to 64 Mbytes. Each page is
aligned to an address which is an integer multiple of its size. The page size is inserted into the TLB with
each translation, and is encoded as shown in Table 3-1. TLB purge instructions can also specify a page
size, allowing a large contiguous address range to be purged in a single instruction.

Table 3-1. Page Sizes

Encoding | Page size
4 KB

16 KB

64 KB
256 KB

1 MB

4 MB

16 MB
64 MB
-15 Reserved

O~NO U~ WNPELO

Access Control

User processes can be provided with a secure and protected environment via a part of the architecture’s
address translation mechanism. Processor resources, including the PSW, Control Registers, and TLB
entries, contain information used to determine the allowed use of a page. Access control is available
only when address translation is enabled, and is done on a per-page basis.

An access is validated if the check of the access rights and the protection identifiers both succeed. If the
access is validated, the instruction reference or data reference is completed. If the access is not
validated, the instruction is terminated with a protection trap. Instruction access violations are reported
with instruction memory protection traps. Data read and write access violations are reported with data
memory access rights or data memory protection ID traps. Probe instructions are special; they save the
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result of the access validation in a General Register and do not cause a protection trap. An access rights
check is based on the type of access and the current privilege level. The protection identifier check
compares the Protection ID Registers with a page-based access identifier in the TLB. State bits within
the PSW determine when these checks are enabled.

Process Attributes

The type of access, privilege level, the current values in the Protection ID Registers, and the state of the
PSW completely describes the access to the TLB. These resources are managed for each process by the
operating system and collectively termed the process attributes. The following defines each of the
process attributes.

Privilege Level (PL)

Every instruction is fetched and executed at one of four privilege levels (numbered 0,
1, 2, 3) with 0 being the most privileged. The privilege level is kept in the least
significant two bits of the current instruction’s address (the front element of IAOQ).
For all accesses, except the probe instructions, the privilege check uses the privilege
level of the current instruction. The probe instructions explicitly specify the privilege
level to be used in the access rights check.

Access type

The access type is either read, write, or execute. Load, semaphore, and read probe
instructions make read accesses to their operands. Store, semaphore and write probe
instructions and cache purge operations make write accesses to their operands. Note
that semaphore instructions make both read and write accesses to their operands. An
execute access occurs when an instruction is fetched for execution.

Protection IDs

The four Control Registers CR 8, CR 9, CR 12, and CR 13 contain the protection
identifiers associated with the current process (Figure 3-10). These registers are used
to allow several different protection groups to be accessed. The least significant bit of
each protection ID is the write-disable (WD) bit. When 0, write accesses that match
that protection ID are allowed. The remaining 15 to 31 bits hold the protection ID.
Figure 3-10 depicts the maximum width of the protection identifier.

0 30 31
Protection ID ‘ WI?
31 1

Figure 3-10. Protection ID

PSW access attributes

The PSW protection validation (P-bit), code address translation (C-bit), and data
address translation (D-bit) bits further qualify the process attributes. When address
translation is enabled and the P-bit is 1, the protection ID check is performed. When
0, the protection ID check is always considered successful. An execute access uses the
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C-bit to determine if address translation and access rights check are enabled. When 1,

address translation is performed and execute access rights checks are made. When 0,
no address translation is performed and the access is always allowed. Read and write
accesses use the D-bit in an equivalent manner. For probe instructions, address

translation is performed, and access rights checks are made independent of the state
of the PSW D-bit.

Access ID and Access Rights

For each entry in the TLB, the access ID and the access rights fields determine if an access is allowed.
The access ID is a 15- to 31-bit field in the TLB that is used with the protection IDs in the protection ID
check. The length of the access ID is implementation dependent but must match the length of the
protection ID (excluding the WD bit).

The access rights field (Figure 3-11) is a 7-bit field that encodes the allowed access types and the needed
privilege levels. In some cases a minimum privilege is specified, while other access types may be
specified with an upper and a lower bound. The three sub-fields type, PL1 (privilege level 1), and PL2
(privilege level 2) combine to form the access rights field. The type sub-field defines the type of access
that can be made to this page. Any of read-only, read/write, read/execute, read/write/execute, or
execute-only is allowed. The PL1 sub-field qualifies read and execute accesses. The PL2 sub-field
gualifies write and execute accesses.

| Type | PL1 PL2
3 2 2
Figure 3-11. Access Rights Field

The access rights check compares the current privilege level with the appropriate sub-field of the TLB
access rights field and checks if the type of access is allowed. For a read access, the current privilege
level must be at least as privileged as PL1 and the type field must allow read access. The read probe
instructions explicitly specify the privilege level.

For a write access, the current privilege level must be at least as privileged as PL2 and the type field
must allow write access. The write probe instructions explicitly specify the privilege level.

For an execute access, the current privilege level must be at least as privileged as PL1 and no more
privileged than PL2. PL1 and PL2 are a lower and an upper bound, respectively, for execute access. The
type field must also allow execute access.

For thePURGE DATA CACHEInstruction, if implemented as a purge operation, the access rights check

has a special case. The access rights check is done normally, except that if the access rights matches this
binary pattern: “111 0X 1X” (where each X stands for either a 1 or a 0), then access is allowed. This
facilitates cache management. See “Cache Flushing” on page F-FURIEE DATA CACHE is
implemented as a flush operation, then no access rights check is performed.

The type field is also used by tB&RANCH instruction with the GATE (for gateway) completer to
specify the new privilege level. When the type value is 4 or greater and the encoded new privilege level
is of greater privilege, then promotion occurs at the target of the branch.

Table 3-2 defines the type encodings and the necessary conditions of the PL1 and PL2 fields with the
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current privilege level (PL). This table uses the actual binary encoding when doing the privilege level
comparison.

The protection identifier check compares the eight Protection ID Registers with the TLB entry’s access
ID. This check is validated if one or more of the protection IDs compare equal with the access ID. In
case of a write access, the write disable bit of at least one of the matching protection IDs must be zero
for the check to be validated. An access ID of zero is special and specifies a public page. A public page
always satisfies a protection ID check for any type of access and only an access rights check is
performed. If no match occurs and a public page is not being referenced, then the access is not allowed.

The PSW P-bit determines whether the protection ID check is performed. When 0, no protection check
occurs and only the access rights check is performed. Figure 3-12 on page 3-15 illustrates the access
rights and protection ID checks and the processor resources that participate.

Table 3-2. Access Rights Interpretation

Type value Allowed access types

(in binary) andB,GATE promotion Privilege check

read: PL< PL1

000 Read-only: data page write: Not allowed
execute: Not allowed
read: PL< PL1

001 Read/Write: dynamic data page write: PL< PL2

execute: Not allowed
read: PL< PL1

010 Read/Execute: normal code page write: Not allowed
execute: PLX PL < PL1
read: PL< PL1

011 Read/Write/Execute: dynamic code pagerite: PL< PL2

execute: PLX PL <PL1
read: Not allowed

100 Execute: promote to privilege level 0* | write: Not allowed
execute: PLX PL < PL1
read: Not allowed

101 Execute: promote to privilege level 1* | write: Not allowed
execute: PLX PL < PL1
read: Not allowed

110 Execute: promote to privilege level 2* | write: Not allowed
execute: PLX PL < PL1
read: Not allowed

111 Execute: remain at privilege level 3* | write: Not allowed
execute: PLX PL < PL1

*Change of privilege level only occurs if the indicated new value is of higher privilege than the
current privilege level; otherwise the target of tBRANCH instruction with the GATE
completer executes at the same privilege aBR#ANCH itself.
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Control Registers TLB

8 | Protection| Protection
ID1 ID 2
9 | Protection| Protection
ID3 ID4 Access ID
F Access Rights
12| Protection| Protection
ID5 ID 6
13| Protection| Protection Type of
ID7 ID 8 Access
(read/write/execute)
PSW
IA queues
PL
v
Protection Access Rights
Check? Check?
Yes Yes
Access
Allowed?

i Yes

Figure 3-12. Access Control Checks

Page Table Structure

Address translations are stored in memory in a structure called the Page Table. The exact form of these
tables is a software convention, but many aspects of the page tables are common and are described in
this section.

The most common use of the Page Table is to translate a virtual address to a physical address after a
TLB miss. The virtual address space is quite large, and a traditional approach of a multi-level forward
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mapped table, where each level is directly indexed by a portion of the virtual address, requires too many
memory accesses and hence is an inefficient way to provide virtual to physical translations.

A better approach is to index the Page Table using the result of a hash function applied to the virtual
address. The purpose of the hash function is to translate virtual addresses to a smaller, more uniform
name space. The particular function used is implementation dependent. Collisions created by multiple
addresses hashing to the same entry can be resolved using a sequentially searched linked list or some
other structure.

The number of entries in the Page Table is typically a power of two. One possible format of a table entry
is shown in Figure 3-13.

V| Tag (Virtual Page Number) (63)
0 oﬂqq Acc R (7)\ LWD 0 (#5(3)\# s (10) Access ID (31) ‘ s
s| 0(5) ‘ Physical Page Number (52) ‘ ‘ 0 Siz(4)
Next Page Table Entry (64)

Figure 3-13. Page Table Entry

The fields are:

\% is the valid bit. If V = 1, this entry represents a valid translation.
Tag is a unique key used to identify the virtual address that this entry translates.
R is the reference bit. If R = 1, the page has been accessed (read, write, or execute) by a processor

since the bit was last cleared to 0.
Physical Page Number

is the physical page number corresponding to the virtual address, provided this entry is valid
and the virtual address matches the tag.

Size is the page size, encoded as in Table 3-1 on page 3-11.
Next Page Table Entry
is an index/pointer to perhaps another structure containing overflow page table entries.
0 is a reserved bit field.
S is a bit field reserved for operating system use.

The O, U, T, D, B, P, Access Rights, and Access ID fields correspond to those for TLB entries (see
“Address Resolution and the TLB"” on page 3-9).

Caches

Caches are high-speed intermediate storage buffers which contain recently accessed instructions and
data. The caches are visible to software due to the fact that:

« The architecture supports virtually-indexed caches
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» Hardware does not maintain coherence between the instruction cache and the data cache
* In some systems, hardware does not maintain coherence between I/O and processor caches.
For these reasons, the caches are managed by software in certain circumstances.

System software can control which portions of memory may be brought into cache. Additionally,
software can explicitly remove items from the cache. As a result, software can control which portions of
memory may be present in the cache. In some situations, such as self-modifying code, the use of non-
equivalent address aliasing, and coordination with non-coherent 1/O, software uses this control of the
caches to effect coherence.

Items in the cache may be removed by hardware at any time. Software may therefore not rely on
particular items remaining in the cache.

A consistent software view of cache operation requires that implementations never write a clean cache
line back to memory. (A cache line can be 16, 32, or 64 bytes in length.) Clean means “not stored into”

as opposed to “not changed”. Dirty means “stored into”. A cache line which was stored into in such a

way that it was unchanged is considered to be dirty.

To insure memory system coherence, and to minimize cache flushing, instructions and data in memory
may be brought into the caches only under certain circumstances. This operation of bringing
information from memory into a cache is referred to as move-in. In general, when address translation is
enabled, any data or instructions for which there is a valid translation in the TLB may be moved in.
When translation is disabled, generally only data or instructions referenced by executed instructions
may be moved in. Software may use reference bits and other mechanisms controlled by interruptions to
determine when lines are potentially in the instruction cache, data cache, or both. See “Cache Move-in
Restrictions” on page F-7.

The U (uncacheable) bit in the data TLB entry also affects caching. A page from the memory address
space which has its U-bit set to 0 is called a cacheable page. Pages from the 1/0O address space and pages
which have their U-bit set to 1 are called uncacheable pages. It is possible for data cache lines from an
uncacheable page to exist in a data cache. This case may be caused by changing a cacheable page tc
uncacheable after references to this page were moved into the data cache. Changing the state of the U-
bit for a page has no effect on the data cache lines from that page which already exist in the cache.
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4 Control Flow

The PA-RISC architecture defines a model in which the flow of control passes to the next sequential
instruction in memory unless directed otherwise by branch instructions, nullification of instructions, or
interruptions. The architecture requires that a CPU program appear to execute instructions in the order
in which they occur in memory although in reality the order may be changed internally. The instruction
execution model described in this chapter provides a logical view of the steps involved in instruction
execution. The sections on nullification, branching, and interruptions show how flow control can be
altered during the course of program execution.

Branching

Branches alter the control flow during program execution. The architecture provides both unconditional
and conditional branch instructions. Unconditional branch instructions always branch to the specified
target. Conditional branch instructions first perform some operation (for example, move, compare, add,
or bit test) and then branch if the outcome of the specified condition is met.

Concept of Delayed Branching

All branch instructions exhibit the delayed branch behavior; that is, the major effect of the branch
instruction, the actual transfer of control, occurs one instruction after the execution of the branch. As a
result, the instruction following the branch (located in the delay slot of the branch instruction) is
executed before control passes to the branch destination. Figure 4-1 illustrates the concept of delayed
branching.

Execution of the delay slot instruction, however, may be skipped (“nullified”) by setting the “nullify” bit
in the branch instruction to 1.
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PROGRAM SEGMENT

Location [ Instruction | Comment

100 STW r3, 0(r6) ; hon-branch instruction

104 BLR r8, r0 ; branch to location 200

108 ADD r7,r2, r3 ; instruction in delay slot

10C OR ré,r5, r9 ; next instruction in linear code sequence
200 LDW  0(r3),r4 ; target of branch instruction

EXECUTION SEQUENCE

Location [ Instruction | Comment

100 STW r3, 0(r6) ;

104 BLR r8, r0 ;

108 ADD r7,r2, r3 ; delay slot instruction is executed before
200 LDW  0(r3),r4 ; execution of target instruction

Figure 4-1. Delayed Branching lllustrated

Conditional and Unconditional Branches

There are two kinds of branches: unconditional branches are not dependent on the outcome of any test
operation while conditional branches provide a mechanism to branch based on the outcome of a

specified test. When the test is successful, the conditional branch is said to be taken, and, when the test
is unsuccessful, the conditional branch is said to be not-taken. Unconditional branches are always taken.

Branching and Spaces

Certain branch instructions can only branch to a location within the same space, while others can branch
to another space. Branches within the same space are referred to as intraspace or local branches.
Branches to another space are referred to as interspace or external branches.

Target Address Computation
The target of a branch instruction, just like any instruction address, consists of a space ID and an offset.

The space ID of the target of an intraspace branch is not changed by the branch instruction. A space ID
calculation is performed for interspace branches. The offset portion of the address is computed in one of
several ways based on the particular branch instruction. When a displacement is added to the current
instruction address offset, the branch is called IA-relative. When a general register is used as a base
offset, it is called base-relative. Also, if the displacement is a fixed value that is known at compilation, it
is known as static displacement. If the value is computed during the course of program execution, and is
read from a general register, it is known as dynamic displacement.

For interspace branches, the space ID of the target address is always specified in a space register, and is
copied into the IASQ when the branch is performed. The space register used can either be explicitly
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specified in the instruction or implicitly specified by the upper 2 bits of the base register. For explicit
interspace branches, the offset of the target is computed by adding a 17-bit signed word displacement to
the base register specified in a general register. The two rightmost bits in the base register denote the
new privilege level and are ignored during the offset computation. Also, the 17-bit signed word
displacement is shifted left by two before adding to the base register. For implicit interspace branches,
the offset of the target is directly specified by the base register with no displacement. The two rightmost
bits in the base register denote the new privilege level and are not part of the offset. Interspace branches
are always base-relative.

In the case of intraspace branches, the space ID is not changed by the branch. The offset of the target,
however, can be computed in one of three ways. For |A-relative branches with static displacement, a 12-
bit, 17-bit, or 22-bit signed word displacement is shifted left by two and added to the current instruction
address offset plus eight. For 1A-relative branches with dynamic displacement, the value specified in the
index register is shifted left by three and added to current instruction address offset plus eight. For base-
relative branches with dynamic displacement, the value specified in the index register is shifted left by
three and added to the value in the specified base register.

It should be noted that for IA-relative branches, the target is computed from the current instruction by
adding a displacement or an index value. Since the instruction in the delay slot must be executed if it is
not nullified, an additional value of eight is added in the offset computation to arrive at the target
correctly. This is done to ensure that a branch with a displacement of zero will branch to the instruction
following the delayed instruction. Also, this helps users build case tables immediately following the
delay slot instruction.

Linkage

Linkage is provided in certain branch instructions to allow a return path for procedure calls. The return
point is four bytes after the following instruction. Since the execution of all branches is followed by the
execution of the instruction in the delay slot (or null if nullified), it should be noted that the return point
is always specified as four bytes after the following instruction and not eight bytes aB&atheH
instruction. When the following instruction is not spatially sequential, then four bytes after the
following instruction is not the same as eight bytes afteBE@NCH instruction.

The linkage mechanism is available for both intraspace and interspace branches. For intraspace
branches, the offset of the return point is saved in the specified target register GR t. For explicit
interspace branches, the offset of the return point is always saved in GR 31, and the space ID of the
return point is saved in SR 0. For implicit interspace branches, the offset of the return point is always
saved in GR 2.

Conditional Branching and Nullification

When nullification is specified by a conditional branch instruction, the effect of nullification depends on
the direction of the branch. This maximizes useful work done during loops and “if-then” constructs.

For a backward conditional branch, the following instruction is nullified only when the backward
conditional branch is not taken. For forward conditional branches, the following instruction is nullified
only when the forward conditional branch is taken. For unconditional branches, if nullification is
specified, the following instruction is nullified independent of the direction of branch.
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Branching and Address Queues

The concept of delayed branching makes it necessary to maintain the instruction address (IA) in a pair

of two element queues. The front elements point to the currently executing instruction and the back
elements point to the following instruction that will be executed. The term next refers to the Space
Identifier and the offset of the next instruction address, which will enter the back elements of the queues
when the queues are updated. The queues are said to be updated when the back elements become the
front and next become the back elements.

For taken branches, the IA queues get updated with the address of the branch target. Both the word
offset and the privilege level are updated. IAOQ_Next receives the value of the branch target offset. For
not-taken branches, IAOQ_Next gets IAOQ_Back + 4. The privilege level is obtained from the back
element of the queue. For interspace branches, IASQ_Next gets the value of the branch target Space ID.
Otherwise, IASQ_Next receives the content of IASQ_Back. Figure 4-2 shows how the IA queues are
updated, using a pseudo-code representation.

Instruction Address Offset Queue (IAOQ)
IAOQ_Front — IAOQ_Back;
IAOQ_Back ~ IAOQ_Next;
if (taken branch)

IAOQ_Next — Branch target offset;

else
IAOQ Next — IAOQ_Back + 4;

Instruction Address Space Queue (IASQ)
IASQ Front - IASQ_Back;
IASQ Back ~ IASQ_Next;
if (interspace branch)
IASQ Next — Branch target Space ID;

else

IASQ_Next — IASQ_Back;

Figure 4-2. Updating Instruction Address Queues

Consider the situation shown in Figure 4-3; a taken branch instruction, 12, is executed in the delay slot
of a preceding taken branch, 11. When this occurs, the first branch I1 schedules its target instruction, 13,
to execute after 12, and the second branch, 12, schedules its target instruction, 14, to execute after I13. The
net effect is the out-of-line execution of 13, followed by the execution of 14. Also, if I3 were to be a
taken branch, its target, 15, would execute after 14, and 14 would also have been executed out of its
spatial context.

Note that if nullification is specified in the instruction currently executing, the nullification affects the
instruction to be executed next, regardless of whether that instruction immediately follows the currently
executing instruction in the linear code sequence. For example, if the instruction, 12, specified
nullification of the next instruction, then 13 would have no effect except that the PSW X-bit, N-bit, and
B-bit would be set to 0.
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Privilege Level Changes

Branch instructions may change the privilege level depending on the type of branch performed. Since
privilege levels are determined by the two rightmost bits in the offset part of the instruction address,
privilege level changes are a function of the offset computation.

Unconditional branches can be IA-relative or base-relative. |A-relative branches compute the target
address relative to their own IA value, and since the two rightmost bits are unchanged, the privilege
level of the branch instruction and the target are the same. base-relative branches (intraspace or
interspace) may lower the privilege level if the two rightmost bits in the base register are of a lower
privilege level. TheGATE completer of theBRANCH instruction performs an IA-relative branch,
however, it behaves differently for privilege computation. It can promote the privilege level to that
specified by the two rightmost bits of the type field, located in the TLB entry for the page from which
the BRANCH-with-GATE instruction is fetched.

Conditional branch instructions always perform IA-relative branches and the privilege level of the target
instruction and the branch instruction is the same.

The change of privilege level always takes effect at the target instruction.

Programming Note
Since a branch instruction may be executed in the delay slot of another branch instruction, an
interesting case arises because of the way the privilege level changes are defined to take effect.

Consider the case where a taken |A-relative branch is placed in the delay slot of a base-relative
branch that lowers the privilege level of its target instruction. First, the base-relative branch
will execute and schedule change of privilege level for its target. Then, in the delay slot, the
IA-relative branch will execute and it will schedule its target to execute at the same privilege
level as its own. Then, the target of the base-relative branch will execute at the new (demoted)
privileged level. The next instruction, however, which is the target of the 1A-relative branch,
will have the same privilege level as that of the |A-relative branch, and thus will cause the
privilege level to be restored to the original (higher) value as shown in the following:

PROGRAM SEGMENT
Location Instruction ‘ Comment
100 STW r7, 0(r8) ; hon-branch instruction
104 BV ro(r7) ; branch vectored to 200 and change priv -p 2
108 BLR r4, rQ ; IA-relative branch to location 400
10C ADD r2,ré, r9 ; next instruction in linear code sequence
200 LDW 0(r3), r11 ; target of branch vectored instruction
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PROGRAM SEGMENT

400 LDW 0(r15), rd4 ; target of IA-relative branch instruction
404 STW r4, 0(r18)

EXECUTION SEQUENCE

Location Instruction ‘ Comment

100 STW r7, 0(r8) ypriv=0

104 BV ro(r7) ;priv=20

108 BLR r4, rQ ;priv=0

200 LDW 0(r3), r11 ; priv = 2 decreased by branch vectored instr
400 LDW 0(r15), r4 ; priv = 0 changed back by IA-relative branch
404 STW r4, 0(r18) ;priv=0

Traps Associated with Branches

Branch instructions may cause various traps based on the value of PSW bits. If the PSW T-bitis 1, and a
branch is taken, a taken branch trap occurs. This trap may be used for the purposes of debugging. If the
PSW H-bit is 1, and a branch instruction raises the privilege level, a higher-privilege transfer trap
occurs. If the PSW L-bit is 1, and a branch instruction lowers the privilege level, a lower-privilege
transfer trap occurs.

Restrictions in Branching

It is illegal for aBRANCH with GATE instruction to execute in the delay slot of a taken branch
instruction. The PSW B-bit ensures that this sequence is not permitted. Whenever a branch is taken, the
PSW B-bit is set to 1 and, if the next instruction BRANCH with GATE, an illegal instruction trap

occurs.

PROGRAM SEGMENT
Location | Instruction | Comment
100 STW r7, 0(r8) ; hon-branch instruction
104 BV ro(r7) ; branch vectored to location 200 1L
108 BLR r4, r0 ; IA-relative branch to location 400 12
10C ADD r2,ré, r9 ; next instruction in linear code sequence
200 LDW 0(r3), r11 ; target of branch vectored instruction 3
204 ADD ril,r12, ri4 ;
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400 LDW 0(r15), r4 ; target of IA-relative branch instruction 14
404 STW r4, 0(r18) ; 15

EXECUTION SEQUENCE

Location | Instruction | Comment

100 STW r7, 0(r8) ;

104 BV ro(r7) ; schedules execution at 200 after delay instr |11
108 BLR r4, rQ ; schedules execution at 400 after delay instr |12
200 LDW 0(r3), r11 ; target of first branch executes out of context |13
400 LDW 0(r15), r4 ; target of second branch (is a non-branch) 14
404 STW r4, 0(r18) ; hext instruction is in linear code sequence 15

Figure 4-3. Branch in the Delay slot of a Branch

Nullification

A nullified instruction is an instruction that is skipped over. It has no effect on the machine state (except
that the IA queues advance and the X-bit, N-bit, and B-bit in the PSW are set to 0). The recovery
counter is not decremented for a nullified instruction. Nullified instructions do not take group 3
interruptions (although they may take group 1, 2, or 4 interruptions).

All branch instructions and most computational instructions can nullify the execution of the following
instruction. For branch instructions, nullification can be specified explicitly. In the case of
computational instructions, nullification is performed conditionally based on the outcome of a test.

Instruction Execution

Instruction flow involves calculating the address of the current instruction and then fetching, decoding,
and executing that instruction. This process involves performing the sequence of events listed below
regardless of the instruction type. (Although these events are listed in sequence, many of them may
occur in parallel. It is only necessary that they appear to be logically sequential.) In the description that
follows, the values of the PSW bits are the values that exist before the instruction is executed. Changes
to the PSW bits only affect instructions after the current instruction. This flow of instruction execution is
shown in Figure 4-4.

1. If the PSW M-bit is 0, then high priority machine checks (HPMCs) may occur.
2. The processor checks for group 2 interruptions:
a. A power failure interrupt that is not masked by the PSW I-bit.

b. A recovery counter trap. This trap is enabled when the PSW R-bit) is 1 and the most-
significant bit of the recovery counter is 1.

c. An external interrupt or low-priority machine check, both of which are unmasked by the PSW
-bit.
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Figure 4-4. Interruption Processing

d. A performance monitor interrupt that is not masked by the PSW F-hit.

3. Depending on the state of the PSW N-bit, one of two events occur:

a. If the current instruction is nullified (the PSW N-bit is 1), group 3 interruptions must not be
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taken. The instruction address queue is advanced and the back of the queue is written with the
new front element + 4. The privilege level is the same as the new front element. The PSW X-
bit, N-bit, and B-bit are set to O.

b. If the current instruction is not nullified (the PSW N-bit is 0), then the instruction is fetched
using the front elements of the instruction address (IA) queues. If a group 3 interruption occurs
during execution, the processor rolls back the effect of the current instruction by restoring the
beginning state and takes the interruption. If the PSW C-bit is 1, virtual address translation of
the instruction address is performed. The PSW P-bit enables protection checking. On a split
TLB system, the instruction TLB is used for instruction address translation. The fetching of the
current instruction may result in an instruction TLB miss fault/instruction page fault or an
instruction memory protection trap.

The Recovery Counter is decremented if the PSW R-bit is 1. The current instruction is
executed and the PSW X-bit is set to 0. If the next instruction is to be nullified, the PSW N-bit

is set to 1, and the instruction address queues are updated. The nature of that update depends
on whether the current instruction is a taken branch:

« For a taken branch: the instruction address queues are advanced, the back of the queue is
loaded with the target address including the privilege level which is computed by the
branch instruction, and the PSW B-bit is set to 1.

« For a branch that is not taken: the instruction address queues are advanced, the back of the
instruction address offset queue is written with the new front element + 4, the privilege
level of the back element is set the same as the new front element, and the PSW B-bit is set
to 0.

« If the current instruction is RETURN FROM INTERRUPTIONNSstruction, the 1A queues
and the PSW are updated with the new values and the following instruction is executed
based on these new values.

4. Group 4 traps are handled after execution is complete. If the new privilege level is lower than that
of the just completed instruction and the PSW L-bit was 1, a lower-privilege transfer trap is taken.
If the new privilege level is higher than that of the just completed instruction and the PSW H-bit
was 1, a higher-privilege transfer trap is taken. The term “new privilege” level refers to the privilege
level at which the following instruction executes.

If neither transfer trap is taken, the instruction just completed is a taken branch, and the PSW T-bit
was 1, then a taken branch trap occurs.

Instruction Pipelining

The architecture permits implementations to prefetch up to seven instructions from the cache (including
branch prediction) beyond the instruction currently executing. Instructions may modify resources which
affect instruction fetch on the machine they are executing on. Instruction fetch resources include
protection identifier registers, the PSW, and TLB entries. When such an event takes place, it affects
instructions that are fetched 8 instructions later (at the latest), or after th(REIEMRN FROM
INTERRUPTIONINSstruction, whichever occurs first.

Instructions may also modify resources on other processors in a multiprocessor system, which affect the
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instruction fetch of the target processors. When such an event takes place (the modification of the
resource is acknowledged), it affects instructions that are fetched, on the target processors, after they
have finished executing 8 instructions (at the latest) except as noted below.

When a processor executes an instruction which purges an instruction TLB entry in other processors,
the target processors must acknowledge completing the purge. The target processors may not complete
a move-in, which was initiated using the purged translation, after acknowledging the removal.
Acknowledgment of a data TLB purge request from another processor must not be made until after the
purge has logically been performed.

Modification of code, while discouraged, may be performed using the following protocol:
1. Modify the code in the data cache.
2. Flush the modified code from the data cache.

3. Issue 8YNCHRONIZE CACHESstruction to ensure the flush is completed and subsequent move-
in will observe the memory version.

4. Flush the location of the modified code from the instruction cache.
5. Issue &8YNCHRONIZE CACHESNstruction to ensure the flush is completed.

6. Delay at least an additional seven instructions or exeClRET&RN FROM INTERRUPTION
instruction.

In a multiprocessor system, software must ensure that no other processor is executing code that is in the
process of being modified.
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5 Interruptions

Interruptions are anomalies that occur during instruction processing, causing transfer of the flow control
to an interruption handling routine. In the process, the hardware automatically saves certain processor
state. Upon completion of interruption processiniRETURN FROM INTERRUPTIONInstruction is
executed, which restores the saved processor state, and the execution proceeds with the interrupted
instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not pipelined. That
is, it behaves as if a single instruction is fetched and executed, and any interruption conditions raised by
that instruction are handled at that time. If there are none, the next instruction is fetched, and so on.

Interrupt Classes

Faults, traps, interrupts, and checks are the different classes of interruptions that may happen during
instruction processing. Definitions of the four classes of interruptions are as follows:

Fault The current instruction requests a legitimate action which cannot be carried out due to
a system problem, such as the absence of a page from main memory. After the system
problem has been corrected, the faulting instruction will execute normally. Faults are
synchronous with respect to the instruction stream.

Trap Traps include two sorts of possibilities: either the function requested by the current
instruction cannot or should not be carried out, or system intervention is desired by
the user before or after the instruction is executed. Examples of the first type include
arithmetic operations that result in signed overflow and instructions executed with
insufficient privilege for their intended function. Such instructions are normally not
re-executed. Examples of the second type include the debugging support traps. Traps
are synchronous with respect to the instruction stream.

Interrupt An external entity (for example, an 1/O device or the power supply) requires attention.
Interrupts are asynchronous with respect to the instruction stream.

Check The processor has detected an internal malfunction. Checks can be either
synchronous or asynchronous with respect to the instruction stream.

All four classes of interruptions are handled in the same way. The interruptions are categorized into four
groups based on their priorities:

Group 1: 1 High-priority machine check
Group 2: 2 Power failure interrupt
3 Recovery counter trap
4 External interrupt
5 Low-priority machine check
29 Performance monitor interrupt
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Group 3: 6

Instruction TLB miss fault/Instruction page fault

7 Instruction memory protection trap
8 lllegal instruction trap
9 Break instruction trap
10 Privileged operation trap
11 Privileged register trap
12 Overflow trap
13 Conditional trap
14  Assist exception trap
15 Data TLB miss fault/Data page fault
16 Non-access instruction TLB miss fault
17 Non-access data TLB miss fault/Non-access data page fault
26 Data memory access rights trap
27 Data memory protection ID trap
28 Unaligned data reference trap
18 Data memory protection trap/Unaligned data reference trap
19 Data memory break trap
20 TLB dirty bit trap
21 Page reference trap
22  Assist emulation trap
Group 4: 23 Higher-privilege transfer trap
24 Lower-privilege transfer trap
25 Taken branch trap

The interruption numbers in the above list are the individual vector numbers that determine which
interruption handler is invoked for each interruption. The group numbers determine when the particular
interruption will be processed during the course of instruction execution. The order the interruptions are
listed within each group (not the interruption numbers) determines the priority of simultaneous

interruptions (from highest to lowest).

Interruption Handling

Interruption handling is implemented as a fast context switch (which is much simpler than a complete

process swap). When an interruption occurs, the hardware takes the following actions:

1. The PSW in effect at the time of the interruption is saved in the IPSW. For group 2 and 3
interruptions, the saved PSW is the value at the beginning of execution. For group 4 interruptions,

the saved PSW is the value after the execution of the instruction.
2. The defined bits in the PSW are set as follows:

W Set to the value of the default width bit.

E Set to the value of the default endian bit.

5-2 Interruptions
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M Set to 1 if the interruption is a high-priority machine check; otherwise, set to 0.
all other bits Set to 0 (interrupts are masked, absolute accesses are enabled, etc.).

. IA information in the IIA queues is frozen (as a result of setting the PSW Q-bit to 0 in step 2
above).

In order to enable restarting of instructions in the presence of delayed branching, at least two
addresses must be saved, pointing to the next two instructions to be executed after returning from
the interruption. The hardware, therefore, maintains IIA Space and IIA Offset queues, which have
two elements and contain the addresses and privilege levels of these instructions. The IIA queues
are kept up-to-date whenever the Q-bit in the PSW is 1. When an interruption is taken, the
addresses of the pending instructions are preserved in the queues. The elements of the queues may
be obtained by reading the IIASQ and IIAOQ registers (CRs 17 and 18, respectively).

. The current privilege level is set to the highest privilege level (zero).

. Information about the interrupting instruction is saved in the Interruption Parameter Registers
(IPRs) if the PSW Q-bit was 1 at the time of the interruption. If the PSW Q-bit was 0, the IPRs are
unchanged. If the details of an instruction associated with the interruption are potentially useful in
processing it, the instruction is loaded into the Interruption Instruction Register (IR or CR 19). If
there is an address associated with the interruption, it is loaded into the Interruption Space and
Interruption Offset registers (ISR or CR 20, and IOR or CR 21). See “Interruption Parameter
Registers (IPRs)” on page 2-15 for a description of the format of these registers.

. General registers 1, 8, 9, 16, 17, 24, and 25 are copied to the shadow registers if the PSW Q-bit was
1 at the time of the interruption. If the PSW Q-bit was 0, the shadow registers are unchanged.

. Execution begins at the address given by:
Interruption Vector Address + (32 * interruption_number)

Interruption_number is the unique integer value assigned to that particular interruption. Vectoring
is accomplished by performing an indexed branch into the Interruption Vector Table indexed by this
integer. The Interruption Vector Table contains the first eight instructions of each of the interruption
handling routines. The value in the Interruption Vector Address register (CR 14) must be aligned on
a 2 Kbyte boundary.

Programming Note
It is the responsibility of interruption handlers to unmask external interrupts (by setting the
PSW I-bit to 1) as soon as possible, so as to minimize the worst-case latency of external
interrupts.

Instruction Recoverability

When execution of instructions is interrupted, the minimal processor state that is required to be saved
and restored is that necessary to correctly continue execution of the instruction stream after processing
of the interruption. Processor state is defined to include any register contents, PSW bits, or other
information that may affect the operation performed by an instruction. For example, if an interruption is
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taken immediately before &DD instruction, its source registers must be restored, but its target register
need not be (unless it is also one of the source registers).

Masking and Nesting of Interruptions

Disabling an interruption prevents it from occurring. The interruption does not wait until re-enabled. It
is not kept pending. Masking an interruption does not prevent the recognition of a pending interruption
condition, but delays the occurrence of the interruption until it is “unmasked”.

The IA state is collected in the IIA queues only while the PSW Q-bit is 1; it is usually not possible to
resume execution after an interruption which is taken while the PSW Q-bit is 0.

The machine state is saved in registers rather than memory when an interruption occurs, and
interruption handlers must leave interruptions disabled until they have saved the machine state in
memory. Once the machine state is saved, nested interrupts can be allowed.

Since it is desirable to catch hardware faults as soon as possible, interruption handlers should generally
not mask high-priority machine checks. If a machine check occurs before the machine state has been
saved, the interrupted process may need to be aborted. The occurrence of traps and faults within
interruption handlers can be avoided by careful writing of the handlers.

Interruption Priorities

High-priority machine checks (which belong to Group 1) may occur and be processed at any time. They
may be synchronous or asynchronous with instruction processing, may be associated with more than
one instruction, and their precise meaning and processing is implementation dependent.

All interruptions other than high-priority machine checks are taken between instructions. Multiple
simultaneous interruptions may occur because a number of instructions are capable of raising several
synchronous interruptions simultaneously, and because certain interruptions are asynchronous with
respect to the instruction stream.

Group 2 interruptions occur asynchronously with respect to the instruction stream.

Group 3 interruptions are synchronous with respect to the instruction stream and are signalled before
completion of the instruction that produces them.

Group 4 interruptions are synchronous with respect to the instruction stream and are signalled either
after completion of the instruction that causes them, or when a change in privilege level is about to
happen.

Relative priorities are not assigned to the 64 external interrupts by the hardware. When multiple external
interrupts occur simultaneously, software may select their order of service, based on the contents of
EIR.

Return from Interruption

TheRETURN FROM INTERRUPTIONNSstruction restores the PSW and the instruction address queues. If
the old PSW stored in IPSW (CR 22) has interruptions enabled (or unmasked), interruptions are re-
enabled before execution of the first of the continuation instructions. The PSW Q-bit may reliably be set
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to 1 only by &RETURN FROM INTERRUPTIONNSstruction. An attempt to set the PSW Q-bit to 1 with a
SET SYSTEM MASKor MOVE TO SYSTEM MASKinstruction is an undefined operation.

Adding the “R” (restore) completer to tHRETURN FROM INTERRUPTIONNSstruction does everything
that a normaRETURN FROM INTERRUPTIONRNSstruction does, and in addition causes the values in the
shadow registers to be copied to GRs 1, 8, 9, 16, 17, 24, and 25. Executi®®EDRN FROM
INTERRUPTIONwWith the “R” completer leaves the contents of the shadow registers undefined.

Executing aRETURN FROM INTERRUPTIONNstruction with the PSW Q-bit 0 and the IPSW Q-bit 0
leaves the IPRs unchanged.

Programming Note
Only those interruptions which are themselves uninterruptible (they leave the PSW Q-bit 0)
may return from the interruption using tREI,R instruction. Interruption handling code which
is interruptible (they set the PSW Q-bit to 1) must return from the interruption usimfFthe
instruction.

Fast interruption handling is achieved using shadow registers, since GRs 1, 8, 9, 16, 17, 24, and
25 are copied to the shadow registers on interruptions. In this example, it is assumed that at
most seven general registers need to be used in the interruption handling routine.

Using RFI Using RFI,R
interrupt interrupt

save GRs <no save>
[process interrupt] [process interrupt]
restore GRs <no restore>

RFI RFI,R

Interruption Descriptions

The sections that follow provide descriptions of each of the interrupts defined in the PA-RISC
architecture.

Group 1 Interruptions

High-priority Machine Check (1)
Cause: A hardware error has been detected that must be handled before processing can continue

Parameters: Implementation dependent

IIA Queue: Front — Implementation dependent
Back — Implementation dependent

Notes: The actions taken when a hardware error is detected depend on the seriousness of the
error. Damage extensive enough to prevent proper execution of instructions will halt the
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machine and generate an external indication of the occurrence of the check. Damage
which allows a subset of the instructions to execute (e.g., inoperative TLB) generates a
high-priority machine check interruption. This is maskable by setting the PSW M-bit to 1,

so that machine checks within the machine check handler can be prevented. The causes of
high-priority machine checks are implementation dependent, as is the means of
controlling their reporting.

Group 2 Interruptions

Power Failure Interrupt (2)
Cause: The machine is about to lose power

Parameters: none

IIA Queue: Front — Address of the instruction to be executed at the time of the interruption
Back — Address of the following instruction

Notes: This interruption is masked and kept pending when the PSW I-bit is 0.

Recovery Counter Trap (3)
Cause: Bit O of the recovery counter is 1 and the PSW R-bitis 1

Parameters: none

IIA Queue: Front — Address of the instruction to be executed at the time of the interruption
Back — Address of the following instruction

Notes: The recovery counter can be used to log interruptions during normal operation and to
simulate interruptions during recovery from a fault.

External Interrupt (4)

Cause: A module writes to the processor’s IO_EIR register, or the interval timer compares equal
to its associated comparison register

Parameters: none

IIA Queue: Front — Address of the instruction to be executed at the time of the interruption
Back — Address of the following instruction

Notes: Each external interrupt level has associated with it one bit in the External Interrupt Enable
Mask Register (CR 15) and one bit in the External Interrupt Request Register (CR 23).
When a module writes into the EIR register, the bit position corresponding to the value
written is set to 1. If the default width bit is 1, the bit to set directly corresponds to the
value; if 0, the bit to set is the value + 32. For example if the value 5 is written, then bit 5
of the EIR register is set to 1 if the default width bit is 1, and bit 37 of the EIR is set if the
default width bit is 0. If the corresponding bit in CR 15 is 1 and the PSW I-bit is 1, an
external interrupt is taken; otherwise, the interrupt is masked, and is kept pending.

Interrupt handling software sets bits in the EIR to 0 by executm@\s#&E TO CONTROL
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REGISTERInstruction with the appropriate mask.

If multiple sources can set the same interrupt, it is the responsibility of software to
correctly respond to all of the interrupting sources.

Low-priority Machine Check (5)

Cause: A hardware error has been detected which is recoverable and does not require immediate
handling

Parameters: Implementation dependent

IIA Queue: Front — Address of the instruction to be executed at the time of the interruption
Back — Address of the following instruction

Notes: Errors which have been detected and recovered from by hardware to the point that
operation can continue in a degraded fashion are reported via the low-priority machine
check interruption. This interruption is masked and kept pending when the PSW I-bit is 0.
The causes of low-priority machine checks are implementation dependent, as is the means
of controlling their reporting.

Performance Monitor Interrupt (29)

Cause: An implementation-dependent event related to the performance monitor coprocessor
requires software intervention

Parameters: Implementation dependent

IIA Queue: Front — Address of the instruction to be executed at the time of the interruption
Back — Address of the following instruction

Notes: This interruption is masked and kept pending when the PSW F-bit is 0.

Group 3 Interruptions

Instruction Tlb Miss Fault/instruction Page Fault (6)

Cause: The instruction TLB entry needed by instruction fetch is absent, and if instruction TLB
misses are handled by hardware, the hardware miss handler could not find the translation
in the Page Table

Parameters: none

IIA Queue: Front — Address of the instruction causing the fault
Back — Address of the following instruction

Notes: Only if an instruction is to be executed can an instruction TLB miss fault occur.

Instruction Memory Protection Trap (7)

Cause: Instruction address translation is enabled and the access rights check fails for an
instruction fetch or instruction address translation is enabled, the PSW P-bit is 1, and the
protection identifier checks fails for an instruction fetch
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Parameters: none

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Notes: This interruption does not occur for absolute accesses.

lllegal Instruction Trap (8)

Cause: An attempt is being made to execute an illegal instruction or to exe@RANCH with
GATE instruction with the PSW B-bit equal to 1

Parameters: |[IR — The illegal instruction causing the trap

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Notes: lllegal instructions are the unassigned major opcodes. Unassigned sub-opcodes are
undefined operations (undefined sub-opcodes may cause the illegal instruction trap). On
some implementation®IAGNOSE may be an illegal instruction.

Break Instruction Trap (9)
Cause: An attempt is made to execut®@REAK instruction

Parameters: IR — TheBREAK instruction causing the trap

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Privileged Operation Trap (10)

Cause: An attempt is being made to execute a privileged instruction without being at the most
privileged level (priv= 0)

Parameters: IR — The privileged instruction causing the trap

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Notes: The list of privileged instructions iDIAG, IDTLBT, ITLBT, LCI, LDDA, LDWA, LPA,
MTSM, PDTLB, PDTLBE, PITLB, PITLBE, RFI, RSM, SSM, STDA, STWA

Privileged Register Trap (11)

Cause: An attempt is being made to write to a privileged space register or access a privileged
control register without being at the most privileged level (priv= 0)

Parameters: IR — The instruction causing the trap

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Notes: This interruption may be caused by theVE TO SPACE REGISTERMOVE TO CONTROL
REGISTER or MOVE FROM CONTROL REGISTERnNStructions.
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Overflow Trap (12)
Cause: A signed overflow is detected in an instruction which traps on overflow

Parameters: |IR — The instruction causing the trap

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Conditional Trap (13)
Cause: The condition succeeds in an instruction which traps on condition

Parameters: |IR — The instruction causing the trap

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Assist Exception Trap (14)

Cause: A coprocessor or special function unit has detected an exceptional condition or operation.
An exceptional operation may include unimplemented operations or operands.

Parameters: |IR — For immediate traps, the SFU or coprocessor instruction that was executing when an
exception is reported with a trap. It may or may not be related to the condition causing the
exception. For delayed traps, any instruction corresponding to the SFU or coprocessor.
See “Interruptions and Exceptions” on page 10-4.

IIA Queue: Front — Address of the instruction causing the trap
Back — Address of the following instruction

Data TIb Miss Fault/data Page Fault (15)

Cause: The data TLB entry needed by operand access of a load, store, or semaphore instruction is
absent, and if data TLB misses are handled by hardware, the hardware miss handler could
not find the translation in the Page Table

Parameters: ISR — space identifier of data address
IOR — offset of data address
IIR — The instruction causing the fault

IIA Queue: Front — Address of the instruction causing the fault
Back — Address of the following instruction

Notes: This interruption does not occur for absolute accesses.

Non-access Instruction Tlb Miss Fault (16)

Cause: The instruction TLB entry needed for the target oFl&JSH INSTRUCTION CACHE
instruction is absent, and if TLB misses are handled by hardware, the hardware miss
handler could not find the translation in the Page Table

Parameters: ISR — space identifier of virtual address to be flushed
IOR - offset of virtual address to be flushed
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1A Queue:

Notes:

IIR — The instruction causing the fault

Front — Address of the instruction causing the fault
Back — Address of the following instruction

This interruption source is distinguished from other TLB misses because a page fault
should not result in reading the faulting page from disk. This interruption does not occur
for absolute accesses.

Non-access Data TIb Miss Fault/non-access Data Page Fault (17)

Cause:

Parameters:

IIA Queue:

Notes:

The data TLB entry needed byL@AD PHYSICAL ADDRESS PROBE ACCESSPROBE
ACCESS IMMEDIATE, FLUSH INSTRUCTION CACHE PURGE DATA CACHE or aFLUSH

DATA CACHE instruction is not present, and if TLB misses are handled by hardware, the
hardware miss handler could not find the translation in the Page Table

ISR — space identifier of virtual address
IOR — offset of virtual address
IIR — The instruction causing the fault

Front — Address of the instruction causing the fault
Back — Address of the following instruction

These interruption sources are distinguished from other TLB misses because a page fault
should not result in reading the faulting page from disk. This interruption does not occur
for absolute accesses.

Data Memory Access Rights Trap (26)

Cause:

Parameters:

1A Queue:

Notes:

Data address translation is enabled, and an access rights check fails on an operand
reference for a load, store, or semaphore instruction, or a cache purge operation

ISR — space identifier of the virtual address
IOR — offset of the virtual address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction

This interruption does not occur for absolute accesses.

Data Memory Protection Id Trap (27)

Cause:

Parameters:

1A Queue:

Data address translation is enabled, the PSW P-bit is 1, and a protection identifier check
fails on an operand reference for a load, store, or semaphore instruction, or a cache purge
operation

ISR — space identifier of the virtual address
IOR — offset of the virtual address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction
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Notes:

This interruption does not occur for absolute accesses.

Unaligned Data Reference Trap (28)

Cause:

Parameters:

I1A Queue:

Notes:

Data address translation is enabled, and a load or store instruction is attempted to an
unaligned address

ISR — space identifier of the virtual address
IOR — offset of the virtual address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction

Unaligned data reference traps are not detected for absolute accesses or semaphore
instructions — they are undefined operations. Only unaligned virtual memory loads and
stores (including coprocessor loads and stores) are defined to terminate with the unaligned
data reference trap.

Data Memory Protection Trap/unaligned Data Reference Trap (18)

Cause:

Parameters:

1A Queue:

Notes:

Data address translation is enabled, and an access rights check or a protection identifier
check fails on an operand reference for a load, store, or semaphore instruction, or a cache
purge operation; a load or store instruction is attempted to an unaligned address with
virtual address translation enabled (unaligned absolute references and semaphore
instructions are undefined operations)

ISR — space identifier of the virtual address
IOR — offset of the virtual address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction

This interruption does not occur for absolute accesses. Only unaligned virtual memory
loads and stores (including coprocessor loads and stores) are defined to terminate with the
data memory protection trap. Execution of a semaphore instruction with unaligned (16
byte boundaries) addresses is an undefined operation.

This trap is retained for compatibility with the earlier revisions of the architecture. In PA-
RISC 1.1 (Second Edition) and later revisions, processors must use traps 26, 27, and 28
which provide equivalent functionality.

Data Memory Break Trap (19)

Cause:

Parameters:

Store and semaphore instructions or cache purge operations to a page with the B-bit 1 in
the data TLB entry

ISR — space identifier of the virtual address
IOR — offset of the virtual address
IIR — The instruction causing the trap
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IIA Queue:

Notes:

Front — Address of the instruction causing the trap
Back — Address of the following instruction

This trap is disabled if the PSW X-bit is 1. This interruption does not occur for absolute
accesses.

TIb Dirty Bit Trap (20)

Cause:

Parameters:

1A Queue:

Notes:

Store and semaphore instructions to a page with the D-bit O in the data TLB entry

ISR — space identifier of the data address
IOR — offset of the data address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction

Software is invoked to update the dirty bit in the data TLB entry and the Page Table. This
interruption does not occur for absolute accesses.

Page Reference Trap (21)

Cause:

Parameters:

1A Queue:

Notes:

Load, storeand semaphorigstructions to a page with the T-bit 1 in its data TLB entry

ISR — space identifier of the virtual address
IOR — offset of the virtual address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction

This interruption does not occur for absolute accesses.

Assist Emulation Trap (22)

Cause:

Parameters:

IIA Queue:

Notes:

An attempt is being made to execute an SFU instruction for an SFU whose corresponding
bit in the SFU Configuration Register (SCR) is O or to execute a coprocessor instruction
for a coprocessor whose corresponding bit in the Coprocessor Configuration Register
(CCR)is O

ISR — space identifier of the data address
IOR — offset of the data address
IIR — The instruction causing the trap

Front — Address of the instruction causing the trap
Back — Address of the following instruction

ISR and IOR contain valid data only if the instruction is a coprocessor load or store.
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Group 4 Interruptions

Higher-privilege Transfer Trap (23)

Cause: An instruction is about to be executed at a higher privilege level than the instruction just
completed and the PSW H-bitis 1

Parameters: none

IIA Queue: Front — Address of the instruction with the higher privilege level
Back — Address of the following instruction

Lower-privilege Transfer Trap (24)

Cause: An instruction is about to be executed at a lower privilege level than the instruction just
completed and the PSW L-hitis 1

Parameters: none

IIA Queue: Front — Address of the instruction with the lower privilege level
Back — Address of the following instruction

Taken Branch Trap (25)
Cause: A taken branch was executed, and the PSW T-bit is 1

Parameters: none

IIA Queue: Front — Address of the instruction to be executed after the branch
Back — Address of the branch target

Notes: This interruption occurs after the execution of the branch instruction, and the address of
the branch instruction itself is not available. The address at the front of the IIA queue is the
address of the instruction to be executed next. If the branch has nullification specified, this
is the address of the nullified instruction (the PSW N-bit is 1 in this case).

PA-RISC 2.0 Architecture Interruptions 5-13



5-14  Interruptions PA-RISC 2.0 Architecture



6 Instruction Set Overview

This chapter provides an overview of the PA-RISC instruction set. The instructions can be divided into
the following functional groups:

« Computation instructions.

* Multimedia instructions.

* Memory Reference instructions.
¢ Long Immediate instructions.

* Branch instructions.

» System Control instructions.

* Assist instructions.

The instruction set consists of defined, undefined, illegal, and null instructions. This chapter discusses
the concepts of undefined and null instructions and includes descriptions of the conditions, their
completers, and the notation used in the instruction descriptions. Each instruction is described in detail
in Chapter 7, “Instruction Descriptions”. Each description includes the full name of the instruction, the
assembly language mnemonic and syntax format, machine instruction format, purpose, a narrative
description, an operational description, exceptions, and notes concerning usage. In some cases,
programming notes are included for additional guidance to programmers.

Instructions are always 32 bits in width. A 6-bit major opcode is always the first field. Source registers,
if specified, are often the next two 5-bit fields and are always in the same place. Target registers, if
specified, are not fixed in any particular 5-bit field. Depending on the major opcode, the remainder of
the instruction word is divided into fields that specify immediate values, space registers, additional
opcode extensions, conditions, and nullification.

Computation Instructions

Computation instructions are comprised of the arithmetic, logical, shift, extract, and deposit instructions
which operate on the general registers. The two 5-bit fields following the 6-bit opcode field can specify
the following combinations:

1. Two source registers.

2. A source register and a target register.
3. A source register and a 5-bit immediate.
4. A target register and a 5-bit immediate.

Table 6-1 summarizes the computation instructions that are provided.
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Table 6-1. Computation Instruction Summary

3-Register Arithmetic & Logical Instructions

ADD, SHLADD, SUB, Perform arithmetic and logical operations with two operands
OR, XOR, AND, ANDCM, in registers and store the result in a third register.
UADDCM,UXOR,

DS, CMPCLR, DCOR

Immediate Arithmetic Instructions

ADDI, SUBI, Perform arithmetic operations between a sign-extended imme-

CMPICLR diate and the contents of a register. The result is placed in a
register.

Shift Pair, Extract & Deposit Instructions

SHRPD, SHRPW, The shift pair operations allow for a concatenation of two reg-
isters followed by a shift of O to 63 bit positions.

EXTRD, EXTRW, Extract instructions take a field from a source register and

insert it right-justified into the target register.

DEPD, DEPDI, DEPW, DEPW!| Deposits either set the target to zero or leave it unchanged
(merge operation). The deposit instructions then take a right-
justified field from a source and deposit it into any portion of
the target.

The three-register arithmetic and logical instructions take two source arguments from two general
registers. These source registers are specified by the two 5-bit fields following the opcode specifier. The
rightmost 5-bit field specifies the target register.

Some of the computation instructions have a signed immediate argument which is either five bits or
eleven bits in length. The 5-bit immediate is encoded in the second 5-bit field following the opcode field
and the target specifier in the first 5-bit field following the opcode field. The 11-bit immediate is
encoded in the rightmost 11-bit field, and the target specifier in the second 5-bit field following the
opcode specifier.

Many computation instructions may nullify the instruction following, given the correct conditions. The
instruction condition completers are used to determine if the instruction following is nullified, based on
the contents of the source operands and the operation performed.

Three-Register Arithmetic and Logical Instructions

These instructions perform arithmetic and logical operations between two operands in registers and
store the result into a register. Each arithmetic/logical instruction also specifies the conditional
occurrence of either a skip or a trap, based on its opcode and the condition field. Not all options are
available on every instruction. Only those operations and options considered useful are defined.

Immediate Arithmetic Instructions

The immediate arithmetic instructions operate between a sign-extended 11-bit immediate and the
contents of a register. The result is placed in a register. Immediate operations may optionally trap on
overflow. In addition, immediate adds may trap on a specific condition.
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The 11-bit immediate field has the sign bit in the rightmost poshidrthe other 10 bits are in the usual
ordea. The 1-bit opcodextension field determines whethmserflow causes a trap.

Shift Pair, Extract, and Deposit Instructions

The shift pair operations el for a concatenation ofvb registers folbwed by a shift of O to 63 bit
positions. The rightmost 64 bits are placed in a genega@te. Depending on the choice of the source
registers, this operation allvs the user to perform right or left shifts, rotates, bit fezldactions when
the bit field crosses word boundaries, unaligned bytees) and so on.

Extract instructions take a field from a souregister and insert it right-justified into thedet egiste.
This field is either zer@xtended or sigrextended. This wg the extract instructions support both
logical and arithmetic shift operations.

The deposit instructions either set theyéd to zero or lave it unchanged (nmmge operation) and then
take a right-justified field from a source and deposit it imfoportion of the teget. The source can be
either a egister or a 5-bit signed immediatalue. The 5-bit immediate field has the sign bit in the
rightmost positionput the other 4 bits are in the usual ardeeposit instructions support left shift
operations and simple multiplication bgwgers of two.

Multimedia Instructions

PA-RISC piovides dficient support for the most frequent multimedia operations because these
operations are assuming greater importance imyrapplications. Instructions in this egbry perform
multiple parallel operations in a singigcle.

In multimedia workloads, a flge portion of the arithmetic can be thought of as saturation arithmetic.
This means that if the result of a calculation would be togelin magnitude to be represented in a
given format, the calculation deérs the legest representable number (as opposed to wrapping to the
other end of the representable range, as with modular arithmetic). Conthninust be implemented

by testing each result (twice, for signed results), and performing conditional branches or skips to force
the result to a maximumalue. The multimedia instructions PA-RISC perform multiple parallel
computations, with each of the results being tested and forced to the apprahuiaté necessgyin a
singlecycle. The result is a sizeable reduction in pathlength emerfdisrupive breaks in controldiv

in multimedia algorithms.

Re-arrangement instructionsopide dficient support for packed x@l data structures in menypallow
algorithms to make full use of the parallel computation instructions, and enable the use of the full load/
store bandwidth of the processor in accessirgl piata.

The multimedia instructions are comprised of halfword arithmeticwbadf shift, and rearrangement
instructions. The instructions operate on 16-bit signed or unsigned numbers. The signed representations
are two's complement numbers in the rangé®te? 21°-1. Table6-2 summarizes the multimedia
instructions povided. E
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Errata
Previously, the 16-bit signed number range incorrectly read:

2^15 - 1 to 2^15


Table 6-2. Multimedia Instruction Summary

Parallel Halfword Arithmetic Instructions

HADD, HSUB, HAVG Parallel halfword add, subtract, and average instructions oper-
ate on two 64-bit registers, each containing four 16-bit oper-
ands.

Parallel Halfword Shift Instructions

HSHLADD, HSHRADD, Parallel halfword shift instructions allow multiple halfword

HSHL, HSHR shifts with the shift amount encoded in the instruction. Bits are

blocked from being shifted across halfword boundaries. The
parallel halfword shift-and-add instructions support halfword
multiplication and division by constants.

Rearrangement Instructions
PERMH, MIXH, MIXW These instructions allow full utilization of halfword parallel
instructions by supporting rearrangement of words and half-
words in registers with no memory load/store overhead.

Parallel Halfword Arithmetic Instructions

In multimedia applications, the most common operations on pixels are addition, subtraction, averaging
and multiplication (especially multiplication by constants).

The HALFWORD ADD, HALFWORD SUBTRACTand HALFWORD AVERAGE instructions operate on

two 64-bit general registers, each containing four 16-bit operands, and produce four 16-bit results,
delivered to a general register. Saturation can be optionally performed. FLi&¥ORD AVERAGE
instruction, unbiased rounding is performed, to reduce the accumulation of rounding errors.

Halfword multiplication and division by constants is supported through parallel halfword shift-and-add
instructions. TheHALFWORD SHIFT LEFT AND ADD and HALFWORD SHIFT RIGHT AND ADD
instructions perform four parallel halfword shift and add operations. These instructions are used as
primitive operations in performing halfword integer multiplication and division by a constant.

Saturation

The halfword addition, subtraction, and shift-and-add instructions can be performed with normal
modular arithmetic or with signed saturation or unsigned saturation. Saturation arithmetic occurs
frequently in multimedia algorithms. When an intermediate result of an operation cannot be represented
in the target register, saturation is said to occur and the result is forced to a maximum or minimum
value. Thus, when a result is out of range (too large or too small to be represented in the target register)
the saturation result is automatically delivered and no extra instructions are required to test for these
boundary conditions. Saturation is performed independently on each of the 16-bit results.

Optional saturation is specified via instruction completers. In the instruction descriptions, the term
cmpltis used to denote the completer field which encodesatieeld. If no completer is specified, the
operands are added or subtracted with modular arithmetic. If signed saturation is specified, both
operands are treated as signed numbers and are added or subtracted producing a signed result with
signed saturation. If unsigned saturation is specified, the first operand is treated as an unsigned number
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and the second as a signed numiese are added or subtracted producing an unsigned result with
unsigned saturation.

The results for maximum saturation and minimum saturation are defined faotthlarithmetic
instructions in the foliwing tables. Signed saturation results are definethbie 6-3 and unsigned
saturation results are definedTiable 6-4.

Table 6-3 Signed Saturation Results

Instructions

Maximum Saturation

Minimum Saturation

HADD, HSUB,
HSHRADD

Intermediate result of an operation ig
greater than ®_1. The result is forced

to 21°-1.

Intermediate result of an operation is
less than —2. The result is forced to

A5

HSHLADD

Intermediate result of an operation ig
greater than®-1. The result is forced
to 21°-1. In addition, the result is alst

forced to 3°-1 if the leftmost bit of
the first operand is 0, and one or mg
of the bits shifted out &fers from the

Intermediate result of an operation is
less than 2. The result is forced to
b —215 In addition, the result is also

forced to —2° if the leftmost bit of the
rdirst operand is 1, and one or more of
the bits shifted out &fiers from the

leftmost bit folbwing the shift.

leftmost bit folbwing the shift.

Table 6-4 Unsigned Saturation Results

Instructions

Maximum Saturation

Minimum Saturation

HADD, HSUB

Intermediate result of an operation is
greater than®-1. The result is forced

to 2161,

Intermediate result of an operation is
less than 0. The result is forced to O.

Parallel Halfword Shift Instructions

The halfword shift instructions allv multiple parallel halfword shifts. The shift amount is encoded in

the instruction and shifting can be done by any amount, from 0 to 15 bits. These instructions generally

use the main shifteexcept that thy block ay bits from being shifted across halfword boundaries. The
HALFWORD SHIFT LEFT instruction albws multiplication by 2 in a single instruction. The
HALFWORD SHIFT RIGHT instruction albws dvision by 2' and the shift can be either signed or
unsigned. The complatemplt determines which type of shift to perform. The completer is encoded in
the sefield of the instruction.

Rearrangement Instructions

The PERMUTE HALFWORDS, MIX HALFNVORDS, and MIXWORDS instructions athw full utilization of
the halfword parallel arithmetic instructions by supporting the rearrangement of words ammidsaih
registers without incurring theverhead of memory load and store instructions. These instructiows all
arbitrary permutations and combinations of words and halfwordseisig.

The PERMUTE HALFWORES instruction can generateyaarbitrary combination or permutation of the
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four halfwords from its source operand.

In the MIX HALFWORDS instruction, two halfwords from the first operand are merged with two
halfwords from the second operand to produce the result. The comphatdt, determines which
halfwords are selected. The completer is encoded ieafield of the instruction.

In the MIX WORDS instruction, a word from the first operand is merged with a word from the second
operand to produce the result. The completenplt determines which words are selected. The
completer is encoded in tieafield of the instruction.

Memory Reference Instructions

Memory reference instructions load values into and store values from the general registers. Table 6-5
summarizes the memory reference instructions.

Table 6-5. Memory Reference Instruction Summary

Load/Store

LDB/STB, LDH/ Load/Store a byte, halfword, word, or doubleword
STH, LDW/STW, using a memory address formed using short or long
LDD/STD displacement or indexed.

Load/Store Absolute

LDWA/STWA, Load/Store a word or doubleword using an absolute
LDDA/STDA memory address formed using short or long displace-

ment or indexed.

Load and Clear
LDCW, LDCD Read (load) and lock a word or doubleword sema-
phore in main memory.

Store Bytes/DoubleWord Bytes

STBY, STDBY Implement fast byte moves (stores) to unaligned
word or doubleword destination.

Memory reference instructions work directly between the registers and main memory. They also can
operate between the registers and the data cache on implementations so equipped. A load instruction
loads a general register with data from the data cache. A store instruction stores a data value from a
general register into the data cache. Normally this distinction is transparent to the programmer, but
provisions are made for cache and TLB operations requiring cognizance of the data cache (see “System
Control Instructions” on page 6-17).

The address formation mechanisms supported include: short displacement, long displacement, and
indexed. It is possible to modify the base value in a general register by the displacement or index. The
rightmost bits of computed addresses are not ignored. Unaligned load and store instructions with data
address translation enabled to halfwords, words, or doublewords cause an unaligned data reference trap.
Semaphore operations and absolute accesses to unaligned data are undefined operations.

Program synchronization can be done using t®@D AND CLEAR instructions, which perform
indivisible semaphore operations. These instructions are required to use 16-byte aligned addresses.
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When using semaphores to synchronize with I/O, care must be taken in placing other information in the
same cache line as the semaphore. Data which is writable, can only be placed in the same cache line as
a semaphore if access to write the data is controlled by the semaphore.

Depending on the state of the PSW D-bit (data address translation bit), most load and store instructions
perform virtual accesses (when the PSW D-bit is 1) or physical accesses (when the PSW D-bit is O, or
when executingg OAD ABSOLUTE, STORE ABSOLUTEINnstructions).

The state of the PSW E-bit determines whether the data which is loaded or stored is big endian (when
the PSW E-bit is 0) or little endian (when the PSW E-bit is 1).

Memory is accessed using the following procedures:

mem_load(space,offset,low,high,hint)

{
if (PSW[D] == 0)
return(phys_mem_load(offset,low,high,hint));
else
return(virt_mem_load(space,offset,low,high,hint));
}

mem_store(space,offset,low,high,hint,data)

if (PSW[D] == 0)
phys_mem_store(offset,low,high,hint,data);

else
virt_mem_store(space,offset,low,high,hint,data);

}

There are some restrictions on which instructions can be used for referencing the I/O address space and
uncacheable memory. See “Operations Defined for I/O Address Space” on page F-12. For a description
of memory reference atomicity, see “Atomicity of Storage Accesses” on page G-1.

LOAD OFFSET LOAD IMMEDIATE LEFT, LOAD PHYSICAL ADDRESS LOAD COHERENCE INDEX,
andLOAD SPACE IDENTIFIERare not memory reference instructions.

Programming Note
Execution may be faster if software avoids dependence on register interlocks. Instruction
scheduling to avoid the need for interlocking is recommended. A register interlock will occur if
an instruction attempts to use a register which is the target of a previous load instruction that
has not yet completed. This does not restrict the length of the delay a load instruction may
incur in a particular system to a single execution cycle; in fact, the delay may be much longer
for a cache miss, a TLB miss, or a page fault.

Debugging is facilitated by the data memory break trap. This trap occurs whenever a store, a semaphore,
or a purge data cache operation is performed to a page with the B-bit 1 in its TLB entry and the PSW X-
bit is 0.
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Address Formation

Addresses are formed by the combination of a Space ID and an address Offset. Address Offsets may be
formed as the sum of a base register and any one of the following: a long displacement, a short
displacement (which leaves more instruction bits for other functions), or an index register. Figure 6-1 on
page 6-9 illustrates typical examples of the various methods of forming addresses for the memory
reference instructions. For detailed illustrations of address calculations for each of the available
addressing methods refer to “Memory Reference Instruction Address Formation” on page H-1.

Not all address formation methods are available with every memory reference instruction. Table 6-6
summarizes the address formation methods and the instructions where each is available.

Table 6-6. Address Formation Options for Memory Reference Instructions

Instructions Base

Short Long :
et Displacement | Displacement e

P P Modification

LDD, LDW, LDH, LDB X X X X

STD, STW, STH, STB X X X

LDDA, LDWA, LDCD, LDCW X X X

STDA, STWA, STBY, STDBY X X

Base Register Modification

All of the address formation methods provide the option of modifying the contents of the Base Register
either before or after the address calculation is performed. The address can be formed by using the
contents of Base Register before it is modified (sometimes known as post-increment) or by using the
contents of the Base Register after it has been modified by the displacement or index (sometimes known
as pre-increment.)
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Figure 6-1. Example Address Formation for Memory Reference Instructions

Cache Control

Some memory reference instruction formats contain a 2-bit cache controtfiefehich provides a
hint to the processor on how to resolve cache coherence. The processor may disregard the hint without
compromising system integrity, but performance may be enhanced by following the hint.

There are three different categories of cache control hints: load instruction cache control hints, store
instruction cache control hints, and semaphore instruction cache control hints. The cache control hints
are specified by thec completer to the instruction and encoded inchield of the instruction.
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The cache control hints for load instructions are shown in Table 6-7. Implementation of the hints by a
processor is optional, but the processor must treat unimplemented and Reserved hints as if no hint had
been specified.

The Spatial Locality cache control hint is a recommendation to the processor to fetch the addressed
cache line from memory but to not displace any existing cache data because there is good spatial
locality but poor temporal locality.

Table 6-7. Load Instruction Cache Control Hints

Completer| Description cc

<none> No hint 00
Reserved 01

SL Spatial Locality| 10
Reserved 11

The cache control hints for store instructions are shown in Table 6-8. Implementation of the hints by a
processor is optional, but the processor must treat unimplemented and Reserved hints as if no hint had
been specified.

Table 6-8. Store Instruction Cache Control Hints

Completer| Description cc
<none> No hint 00
BC Block Copy 01
SL Spatial Locality| 10
Reserved 11

The Block Copy cache control hint is a recommendation to the processor not to fetch the addressed
cache line if it is not found in the cache. Instead, the processor may create a cache line for the specified
address and perform the store instruction on the created line. If the cache line is not fetched then the
processor must zero the rest of the created cache line if the privilege level is 1, 2, or 3. The processor
may optionally zero the rest of created the cache line if the privilege level is 0. If the store instruction
with the Block Copy hint does not store into at least the first byte of the cache line, the processor must
perform the store as if the cache control hint had not been specified.

The Block Copy cache control hint is a way for software to indicate that it intends to store a full cache
line worth of data. Note that this hint should only be used if the rest of the memory in the addressed
cache line is no longer needed.

The cache control hints for th®©AD AND CLEAR semaphore instructions are shown in Table 6-9. The
implementation of the hints by the processor is optional. If no hints are implemented, the processor
must treat all hints as if no hint had been specified. If the Coherent Operation hint is implemented, the
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processor must treat Reged hints as if the Coherent Operation hint had been specified.

Table 6-9 Load And CleaiVord Instruction Cache Control Hints

Completer| Description cc
<none> No hint 00
CcoO Coherent Operation 01
Reseved 10
Reseved 11

The Coherent Operation cache control hint is a recommendation to the processor that, if the addressed
data is already in the cache, it can operate on the addressed data in the cache ratagnghem h
update memagr

All software users of a semaphore must access the semaphore using the same cache control hint.
Sharing a semaphore usindfelient cache control hints is undefined.

Data Prefetch Instructions

Data prefetch instructions are used to initiate a prefetch of the addressed data into the data cache before
it is required by later memory reference instructions, thus hiding some or all of the cache-nugs laten

Data prefetch instructions are encoded as normal load instructions witfetudgister of GRO. All of
the normal load addressing modes (long displacement, short displacement,exad)rthseagister
modification, and cache hints ameailable. The prefetch address mver unaligned — theolv-order
address bits are ignored and the cache line containing the address is fetched.

All interruptions normally associated with memory reference instructions (Data TLB miss fault/data
page fault, Data memory access rights trap, Data memory protection ID trap, Page reference trap) are
suppressed for data prefetch instructions. If one of thesptions would ocauthe prefetch is simply
ignored,but any base egister modification specified by the instruction still occurs.

There are four data prefetch instructions, correspondingrdetiag GRO for each of the four load
instruction data sizes, asmsin in Table 6-10. Thewo reseved encodings do not performyaprefetch,

but otherwise operate as described in this section (e.g., interruptions are suppressed, base modification
still occurs).

Table 6-10Data Prefetch Instructions E

Instruction Description

LDD Prefetch cache line for write
LDW Prefetch cache line for read
LDH Reseved

LDB Reseved

Prefetch for read indicates that the cache linek@ylito be used in a subsequent load operation while
prefetch for write indicates that a subsequent store will use the cache line. These are distinguished in
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Errata
Previously, Table 6-10 incorrectly showed:

LDD  Prefetch cache line for read
LDW  Prefetch cache line for write


order to allow the line to be brought into the cache in the correct state.

A prefetch for write is allowed to bring the cache line into the cache in the modified state, in which case
the instruction must check access rights as if it was a store and check for the Data memory break and
TLB dirty bit traps and suppress the prefetch if any of these checks fails.

A LOAD AND CLEAR instruction with a target register of GRO may be implemented as a rab#ial

AND CLEAR, which clears the data in memory and discards the original contents, or may be aliased to
the equivalent-size load instructionDCD to LDD, LDCW to LDW), in which case it behaves exactly

like that prefetch instruction and does not clear the data in memory.

Store Bytes Instructions

STORE BYTES and STORE DOUBLEWORD BYTHsovide the means for doing unaligned byte moves
efficiently. These instructions use a short 5-bit displacement to store bytes to unaligned destinations.
The short displacement field is in two’s complement notation with the sign bit as its rightmost bit.

The space identifier is computed like any other data memory reference (see Figure H-1 on page H-2).
The calculation of the offset portion of the effective address for different completers is shown in
Figure H-5. Space and offset are combined like any other data memory reference (see Figure H-3 on
page H-3).

The actual offset and modified address involves some alignment and other considerations. Refer to the
instruction description pages for an exact definition.

Long Immediate Instructions

The long immediate instructions do not reference memory. They compute values either from a shifted
long immediate (21 bits long), from a shifted long immediate and a source register, or from a base
register plus a 16-bit displacement. This computed value is then stored in another general register. These
instructions are typically used to compute the addresses of data itemsOAM®FFSETinstruction

can also be used to simply load a 16-bit immediate into a register.

Table 6-11. Immediate Instruction Summary

Immediate Instructions

LDO, LDIL, ADDIL, The three immediate instructions load a computed value into a
register or add an immediate value into a register.

Figure 6-2 on page 6-13 illustrates the operation of the immediate instructions.
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Figure 6-2. Immediate Instructions

Branch Instructions

Branch instructions are classified into three major categories: unconditional local branches,
unconditional external branches, and conditional local branches. Within these categories there is sub-
classification based on how the target address is computed, whether or not a return address is saved, and
whether or not privilege changes can occur. Not all of the options are available for each category. The
following sections describe the types of branches. The operation of each branch instruction is detailed in
the instruction description in Chapter 7, “Instruction Descriptions”. Table 6-12 summarizes the

categories of branch instructions.
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Table 6-12. Branch Instruction Summary

Unconditional Local Branches

B, BLR, BV Branch, branch and link, or branch vectored unconditionally
within the current space using IA- or base-relative addressing.
Unconditional External Branches

BE, BVE Branch or branch vectored unconditionally to another space
using base-relative addressing.

Conditional Local Branches
ADDB, ADDIB, BB, CMPB, Branch within the current space if the specified condition is
CMPIB, MOVB, MOVIB satisfied using IA-relative addressing. Categories include:
move and branch, compare and branch, add and branch, and
branch on bit.

Unconditional Local Branches

The unconditional local branch instructions are used for intraspace control transfers, procedure calls,
and procedure returns. Three types of relative addressing are provided:

1. IA-relative branches with static displacement use the IAOQ_Front plus either a 17-bit or 22-bit
signed word displacement. This allows a branch target range of up to plus or minus 8 Mbytes
within a space.

2. |A-relative branches with dynamic displacement use the IAOQ_Front plus a shifted index register.

3. Base-relative branches with dynamic displacement use the value in a base register plus a shifted
index register.

The BRANCH instruction satisfies most of the requirements for unconditional branching. The branch
target is 1A relative with a 17-bit static displacement.

A BRANCH instruction with the optional,(for link) completer is used for procedure calls. The branch
target is A relative with a 22-bit displacement if GR 2 is specified as the link register, and with a 17-bit
displacement if any other general register is specified. In addition, this variant of the instruction places
the offset of the return point (or link) in the specified GR. The return point is the location four bytes
beyond the address of the instruction which executes aftBR#ECH.

A BRANCH instruction with the optionalGATE (for gateway) completer is used for intraspace
branching with a process privilege level promotion. The branch target is IA relative with a 17-bit static
displacement.

The BRANCH AND LINK REGISTER instruction is used for intraspace procedure calls in which the
branch target is outside the range f@RANCH instruction with theL completer, or when a dynamic

target displacement is needed. The branch target address is base relative with a dynamic displacement.
Link handling is performed the same way as fBRANCH instruction with thel, completer.

TheBRANCH VECTOREDiInstruction is used for intraspace branching through a table and for procedure
returns. The branch target address is base relative with a dynamic displacement. The process privilege
level may be demoted.
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Unconditional External Branches

The unconditional external branch instructions are used for interspace control transfers, procedure calls,
and procedure returns. All unconditional external branch instructions use base-relative addressing and
may demote the process privilege level based on the rightmost bits of the base register.

Two types of base-relative addressing are provided:

« Base-relative branches with static displacements use a base register plus a 17-bit signed word
displacement. This allows a branch target range of up to plus or minus 256 Kbytes across space
boundaries. The target space comes from a Space Register which is specified explicitly.

« Base-relative branches with no displacement or index value. The target space comes from an SR
which is specified implicitly by the base register.
TheBRANCH EXTERNAL instruction is used for interspace branching and procedure returns.
A BRANCH EXTERNAL instruction with the optionalL,completer is used for interspace procedure

calls. It places the offset of the return point in GR 31 and copies the space ID into SR 0. The return point
is the location four bytes beyond the address of the instruction which executes after the branch.

The BRANCH VECTORED EXTERNALInstruction is used for interspace branching through a table and
for procedure returns. The target space is specified implicitly by the base register.

A BRANCH VECTORED EXTERNALInstruction with the optional,completer is used for interspace
procedure calls. It places the offset of the return point in GR 2. The return point is the location four
bytes beyond the address of the instruction which executes after the branch.

Conditional Local Branches

The conditional local branch instructions are used to perform an operation and then branch if the
condition specified is satisfied. All conditional local branch instructions use 1A-relative addressing with
static displacements. The target address is the current IAOQ_Front plus a 12-bit signed word
displacement. This allows a branch target range of up to plus or minus 8 Kbytes within a space.

There are four categories of conditional local branch instructions: move and branch, compare and
branch, add and branch, and branch on bit. The branch may be taken if the condition specified is true or
false. There are two forms of each instruction, the two-register form and the register plus 5-bit
immediate form. The 5-bit immediate operand provides data values in the range from -16 to +15.
Branch Target Stack

The Branch Target Stack (or BTS) is an optional processing resource which is used to accelerate
indirect branches, such as subroutine returns. The BTS is managed by software, and in processors which
implement it, can provide the branch target address in place of the general register specified in the
branch instruction.

Operations which push an address onto the stack:
* B,L,PUSH - Used for normal function calls.

« BVE,L,PUSH - Used for intra-space calls, such as calls to library functions.
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« PUSHBTS - Used to push a value from a GR onto the stack, in preparation for a dynamic branch.

« PUSHNOM - Pushes the value in BNR onto the stack; used in the called function if the caller did
not push the return address on the stack.

Operations which pop an address from the stack:

* BVE,POP - An address is popped from the stack, and if valid, it is used as the target address.
Otherwise, the BVE branches to an address given by a GR.

 POPBTS - Pops a specified number of entries from the stack and discards them; used for stack
unwinding.

« CLEARBTS - Pops all entries from the stack, discarding them all and leaving the stack invalid; this
is used in situations where the sequence of calls and returns is reset, such as with LONGJMP in
Unix systems.

All branch-and-link instructions nominate their link value. That is, the link value which is written to a
GR is also copied into BNR.

So, for call/return acceleration, one of these two scenarios is used:

e The caller uses a B,L,PUSH or BVE,L,PUSH to call. The callee uses a BVE,POP to return. (This is
the normal scenario.)

« The caller does not explicitly push a value onto the stack (it does not specify a ,PUSH completer on
the branch used to call). The callee does a PUSHNOM to push the link onto the stack. The callee
uses a BVE,POP to return.

For dynamic branches (such as may be generated by C-language switch statements), this scenario is
used:

« APUSHBTS is done as soon as the target address has been calculated. Then, at the point the branch
is done, a BVE,POP is done.

Branch Characteristics

Figure 6-3 categorizes the characteristics of the branch instructions.
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Figure 6-3. Classification of Branch Instructions

System Control Instructions
The system control instructions provide special register moves, system mask control, return from

interruption, probe access rights, memory management operations, and implementation-dependent
functions. Table 6-13 summarizes the System Control instructions that are provided.
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Table 6-13. System Control Instruction Summary

Special Register Move Instructions

LDSID, MTSP, MFSP,
MTCTL, MFCTL, MTSARCM,
MFIA,

These instructions move values to and from the space regis-
ters, control registers, the shift amount, and instruction
address register.

System Mask Control Instructions

SSM, RSM, MTSM

These instructions set, reset, and move values to the system
mask portion of the PSW.

Return From Interrupt & Break In

structions

RFI, BREAK

Restore state and restart interrupted instruction stream or
cause a break for debugging purposes.

Memory Management Instructions

SYNC, SYNCDMA,

PROBE, PROBEI, LPA, LCI,
PDTLB, PITLB, PDTLBE,
PITLBE,

IDTLBT, ITLBT,

PDC, FDC, FIC, FDCE, FICE

These instructions synchronize memory operations, probe
addresses to determine access rights, load a physical address
or a coherence index, purge or insert TLB entries or transla-
tions, and purge or flush data or instruction caches or cache
entries.

Implementation-Dependent Instruction

DIAG

Provide implementation-dependent operations for diagnostic
purposes.

The memory management instructions generate instruction and data addresses. Address formation is
similar to that of the indexed load instructions. The only difference is that the index register is never
shifted before adding to the base register. .

Memory management instructions select a space identifier either implicitly or explicitly as shown in
Figure 3-8 on page 3-8. The calculation of the offset portion of the address is shown in Figure 6-4.
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Figure 6-4. System Operations

Assist Instructions

The PA-RISC design generally conforms to the concept of a simple instruction set implemented in cost-
effective hardware. Certain algorithms can benefit from substantial performance gains by dedicating
specialized hardware to execute specialized instructions. Since few algorithms rely solely upon the
specialized hardware alone, it is usually advantageous to combine the central processor with additional
assist processors closely coupled to it.

In addition to the instructions executed by a central processor, the instruction set contains instructions to
invoke the special, optional, hardware functions provided by the two types of assist processors: Special
Function Units (SFUs) and coprocessors. Table 6-14 summarizes the assist instructions that are
provided for SFUs and coprocessors.

Table 6-14. Assist Instruction Summary

Special Function Instructions

SPOPO, SPOP1, SPOP2, These instructions invoke SFU operations, copy SFU register
SPOP3 or result to a general register, and perform a parameterized
SFU operation.

Coprocessor Instructions

COPR, CLDD, CLDW, These instructions invoke a coprocessor operation and load or
CSTD, CSTW store words or doublewords to or from a coprocessor register.
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Special function units are closely coupled to the central processor and provide extensions to the
instruction set. They use the general registers as operands and targets of operations.

Coprocessors provide functions that use either memory locations or coprocessor registers as operands
and targets of operations. Coprocessors are less closely coupled to the central processor, and so are
more easily provided as configuration options for an implementation than special function units.
Coprocessors may also directly pass doubleword quantities to and from the coprocessor and memory.
This is suited to the manipulation of quantities that are too large to be directly handled in general
registers.

The special function unit and coprocessor instructions are intended to encapsulate all of the optional
hardware features used for non-system-level code. An emulation facility is provided that permits PA-
RISC family members to execute code using the standard instruction set when optional hardware is not
present. The emulation facility is provided by the assist emulation trap, which passes information in
control registers, substantially reducing the instruction path length for emulation.

The assist exception trap permits partial implementations of standard “hardware” functions in a
combination of hardware and software. This handles functions that are difficult or not cost-effective to
implement fully in hardware.

Compatibility Among Implementations

The standard PA-RISC instruction set contains all defined instructions, including those for all defined
assist processors. Particular implementations may choose to implement these instructions in hardware,
software, or some combination of the two, using assist emulation traps and/or assist exception traps to
complete the implementation. Thus, these instructions can be used by compilers and assemblers without
sacrificing object-code portability. Software emulation of the extended functions is also used to permit
execution of the object code in a degraded mode for high-availability systems.

Special Function Unit (SFU) Instructions

The SFU mechanism is intended for certain architecturally defined instruction extensions, such as
hardware fixed-point binary multiply/divide or encryption hardware, as well as for implementation-
specific extensions, such as emulation assist processors or direct I/O controller connections.

SFUs are connected to the general register interface and are invoked by special operation instructions.
These instructions cause the execution unit to perform any of several operations (determined by the
opcode extension), which may use the contents of registers, or may write back a result. Some
instructions conditionally nullify the following instruction.

Some special function operations overlap their execution with succeeding instructions. These operations
require that the special function unit’s state be saved and restored when a context switch is made. An
interlock occurs if a special function result is requested before the operation has completed, or the
special function unit is busy.

An SFU is not required to hold its state in addressable registers. Instead, SFU operations are used to
save and restore the state, as well as to pass it operands and receive results from it.

Defined special function units will conform to the requirements of the defined SFU instructions, so that
they may be implemented either as built-in or interfaced special function units. The assist emulation
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trap permits software implementation of any defined special operation instruction.

The processor must also provide the current privilege level to special function units. Privilege levels
could be broadcast each time they change or could be transmitted with each SFU operation. Use of the
privilege level by the SFU is specific to each of the units. The operation paragraph of each SFU
instruction description specifies the necessary information that must be available to the SFU in the
sfu_operatiorfunction.

There is one SFU instruction, tHeRENTIFY SFU (SPOP1)nstruction, that is defined for all SFUs. It
must be implemented.

SFU Configuration Register

The SCR (SFU Configuration Register) is an 8-bit control register (within CR 10 bits 16..23) that is
used to indicate the presence and usability of a hardware implementation of an SFU. For all bits in the
SCR, SCR{i} corresponds to an undefined SFU with a unit identifier that is the same as the bit position,
that is the SFU with uid i.

When SCR{i} is 1, the SFU with uid i is implied to be present and usable. SFU instructions are passed
to the SFU and the defined operation occurs. Exceptions resulting from the operation cause the
instruction to be terminated with an assist exception trap. Assist emulation traps are not allowed to
occur for the SFU with uid i when SCR{i} is 1. It is an undefined operation to set to 1 the SCR bit
corresponding to a nonexistent SFU.

When SCR{i} is 0, it is not implied that the SFU with uid i is absent from the system, but rather that the

SFU, if present, is not currently being used. When the SCR bit is 0, the SFU instruction is terminated
with an assist emulation trap. Assist exception traps are not allowed to occur for the SFU with uid i
when SCR{i} is 0.

Setting the SCRY{i} bit to 0 must logically decouple the SFU with uid i. This must ensure that the state
of the SFU with uid i is frozen just prior to the transition of SCR{i} from 1 to 0 and that the state does
not change as long as SCR{i} is 0. When SCR{i} is 0, the SFU with uid i must not respond to any SFU
operations for the SFU with uid i. The frozen state of an SFU, for example, could also be a state in
which the SFU is left “armed” to trap any subsequent operations. For example, if the SFU with uid i is
in an “armed-to-trap” state and SCR{i} is 0, any operation involving that SFU must not cause an assist
exception trap.

The precedence of the interruptions that are applicable to operations for the SFU with uid i depends on
the state of SCR{j}. The assist exception trap and assist emulation trap are always taken in the priority
order as described in “Interruption Priorities” on page 5-4.

NOTE
Logical decoupling may be accomplished in a variety of ways. Processors may use abort
signals or other schemes to notify SFUs that the current instruction is to be ignored.

When the SCR bhit is 0, logical decoupling suppresses any exception traps from an SFU and
causes the emulation trap to occur (if it is the highest priority).
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Coprocessor Instructions

The coprocessor mechanism is intended for special-purpose data manipulations, for example to handle
data larger than will fit in a general register. The interconnection method allows for instruction set
extensions with minimal effect on the instruction execution rate, while maintaining short data
communication paths between the coprocessors and the rest of the system. Coprocessor instructions can
be executed by the coprocessor hardware or emulated by software. Combinations of instructions
implemented in hardware and emulated by software are possible even when the coprocessor hardware is
present in a system.

When caches are implemented, coprocessors are connected to the CPU-cache interface. For systems
that do not have a cache, coprocessors are connected to the CPU-memory bus interface. Coprocessors
manipulate data in their own register sets, but use the data cache or memory bus and central processor’s
address generation logic. Under control of the CPU, coprocessor load instructions pass data from the
data cache or memory bus to a coprocessor, and coprocessor store instructions pass data from a
coprocessor to the data cache or memory bus. Coprocessor operations use only the coprocessor’s
registers. Some coprocessor operations may nullify the following instruction.

Coprocessor operation, load, and store instructions may overlap their execution with succeeding
instructions. An interlock occurs if a coprocessor operation is requested before the coprocessor is able
to perform it, and for loads and stores involving busy coprocessor registers.

The coprocessor load and store instructions contain a 5-bit field which normally specifies a coprocessor
register, but may also be interpreted by coprocessors as a sub-operation field. Coprocessors keep their
state in their registers, so that storing the coprocessor registers and reloading them is sufficient to save
and restore the state of a coprocessor.

Some coprocessors are capable of supporting doubleword load and store operations. These operations
are implemented on all systems that support such coprocessors, even though they may require additional
cycles for some machines. Coprocessor load and store operations must be atomic.

The operation section of each coprocessor instruction description specifies the necessary information
that must be available to the coprocessor inctiiocessor_omndsend_to_copfunctions. There is

one coprocessor instruction, tMENTIFY COPROCESSOR (COPR,uid,Bstruction, that is defined for
coprocessors with unit identifiers 4 through 7. Coprocessors with unit identifiers 0 and 3 have a
mechanism to identify themselves that is individually defined.

NOTE
An unaligned data reference trap is taken if the appropriate number of rightmost bits of the
effective virtual address are not zeros for d@ROCESSOR LOAD WORDCOPROCESSOR
LOAD DOUBLEWORD, COPROCESSOR STORE WORDand COPROCESSOR STORE
DOUBLEWORD instructions. Absolute accesses to unaligned data are undefined operations.

Coprocessor Configuration Register

The CCR (Coprocessor Configuration Register) is an 8-bit control register (within CR 10 bits 24..31)
that is used to indicate the presence and usability of a hardware implementation of a coprocessor. Bits 0
and 1 in the CCR correspond to the floating-point coprocessor and bit 2 in the CCR corresponds to the
performance monitor coprocessor. For all other bits in the CCR, CCR({i} corresponds to an undefined
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coprocessor with a unit identifier that is the same as the bit position, that is the coprocessor with uid i.

Execution of any floating-point instruction with CCR{0} and CCR{1} not set to the same value is an
undefined operation. Execution of a coprocessor operation instruction (major opcode 0x0C) with
CCR{0}, CCR{1}, and the uid field in the instruction all set to 1 is an undefined operation.

When CCRY{i} is 1, the coprocessor with uid i is implied to be present and usable. Coprocessor
instructions are passed to the coprocessor and the defined operation occurs. Exceptions resulting from
the operation cause the instruction to be terminated with an assist exception trap. Assist emulation traps
are not allowed to occur for the coprocessor with uid i when CCR{i} is 1. It is an undefined operation to
set to 1 the CCR bit corresponding to a nonexistent coprocessor.

When CCRY{i} is 0, it is not implied that the coprocessor with uid i is absent from the system, but rather
that the coprocessor, if present, is not currently being used. When the CCR bit is 0, the coprocessor
instruction is terminated with an assist emulation trap. Assist exception traps are not allowed to occur
for the coprocessor with uid i when CCR{i} is 0.

Setting the CCRY{i} bit to 0 must logically decouple the coprocessor with uid i. This must ensure that the
state of the coprocessor with uid i is frozen just prior to the transition of CCR{i} from 1 to 0 and that the
state does not change as long as CCR{i} is 0. When CCRY{i} is 0, the coprocessor with uid i must not
respond to any coprocessor operations for the coprocessor with uid i. The frozen state of a coprocessor,
for example, could also be a state in which the coprocessor is left “armed” to trap any subsequent
operations. For example, if the coprocessor with uid i is in an “armed-to-trap” state and CCR{j} is O,
any operation involving that coprocessor must not cause an assist exception trap.

The precedence of the interruptions that are applicable to operations for the coprocessor with uid i
depends on the state of CCR{i}. The assist exception trap and assist emulation trap are always taken in
the priority order as described in “Interruption Priorities” on page 5-4.

NOTE
Logical decoupling may be accomplished in a variety of ways. Processors may use abort
signals or other schemes to notify coprocessors that the current instruction is to be ignored.

When the CCR bit is 0, logical decoupling suppresses any exception traps from a coprocessor
and causes the emulation trap to occur (if it is the highest priority).

Conditions and Control Flow

Many instructions utilize conditions derived from the values of the operators and the operation
performed. The architecture defines several sets of conditions that affect control flow:

« Arithmetic/Logical Conditions.

+ Unit Conditions.

« Shift/Extract/Deposit Conditions.
» Branch On Bit Conditions.

Every instruction that tests conditions uses one of these sets. Each set contains a maximum of sixteen
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separate conditions and their negations. Most instructions that use conditions may also select the
negation of a condition.

The condition completer fieldond in the assembly language form of the instructions specifies a
condition or the negation of a condition. This field expands in the machine language form to fill the
condition field,c, (hormally 3 bits wide), the 1-bit negation fieldand the 1-bit doubleword field, as
required. For some instructions, the negation or doubleword attributes of the condition are controlled by
the opcode.

The result of an operation and the specified condition can affect control flow in the following ways:
« Branching — the result determines whether or not the branch is taken.
 Nullifying — the result determines whether or not the next instruction is nullified.

» Trapping — the result determines whether a conditional trap is taken or execution proceeds
normally.

Additional Notes on the Instruction Set

This section defines how the architecture and instruction notation handles such details as undefined,
illegal, null, and unimplemented instructions.

Undefined and lllegal Instructions

Not all of the 64 possible major opcodes of the instruction set are defined as valid instructions. (See
Appendix C, “Operation Codes”, for a list of the valid instruction opcodes.) An undefined major opcode
is considered an illegal instruction. Execution of an illegal instruction causes an illegal instruction trap.

Within each major opcode, there may be undefined opcode extensions and modifiers (these are
undefined instructions). Interpretation of these opcodes is left to the implementor, but system integrity is
not compromised. An undefined instruction, or sequence of undefined instructions, executed at a given
privilege level has no effect on system state other than what would have been produced by a sequence of
defined instructions running at the same privilege level. This limits the possible side-effects that could
result from undefined instructions.

Undefined operations are equivalently specified. These result from normally defined instructions but
with operands or specifiers that are explicitly disallowed.

Executing an optional special operation or coprocessor instruction may cause an assist exception trap or
an action that depends on the definition of the specific special function unit or coprocessor.
Reserved Instruction Fields

In the Format section of the instruction description pages in Chapter 7, instruction fields maeed
Reserved instruction fields. These fields are reserved for future architectural definition. To avoid
incompatibility with future revisions of the architecture, software must provide zeros in all Reserved
fields. When decoding instructions, processors must ignore Reserved instruction fields.
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Reserved Values of an Instruction Field

Certain values of some instruction fields are Reserved for future architectural definition. To avoid
incompatibility with future revisions of the architecture, software must not use the Reserved values.

When decoding instructions, processors must treat the Reserved values as described for the specific
field.

Null Instructions

Null instructions occur when unimplemented features of the architecture are accessed. The effect of a
null instruction is identical to a nullified instruction except that the Recovery Counter is decremented.
There is no effect on the machine state except that the IA queues are advanced and the PSW B-bit, N-
bit, X-bit, Y-bit, and Z-bit are set to 0.
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14 Instruction Descriptions

This chapter provides a description of each of the instructions (except floating-point instructions which
are described in Chapter 9, “Floating-Point Instruction Set”) supported by the PA-RISC architecture.
The instructions are listed in alphabetical order, according to the instruction’s mnemonic.

Figure 7-1 illustrates the information presented in each of the instruction descriptions. The information
presented in this figure is for illustrative purposes only and does not represent a valid instruction.

Instruction mnemoni
and descriptive narr}e
Assembly languag
source statement syntax-—|

DO OPERATION DO

™~ Format: DO,cond rl,r2;t
The number of the format as

defined in Appendix Bfﬁ\(s) Op ’ r2 ‘ ri ‘ c ‘f 12 \ t
“Instruction Formats” 6 5 5 31 7 5
Opcode and fields}f

a

the instruction form Purpose: To perform a 32-bit, bitwise DO operation.

Short description 0 escription:  GRrl and GRr2 are DOed and the result is placed in GRhe
instruction operatio} / following instruction is nullified if the values DOed satisfy the

specified conditioncond The condition is encoded in tieeandf
Full description oﬂ fields of the instruction.

Instruction operatlog Conditions: ~ The condition is any of the 32-bit logical conditions shown in

Table | on page I-1. When a condition completer is not specified,
the “never” condition is used. The boolean variable
“cond_satisfied” in the operation section is set when the valueg
DOed satisfy the specified condition.

Condition codes that are
valid for the instructioﬁ/
Equations that describe

instruction operatiori | Operation:  GR[t] - GR[r1] DO GR[r2];

. . if (cond_satisfied) PSW[N]- 1,

Defined conditions that

could cause an interruptigin | Exceptions:  None
General restrictions c}w Restrictions:  None
Instruction usag Notes: The DOIT pseudo-operation allows for the transformation of datd
General notes 0 from one register to another by generating the instruction DO r,0,t|
The DONT pseudo-operation generates the instruction DO 0,0,0.

implementatiog
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Figure 7-1. Instruction Description Example
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Add

ADD

Format:

®

Purpose:

Description:

Conditions:

ADD,cmplt,carry,cond rl,r2,t
02 r2 | ¢ |f|e1]|1ed 0 |d] t
6 5 5 3 1 2 11 2 1 5

To do 64-bit integer addition and conditionally nullify the following instruction.

GRrl and GRr2 are added. If no trap occurs, the result is placed irt. GRe variable
“carry_borrows” in the operation section captures the 4-bit carries resulting from the add
operation. The completegmplt encoded in thel field, specifies whether the carry/
borrow bits in the PSW are updated and whether a trap is taken on signed overflow. The
completercarry, encoded in the2field, specifies whether the addition is done with carry

in.

The following instruction is nullified if the values added satisfy the specified condition,
cond The condition is encoded in tloed, andf fields of the instruction. The boolean
variable "overflow" in the operation section is set if the operation results in a 32-bit signed
overflow @=0) or a 64-bit signed overflovd£1.) For addition with carry in, the field
encodes whether the word carry (PSW C/B{8%0), or the doubleword carry (PSW C/
B{0}, d=1) is used.

Theelfield encodes whether the carry/borrow bits in the PSW are updated and whether a
trap is taken on overflone{=1: carries updated, no trapl=2: carries not updated, no
trap,e1=3: carries updated, trap on overflow.) E&field encodes whether addition with
carry in is performedel2=0: no carry ine2=1: addition performed with carry in.) The
combination el=2, e2=1 is not defined. The following table shows the allowed
combinations:

Completer Description el | e2
<none> Add 1] O
CorDC Add with carry/doubleword carry| 1 1
L Add logical 210
TSV Add and trap on signed overflow 3 0
C, TSV or DC,TSV| Add with carry/doubleword carry 3 | 1
and trap on signed overflow

The condition is any of the 32-bit add conditions shown in Table D-6 on page D-5 or any
of the 64-bit add conditions shown in Table D-7 on page D-6. When a condition completer
is not specified, the “never” condition is used. The boolean variable “cond_satisfied” in
the operation section is set when the values added satisfy the specified condition.
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Operation:  switch (carry) {

case C: res- GR[rl] + GR[r2] + PSW[C/B]{8};
break;

case DC: res- GR[rl] + GR[r2] + PSW[C/B]{0};
break;

default: res— GRIrl] + GR[r2];
break;

}
if (cmplt == TSV && overflow)

overflow_trap;
else {
GRJt] - res;
if (cmplt!="L)
PSWI[C/B] —~ carry_borrows;
if (cond_satisfied) PSW[N]- 1;
}

Exceptions: Overflow trap

Notes: When the ,C completer is specified, only 32-bit conditions are available. When the ,DC
completer is specified, only 64-bit conditions are available.
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Add and Branch ADDB

Format: ADDB,cond,n rl,r2 target

17 28/2A r2 ri \ c \ wl \n\w
6 5 5 3 11 11

Purpose: To add two values and perform an IA-relative branch conditionally based on the values
added.

Description: GRrl and GRr2 are added and the result is placed inf@Rf the values added satisfy
the specified conditiorgond the word displacement is assembled fromwhand w1l
fields, sign extended, and added to the current instruction offset plus 8 to form the target
offset. The branch targegrget in the assembly language format is encoded invtaad
w1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

Conditions: The conditioncond is any of the 32-bit add conditions shown in Table D-6 on page D-5
or any of the 64-bit add and branch conditions shown in Table D-8 on page D-6 and is
encoded in the andopcodefields of the instruction. When the PSW W-bit is 0, only the
32-bit conditions are available. Opcode 28 is used for the 32-bit non-negated add
conditions (those with f = 0 in Table D-6) and opcode 2A is used for the 32-bit negated
add conditions (those with f = 1 in Table D-6.) When the PSW W-bit is 1, a subset of the
32-bit and 64-bit conditions are available. Opcode 28 is used for the non-negated
conditions (those with f = 0 in Table D-8) and opcode 2A is used for the negated
conditions (those with f = 1 in Table D-8.) When a condition completer is not specified,
the “never” condition is used. The boolean variable “cond_satisfied” in the operation
section is set to 1 when the values added satisfy the specified condition and set to 0
otherwise.

Operation: GR[r2] —~ GRJrl] + GR[r2];
disp « Ishift(sign_ext(assemble_12(w1l,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWIN] ~ !cond_satisfied;
else
PSWIN] ~ cond_satisfied,;

Exceptions: Taken branch trap
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Add to Immediate ADDI

Format: ADDI,cmplt,trapc,cond i,r,t
©) 2C/2D r t | c |fled im11
6 5 5 3 11 11

Purpose: To add an immediate value to a register and conditionally nullify the following instruction.

Description: The sign-extended immediate valués added to GR. If no trap occurs, the result is
placed in GR and the carry/borrow bits in the PSW are updated. The immediate value is
encoded into thém1l field. The variable “carry_borrows” in the operation section
captures the 4-bit carries resulting from the add operation.

The completergmplt encoded in thelfield, specifies whether a trap is taken on a 32-bit
signed overflow €1=0: no trap,el=1: trap on 32-bit signed overflow.) The completer,
trapc, encoded in the opcode, specifies whether a trap is taken if the values added satisfy
the condition specified (no trap for opcode 2D, trap on condition for opcode 2C.) The table
below shows thempltandtrapc combinations.

Completer | Description Opcode | el
<none> Add to immediate 2D 0
TSV Add to immediate and trap on signed overflow 2D 1
TC Add to immediate and trap on condition 2C 0
TSV, TC Add to immediate and trap on signed overflow 2C 1

or condition

For opcode 2D, the following instruction is nullified if the values added satisfy the
specified conditioncond The condition is encoded in theandf fields of the instruction.

The boolean variable “overflow” in the operation section is set if the operation results in a
32-bit signed overflow.

Conditions: The condition is any of the 32-bit add conditions shown in Table D-6 on page D-5. When
a condition completer is not specified, the “never” condition is used. The boolean variable
“cond_satisfied” in the operation section is set when the values added satisfy the specified
condition.

Operation:  res — low_sign_ext(im11,11) + GR[r];

if (cmplt == TSV && overflow)
overflow_trap;

else if (trapc == TC && cond_satisfied)
conditional_trap;

else {
GRJt] - res;
PSWIC/B] ~ carry_borrows;
if (cond_satisfied) PSW[N]- 1;

}

Exceptions: Overflow trap Conditional trap
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Add Immediate and Branch ADDIB

Format: ADDIB,cond,n i,rtarget
17 29/2B r im5 \ c \ wl \ n \w
6 5 5 3 11 11

Purpose: To add two values and perform an IA-relative branch conditionally based on the values
added.

Description: The sign-extended immediate valugs is added to GR and the result is placed in GR
If the values added satisfy the specified conditioond the word displacement is
assembled from the andwa1 fields, sign extended, and added to the current instruction
offset plus 8 to form the target offset. The branch tatgeget in the assembly language
format is encoded in the andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

Conditions: The conditioncond is any of the 32-bit add conditions shown in Table D-6 on page D-5
or any of the 64-bit add and branch conditions shown in Table D-8 on page D-6 and is
encoded in the andopcodefields of the instruction. When the PSW W-bit is 0, only the
32-bit conditions are available. Opcode 29 is used for the 32-bit non-negated add
conditions (those with f = 0 in Table D-6) and opcode 2B is used for the 32-bit negated
add conditions (those with f = 1 in Table D-6.) When the PSW W-bit is 1, a subset of the
32-bit and 64-bit conditions are available. Opcode 29 is used for the non-negated
conditions (those with f = 0 in Table D-8) and opcode 2B is used for the negated
conditions (those with f = 1 in Table D-8.) When a condition completer is not specified,
the “never” condition is used. The boolean variable “cond_satisfied” in the operation
section is set to 1 when the values added satisfy the specified condition and set to 0
otherwise.

Operation:  GR[r] < low_sign_ext(im5,5) + GR]r];
disp « Ishift(sign_ext(assemble_12(w1l,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWIN] ~ !cond_satisfied;
else
PSWIN] ~ cond_satisfied,;

Exceptions: Taken branch trap
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Add Immediate Left ADDIL

Format: ADDIL i,rrl1

©) 0A r im21
6 5 21

Purpose: To add the upper portion of a 32-bit immediate value to a general register.

Description: The 21-bit immediate valug,is assembled, shifted left 11 bits, sign extended, added to
GRr and placed in GR1. Overflow, if it occurs, is ignored.

Operation: GR[1] < sign_ext(Ishift(assemble_21(im21),11),32) + GR[r];

Exceptions: None

Programming Note
ADD IMMEDIATE LEFT can be used to perform a load or store with a 32-bit displacement. For
example, to load a word from memory into general regtstéth a 32-bit displacement, the
following sequence of assembly language code could be used:

ADDIL [%literal,GRb
LDW r%literal(0,GR1),GRt
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AND AND
Format: AND,cond r1,r2,t
®) 02 r2 | ¢ [f] o]1]o] 0 ]q| t
6 5 5 3 1 2 11 2 1 5

Purpose: To do a 64-hit, bitwise AND.

Description: GRr1 and GRr2 are ANDed and the result is placed in GRhe following instruction is
nullified if the values ANDed satisfy the specified conditioand The condition is
encoded in the, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-7 or
any of the 64-bit logical conditions shown in Table D-10 on page D-7. When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values ANDed satisfy the
specified condition.

Operation: GR[t] « GR[rl] & GRJ[rZ];
if (cond_satisfied) PSW[N]- 1;

Exceptions: None
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AND Complement ANDCM

Format: ANDCM,cond rl,r2,t
@) 02 r2 ri \ c M 0 \o\o\ 0 \d\ t
6 5 5 3 1 2 11 2 1 5

Purpose:  To do a 64-bit bitwise AND with complement.

Description: GRr1 is ANDed with the one’s complement of @GRand the result is placed in GRThe
following instruction is nullified if the values ANDed satisfy the specified conditiomg
The condition is encoded in tleed, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-7 or
any of the 64-bit logical conditions shown in Table D-10 on page D-7. When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values ANDed satisfy the
specified condition.

Operation: GR[t] « GR[rl] & OGR[r2];
if (cond_satisfied) PSW[N]- 1,

Exceptions: None
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Branch B

Format: B,cmplt,stack,n target,t
(20) 3A w3 wi  |0/1/4/5 w2 Inlw
6 5 5 3 11 11

Purpose:  To do IA-relative branches with optional privilege level change and procedure calls with a
static displacement.

Description: The word displacement is assembled fromvhe/1, w2,and (when theL, completer is
specified with GR 2 as the link register} fields in the instruction. The displacement is
sign extended, and the result plus 8 is added to the offset of the current instruction to form
the target offset.

The completerstack specifies whether the offset of the return point is pushed onto the
branch target stack. If the completer is specified and tHUSH completer is specified,

either the offset of the return point or an “invalid” value is pushed onto the branch target
stack. On machines that do not implement the branch target stack, the instruction executes
the same as if th@ySHcompleter had not been specified.

The completercmplt specifies whether a return link is saved, or whether a privilege-
increasingGATEWAY function is performed. If the.,completer is specified, the offset of
the return point is placed in GR The return point is 4 bytes beyond the following
instruction.

If the GATE completer is specified and the PSW C-bit is 1, the privilege level is changed
to that given by the two rightmost bits of the type field in the TLB entry for the page (when
the type field is greater than 3) from which BRANCH instruction is fetched if that
results in a higher privilege. If privilege is not increased, then the current privilege is used
at the target. In all cases, the privilege level ofBRANCH instruction is deposited into

bits 62..63 of GR. The privilege change occurs at the target oBRANCH. If the PSW

C-bit is 0, the privilege level is changed to 0. An illegal instruction trap is taken if a
BRANCH instruction is attempted with th6 ATE completer and the PSW B-bit is 1.

If the GATE completer is specified, sub-opcode 1 is used. Ifittmmpleter is specified
and the target register is GR 2, sub-opcode 5 is used. If tampleter is specified, the
target register is GR 2, and theUSH completer is specified, sub-opcode 4 is used.
Otherwise, sub-opcode 0 is used.

The variable “page_type” is set to the value of the access rights field, bits {0..2}, from the
translation used to fetch the instruction. See “Access Rights Interpretation” on page 3-14.

The following instruction is nullified if theN, completer is specified. The completer is
encoded in then field of the instruction. The branch targ&rget in the assembly
language format is encoded in tvewl, w2,and (when GR 2 is the link registex
fields.
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Operation:

if (cmplt == ‘GATE’ && PSWI[B])

illegal_instruction_trap;

else {

}

if (cmplt ==L’ && t == GR2) {
disp ~ Ishift(sign_ext(assemble_22(w3,w1,w2,w),22),2)
if(stack == ‘PUSH")
push_onto_BTS(( IAOQ_Back + 4){0..61});
}
else
disp ~ Ishift(sign_ext(assemble_17(w1,w2,w),17),2);
if (cmplt =="'GATE’) {
GR[t] « cat(GRJ[t[{0..61},IAOQ_Front{62..63});
if (PSWI[C]) {
if (page_type <= 3)
priv — IAOQ_Front{62..63};
else
priv. — min(IAOQ_Front{62..63}, page_type{1..2});
} else
priv. — O;
else
priv — IAOQ_Front{62..63};
IAOQ_Next{0..61} ~ (IAOQ_Front + disp + 8){0..61};
IAOQ_Next{62..63} ~ priv;
if (cmplt =="L) {
GR[t] « IAOQ_Back + 4;
BNR ~ (IAOQ_Back + 4){0..61};

}
if () PSWIN] < 1;

Exceptions: lllegal instruction trap
Taken branch trap

Notes:

Restrictions:

When the GATE completer is specified, the privilege information must be captured when
the TLB is read for instruction fetch and that information kept for the determination of the
new execution privilege.

To perform an unconditional branch without saving a link, the B,n target pseudo-operation
generates a a B,L,n target,%R0 instruction with GRO as the link register.

The CALL,n target pseudo-operation generates a B,L,n target,%R2 instruction to perform
a procedure call with GR2 specified as the link register.

The ,PUSH completer can be used only if the ,L completer is specified and the target
register is GR2.
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Programming Note
It is possible for 8RANCH to promote the privilege level so that the process cannot continue
executing on that page (because it violates PL2 of the TLB access rights field.) In that case,
software should ensure that BRANCH nullifies execution of the following instruction and its
target should be on a page whose range of execute levels includes the new privilege level.

Otherwise, an instruction memory protection trap may result.
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Branch on Bit BB

Format: BB,cond,n r,pos,target
(18) 30/31 p r c|1]d]| wil nlw
6 5 5 111 11 11

Purpose: To perform an IA-relative branch conditionally based on the value of a bit in a register.

Description: If the bit in GRr specified bypossatisfies the conditiorond the word displacement is
assembled from ther andw1 fields of the instruction, sign extended, and added to the
current instruction offset plus 8 to form the target offset. The branch tenggt in the
assembly language format is encoded inttandw1 fields.

The bit positionpos can either be a constant (fixed bit position, opcode 31), or can be
SAR, the Shift Amount Register (CR 11) (variable bit position, opcode 30.)

With a fixed bit position, thp field encodes the lower 5 bitsés and thed field encodes

either O or the complement of the upper bit. If a word condition is specified (either < or
>=), posmay take on the values 0..31, and the bit tested is one of the bits in the lower word
of GRr. For word conditions, thefield is O. If a doubleword condition is specified (either

*< or *>=), posmay take on the values 0..63, and the complement of the uppeipbi of

is encoded in thd field. Any bit in the doubleword in GRmay be tested.

With a variable bit position, the field is 0. If a word condition is specified (either < or
>=), the leftmost bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits.
Thus, the bit tested is one of the bits in the lower word of GiRa doubleword condition

is specified (either *< or *>=), the full value of the SAR is used. Any bit in the doubleword
in GRr may be tested. For word conditions, thigeld is O; for doubleword conditions, the
dfield is 1.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

Conditions: The conditioncond is any of the branch on bit conditions from Table D-15 on page D-9.
The boolean variable “cond_satisfied” in the operation section is set to 1 when the bit
tested satisfies the specified condition and set to 0 otherwise.
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Operation:

if (variable_bit_position)
if (cond == < || cond == >=)
shamt— CR[11]{1..5} + 32;
else
shamt— CR[11];
else

shamt— cat(~cp,p);
Ishift(GR[r],shamt);
disp ~ Ishift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWI[N] ~ !cond_satisfied:;
else
PSWI[N] ~ cond_satisfied;

Exceptions: Taken branch trap
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Branch External BE

Format:

(19)

Purpose:

Description:

Operation:

Exceptions:

BE,n  wd(sr,b)
BE,L,n wd(sr,b),sr0,r31

38/39 \ b wl \ s \ w2 \n\w
6 5 5 3 11 11

To do procedure calls, branches and returns to another space.

The word displacementyd, is assembled from the w1, andw?2 fields in the instruction.
The displacement is sign extended and added td @&Rrform the target offset. SB
(which is assembled from tisdield of the instruction) becomes the target space.

If the L completer is specified, the offset of the return point is placed in GR 31 and the
space of the return point is placed in SR 0. The return point is 4 bytes beyond the
following instruction. If thel, completer is specified, opcode 39 is used; otherwise opcode
38 is used.

If the two rightmost bits of GB designate a lower privileged level than the current
instruction, the privilege level of the target is set to that specified by the rightmost bits of
GRb. The decrease in privilege level takes effect at the branch target.

When aBRANCH EXTERNAL is executed with the PSW C-bit 0 (code address translation
is disabled) the effect on IASQ (and SR 0 if thegmpleter is specified) is not defined.

The following instruction is nullified if theN, completer is specified. The completer is
encoded in the field of the instruction.

disp ~ Ishift(sign_ext(assemble_17(w1,w2,w),17),2);
IAOQ_Next{0..61} —~ (GRI[b] + disp){0..61};
if |IAOQ_Front{62..63} < GR[b[{62..63})
IAOQ_Next{62..63} — GR[b]{62..63};
else
IAOQ_Next{62..63} —~ IAOQ_Front{62..63};
IASQ Next — SR[assemble_3(s)];
if (cmplt ==1L) {
GR[31] « IAOQ_Back + 4;
SR[0] « IASQ_Back;

}
if () PSWIN] « 1;

Taken branch trap
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Programming Note
If a taken local branch is executed followin@RANCH EXTERNAL instruction, the target’s
address is computed based on the value of the IASQ set bBRAECH EXTERNAL
instruction. This results in a transfer of control to possibly a meaningless location in the new
space.
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Branch and Link Register BLR

Format: BLR,n x,t
(1) 3A t x | 2 | 0 Injo
6 5 5 3 11 11

Purpose:  To do IA-relative branches with a dynamic displacement and store a return link.

Description: The index from GR is shifted left 3 bits and the result plus 8 is added to the offset of the
current instruction to form the target offset. The offset of the return point is placedtin GR
The return point is 4 bytes beyond the following instruction.

The following instruction is nullified if theN, completer is specified. The completer is
encoded in the field of the instruction.

Operation: IAOQ_Next — IAOQ_Front + Ishift(GR[x],3) + 8;
GR[t] « IAOQ_Back + 4;
if (n) PSWIN] « 1;

Exceptions: Taken branch trap

Programming Note
BRANCH AND LINK REGISTER with GR 0 as the link register does a IA-relative branch
without saving a link. Jump tables based on the index value can be constructed using this
instruction. When the jump table begins at the instruction which is located BitRhglus 8
bytes, an index value of O can be used to branch to the first entry of the table.
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Break BREAK

Format: BREAK im5,im13

27) 00 iml13 00 im5
6 13 8 5

Purpose:  To cause a break instruction trap for debugging purposes.
Description: A break instruction trap occurs when this instruction is executed.
Operation:  break_instruction_trap;

Exceptions: None

Notes: im5 andiml13can be used as parameters to the "BREAK" processing code.
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Branch Vectored BV

Format: BV,n x(b)
(1) 3A | b x | 6 | 0 Injo
6 5 5 3 11 11

Purpose: To do base-relative branches with a dynamic displacement in the same space.

Description: The index from GRis shifted left 3 bits and the result is added tolG& form the target
offset.

The following instruction is nullified if theN, completer is specified. The completer is
encoded in the field of the instruction.

If the two rightmost bits of GRb designate a lower privilege level than the current
privilege level, the privilege level of the target is set to that specified by the rightmost bits
of GRb. The decrease in privilege level takes effect at the branch target.

Operation:  IAOQ_Next{0..61} — (GR[b] + Ishift(GR[x],3)){0..61};
if IAOQ_Front{62..63} < GR[b]{62..63})
IAOQ_Next{62..63} — GR[b]{62..63};
else
IAOQ_Next{62..63} —~ IAOQ_Front{62..63};
if (n) PSWIN] « 1;

Exceptions: Taken branch trap
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Branch Vectored External BVE

Format:

(22)

Purpose:

Description:

BVE,stack,n (b)
BVE,L,stack,n (b),r2

3A | b | o | &7 |1 rv Inlp

6 5 5 3 1 10 11

To do base-relative branches and procedure calls to another space.

Either GRb or the branch target stack provides the offset of the target instruction.

The completerstack specifies whether a branch target stack operation is performed. If no
completer is specified, GR provides the target offset and the branch target stack is not
changed.

If the POPcompleter is specified and if the branch target stack is non-empty and the top
entry is valid, the target offset can be provided by eitherbGRR the top entry of the
branch target stack. If theQPcompleter is specified, the top entry of the branch target
stack is popped. If th&QPcompleter is specified and the top entry of the branch target
stack is valid and does not equal the value inbGGiRe results are undefined. On machines
that do not implement the branch target stack b@Rovides the target offset.

If the L completer is specified and tHeUSH completer is specified, either the offset of

the return point or an “invalid” value is pushed onto the branch target stack. On machines
that do not implement the branch target stack, the instruction executes the same as if the
,PUSHcompleter had not been specified.

If a stackcompleter is specified, thefield is 1. Otherwise the field is 0.

If the L completer is specified, the offset of the return point is placed in GR 2. The return
point is 4 bytes beyond the following instruction. The completer is encoded in the sub-
opcode field of the instruction (6: no link, 7: link.) The space of the target instruction is
specified implicitly by the base register. The upper two bits ofbGiRe added to 4 to
select a space register which gives the target space.

The following instruction is nullified if theN, completer is specified. The completer is
encoded in the field of the instruction.

If the two rightmost bits of GRb designate a lower privilege level than the current
privilege level, then the privilege level of the target is set to that specified by the rightmost
bits of GRb. The decrease in privilege level takes effect at the branch target.

When aBBRANCH VECTORED EXTERNALIs executed with the PSW C-bit O (code address
translation is disabled) the effects on IASQ are not defined.
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Operation:  if (stack == ‘POP’) {
tmp — pop_from_BTS();
valid — tmp{62};
if (valid)
IAOQ_Next{0..61} ~ tmp{0..61};
else
IAOQ_Next{0..61} ~ GR[b[{0..61};
}
if IAOQ_Front{62..63} < GR[b]{62..63})
IAOQ_Next{62..63} — GR[b]{62..63};
else
IAOQ_Next{62..63} —~ IAOQ_Front{62..63};
if (cmplt==1L){
GR[2] ~ IAOQ_Back + 4;
BNR ~ (IAOQ_Back + 4){0..61},
if (stack == ‘PUSH")
push_onto_BTS(( IAOQ_Back + 4){0..61});
}
IASQ_Next — space_select(0, GR[b],LONG_DISP);
if (n) PSWIN] ~ 1;

Exceptions: Taken branch trap.

Notes: The CALL,n (b) pseudo-operation generates a BVE,L,n (b),%R2 instruction to perform an
indirect procedure call with GR2 specified as the link register.

The RET,n pseudo-operation generates a BVE,n (%R2) instruction to perform a procedure
return.
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Coprocessor Load Doubleword CLDD

Format:

(41)

(39)

Purpose:

Description:

CLDD,uid,cmplt,cc dfb),t

0B ‘ b ‘ im5 ‘ s ‘a‘l‘ cc ‘0‘ uid ‘m‘ t
6 5 5 2 11 2 1 3 1 5
0B ‘ b ‘ X ‘ S ‘u‘o‘ cc ‘0‘ uid ‘m‘ t
6 5 5 2 11 2 1 3 1 5

To load a doubleword into a coprocessor register.

The aligned doubleword at the effective address is loaded into régi$tle coprocessor
identified byuid. The offset is formed as the sum of a base registand either an index
registerx (Format 39), or a displacemeah{Format 41) The displacement is encoded into
the immediate field. Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-3 on
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemonics.)
The completergc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling.
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Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[X],3);
break;
case M:
default: dx~ GR[X];
break;
}
} else [* short displacement */
dx < low_sign_ext(im5,5); /* (Format 41) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
send_to_copr(uid,t);
CPR[uid][t] « mem_load(space,offset,0,63,cc);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Data memory protection ID trap

Assist emulation trap

Restrictions: If the completeO is specified, the displacement must be 0.

PA-RISC 2.0 Architecture Instruction Descriptions 7-23



Coprocessor Load Word CLDW

Format:

(41)

(39)

Purpose:

Description:

CLDW,uid,cmplt,cc  x|d{b),t

09 ‘ b ‘ im5 ‘ s ‘a‘l‘ cc ‘0‘ uid ‘m‘ t
6 5 5 2 11 2 1 3 1 5
09 ‘ b ‘ X ‘ S ‘u‘o‘ cc ‘0‘ uid ‘m‘ t
6 5 5 2 11 2 1 3 1 5

To load a word into a coprocessor register.

The aligned word at the effective address is loaded into registethe coprocessor
identified byuid. The offset is formed as the sum of a base registand either an index
registerx (Format 39), or a displacemeah{Format 41) The displacement is encoded into
the immediate field. Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-3 on
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemonics.)
The completergc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling.
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Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[x],2);
break;
case M:
default: dx~ GR[X];
break;
}
} else [* short displacement */
dx < low_sign_ext(im5,5); /* (Format 41) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
send_to_copr(uid,t);
CPR[uid][t] « mem_load(space,offset,0,31,cc);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Assist emulation trap

Data memory protection ID trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Clear Branch Target Stack CLRBTS

Format:

(23)

Purpose:

CLRBTS
3A 0 0 \ 2 \0\ 0 \1\0\1
6 5 5 3 1 9 111

To clear the branch target stack.

Description: The branch target stack is cleared, either by making it empty or by invalidating all entries.

If this instruction is nullified, the results are undefined.

This instruction is executed adl®P on machines that do not implement the branch target
stack.

Operation:  clear_BTS();

Exceptions: none
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Compare and Branch CMPB

Format:

7

Purpose:

Description:

Conditions:

Operation:

Exceptions:

CMPB,cond,n r1,r2target

20/22/27/2F r2 ri \ c \ wl \n\w
6 5 5 3 11 11

To compare two values and perform an IA-relative branch conditionally based on the
values compared.

GR 1 is compared with GR2. If the values compared satisfy the specified condition,
cond the word displacement is assembled fromvihendw1 fields, sign extended, and
added to the current instruction offset plus 8 to form the target offset. The branch target,
target in the assembly language format is encoded imvthrdw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

The condition,cond can be any of the 32-bit compare or subtract conditions shown in
Table D-3 on page D-4 or any of the 64-bit compare or subtract conditions shown in
Table D-4 on page D-4 and is encoded in ¢hand opcodefields of the instruction.
Opcode 20 is used for the 32-bit non-negated conditions (those with f = 0 in Table D-3),
opcode 22 for the 32-bit negated conditions (those with f = 1 in Table D-3), opcode 27 for
the 64-bit non-negated conditions (those with f = 0 in Table D-4), and opcode 2F for the
64-bit negated conditions (those with f = lin Table D-4.) When a condition completer is
not specified, the “never” condition is used. The boolean variable “cond_satisfied” in the
operation section is set to 1 when the values compared satisfy the specified condition and
set to O otherwise.

GR[r1] + OGR[r2] + 1;
disp — Ishift(sign_ext(assemble_12(w1l,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWIN] ~ !cond_satisfied;
else
PSWIN] ~ cond_satisfied,;

Taken branch trap
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Compare and Clear CMPCLR

Format:

®

Purpose:

Description:

Conditions:

Operation:

Exceptions:

CMPCLR,cond r1,r2,t

02 r2 ri \ c M 2 \o\o\ 2 \d\ t

6 5 5 3 1 2 11 2 1 5

To compare two registers, set a register to 0, and conditionally nullify the following
instruction, based on the result of the comparison.

GR rl and GRr2 are compared and GRis set to zero. The following instruction is
nullified if the values compared satisfy the specified conditond The condition is
encoded in the, d, andf fields of the instruction.

The condition is any of the 32-bit compare or subtract conditions shown in Table D-3 on
page D-4 or any of the 64-bit compare or subtract conditions shown in Table D-4 on
page D-4. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values compared
satisfy the specified condition.

GR[r1] + OGR[r2] + 1;
GR[t] « O;
if (cond_satisfied) PSW[N]- 1;

None

Programming Note

COMPARE AND CLEARcan be used to produce the logical value of the result of a comparison
(assuming false is represented by 0 and true by 1) in a register. The following example will set
ra to 1 ifrb andrc are equal, and to O if they are not equal:

CMPCLR,<> rb,rc,ra
LDO 1(0),ra
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Compare Immediate and Branch CMPIB

Format: CMPIB,cond,n irtarget
17 21/23/3B r im5 \ c \ wi \ n \w
6 5 5 3 11 11

Purpose: To compare two values and perform an IA-relative branch conditionally based on the
values compared.

Description: The sign-extended immediate value5 is compared with GR. If the values compared
satisfy the specified conditionpnd the word displacement is assembled fromwtand
w1 fields, sign extended, and added to the current instruction offset plus 8 to form the
target offset. The branch targtrget, in the assembly language format is encoded in the
w andwl fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

Conditions: The condition,cond can be any of the 32-bit compare or subtract conditions shown in
Table D-3 on page D-4 or any of the 64-bit compare immediate and branch conditions
shown in Table D-5 on page D-5 and is encoded incdhend opcodefields of the
instruction. Opcode 21 is used for the 32-bit non-negated conditions (those with f = 0 in
Table D-3), opcode 23 is used for the 32-bit negated conditions (those with f = 1 in
Table D-3), and opcode 3B is used for the 64-bit conditions (those in Table D-5.) When a
condition completer is not specified, the “never” condition is used. The boolean variable
“cond_satisfied” in the operation section is set to 1 when the values compared satisfy the
specified condition and set to 0 otherwise.

Operation:  low_sign_ext(im5,5) £ GRJ[r] + 1;
disp « Ishift(sign_ext(assemble_12(w1l,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWIN] ~ !cond_satisfied;
else
PSWIN] ~ cond_satisfied,;

Exceptions: Taken branch trap
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Compare Immediate and Clear CMPICLR

Format: CMPICLR,cond i,rt
) 24 | r | t | ¢ |f]d] im11
6 5 5 3 11 11

Purpose: To compare an immediate value with the contents of a register, set a register to 0, and
conditionally nullify the following instruction.

Description: The sign-extended immediate and GRare compared and GRis set to zero. The
immediate value is encoded into ih&l1field. The following instruction is nullified if the
values compared satisfy the specified condittamd The condition is encoded in toe
d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-3 on
page D-4 or any of the 64-bit compare or subtract conditions shown in Table D-4 on
page D-4. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values compared
satisfy the specified condition.

Operation:  low_sign_ext(im11,11) +IGR[r] + 1;
GR[t] « O;
if (cond_satisfied) PSW[N]- 1;

Exceptions: None
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Coprocessor Operation COPR

Format: COPR,uid,sop,n

(38) oC sopl ‘ uid ‘n‘ sop2
6 17 3 1 5

Purpose:  To invoke a coprocessor unit operation.

Description: The coprocessor operation costgp (assembled from theoplandsop2fields) is sent to
the coprocessor identified lbyd and the indicated operation is performed. If nullification
is specified and the coprocessor condition is satisfied, the following instruction is nullified.

Operation: sop — cat(sopl,sop2);
coprocessor_op(uid,sop,n,|IAOQ_Front{30..31});
if (n && coprocessor_condition(uid,sop,n))

PSWIN] « 1;
Exceptions: Assist emulation trap Assist exception trap
Notes: The COPROCESSOR OPERATIONNSstruction is used to implement th®ENTIFY

COPROCESSORpseudo-operation. This operation places an identification number from
the coprocessauid into coprocessor register 0. This value is implementation dependent
and is useful for configuration, diagnostic, and error recovery.

Each implementation must choose an identification number that identifies the version of
the coprocessor. The values all zeros and all ones are reserved. An assist exception trap is
not allowed and this instruction must be implemented by all coprocessors with unit
identifiers 4 through 7. Unit identifiers 0 and 2 have a uid-specific sequence to obtain the
identification number.

The format of the identification number for the floating-point coprocessor is described in
“Floating-Point Status Register” on page 8-8.

TheIDENTIFY COPROCESSORseudo-operation is coded as follo@SPRuid,0
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Coprocessor Store Doubleword CSTD

Format:

(42)

(40)

Purpose:

Description:

CSTD,uid,cmplt,cc  r,x|d(b)

0B ‘ b ‘ im5 ‘ s ‘a‘l‘ cc ‘1‘ uid ‘m‘ r
6 5 5 2 11 2 1 3 1 5
0B ‘ b ‘ X ‘ S ‘u‘o‘ cc ‘1‘ uid ‘m‘ r
6 5 5 2 11 2 1 3 1 5

To store a doubleword from a coprocessor register.

Registerr of the coprocessor identified lojd is stored in the aligned doubleword at the
effective address. The offset is formed as the sum of a base rdgiated,either an index
registerx (Format 40), or a displacemeah{Format 42.) The displacement is encoded into
the immediate field. Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-3 on
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemonics.)
The completergc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed stores, a one in thefield specifies base modification, and a one inutfield
specifies index prescaling.

7-32  Instruction Descriptions PA-RISC 2.0 Architecture



Operation: if (indexed_store) [* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[X],3);
break;
case M:
default: dx~ GR[X];
break;
}
} else * short displacement */
dx < low_sign_ext(im5,5); [* (Format 42) */
space— space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
send_to_copr(uid,r);
mem_store(space,offset,0,63,cc,CPR[uid][r]);

Exceptions: Assist exception trap TLB dirty bit trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Unaligned data reference trap
Data memory protection ID trap Assist emulation trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Coprocessor Store Word CSTW

Format:

(42)

(40)

Purpose:

Description:

CSTW,uid,cmplt,cc  r,x|d(b)

09 ‘ b ‘ im5 ‘ s ‘a‘l‘ cc ‘1‘ uid ‘m‘ r
6 5 5 2 11 2 1 3 1 5
09 ‘ b ‘ X ‘ S ‘u‘o‘ cc ‘1‘ uid ‘m‘ r
6 5 5 2 11 2 1 3 1 5

To store a word from a coprocessor register.

Register of the coprocessor identified bid is stored in the aligned word at the effective
address. The offset is formed as the sum of a base rejsted either an index registr,
(Format 40), or a displacemedt(Format 42.) The displacement is encoded into the
immediate field. Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-3 on
page H-8, and Table H-1 on page H-4 for the assembly language completer mnemonics.)
The completergc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed stores, a one in thefield specifies base modification, and a one inutfield
specifies index prescaling.
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Operation: if (indexed_store) [* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[x],2);
break;
case M:
default: dx~ GR[X];
break;
}
} else * short displacement */
dx < low_sign_ext(im5,5); [* (Format 42) */
space— space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
send_to_copr(uid,r);
mem_store(space,offset,0,31,cc,CPRuid][r]);

Exceptions: Assist exception trap TLB dirty bit trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Unaligned data reference trap
Data memory protection ID trap Assist emulation trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Decimal Correct DCOR

Format: DCOR,cmplt,cond rt
®) 02 r 0 | ¢ [f] 2]1]1]e1]q| t
6 5 5 3 1 2 11 2 1 5

Purpose:  To separately correct the 16 BCD digits of the result of an addition or subtraction.

Description: A decimal correction value, computed from the 4-bit carries in the PSW C/B bits, is
combined with GRr, and the result is placed in GRThe correction can be either an
intermediate correctioncfnplt == ), which leaves the result pre-biased, or a final
correction (nacmpl), which removes the pre-bias. This is encoded irefhigeld (€1=3
for intermediate correctiom1=2 for final correction.)

For intermediate correction, every digit of ®Rorresponding to a bit which is 1 in the
PSW C/B-bits has 6 added to it. For final correction, every digit of Giresponding to
a bit which is 0 in the PSW C/B-bits has 6 subtracted from it.

The following instruction is nullified if the result of the operation satisfies the specified
conditioncond The condition is encoded in thed, andf fields of the instruction.

Conditions: The conditioncondis any of the 32-bit unit conditions shown in Table D-11 on page D-8
or any of the 64-bit unit conditions shown in Table D-12 on page D-8. When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the result of the operation satisfies the
specified condition.
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Operation:  if (cmplt == 1)
GR[t] « GR]r] + cat(
0x6*PSW[C/BJ{0}, 0x6*PSWI[C/B]{1},
0x6*PSW[C/BJ{2}, 0x6*PSWI[C/B]{3},
0x6*PSW[C/BJ{4}, 0x6*PSWI[C/B]{5},
0x6*PSW[C/B}{6}, 0x6*PSWI[C/B]{7},
0x6*PSW[C/B}{8}, 0x6*PSWI[C/B]{9},
0x6*PSW[C/B]{10}, Ox6*PSW[C/B]{11},
0x6*PSW[C/B}{12}, Ox6*PSW[C/B]{13},
0x6*PSW[C/B]{14}, 0x6*PSW[C/B}{15});
else
GR[t] « GR]r] - cat(
0x6*(1 - PSWI[C/B]{0}), 0x6*(1 - PSWI[C/B]{1}),
0x6*(1 - PSWI[C/B]{2}), 0x6*(1 - PSW[C/B]{3}),
0x6*(1 - PSWI[C/B]{4}), 0x6*(1 - PSW[C/B]{5}),
0x6*(1 - PSWI[C/B]{6}), 0x6*(1 - PSW[C/B{7}),
0x6*(1 - PSWI[C/B]{8}), 0x6*(1 - PSW[C/B]{9}),
0x6*(1 - PSW[C/B]{10}), Ox6*(1 - PSW[C/B[{11}),
0x6*(1 - PSW[C/B]{12}), Ox6*(1 - PSW[C/BJ{13}),
0x6*(1 - PSW[C/B]{14}), 0x6*(1 - PSW[C/B}{15}));
if (cond_satisfied) PSW[N]- 1;

Exceptions: None

Programming Note
DECIMAL CORRECTcan be used to take the sum of 64-bit BCD valigsb, rc, andrd each
contain a 64-bit BCD value amtwill hold the result at the end of the sequence.JABRDCM
operation is used to pre-bias the valueainn order to perform BCD arithmetic. TIECOR,I
operations between theDD operations are used to re-adjust the BCD bias of the result. The
final DCOR operation is used to remove the bias and leave the vatténiBCD format. For
the following example, the registeinescontains the value 0x99999999 99999999.

UADDCM ra,nines,rt ; pre-bias first operand

ADD rt,rb,rt ; add in the next value
DCOR,I rt,rt ; correct result, retaining bias
ADD rt,rc,rt ; add in the next value
DCOR,I rt,rt ; correct result, retaining bias
ADD rt,rd,rt ; add in the next value

DCOR rt,rt ; final correction
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Deposit Doubleword DEPD

Format: DEPD,cmplt,cond r,pos,len,t

(13) 35 ‘ t ‘ r ‘ c ‘ 0 ‘nz‘l‘cl‘ 0 ‘ clen
6 5 5 3 2 111 3 5

(16) 3C ‘ t ‘ r ‘ c ‘ cl ‘cdnz‘ cpos ‘ clen
6 5 5 3 111 5 5

Purpose: To deposit a value into a register at a fixed or variable position, and conditionally nullify
the following instruction.

Description: A right-justified field from GR is deposited (merged) into @RThe field begins at the
bit position given bypos and extendden bits to the left. The remainder of GRis
optionally zeroed or left unchanged.

The bit positionpos can either be a constant (specifying a fixed deposit), or can be SAR,

the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is used for
variable deposits; Format 16 is used for fixed deposits. For variable deposits, if the
deposited field extends beyond the leftmost bit, it is truncated and the higher bits are
ignored. For fixed deposits, it is an undefined operation for the field to extend beyond the
leftmost bit.

The completercmplt determines whether or not the target register is zeroed before the
field is deposited into it. (Table 7-1 defines the assembly language completer mnemonics.)
This is encoded in thaz field of the instruction, with 0 indicating that the register is
zeroed and lindicating that it is not.

Table 7-1. Deposit Instruction Completers

cmplt Description nz
<none> value is deposited into the old value of the target register 1
Z value is deposited into a field of zeros 0

The following diagram illustrates a fixed deposit of a 50-bit field at bit position 56. The
instruction is: DEPD  r,56,50,t.

0 14 63

GR:

GRt:

0 7 56 63

The lengthen in the assembly language format is encoded intalthadclenfields. For
fixed deposits, the bit positigmos in the assembly language format is represented by
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Conditions:

Operation:

Exceptions:

Restrictions:

Notes:

catcp,cpog in the machine instruction, whose value is &8s

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in thdield of the instruction.

The condition is any of the 64-bit extract/deposit conditions shown in Table D-14 on
page D-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

len ~ assemble_6(cl,clen)
if (fixed_deposit) { [* (Format 16) */
if (pos >= len-1)
tpos —~ pos;
else
undefined;
} else [* (Format 13) */
tpos —« CRJ[11];
if (cmplt == 2) [* nz=0 */
if (tpos—len+1< 0) [* field extends beyond leftmost bit */
GRJt){0..tpos} ~ GR][r|{63-tpos..63};
else
GR[t]{tpos—len+1..tpos} - GR][r]{64—len..63};
if (cond_satisfied) PSW[N]- 1;

None

Since for fixed deposits, the deposited field is fully specifiedebyand pos it is an
undefined operation if the field extends beyond the leftmost bit.

The SHLD,cond r,sa,t pseudo-operation generates a DEPD,Z,cond r,63-sa,64-sa,t
instruction to perform a shift left by sa bits on the doubleword in general register r.
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Deposit Doubleword Immediate DEPDI

Format: DEPDI,cmplt,cond i,pos,len,t

(13) 35 ‘ t ‘ im5 ‘ c ‘ 2 ‘nz‘l‘cl‘ 0 ‘ clen
6 5 5 3 2 111 3 5

(16) 3D ‘ t ‘ im5 ‘ c ‘ cl ‘cdnz‘ cpos ‘ clen
6 5 5 3 111 5 5

Purpose: To deposit an immediate value into a register at a fixed or variable position, and
conditionally nullify the following instruction.

Description: A right-justified field from the sign-extended immediate deposited (merged) into GR
The field begins at the bit position given pgs and extendden bits to the left. The
remainder of GR is optionally zeroed or left unchanged.

The bit positionpos can either be a constant (specifying a fixed deposit), or can be SAR,

the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is used for
variable deposits; Format 16 is used for fixed deposits. For variable deposits, if the
deposited field extends beyond the leftmost bit, it is truncated and the higher bits are
ignored. For fixed deposits, it is an undefined operation for the field to extend beyond the
leftmost bit.

The completercmplt determines whether or not the target register is zeroed before the
field is deposited into it (see Table 7-1 on page 7-38 for the assembly language completer
mnemonics.) This is encoded in thefield of the instruction, with 0 indicating that the
register is zeroed and lindicating that it is not.

The following diagram illustrates a fixed deposit of the value 0x9 into a 50-bit field at bit
position 56. The instruction is: DEPDI  0x9,56,50,t.

0 14 63
i: 0x9

GRt: 0x9
0 7 56 63

The lengthlen in the assembly language format is encoded intaltbadclenfields. For
fixed deposits, the bit positignos in the assembly language format is represented by
catcp,cpog in the machine instruction, whose value isf®-The immediate is encoded

in theim5 field of the instruction.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in thdield of the instruction.

Conditions: The condition is any of the 64-bit extract/deposit conditions shown in Table D-14 on
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page D-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

Operation: len — assemble_6(cl,clen)
ival « low_sign_ext(im5,5);
if (fixed_deposit) { [* (Format 16) */
if (pos >= len-1)
tpos — pos;
else
undefined;
} else [* (Format 13) */
tpos —~ CRJ[11];
if (cmplt == 2) /* nz=0 */
GR[t] « O;
if (tpos—len+1< 0) [* field extends beyond leftmost bit */
GRJt){0..tpos} ~ ival{63—tpos..63};
else
GRJt){tpos—len+1..tpos} — ival{64—len..63};
if (cond_satisfied) PSW[N]- 1,

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specifiedebyand pos it is an
undefined operation if the field extends beyond the leftmost bit.
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Deposit Word DEPW

Format: DEPW,cmplt,cond r,pos,len,t

(13) 35 ‘ t ‘ r ‘ c ‘ 0 ‘nz‘o‘o‘ 0 ‘ clen
6 5 5 3 2 111 3 5

(16) 35 ‘ t ‘ r ‘ c ‘ 0 ‘ 1 ‘nz‘ cpos ‘ clen
6 5 5 3 111 5 5

Purpose: To deposit a value into the rightmost 32 bits of a register at a fixed or variable position, and
conditionally nullify the following instruction.

Description: A right-justified field from GR is deposited (merged) into the rightmost 32 bits oftGR
The field begins at the bit position given pyst32 and extendken bits to the left. The
remainder of GR is optionally zeroed or left unchanged. The leftmost 32 bits of &R
undefined.

The bit positionpos can either be a constant (specifying a fixed deposit), or can be SAR,
the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is used for
variable deposits; Format 16 is used for fixed deposits. For variable deposits, the leftmost
bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits. For fixed
deposits, 32 is added to tipes value in the instruction. For variable deposits, if the
deposited field extends beyond the leftmost bit (of the rightmost 32), it is truncated and the
higher bits are ignored. For fixed deposits, it is an undefined operation for the field to
extend beyond the leftmost bit (of the rightmost 32.)

The completercmplt determines whether or not the target register is zeroed before the
field is deposited into it (see Table 7-1 on page 7-38 for the assembly language completer
mnemonics.) This is encoded in thefield of the instruction, with 0 indicating that the
register is zeroed and lindicating that it is not.

The following diagram illustrates a deposit of a 10-bit field when the Shift Amount
Register contains the value 24. The instruction is: DEPW r,sar,10,t.

0 32 54 63

GR:

GR t: undefined
0 32 47 56 63

The lengthlen in the assembly language format is encoded intelefield. For fixed
deposits, the bit positigmosin the assembly language format is representaxgbogin the
machine instruction, whose value is Bbs

The following instruction is nullified if the result of the operation satisfies the specified

7-42  Instruction Descriptions PA-RISC 2.0 Architecture



condition,cond The condition is encoded in thdield of the instruction.

Conditions: The condition is any of the 32-bit extract/deposit conditions shown in Table D-13 on
page D-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

Operation: len — assemble_6(0,clen);
if (fixed_deposit) { [* (Format 16) */
if (pos >= len-1)
tpos ~ pos + 32;
else
undefined;
} else [* (Format 13) */
tpos — CR[11}{1..5} + 32;
if (cmplt == 2) [* nz=0 */
GRJ[t){32..63} ~ O0;
if (tpos—len+1< 32) [* field extends beyond leftmost bit */
GRIt){32..tpos} —~ GR[r]{95-tpos..63};
else
GR[t]{tpos—len+1..tpos} - GR][r]{64—len..63};
GRJt){0..31} ~ undefined;
if (cond_satisfied) PSW[N]- 1;

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specifiedebyand pos it is an
undefined operation if the field extends beyond the leftmost bit (of the rightmost 32.)

Notes: The SHLW,cond r,sa,t pseudo-operation generates a DEPW,Z,cond r,31-sa,32-sa,t
instruction to perform a shift left by sa bits on the word in general register r.
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Deposit Word Immediate DEPWI

Format: DEPWI,cmplt,cond i,pos,len,t

(13) 35 | t | im5 | ¢ | 2]ngolo] 0 | clen
6 5 5 3 2 111 3 5

(16) 35 ‘ t ‘ im5 ‘ c ‘ 1 ‘ 1 ‘nz‘ cpos ‘ clen
6 5 5 3 111 5 5

Purpose: To deposit an immediate value into the rightmost 32 bits of a register at a fixed or variable
position, and conditionally nullify the following instruction.

Description: A right-justified field from the sign-extended immediaie deposited (merged) into the
rightmost 32 bits of GR The field begins at the bit position givenpms+32 and extends
len bits to the left. The remainder of GRs optionally zeroed or left unchanged. The
leftmost 32 bits of GRare undefined.

The bit positionpos can either be a constant (specifying a fixed deposit), or can be SAR,
the Shift Amount Register (CR 11) (specifying a variable deposit.) Format 13 is used for
variable deposits; Format 16 is used for fixed deposits. For variable deposits, the leftmost
bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits. For fixed
deposits, 32 is added to tlpes value in the instruction. For variable deposits, if the
deposited field extends beyond the leftmost bit (of the rightmost 32), it is truncated and the
higher bits are ignored. For fixed deposits, it is an undefined operation for the field to
extend beyond the leftmost bit (of the rightmost 32.)

The completercmplt determines whether or not the target register is zeroed before the
field is deposited into it (Table 7-1 on page 7-38 for the assembly language completer
mnemonics.) This is encoded in thefield of the instruction, with 0 indicating that the
register is zeroed and lindicating that it is not.

The following diagram illustrates a deposit of the value 0x9 into a 10-bit field when the
Shift Amount Register contains the value 24. The instruction is: DEPWI  0x9,sar,10,t.

0 32 54 63
GR: 0x9

GR t: undefined 0x9
0 32 47 56 63

The lengthlen in the assembly language format is encoded intelefield. For fixed
deposits, the bit positigmosin the assembly language format is representaexgbogin the
machine instruction, whose value is Bbs The immediate is encoded in tine5 field of
the instruction.
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The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in thdield of the instruction.

Conditions: The condition is any of the 32-bit extract/deposit conditions shown in Table D-13 on
page D-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

Operation: len — assemble_6(0,clen);
ival ~ low_sign_ext(im5,5);
if (fixed_deposit) { /* (Format 16) */
if (pos >= len-1)
tpos — pos + 32;
else
undefined;
} else [* (Format 13) */
tpos — CR[11}{1..5} + 32;
if (cmplt == 2) [* nz=0 */
GRJ[t){32..63} ~ O0;
if (tpos—len+1< 32) [* field extends beyond leftmost bit */
GRJt){32..tpos} ~ ival{95-tpos..63};
else
GRJt){tpos—-len+1..tpos} — ival{64—len..63};
GRJt){0..31} ~ undefined;
if (cond_satisfied) PSW[N]- 1;

Exceptions: None

Restrictions: Since for fixed deposits, the deposited field is fully specifiedebyand pos it is an
undefined operation if the field extends beyond the leftmost bit (of the rightmost 32.)
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Diagnose DIAG

Format: DIAG i

(28) 05 im26
6 26

Purpose: To provide implementation-dependent operations for system initialization,
reconfiguration, and diagnostic purposes.

Description: The immediate value in the assembly language is encoded im#&field of the
instruction. Refer to the hardware reference manual for the definition on a particular
machine implementation.

Operation:  if (priv != 0)
privileged_operation_trap;
else
implementation_dependent;

Exceptions: Privileged operation trap
Implementation-dependent.

Restrictions: This instruction may be executed only at the most privileged level.

Notes: Since theDIAG instruction is privileged, a privileged operation trap will result from
unprivileged diagnostic software executiDgAG. The trap could invoke an emulator
which would allow the unprivileged software access to the required unprivileged
implementation-dependent resources.
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Divide Step DS

Format: DS,cond rl,r2,t
@) 02 r2 ri \ c M 1 \o\o\ 1 \o\ t
6 5 5 3 1 2 11 2 1 5

Purpose:  To provide the primitive operation for integer division.

Description: This instruction performs a single-bit non-restoring divide step and produces a set of result
conditions. It calculates one bit of the quotient when a 32-bit value il@&Rdivided by
a 32-bit value in GR2 and leaves the partial remainder in GRhe quotient bit is PSW
C/B{8}. The carry/borrow bits in the PSW are updated. The variable "carry_borrows" in
the operation section captures the 4-bit carries resulting from the single-bit divide
operation.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in thendf fields of the instruction.

For this instruction, signed overflow condition means that the bit shifted out of the lower
32 bits differs from the leftmost bit of the lower 32 bits following the shift or an ordinary
32-bit signed overflow occurred during the addition or subtraction. Unsigned overflow
means that the bit shifted out of the lower 32 bits is 1 or that an ordinary 32-bit unsigned
overflow occurred during the addition or subtraction. The conditions take on special
interpretations since the shift operation participates in overflow determination.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-3 on
page D-4. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

Operation:  if (PSW[V])
GR[t] ~ -cat(Ishift(GR[r1],1),PSW[C/B]{8}) HIGR[r2] + 1,
else
GR[t] ~ -cat(Ishift(GR[r1],1),PSWI[C/B]{8}) + GR[r2];
PSWI[C/B] ~ carry_borrows;
PSWI[V] ~ xor(carry_borrows{8},GR[r2]{32});
if (cond_satisfied) PSW[N]- 1;

Exceptions: None
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Extract Doubleword EXTRD

Format: EXTRD,cmplt,cond r,pos,len,t

12) 34 ‘ r ‘ t ‘ c ‘ 2 ‘s#l‘cl‘ 0 ‘ clen
6 5 5 3 2 111 3 5

(15) 36 ‘ r ‘ t ‘ c ‘cl ‘ p ‘s# pos ‘ clen
6 5 5 3 111 5 5

Purpose: To extract any 64-bit or shorter field from a fixed or variable position, and conditionally
nullify the following instruction.

Description: A field is extracted from GR, zero or sign extended and placed right-justified intGR
The field begins at the bit position givenfiysand extendten bits to the left.

The bit positionpos can either be a constant (specifying a fixed extract), or can be SAR,
the Shift Amount Register (CR 11) (specifying a variable extract.) Format 12 is used for
variable extracts; Format 15 is used for fixed extracts. For variable extracts, if the extracted
field extends beyond the leftmost bit, it is zero or sign extended. For fixed extracts, it is an
undefined operation for the field to extend beyond the leftmost bit.

The completercmplt determines whether the extracted field is zero extended or sign
extended. (Table 7-2 defines the assembly language completer mnemonics.) This is
encoded in theefield of the instruction, with 1 indicating sign extension and 0 indicating
zero extension.

Table 7-2. Extract Instruction Completers

cmplt Description se
<none>or S extracted value is sign extended 1
U extracted value is zero extended 0

The following diagram illustrates a fixed extract of a 50-bit field at bit position 56. The
instruction is: EXTRD,U 1,56,50,t.

0 7 56 63

GR:

GRt:

0 14 63
The lengthen in the assembly language format is encoded intalthadclenfields. For

fixed extracts, the bit positigposin the assembly language format is represented in the
machine instruction by catpos)
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Conditions:

Operation:

Exceptions:

Restrictions

The following instruction is nullified if the result of the operation satisfies the specified
condition cond The condition is encoded ineth field of the instruction.

The condition is ay of the 64-bitextract/deposit conditions efvn in Table D-14 on

page D-9. When a condition completer is not specified, theén' condition is used. The
booleanvariable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

len — assemble_6(cl,clen)

if (variable extract) { [* (Format 12) */
pos — CR[11];

shamt ~ 63— pos;

if (pos >= len-1)

tlen — len;
else
if (variable extract) [* (Format 12) */
tlen « pos+1;
else [* (Format 15) */
undefined;
if (cmplt == U) /* se=0 */
GR[f] ~ zero ext(rshift(GR[r],shamt),tlen);
else [* se=1*

GR[f] ~ sign_ext(rshift(GR[r],shamt),tlen);
if (cond_satisfied) PSW[N ~ 1,

None

Since for fked extracts, theextracted field is fully specifiedyblen ard pos it is an
undefined operation if the fielktends leyond the leftmost bit.

Programming Note

An arithmetic right shift of a 64-bialue in QR r by avariable amount contained inR3
leaving the result in & t may be done by the follving sequence:

MTSARCM p
EXTRD,S r,sa,64,t

Notes:

The SHRD,S,cond,sa,t pseudo-operation generates a EXTRD,S,a@Risa,64-sa,t
instruction to perform a signed shift right by sa bits on the @éwaotl in generalegister
r.

The SHRD,U,cond,sa,t pseudo-operation generates a EXTRD,U,ap88ksa,64-sa,t
instruction to perform an unsigned shift right by sa bits on the doold in general
registerr.
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Errata
Previously, the Notes incorrecly read:

The SHRD,U... generates a EXTRD,S...


Extract Word EXTRW

Format: EXTRW,cmplt,cond r,pos,len,t

12) 34 ‘ r ‘ t ‘ c ‘ 2 ‘S#O‘O‘ 0 ‘ clen
6 5 5 3 2 111 3 5

(15) 34 ‘ r ‘ t ‘ c ‘ 1 ‘ 1 ‘s# pos ‘ clen
6 5 5 3 111 5 5

Purpose: To extract any 32-bit or shorter field from a fixed or variable position, and conditionally
nullify the following instruction.

Description: A field is extracted from the rightmost 32 bits of GRero or sign extended and placed
right-justified in GRt. The field begins at the bit position givenpgnst32 and extendien
bits to the left. The leftmost 32 bits of GRre undefined.

The bit positionpos can either be a constant (specifying a fixed extract), or can be SAR,
the Shift Amount Register (CR 11) (specifying a variable extract.) Format 12 is used for
variable extracts; Format 15 is used for fixed extracts. For variable extracts, the leftmost
bit of the SAR is ignored, and 32 is added to the value in the lower 5 bits. For fixed
extracts, 32 is added to thmos value in the instruction. For variable extracts, if the
extracted field extends beyond the leftmost bit (of the rightmost 32), it is zero or sign
extended. For fixed extracts, it is an undefined operation for the field to extend beyond the
leftmost bit (of the rightmost 32.)

The completercmplt determines whether the extracted field is zero extended or sign
extended (see Table 7-2 on page 7-48 for the assembly language completer mnemonics.)
This is encoded in thsefield of the instruction, with 1 indicating sign extension and 0
indicating zero extension.

The following diagram illustrates a variable extract of a 10-bit field when the Shift
Amount Register contains the value 24. The instruction is: EXTRW,U r,sar,10,t.

0 32 47 56 63

GR:

GR t: undefined
0 32 54 63

The lengtHen in the assembly language format is encoded intalérfield.

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in théield of the instruction.
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Conditions: The condition is my of the 32-bitextract/deposit conditions stvn in Table D-13 on
page D-9. When a condition completer is not specified, thewen' condition is used. The
booleanvariable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

Operation: len — assemble_6(0,clen);
if (variable extract) { [* (Format 12) */
pos — CR[11]{1..5};
shamt ~ 31— pos;
if (pos >= len-1)

tlen — len;
else
if (variable extract) [* (Format 12) */
tlen — pos +1;
else /* (Format 15) */
undefined;
if (cmplt == U) /* se=0 */
GRIt){32..63} ~ zero ext(rshift(GR[r],shamt),tlen){32..63};
else /* se=1*/

GRIt]{32..63} ~ sign_ext(rshift(GR[r],shamt),tlen){32..63};
GR[t[{0..31} ~ undefined;
if (cond_satisfied) PSW|N - 1;

Exceptions: None

Restrictions Since for fked extracts, theextracted field is fully specifiedyblen ard pos it is an
undefined operation if the fielktends leyond the leftmost bit (of the rightmost 32.)

Programming Note
An arithmetic right shift of a 32-bitalue in QR r by avariable amount contained inR3
leaving the result in & t may be done by the follving sequence:

MTSARCM p
EXTRW,S r,sa,32,t

Notes: The SHRW,S,condr,sa,t pseudo-operation generates a EXTRW,S,G;Biusa,32—sa,E|
instruction to perform a signed shift right by sa bits on the word in geegistirr.

The SHRW,U,condr,sa,t pseudo-operation generates a EXTRW,U,ag8itksa,32-sa,t
instruction to perform an unsigned shift right by sa bits on the word in geegistérr.
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Errata
Previously, the Notes incorrectly read:

The SHRW,S... generates a EXTRD,s...

and:

The SHRW,U... generates a EXTRD,S...


Flush Data Cache

Format:

(24)

(25)

Purpose:

Description:

Operation:

7-52

Instruction Descriptions

FDC
FDC,cmplt  x(%)
FDC d(s,b)
01 \ b \ X \ s \ 4A \m\ v
6 5 5 2 8 1 5
01 \ b \ im5 \ s \ CA \o\ v
6 5 5 2 8 1 5

To invalidate a data cache line and write it back to memory if it is dirty.

The data cache line (if present) specified by the effective address generated by the
instruction is written back to memory, if and only if it is dirty, and then invalidated from
the data cache. The offset is formed as the sum of a base rdyiated, either an index
registerx (Format 24), or a displacemeah{Format 25.) The displacement is encoded into
theim5 field. Optional base modification can also be performed with the indexed form.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer, encodearifiekok of

the instruction, also specifies base register modification. (Table 7-3 defines the assembly
language completer mnemonics.)

Table 7-3. System Control Instruction Completers

cmplt Description m
<none> | don’t modify base register 0
M Modify base register 1

The PSW D-bit (Data address translation enable) determines whether a virtual or absolute
address is used.

A cache line is calledirty if any byte has been written to since it was read from memory
or if aSTBY,E to the leftmost byte of a word has been performed.

In a multiprocessor system, a flush request is broadcast to all data and combined caches.

space — space_select(s,GR[b],format);
if (indexed_load)
switch (cmplt) {

/* indexed (Format 24)*/

case M: offset- GRI[b];
GRI[b] « GR[b] + GR[X];
break;

default: offset— GR[b] + GR[X];
break;
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Exceptions:

Notes:

else [* short displacement (Format 25)*/
offset — GR[b] + low_sign_ext(im5,5); /* (new) */
Dcache_flush(space,offset);

Non-access data TLB miss fault

For systems that do not have a cache, this instruction executes as a null instruction.

In systems with a combined cache, this instruction may be used to flush both data and
instruction lines from the cache.

This instruction may be executed out of sequence but must satisfy the instruction ordering
constraints. Th&YNC instruction enforces program order with respect to the instructions
following the SYNC.

It is an undefined operation to executé=Bx¢ with a nonzera-field at a nonzero privilege
level when the PSW W-bit is 1.
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Flush Data Cache Entry FDCE

Format: FDCE,cmplt  x(s,b)
(24) 01 ‘ b ‘ X ‘ S ‘ 4B ‘m‘ rv
6 5 5 2 8 1 5

Purpose: To provide for flushing the entire data or combined cache by causing zero or more cache
lines to be invalidated.

Description: Zero or more cache lines specified by an implementation-dependent function of the
effective address are written back to main memory, if and only if they are dirty, and are
invalidated in the data or combined cache. The comptatgilt determines if the offset is
the base registel, or the base register plus the index registdihe completer, encoded
in the mfield of the instruction, specifies base register modification. No address
translation is performed (see Table 7-3 on page 7-52 for the assembly language completer
mnemonics.)

When this instruction is used in an architecturally defined cache flush loop, the entire data
or combined cache will be flushed upon completion of the loop.

Operation: space — space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset— GR[b]; [*m=1*/
GR[b] « GR[b] + GR[X];
break;

default: offset - GRI[b] + GR[X]; Fm=0%/
break;

}

Dcache_flush_entries(space,offset);
Exceptions: None

Notes: In a multiprocessor system, this instruction is not broadcast to other processors. This
instruction does not necessarily flush the entry specified by “space” and “offset”.

For systems that do not have a cache, this instruction executes as a null instruction.

It is an undefined operation to execute FIFCE with a nonzeros-field at a nonzero
privilege level when the PSW W-bit is 1.
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Flush Instruction Cache

Format:

(26)

(24)

Purpose:

Description:

Operation:

Exceptions:

Notes:

PA-RISC 2.0 Architecture

FIC
FIC,cmplt  x(s|sr,b)
01 b | x| s | 0A m
6 5 5 3 7 1 5
01 ‘ b ‘ X ‘ S ‘ 4F ‘m‘ 0
6 5 5 2 8 1 5

To invalidate an instruction cache line.

The instruction cache line (if any) specified by the effective address generated by the
instruction is invalidated in the instruction cache.The completep|t determines if the
offset is the base registdx, or the base register plus the index registdrhe completer,
encoded in then-field of the instruction, also specifies base register modification (see
Table 7-3 on page 7-52 for the assembly language completer mnemonics.)

The space registesy, is explicitly encoded in the 3-bstfield of the instruction (Format
26) or is implicitly specified by the 2-stfield of the instruction (Format 24.)

The PSW D-bit (Data address translation enable) determines whether a virtual or absolute
address is used.

Either the instruction TLB or the data TLB can be used to perform the address translation
for the address to be flushed. If the data TLB is used, a TLB miss fault is reported using a
non-access data TLB miss fault.

In a multiprocessor system, a flush request is broadcast to all instruction and combined
caches.

if (explicit_pointer) [*(Format 26)*/
space — SR[assemble_3(s)];
else [*(Format 24)*/
space — space_select(s,GR[b],INDEXED);
switch (cmplt) {
case M: offset— GR[b]; [*m=1*/
GR[b] ~ GR[b] + GR[x];
break;
default: offset - GRI[b] + GR[X]; Fm=0%/
break;

}
Icache_flush(space,offset);
Non-access instruction TLB miss fault Non-access data TLB miss fault

For systems that do not have a cache, this instruction executes as a null instruction.

In systems with a combined cache, this instruction may be used to flush both instruction
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and data lines from the cache, including writing them back to main memory, if they are
dirty.

This instruction may be executed out of sequence but must satisfy the instruction ordering
constraints. Th&YNC instruction enforces program order with respect to the instructions
following the SYNC.

It is an undefined operation to execute an implicit-poiRterwith a nonzercs-field at a
nonzero privilege level when the PSW W-bit is 1.
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Flush Instruction Cache Entry FICE

Format: FICE,cmplt  x(sr,b)
(26) 01 ‘ b ‘ X ‘ s ‘ 0B ‘m‘ rv
6 5 5 3 7 1 5

Purpose:  To provide for flushing the entire instruction or combined cache by causing zero or more
cache lines to be invalidated.

Description: Zero or more cache lines specified by an implementation-dependent function of the
effective address are invalidated in the instruction or combined cache. For
implementations with a combined cache, the cache lines are written back to main memaory,
if and only if they are dirty, and are invalidated. The completaplt determines if the
offset is the base registdx, or the base register plus the index registdrhe completer,
encoded in thenfield of the instruction, specifies base register modification. No address
translation is performed (see Table 7-3 on page 7-52 for the assembly language completer
mnemonics.) The space registar,is encoded in thefield of the instruction.

When this instruction is used in an architecturally defined cache flush loop, the entire
instruction or combined cache will be flushed upon completion of the loop (all the
contents of the instruction cache, except the loop itself, prior to the beginning of the flush
loop must be flushed.)

Operation:  switch (cmplt) {

case M: offset— GR[b]; [*m=1*/
GR[b] « GR[b] + GR[X];
break;

default: offset - GR[b] + GR[X]; m=0%/
break;

}
space — SR[assemble_3(s)];
Icache_flush_entries(space,offset);

Exceptions: None

Notes: In a multiprocessor system, this instruction is not broadcast to other processors. This
instruction does not necessarily flush the entry specified by “space” and “offset”.

For systems which do not have a cache, this instruction executes as a null instruction.
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Halfword Parallel Add HADD

Format: HADD,cmplt  rl,r2;t

@) 02 r2 ri \ 0 \o\ 0\1\1\sat\o\ t
6 5 5 3 1 2 11 2 1 5

Purpose: To add multiple halfwords in parallel with optional saturation.

Description: The corresponding halfwords of GR and GRr2 are added together in parallel. Optional
saturation is performed, which forces each halfword result to either the maximum or the
minimum value, if the result would have been out of the range of the target format. The
halfword results are placed in GR

The completer,cmplt determines whether modular, signed-saturation, or unsigned-
saturation arithmetic is performed. The completer is encoded isahgéeld of the
instruction. (Table 7-4 defines the assembly language completer mnemonics.) For signed
saturation, all operands are treated as signed numbers, and the results are signed numbers.
For unsigned saturation, the first operands, fromrGRre treated as unsigned numbers,

the second operands, from GR, are treated as signed numbers, and the results are
unsigned numbers.

Table 7-4. Halfword Arithmetic Completers

cmplt Description sat
<none> modular arithmetic 3
SS Signed Saturation 1
us Unsigned Saturation 0

Operation:  parallel for (start— O; start <= 48; start += 16) {
end — start + 15;
GRJt){start..end} - (GR[r1[{start..end} + GR[r2]{start..end});
switch (cmplt) {
case SS: if (maximum_signed_saturation) sate1*/
GRJt){start..end} — Ox7FFF;
else if(minimum_signed_saturation)
GR[t]{start..end} — 0x8000;
break;
case US: if (maximum_unsigned_saturation) sat0*/
GRJt){start..end} - OxFFFF;
else if(minimum_unsigned_saturation)
GR[t]{start..end} — 0x0000;
break;
default: [*sat=3*/
break;
}
}

Exceptions: None.
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Halfword Parallel Average HAVG

Format: HAVG rl1,r2,t
@) 02 r2 ri \ 0 \o\ 0 \1\0\ 3 \o\ t
6 5 5 3 1 2 11 2 1 5

Purpose: To average multiple halfwords in parallel.

Description: The corresponding halfwords of GRand GRr2 are averaged in parallel. The average is
obtained by adding the corresponding halfwords, and shifting the result right by one bit, to
perform a divide by 2, with the halfword carry bit from the addition shifted back into the
leftmost position of each result. The halfword results are placed in GR

Unbiased rounding is performed on the results to reduce the accumulation of rounding
errors with cascaded operations.

Operation:  parallel for (start— 0; start <= 48; start += 16){
end ~ start + 15;
sum ~ GR[rl]{start..end} + GR[r2]{start..end};
new_Isb— sum{14} | sum{15}; [*unbiased rounding*/
GR[t]{start..end} — cat(carry,sum{0..13},new_lIsb);

Exceptions: None
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Halfword Parallel Shift Left HSHL

Format:

(10)

Purpose:

HSHL r,sa,t
3E 0 r \1\ 0 \o\ 2 \ sa \o\ t
6 5 5 1 2 1 2 4 1 5

To perform multiple parallel halfword shift left operations.

Description: Each of the halfwords in GRis shifted leftsabits. The shift amount is between 0 and 15,

and is encoded in treafield in the instruction. The halfword results are placed in.GR

Operation:  parallel for (start— O; start <= 48; start += 16) {

end ~ start + 15;
GR[t){start..end} — Ishift(GR[r1]{start..end},sa);

}

Exceptions: None.
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Halfword Parallel Shift Left and Add HSHLADD

Format: HSHLADD rl,sa,r2,t
@) 02 r2 ri \ 0 \0\ 1 \1\1\ sa\o\ t
6 5 5 3 1 2 11 2 1 5

Purpose: To perform multiple halfword shift left and add operations in parallel with saturation.

Description: Each halfword of GR1 is shifted left bysa bits, and then added to the corresponding
halfword of GRr2. Signed saturation is performed, which forces each halfword result to
either the maximum or the minimum value, if the result would have been out of range. The
halfword results are placed in GRThe shift amount is either 1, 2, or 3, and is encoded in
thesafield of the instruction.

All operands are treated as signed numbers, and the results are signed numbers. Signed
saturation is performed.

For this instruction, signed saturation is based both on the shift operation and the add
operation. That is, if the result of the shift operation is not representable in 16 bits, signed
saturation occurs. If GRL was positive, maximum saturation occurs. If GRwas
negative, minimum saturation occurs. If the result of the shift operation is representable in
16 bits, then saturation is determined by the add operation in the normal fashion.

Operation:  parallel for (start— O; start <= 48; start += 16) {
end — start + 15;
GR[t){start..end} — Ishift(GR[r1]{start..end},sa) + GR[r2]{start..end};
if (maximum_signed_saturation)
GR[t){start..end} - Ox7FFF;
else if(minimum_signed_saturation)
GR[t]{start..end} — 0x8000;

Exceptions: None
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Halfword Parallel Shift Right HSHR

Format: HSHR,cmplt r,sa,t
(10) 3E r 0 [1] 2]o]se| sa |o t
6 5 5 1 2 1 2 4 1 5

Purpose: To perform multiple parallel halfword signed or unsigned shift right operations.

Description: Each of the halfwords in GRis shifted rightsa bits. The completegmplt determines
whether a signed or unsigned shift is performed. The completer is encodedériidick
of the instruction. (Table 7-5 defines the assembly language completer mnemonics.) The
shift amount is between 0 and 15, and is encoded isafiield in the instruction. The
halfword results are placed in GR

Table 7-5. Halfword Parallel Shift Right Completers

cmplt Description se
U Unsigned Shift 2
<none> or S Signed Shift 3

Operation:  parallel for (start— 0; start <= 48; start += 16) {
end — start + 15;
if (cmplt == U) [*se=2 (unsigned)*/
GRJt){start..end} — rshift(GR[r1{start..end},sa);
else /*se=3 (signed)*/
GR[t]{start..end} — sign_ext_16(rshift(GR[r1]{start..end},sa),16—sa);

Exceptions: None.
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Halfword Parallel Shift Right and Add HSHRADD

Format: HSHRADD rl,sa,r2;t
@) 02 r2 ri \ 0 \0\ 1 \0\1\ sa\o\ t
6 5 5 3 1 2 11 2 1 5

Purpose: To perform multiple halfword shift right and add operations in parallel with saturation.

Description: Each halfword of GR1 is shifted right bysa bits, and then added to the corresponding
halfword of GRr2. The bits shifted in equal the sign bit for each halfword. Signed
saturation is performed, which forces each halfword result to either the maximum or the
minimum value, if the result would have been out of range. The halfword results are
placed in GR. The shift amount is either 1, 2, or 3, and is encoded inafield of the
instruction.

All operands are treated as signed numbers, and the results are signed numbers. Signed
saturation is performed.

Operation:  parallel for (start— O; start <= 48; start += 16) {
end — start + 15;
GR[t]){start..end} — sign_ext_16(rshift(GR[r1]{start..end},sa),16—sa) +
GR[r2]{start..end}
if (maximum_signed_saturation)
GR[t){start..end} - Ox7FFF;
else if(minimum_signed_saturation)
GR[t]{start..end} — 0x8000;

Exceptions: None.
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Halfword Parallel Subtract HSUB

Format: HSUB,cmplt  r1,r2,t
@) 02 r2 ri \ 0 \o\ 0 \0\1\ sat\o\ t
6 5 5 3 1 2 11 2 1 5

Purpose: To subtract multiple halfwords in parallel with optional saturation.

Description: The corresponding halfwords of GR are subtracted from the halfwords of GRin
parallel. Optional saturation is performed, which forces each halfword result to either the
maximum or the minimum value, if the result would have been out of the range of the
target format. The halfword results are placed intGR

The completer,cmplt determines whether modular, signed-saturation, or unsigned-
saturation arithmetic is performed. The completer is encoded isahgéeld of the
instruction (see Table 7-4 on page 7-58 for the assembly language completer mnemonics.)
For signed saturation, all operands are treated as signed numbers, and the results are
signed numbers. For unsigned saturation, the first operands, from,@rRe treated as
unsigned numbers, the second operands, fromZ5RBre treated as signed numbers, and

the results are unsigned numbers.

Operation:  parallel for (start — O; start <= 48; start += 16) {
end — start + 15;
GR[t){start..end} - (GR[r1]{start..end} + ~GR[r2]{start..end} + 1);
switch (cmplt) {
case SS: if (maximum_signed_saturation) sats1*/
GRJt){start..end} - Ox7FFF;
else if(minimum_signed_saturation)
GR[t]{start..end} — 0x8000;
break;
case US: if (maximum_unsigned_saturation) sat0*/
GR[t){start..end} - OxFFFF;
else if(minimum_unsigned_saturation)
GR[t]{start..end} — 0x0000;
break;
default: [*sat=3*/
break;

}

Exceptions: None.
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Insert Data TLBTranslation IDTLBT

Format:

(26)

Purpose:

Description:

Operation:

Exceptions:

IDTLBT r1,r2
01 r2 ri \ 0 \ 60 \ o\ 0
6 5 5 3 7 1 5

To add an entry to the data TLB.

A slot is found in the data or combined TLB and tkee translation is placed there. If the

data or combined TLB already contains one or more entries whose virtual address ranges
overlap the virtual address range of tlevriranslation, the old entries are @rad. The

virtual address is specified by the IOR and ISR conégisters. The contents of the ISR

are concatenated with thenler 32 bits of the IOR to form the virtual address. The upper
32-bits of the IOR are ignored.

The physical address and the page size for the translation are specifirdlbylGe flags
and access control bits are specified IR/r&.

if (priv 1= 0)
privileged_operation_trap;
else {
spae ~ ISR;
offset — cat(ISR{32..63},I0R{32..63}); E
page_sie — 4096 << (2 * GR[r1]{60..63});
for (i —« 0;i< page_size/4096; i++) {
if (entry — DTLB_search(spaceffset + i*4096))
DTLB_purge_local(entry);
}
enty — DTLB_alloc(space fiset);
DTLB[entry].VIRTUAL_ADDR ~ (space<<32) | ftset);
DTLB[entry].PHY_PAGE_NO ~ GRI[r1K7..58};
DTLB[entry].PAGE_SIZE ~ GR[r1[{60..63};
DTLB[entry] ACCESS_RIGH® ~ GR[r2}{5..11}
DTLB[entry] ACCESS_D ~ GR[r2]{32..62};
DTLB[entry]. T — GR[r2]{2}
DTLB[entry].D — GR[r2]){3}
DTLB[entry].B — GR[r2}{4}
DTLB[entry].U « GR[r2]{12}
DTLB[entry].O « GR[r2]{13}
if (combined_TLB) {
ITLB[entry].P « GR[r2]{14}
}
}

Privileged operation trap
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Errata 
Previously, the page_size computation incorrectly read:

page_size = (GR[r1]{60..63} + 1) * 4096;


Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries into a
combined TLB. The P bit is set to the appropriate bit ofr@Rthat case.

Note that no OR function is performed in creating the virtual address, since the IIA queue
already contains a global address.

If smaller than 31-bit access IDs are implemented, only the appropriate number of the
rightmost bits of GR[r][{32..62} are stored in the TLB.
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Insert Instruction TLBlranslation IITLBT

Format: IITLBT rl1,r2
(26) 01 r2 r \ 0 \ 20 \ 0 \ 0
6 5 5 3 7 1 5

Purpose: To add an entry to the instruction TLB.

Description: A slot is found in the instruction or combined TLB and the translation is placed there.
If the instruction or combined TLB already contains one or more entries whose virtual
address rangeserlap the virtual address range of tlvriranslation, the old entries are
removed. The virtual address is specified by the front entry in the IIA queue. The contents
of the front element of the IIASQ are concatenated with ahwerd 32 bits of the front
element of the AOQ to form the virtual address. The upper 32-bits of tA©Q are
ignored.

The physical address and the page size for the translation are specifikdlbylGe flags
and access control bits are specified IR/r&.

Operation: if (priv = 0)
privileged_operation_trap;
else {
spae ~ IIASQ_Front;
offset — cat(IlASQ_Front{32..63},IA0Q_Front{32..63});
page_sie — 4096 << (2 * GR[r1]{60..63});
for (i « 0; i< page_size/4096; i++) { E
if (entry — ITLB_search(spacefiset + i*4096))
ITLB_purge_local(entry);
}
ently — ITLB_alloc(space,fiset);
ITLB[entry].VIRTUAL_ADDR < (space<<32) | (tset);
ITLB[entry].PHY_PAGE_NO ~ GR[r1]{7..58};
ITLB[entry].PAGE_SIZE ~ GRI[r1[{60..63};
ITLB[entry]. ACCESS_RIGH® ~ GR[r2]{5..11}
ITLB[entry]. ACCESS_D ~ GR[r2|{32..62};
ITLB[entry].P — GR[r2]{14}
if (combined_TLB) {
ITLB[entry].T — GR[r2]){2}
ITLB[entry].D — GR[r2]{3}
ITLB[entry].B — GR[r2]{4}
ITLB[entry].U — GR[r2]{12}
ITLB[entry].O — GR[r2]{13}

}

Exceptions: Privileged operation trap
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Errata
Previously, the page_size computation incorrectly read:

page_size = (GR[r1]{60..63} + 1) * 4096;


Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to insert both instruction entries and data entries into a
combined TLB. The T, D, B, U, and O bits are set to the appropriate bits ofifisfRat
case.

Note that no OR function is performed in creating the virtual address, since the IIA queue
already contains a global address.

If smaller than 31-bit access IDs are implemented, only the appropriate number of the
rightmost bits of GR[r][{32..62} are stored in the TLB.

7-68 Instruction Descriptions PA-RISC 2.0 Architecture



Load Coherence Index LCI

Format: LClI Xx(sh),t
(24) 01 \ b X \ s \ 4C \ 0 \ t
6 5 5 2 8 1 5

Purpose: To determine the coherence index corresponding to a virtual address.

Description: The effective address is calculated. GBceives the coherence index corresponding to the
given virtual address.

In systems with separate data and instruction caches, the coherence index is obtained from
the data cache.

The coherence index function is independent of the state of the PSW D-bit.

Operation:  if (priv != 0)
privileged_operation_trap;
else {
space — space_select(s,GR[b],INDEXED);
offset — GR[b] + GR[X];
GRJ[t] «~ coherence_index(space,offset);

}

Exceptions: Privileged operation trap
Restrictions: This instruction may be executed only at the most privileged level.

Notes: All addresses within a page have the same coherence index.

The coherence index corresponding to a physical address can be determined by
performingLCI on the equivalently-mapped virtual address. Also, in order to allow /O
modules to have coherent access to equivalently-mapped addresses without knowing the
coherence index, the coherence index for equivalently-mapped addresses must be an
implementation-defined function of the physical address bits only.

Two virtual addresses having the same coherence index are not guaranteed to alias unless
they also meet the virtual aliasing rules.

For systems that do not have a cache, the target register receives an undefined value.

For system that do not support coherent 1/O, this instruction is undefined.
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Load Byte LDB

Format: LDB,cmplt,cc  x|d¢b),t

@) 10 | b | t | s | im14
6 5 5 2 14

(5) 03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ 0 ‘m‘ t
6 5 5 2 11 2 4 1 5

@ 03 | b | x |sl|uolec| o |m
6 5 2 11 2 4 1 5

Purpose: To load a byte into a general register.

Description: The byte at the effective address is zero-extended and loaded into TBR offset is
formed as the sum of a base regidberand either an index register(Format 4), or a
displacementl. The displacement can be either long (Format 1) or short (Format 5.) The

displacement is encoded into the immediate field. Optional base modification can also be
performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completercc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢geld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base madification, and a one inuttiield
specifies index prescaling.

If base register modification is specified dnd t, GRt receives the aligned byte at the
effective address.
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Operation: if (indexed_load) /* indexed (Format 4)*/

dx « GR[X];

elseif (d >15]|d <-16) { /* long displacement */
dx — sign_ext(assemble_16(s,im14),16); [* (Format 1) */
cc — NO_HINT;

} else [* short displacement */
dx « low_sign_ext(im5,5); [* (Format 5) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
GR[t] « zero_ext(mem_load(space,offset,0,17,cc),8);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap
Data memory protection ID trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Load and Clear Doubleword LDCD

Format: LDCD,cmplt,cc  x|d{b),t

(5) 03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ 5 ‘m‘ t
6 5 5 2 11 2 4 1 5
(4) 03 ‘ b ‘ X ‘ S ‘u‘o‘ cc‘ 5 ‘m‘ t
6 5 5 2 11 2 4 1 5

Purpose: To read and lock a doubleword semaphore in main memory.

Description: The effective address is calculated. The offset is formed as the sum of a base begister,
and either an index registex, (Format 4), or a displacememnt (Format 5) The
displacement is encoded into the immediate field. Optional base modification can also be
performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, and optional index prescaling‘(see Table H-1 on page H-4, and Table H-3 on
page H-8 for the assembly language completer mnemonics.) The conquespecifies

the cache control hint (see Table 6-9 on page 6-11.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling. If base register modification is specified artdthe value
loaded is the aligned doubleword at the effective address.

The address must be 16-byte aligned. If the address is unaligned, the operation of the
instruction is undefined.

The remaining steps of the instruction are indivisible and non-interruptible. The
semaphore operation is strongly ordered.

If a cache control hint is not specified, the instruction is performed as follows:

« If the cache line containing the effective address is not present in the cache or is
present but not dirty, and the system is not fully coherent, the line is flushed, the
addressed doubleword is copied into GRnd then set to zero in memory. If the line
is retained in the cache, it must not be marked as dirty.

« If the cache line containing the effective address is present in the cache and is dirty, or
the system is fully coherent, the semaphore operation may be handled as above or
may be optimized by copying the addressed doubleword intd &id then setting
the addressed doubleword to zero in the cache.

If a cache control hint is specified, the semaphore operation may be handled as if a cache
control hint had not been specified, or, preferably, the addressed doubleword is copied into
GR t and then the addressed doubleword is set to zero in the cache. The cleared
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doubleword need not be flushed to memory.

Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {
case S:
case SM:  dx- Ishift(GR[x],3);
break;
case M:
default: dx < GR[X];
break;
}
else /* short displacement */
dx « low_sign_ext(im5,5); [* (Format 5) */

space — space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GRI[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GRI[b] + dx;

break;
default: offset— GR[b] + dx;
break;
}
(indivisible)

if (cache line is present and dirty || coherent_system || cc = 0) {
GR[t] « mem_load(space,offset,0,63,NO_HINT);
mem_store(space,offset,0,63,NO_HINT,0);
}else {
Dcache_flush(space, offset);
GR[t] —« mem_load(space,offset,0,63,NO_HINT);
store_in_memory(space,offset,0,63,NO_HINT,0);

}
Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap

Data memory protection ID trap
Data memory break trap

Restrictions: All software users of a semaphore must access the semaphore using the same cache
control hint. Sharing a semaphore using different cache control hints is undefined.
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Load and Clear Word LDCW

Format: LDCW,cmplt,cc  x|d{b),t

(5) 03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ 7 ‘m‘ t
6 5 5 2 11 2 4 1 5
(4) 03 ‘ b ‘ X ‘ S ‘u‘o‘ cc‘ 7 ‘m‘ t
6 5 5 2 11 2 4 1 5

Purpose: To read and lock a word semaphore in main memory.

Description: The effective address is calculated. The offset is formed as the sum of a base begister,
and either an index registex, (Format 4), or a displacememnt (Format 5) The
displacement is encoded into the immediate field. Optional base modification can also be
performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, and optional index prescaling (see Table H-1 on page H-4, and Table H-3 on
page H-8 for the assembly language completer mnemonics.) The conquespecifies

the cache control hint (see Table 6-9 on page 6-11.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling. If base register modification is specified artdthe value
loaded is the aligned word at the effective address.

The address must be 16-byte aligned. If the address is unaligned, the operation of the
instruction is undefined.

The remaining steps of the instruction are indivisible and non-interruptible. The
semaphore operation is strongly ordered.

If a cache control hint is not specified, the instruction is performed as follows:

« If the cache line containing the effective address is not present in the cache or is
present but not dirty, and the system is not fully coherent, the line is flushed, the
addressed word is zero extended and copied intot,GRd then set to zero in
memory. If the line is retained in the cache, it must not be marked as dirty.

« If the cache line containing the effective address is present in the cache and is dirty, or
the system is fully coherent, the semaphore operation may be handled as above or
may be optimized by copying the addressed word intd @Bro extended) and then
setting the addressed word to zero in the cache.

If a cache control hint is specified, the semaphore operation may be handled as if a cache
control hint had not been specified, or, preferably, the addressed word is zero extended and
copied into GR and then the addressed word is set to zero in the cache. The cleared word
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need not be flushed to memory.

Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {
case S:
case SM:  dx- Ishift(GR[x],3);
break;
case M:
default: dx < GR[X];
break;
}
else /* short displacement */
dx « low_sign_ext(im5,5); [* (Format 5) */

space — space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GRI[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GRI[b] + dx;

break;
default: offset— GR[b] + dx;
break;
}
(indivisible)

if (cache line is present and dirty || coherent_system || cc = 0) {
GRJ[t] ~ zero_ext(mem_load(space,offset,0,31,NO_HINT),32);
mem_store(space,offset,0,31,NO_HINT,0);
}else {
Dcache_flush(space, offset);
GRJ[t] ~ zero_ext(mem_load(space,offset,0,31,NO_HINT),32);
store_in_memory(space,offset,0,31,NO_HINT,0);

}
Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap

Data memory protection ID trap
Data memory break trap

Restrictions: All software users of a semaphore must access the semaphore using the same cache
control hint. Sharing a semaphore using different cache control hints is undefined.

Notes: Note that the “index shift” option for this instruction shifts by three, not two.
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Load Doubleword LDD

Format: LDD,cmplt,cc  x|d(s,b),t

®3) 14 \ b \ t \ s \ im10a \m\a\o\i
6 5 5 2 10 1111
(5) 03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ 3 ‘m‘ t
6 5 5 2 11 2 4 1 5
@ 03 | b | x |sl|uoec| 3 |m ¢
6 5 5 2 11 2 4 1 5

Purpose:  To load a doubleword into a general register.

Description: The aligned doubleword, at the effective address, is loaded intofR the effective
address. The offset is formed as the sum of a base relgisted either an index registar,
(Format 4), or a displacemeait The displacement can be either long (Format 3) or short
(Format 5.) The displacement is encoded into the immediate field. Optional base
modification can also be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completercc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long and short displacements, a one imitield specifies base modification, and the
a field encodes whether pre-modificati@{), or post-modificationaE0) is performed.
For indexed loads, a one in thefield specifies base modification, and a one irnutheld
specifies index prescaling.

If base register modification is specified &net, GRt receives the aligned doubleword at
the effective address.
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Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[X],3);
break;
case M:
default: dx~ GRI[X];
break;
}
elseif (d >15]|d <-16) { /* long displacement */
dx « sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3) */
cc — NO_HINT;
} else * short displacement */
dx « low_sign_ext(im5,5); [* (Format 5) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
GRJ[t] « mem_load(space,offset,0,63,cc);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap

Restrictions: For long displacements (Format 3), only displacements which are multiples of eight may
be used.

If the completer O is specified, the displacement must be 0.
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Load Doubleword Absolute LDDA

Format: LDDA,cmplt,cc  x|d(b),t

) 03 \ b \ im5 \ 0 \a\l\ cc\ 4 \m\ t
6 5 5 2 11 2 4 1 5
(4) 03 ‘ b ‘ X ‘ 0 ‘u‘o‘ cc‘ 4 ‘m‘ t
6 5 5 2 11 2 4 1 5

Purpose: To load a doubleword into a general register from an absolute address.

Description: The aligned doubleword at the effective absolute address is loaded intd ERoffset is
formed as the sum of a base regidterand either an index register(Format 4), or a
displacementd (Format 5.) The displacement is encoded into the immediate field.
Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completerce, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling.

If base register modification is specified dnelt, GRt receives the aligned doubleword at
the effective address. Protection is not checked when this instruction is executed. This
operation is only defined if the address is aligned on an 8-byte boundary.
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Operation:  if (priv != 0)
privileged_operation_trap;

else {
if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {
case S:
case SM:  dx- Ishift(GR[X],3);
break;
case M:
default: dx~ GR[X];
break;
}
else [* short displacement */
dx < low_sign_ext(im5,5); [* (Format 5) */

switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
GRJ[t] ~ phys_mem_load(offset,0,63,cc);
if (cmplt == O)
enforce_ordered_load,;

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level. If the comPléter
specified, the displacement must be 0.
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Load Halfword LDH

Format: LDH,cmplt,cc  x|d§b),t

@) 11 | b | t | s | im14
6 5 5 2 14

(5) 03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ 1 ‘m‘ t
6 5 5 2 11 2 4 1 5

@ 3 | b | x |sl|uolec] 1 |m
6 5 2 11 2 4 1 5

Purpose:  To load a halfword into a general register.

Description: The aligned halfword, at the effective address, is zero-extended and loaded infroiBR
the effective address. The offset is formed as the sum of a base régiatet,either an
index registerx (Format 4), or a displacemedt The displacement can be either long
(Format 1) or short (Format 5.) The displacement is encoded into the immediate field.
Optional base modification can also be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completercc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢geld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base madification, and a one inuttiield
specifies index prescaling.

If base register modification is specified dnd t, GRt receives the aligned halfword at
the effective address.
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Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[x],1);
break;
case M:
default: dx~ GR[X];
break;
}
elseif (d >15]|d <-16) { /* long displacement */
dx — sign_ext(assemble_16(s,im14),16); [* (Format 1) */
cc — NO_HINT;
} else [* short displacement */
dx « low_sign_ext(im5,5); [* (Format 5) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
GR[t] « zero_ext(mem_load(space,offset,0,15,cc),16);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Load Immediate Left LDIL

Format: LDIL it

@) 08 t im21
6 5 21

Purpose: To load the upper portion of a 32-bit immediate value into a general register.

Description: The 21-bit immediate valug,is assembled, shifted left 11 bits, sign extended, and placed
in GRt.

Operation: GR[t] ~ sign_ext(Ishift(tassemble_21(im21),11),32);
Exceptions: None

Notes: Memory is not referenced.

Programming Note
LOAD IMMEDIATE LEFT can be used to generate a 32-bit literal in an arbitrary general register
t by the following sequence of assembly language code:
LDIL  [%literal, GRt
LDO r%literal(GRt),GRt
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Load Offset LDO

Format:

@

Purpose:

Description:

Operation:
Exceptions:

Notes:

LDO d(b)t
oD \ b t \ i \ im14
6 5 5 2 14

To load an offset into a general register.

The effective address is calculated, and its offset part is loaded intd. GRe
displacemend is encoded into the immediate field.

GR[t] « GR[b] + sign_ext(assemble_16(i,im14),16);
None

Memory is not referenced.

The LDI i,t pseudo-operation generates @0 i(0),t instruction to load an immediate
value into a register.

TheCOPY pseudo-operation allows for the movement of data from one register to another
by generating the instructiamO 0(r),t.
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Load Space Identifier LDSID

Format: LDSID (s,b),t

(30) 00 \ b v \ s \o\ 85 t
6 5 5 2 1 8 5

Purpose: To calculate the space register number referenced by an implicit pointer and copy the
space register into a general register.

Description: If sis zero, the space identifier referenced byld&copied into GR. If sis not zero, SR
sis copied into GR.

Operation: GR[t] ~ space_select(s,GR[b],INDEXED);
Exceptions: None

Notes: Unimplemented space register bits must read as zero.

The target register receives an undefined valuB$iD with a nonzers-field is executed
at a nonzero privilege level when the PSW W-bit is 1.

This instruction provides no useful function when the PSW W-bit is 1, since the operating
system is free to change the space register contents at any time.
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Load Word LDW

Format: LDW,cmplt,cc  x|d¢b),t

@ 12/13 \ b \ t \ s \ im14
6 5 5 2 14
@) 17 | b | t | s | imlla | 2 i
6 5 5 2 11 2 1
(5) 03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ 2 ‘m‘ t
6 5 5 2 11 2 4 1 5
(4) 03 ‘ b ‘ X ‘ S ‘u‘o‘ cc‘ 2 ‘m‘ t
6 2 11 2 4 1 5

Purpose: To load a word into a general register.

Description: The aligned word, at the effective address, is zero-extended and loaded int@@&Rhe
effective address. The offset is formed as the sum of a base rdgjiatet,either an index
registerx (Format 4), or a displacemahtThe displacement can be either long (Formats 1
and 2) or short (Format 5.) The displacement is encoded into the immediate field. Optional
base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completerce, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long displacements with pre-decrement or post-increment, Format 1 (opcode 13) is
used. For long displacements with post-decrement or pre-increment, Format 2 is used. For
long displacements with no base modification, Format 1 (opcode 12) is used.

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling.

If base register modification is specified dnd t, GRt receives the aligned word at the
effective address.
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Operation: if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[x],2);
break;
case M:
default: dx~ GR[X];
break;
}
elseif (d >15]|d <-16) { /* long displacement */
if ((cmplt == MB && d >=0) || (cmplt == MA && d < 0))
dx « sign_ext(assemble_16a(s,im11a,i),16); [* (Format 2) */
else
dx — sign_ext(assemble_16(s,im14),16); [* (Format 1) */
cc — NO_HINT;
} else [* short displacement */
dx « low_sign_ext(im5,5); [* (Format 5) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
GR[t] « zero_ext(mem_load(space,offset,0,31,cc),32);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Data TLB miss fault/data page fault Unaligned data reference trap
Data memory access rights trap Page reference trap
Data memory protection ID trap

Restrictions: For post-decrement and pre-increment with long displacements (Format 2), only
displacements which are multiples of four may be used.

If the completeO is specified, the displacement must be 0.
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Load Word Absolute LDWA

Format: LDWA,cmplt,cc  x|d(b),t

) 03 \ b \ im5 \ 0 \a\l\ cc\ 6 \m\ t
6 5 5 2 11 2 4 1 5
(4) 03 ‘ b ‘ X ‘ 0 ‘u‘o‘ cc‘ 6 ‘m‘ t
6 5 5 2 11 2 4 1 5

Purpose: To load a word into a general register from an absolute address.

Description: The aligned word at the effective absolute address is zero-extended and loadedtinto GR
The offset is formed as the sum of a base reglstand either an index registgriFormat
4), or a displacememt (Format 5.) The displacement is encoded into the immediate field.
Optional base modification can also be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completerce, specifies the cache control hint (see Table 6-7 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling.

If base register modification is specified dnd t, GRt receives the aligned word at the
effective address. Protection is not checked when this instruction is executed. This
operation is only defined if the address is aligned on a 4-byte boundary.
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Operation:  if (priv != 0)
privileged_operation_trap;

else {
if (indexed_load) /* indexed (Format 4)*/
switch (cmplt) {
case S:
case SM:  dx- Ishift(GR[x],2);
break;
case M:
default: dx~ GR[X];
break;
}
else [* short displacement */
dx < low_sign_ext(im5,5); [* (Format 5) */

switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
GR[t] « zero_ext(phys_mem_load(offset,0,31,cc),32);
if (cmplt == O)
enforce_ordered_load,;

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level. If the comPléter
specified, the displacement must be 0.
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Load Physical Address LPA

Format: LPA,cmplt  xEb),t
(24) 01 \ b \ X \ s \ 4D ‘m‘ t
6 5 5 2 8 1 5

Purpose: To determine the absolute address of a mapped virtual page.

Description: The effective address is calculated. The completaplt determines if the offset is the
base registeh, or the base register plus index registéfhe completer, encoded in the
field of the instruction, also specifies base register modification (see Table 7-3 on
page 7-52 for the assembly language completer mnemonicst)r&Rives the absolute
address corresponding to the given virtual address. If the page is not present, a fault is
taken and software sets the target register to 0. If base register modification is specified
andb =t, the value loaded is the absolute address of the item indicated by the effective
address.

In systems with separate data and instruction TLBs, the absolute address is obtained from
the data TLB. This instruction performs data address translation regardless of the state of
the PSW D-bit.

Operation: if (priv !=0)
privileged_operation_trap;
else {
space — space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset— GRIb]; [*m=1*/
GR[b] ~ GR[b] + GR[x];
break;

default: offset - GRI[b] + GR[X]; Fm=0%/
break;

}
if (DTLB_search(space,offset))

GRJ[t] ~ absolute_address(space,offset);
else
non-access_data_TLB_miss_fault();

}

Exceptions: Non-access data TLB miss fault Privileged operation trap

Restrictions: The result ofLPA is ambiguous for an address which maps to absolute address 0. This
instruction may be executed only at the most privileged level.

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
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IPSWIN] bit to 1, and return to the interrupting instruction.
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Move From Control Register MFCTL

Format: MFCTL rt
MFCTL,W crllt

(32) 00 r 0 ‘rv‘ e ‘rv‘ 45 t
6 5 5 111 8 5

Purpose: To move a value to a general register from a control register.
Description: CR r is copied into GR

Operation: if (r>=1&&r<=7)
undefined;
elseif (priv!=0&& (r==11 || r==26 || r == 27 || (r == 16 && IPSWIS]))))
privileged_register_trap;
else if (r >= 17 && r <= 22)

if (PSWI[Q])
undefined;
else
GRJt] « CR]r]; /* 1A Queues, IPRs */
else if (r == 0)
if (PSWI[R])
undefined;
else
GRJt] « CR]r]; /* Recovery Counter */
else if (r == 11)
if (cmplt ==W) [*e=1*/
GR[t] « CRJr];
else [e=0%/
GR[t] « CR[r{1..5}; /* SAR */
else if (r >= 8)
GR[t] « CRIr]; [* other control registers */

Exceptions: Privileged register trap

Restrictions: System control registers other than the Shift Amount Register (CR 11), the Interval Timer
(CR 16), and temporary registers CR 26 and CR 27, may be read only at the most
privileged level. CR 11, CR 26, and CR 27 may be read at any privilege level. CR 16 may
be read at any privilege level only if the PSW S-bit is O; otherwise, CR 16 may be read
only at the most privileged level. The Interruption Instruction Address Queues (CRs 17
and 18) and Interruption Parameter Registers (CRs 19, 20, and 21) and the Interruption
Processor Status Word (CR 22) may be read reliably only when the PSWI[Q] bit is 0.

If the complete®V is specified, the control register source must specify CR11 (SAR.)
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Move From Instruction Address MFIA

Format: MFIA t
(32) 00 rv 0 \ rv \ A5 t
6 5 5 3 8 5

Purpose:  To move the current instruction address to a general register.

Description: IAOQ_FRONT is copied into GR The rightmost two bits of GR corresponding to the
privilege level are zeroed.

Operation: GR[t] ~ cat(IAOQ_FRONT{0..61},0{62..63});

Exceptions: None
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Move From Space Register MFSP

Format: MFSP st

(29) 00 \ rv 0 \ s \ 25 t
6 5 5 3 8 5

Purpose: ~ To move a value to a general register from a space register.
Description: SRsr (which is assembled from tisdield in the instruction) is copied into GR

Operation: sr — assemble_3(s);
GR[t] « SR]sr];

Exceptions: None

Notes: Unimplemented space register bits must read as zero.

PA-RISC 2.0 Architecture Instruction Descriptions 7-93



Mix Halfwords MIXH

Format: MIXH,cmplt  r1,r2,t
(10) 3E r2 ri \1\ ea\o\ 1 \ 0 \o\ t
6 5 5 1 2 1 2 4 1 5

Purpose: To combine four halfwords from two source registers, and merge them in a result register.

Description: Two halfwords from GR1 are merged with two halfwords from GR and the result is
placed in GR.

The completercmplt determines which halfwords are selected. The completer is encoded
in the ea field of the instruction. (Table 7-6 defines the assembly language completer

mnemonics.)
Table 7-6. Mix Instruction Completers
cmplt Description ea
L Left Halfwords/Words are combined 0
R Right Halfwords/Words are combined 2

If cmpltis “L”", the left halfword of each of the four input words is merged into the result.
If cmpltis “R”, the right halfword of each of the four input words is merged into the result.
The two cases are shown in the following diagram:

ri a b cd/rz, e f g h
t a e c g
rl a b c d r2 e f g h

MIXH,R L //
t| b | f | d]n

Operation:  switch (cmpilt) {
case L: GRJt]~ cat(GR[r1[{0..15},GR[r2[{0..15}, [fea=0*/
GR[r1[32..47},GR[r2{32..47});

break;
case R: GR[t]- cat(GR[r1]{16..31},GR[r2]{16..31}, lea=2*/
GR[r1]{48..63}, GR[r2]{48..63});
break;

}

Exceptions: None.
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Mix Words MIXW

Format: MIXW,cmplt  r1,r2;t
(10) 3E r2 ri \1\ ea\o\ 0 \ 0 \o\ t
6 5 5 1 2 1 2 4 1 5

Purpose: To combine two words from two source registers, and merge them in a result register.

Description: A word from GRr1 is merged with a word from GRR and the result is placed in GR

The completercmplt determines which words are selected. The completer is encoded in
the ea field of the instruction (see Table 7-6 on page 7-94 for the assembly language
completer mnemonics.) tmpltis “L”, the left word of each of the two input doublewords
is merged into the result. Emplt is “R”, the right word of each of the two input
doublewords is merged into the result. The two cases are shown in the following diagram:

rl a b 2 c d
A
t a c
rl a b r2 c d
MIXW,R / /
t b d

Operation:  switch (cmpilt) {

case L: GR[t]« cat(GR[r1}{0..31},GR[r2[{0..31}); [*ea=0*/
break;

case R: GR[t]- cat(GR[r1}{32..63},GR[r2]{32..63}); [fea=2*/
break;

}

Exceptions: None.
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Move and Branch MOVB

Format: MOVB,cond,n rl,r2target

@an 32 r2 rl ‘ c ‘ wl ‘n‘w
6 5 5 3 11 11

Purpose: To copy one register to another and perform an IA-relative branch conditionally based on
the value moved.

Description: GRrl is copied into GR2. If the value moved satisfies the specified conditongd the
word displacement is assembled fromwhandwl fields, sign extended, and added to the
current instruction offset plus 8 to form the target offset. The condition is encodectin the
field of the instruction. The branch targédrget in the assembly language format is
encoded in thev andw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

Conditions: The condition,cond is any of the extract/deposit 32-bit conditions shown in Table D-13
on page D-9 (never, =, <, OD, TR, <>, >=, EV.) When a condition completer is not
specified, the “never” condition is used. The boolean variable “cond_satisfied” in the
operation section is set to 1 when the value moved satisfies the specified condition and set
to O otherwise.

Operation: GR[r2] ~ GR[r1];
disp « Ishift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWIN] ~ !cond_satisfied;
else
PSWIN] ~ cond_satisfied,;

Exceptions: Taken branch trap
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Move Immediate and Branch MQVIB

Format: MOVIB,cond,n i, target
a7 33 r im5 ‘ c ‘ wl ‘ n ‘w
6 5 5 3 11 11

Purpose:  To copy an immediate value into a register and perform an IA-relative branch
conditionally based on the value moved.

Description: The immediate valuén5 is sign extended and copied into GRIf the value moved
satisfies the specified conditiargnd the word displacement is assembled fromwitzand
w1 fields, sign extended, and added to the current instruction offset plus 8 to form the
target offset. The condition is encoded in ¢heeld of the instruction. The branch target,
target in the assembly language format is encoded imvthrdw1 fields.

If nullification is not specified, the following instruction is not nullified. If nullification is
specified, the instruction following a taken forward branch or a failing backward branch is
nullified. The N completer, encoded in tinefield of the instruction, specifies nullification.

Conditions: The condition,cond is any of the extract/deposit 32-bit conditions shown in Table D-13
on page D-9 (never, =, <, OD, TR, <>, >=, EV.) When a condition completer is not
specified, the “never” condition is used. The boolean variable “cond_satisfied” in the
operation section is set to 1 when the value moved satisfies the specified condition and set
to O otherwise.

Operation:  GR[r] < low_sign_ext(im5,5);
disp « Ishift(sign_ext(assemble_12(w1,w),12),2);
if (cond_satisfied)
IAOQ_Next — IAOQ_Front + disp + 8;
if (n)
if (disp < 0)
PSWIN] ~ !cond_satisfied;
else
PSWIN] ~ cond_satisfied,;

Exceptions: Taken branch trap

Programming Note
Sincei is known at the time &OVE IMMEDIATE AND BRANCH instruction is written,
conditions other than always and never (ftregnd <none> completers) are of no use.
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Move To Control Register MTCTL

Format: MTCTL r,t

31) 00 t r \ rv \ C2 0
6 5 5 3 8 5

Purpose: To move a value from a general register to a control register.

Description: GRr is copied into CR. If CR 23 is specified, then the value is first complemented and
ANDed with the original value.

Notes: The MTSAR r pseudo-operation generates an MTCTL r,%SAR instruction to copy a
general register to the Shift Amount Register.
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Operation: if (t>=1&&t<=7)
undefined;
else if (t =11 && priv = 0)
privileged_register_trap;
else
switch(t) {
case 0O: if (PSWIR])
undefined;
else
CR[tf] « GRJ[r{32..63}; /* Recovery Counter */
break;
case 14: case 15: case 16: case 24: case 25: case 26:
case 27: case 28: case 29: case 30: case 31:
CR[t] « GRIr; [* other control registers */
break;
case 17: case 18: case 20: case 21: case 22:
if (PSWI[Q])
undefined;
else
CR[t] « GRIr; /* 1A Queues, IOR, ISR */
break;
case 23: CR[23]~ CRJ[23] &[GR]r]; [* EIRR */
break;
case 10: CR[10]~ GRJr|{48..63}; /* CCR, SCR */
break;
case 11: CR[11]~ GRJr}{26..31}; /* SAR */
break;
case 8: case 9: case 12: case 13:
CR[t] « GRIr; [* Protection Identifiers */
break;
case 19:
undefined; [ 1IR */
break;

}

Exceptions: Privileged register trap

Restrictions: System control registers other than the Shift Amount Register (CR 11) may be written
only at the most privileged level. CR 11 may be written at any privilege level. The
Recovery Counter (CR 0) may be written reliably only when the PSW[R] bit is 0. Writing
into the Interruption Instruction Register (CR 19) is an undefined operation. Writing into
the Interruption Instruction Address Queues (CRs 17 and 18), the Interruption Processor
Status Word (CR 22), the Interruption Offset Register (CR 21) or the Interruption Space
Register (CR 20) when the PSW[Q] bit is 1 is an undefined operation.

Notes: The MTSAR pseudo-operation generatesMnCTL r,CR11 to copy a general register to
the Shift Amount Register (CR 11.)
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Move To Shift Amount Register Complement MTSARCM

Format: MTSARCM r

31) 00 \ B \ r \ rv \ C6 0
6 5 5 3 8 5

Purpose: To take the one’s complement of a value from a general register and move it to the Shift
Amount Register (CR11.)

Description: The one’s complement of GRs copied into CR[11].
Operation: CR[11] ~ ~ GR[r]{26..31};
Exceptions: None.

Notes: The upper bits of the SAR are non-existent and so on a MFCTL instruction with the SAR
as the specified register, hardware can return either 0's or what was last written for the
upper 58 bits. If hardware returns what was last written, the value written by a
MTSARCM instruction must be the complement of GRJr].
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Move To System Mask MTSM

Format:

(33)

Purpose:

Description:

Operation:

Exceptions:
Restrictions:

Notes:

MTSM r
00 0 r \ 0 \ c3 \ 0
6 5 5 3 8 5

To set PSW system mask bits to a value from a register.

Bits 36, 37 and 56..63 of GRreplace the system mask, PSW{36,37,56..63}. Setting the
PSW Q-bit, PSW{60}, to 1 with this instruction, if it was not already 1, is an undefined
operation.

if (priv 1= 0)
privileged_operation_trap;
else {
if (PSW[Q] == 0) && (GR[r]{60} == 1))
undefined;
else {
PSW[W]- GRJ[r]){36};
PSWIE] - GR[r{37};
PSW[O]~ GRJr]{56};
PSW[G]~ GR[r{57};
PSWI[F] « GRJr]){58};
PSW[R]~ GRJr){59};
PSW[Q] - GRI[r{60};
PSWI[P] - GR[r}{61};
PSW[D] - GR[r}{62};
PSWI[l] « GRJr]{63};

}
Privileged operation trap
This instruction may be executed only at the most privileged level.

The state of the IPRs, IIA queues, and the IPSW is undefined when this instruction is used
to set the Q-bit to O, if it was not already 0.

PA-RISC 2.0 Architecture Instruction Descriptions/-101



Move To Space Register MTSP

Format: MTSP r,sr
(29) 00 v r s | c1 | 0
6 5 5 3 8 5

Purpose: ~ To move a value from a general register to a space register.
Description: GRr is copied into SRr (which is assembled from tlsdield in the instruction.)

Operation: sr — assemble_3(s);
if (sr >=5 && priv 1= 0)
privileged_register_trap;
else
if (PSW[W])
SR[sr] « GRJr];
else
SR[sr}{32..63} - GR[r]{32..63};

Exceptions: Privileged register trap
Restrictions: SRs 5, 6 and 7 may be changed only by software running at the most privileged level.

Notes: The values written to unimplemented space register bits must be ignored.

Bits 0..31 of the target space register, if implemented, are unchanged by this instruction if
the PSW W-bit is 0.
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Inclusive OR OR

Format:

®

Purpose:

Description:

Conditions:

Operation:

Exceptions:

Notes:

OR,cond ri1,r2;t
02 r2 ri \ c M 0 \1\0\ 1 \d\ t
6 5 5 3 1 2 11 2 1 5

To do a 64-bit, bitwise inclusive OR.

GRrl and GRr2 are ORed and the result is placed in GRhe following instruction is
nullified if the values ORed satisfy the specified conditmmd The condition is encoded
in thec, d, andf fields of the instruction.

The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-7 or
any of the 64-bit logical conditions shown in Table D-10 on page D-7. When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values ORed satisfy the specified
condition.

GR[t] - GRI[r1] | GR[r2];
if (cond_satisfied) PSW[N]- 1,

None

TheNOP pseudo-operation generates the instruatigrd,0,0.
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Purge Data Cache PDC

Format: PDC,cmplt  x§b)
(24) 01 \ b \ X \ s \ 4E \m\ 0
6 5 5 2 8 1 5

Purpose: To invalidate a data cache line.

Description: The cache line (if present) specified by the effective address generated by the instruction is
invalidated from the data cache. If the privilege level is non-zero and the cache line is dirty
then it is written back to memory before being invalidated. If the privilege level is zero and
the line is dirty then the implementation may optionally write back the line to memory.

The completercmplt determines if the offset is the base regidienr the base register

plus the index registex The completer, encoded in tinefield of the instruction, specifies

base register modification (see Table 7-3 on page 7-52 for the assembly language
completer mnemonics.)

If a cache purge operation is performed, write access to the data is required and a special
access rights check is performed. See “Access Control” on page 3-11. The PSW D-bit
(Data address translation enable) determines whether a virtual or absolute address is used.

In a multiprocessor system, a purge or flush request is broadcast to all data and combined
caches.

Operation: space — space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset— GR[b]; [*m=1*/
GR[b] « GR[b] + GR[X];
break;
default: offset - GRI[b] + GR[X]; *m=0%/
break;
}
if (priv I= 0)
Dcache_flush(space,offset);
else
Dcache_flush_or_purge(space,offset);
Exceptions: Non-access data TLB miss fault Data memory break trap

Data memory access rights trap
Data memory protection ID trap

Notes: For systems that do not have a cache, this instruction executes as a null instruction.

At privilege level zero, implementations are encouraged to purge the cache line for
performance reasons.

This instruction may be executed out of sequence but must satisfy the instruction ordering
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constraints. Th&YNC instruction enforces program order with respect to the instructions
following the SYNC.

It is an undefined operation to executeCe with a nonzera-field at a nonzero privilege
level when the PSW W-bit is 1.
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Puge Data TLB PDTLB

Format: PDTLB,scope,cmplt  x(b)
(24) 01 ‘ b ‘ X ‘ S ‘ 2 ‘eﬂ 8 ‘m‘ v
6 5 5 2 3 1 4 1 5

Purpose:  To invalidate a data TLB entr

Description: The data or combined TLB entries (ifyd which match theféective address generated by
the instruction are reaved. The complete scope encoded in th el field of the
instruction, specifies whether therge is global to all processors in a multiprocessor
system (no completeel=0) or limited to the local processot (complete, el=1.) The
complete, cmplt encoded in tam field of the instruction, determines if th&fset is the
base egista, b, or the baseegister plus indx registe, x, and whether basesgister
modification is performed (se&able7-3 on pag7-52 for the assembly language
completer mnemonics.)

TLB purges are strongly ordered. In a multiprocessor system, a global ThB pauses a
purge request to be broadcast to all data and combined TLBs. The other processors must
remove all matching entries before the issuing processor continues.

Operation:  if (priv != 0)
privileged_operation_trap;
else {
spae ~ space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M offse¢ —~ GR[b]; Fm=1*/
GR[b] ~ GR[b] + GR[x];
break;
default offse — GR[b] + GR[X]; [*m=0%/
break;
}
page_sie — 4096 << (2 * GR[b]{60..63});
for (i « O;i< page_size/4096; i++) { E

if (entry —« DTLB_search(spaceffset + i*4096))
DTLB_purge_local(entry);

}
if (scope != L)
DTLB_purge_broadcast(spacéset,page_size);
}

Exceptions: Privileged operation trap.
Restrictions This instruction may bexecuted only at the mostipil eged kvel.

Notes: This instruction may be used torge both instruction entries and data entries from a
combined TLB.
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Errata
Previously, the page_size computation incorrectly read:

page_size = (GR[b]{60..63} + 1) * 4096;


Purge Data TLB Entry PDTLBE

Format: PDTLBE,cmplt x§b)
(24) 01 ‘ b ‘ X ‘ S ‘ 49 ‘m‘ rv
6 5 5 2 8 1 5

Purpose:  To invalidate a data TLB entry without matching the address portion.

Description: The data or combined TLB entries (if any) specified by an implementation-dependent
function of the effective address generated by the instruction are removed. All the fields of
these entries may be changed to arbitrary values as long as these entries do not validate
any subsequent accesses. The completaplt determines if the offset is the base
register,b, or the base register plus the index registdhe completer, encoded in thre
field of the instruction, specifies base register modification (see Table 7-3 on page 7-52 for
the assembly language completer mnemonics.)

This is an implementation-dependent instruction that can be used to purge the entire data
TLB without knowing the translations in the TLB. No broadcast occurs in a
multiprocessor system.

Operation:  if (priv != 0)
privileged_operation_trap;
else {
space — space_select(s,GR[b],INDEXED);
switch (cmplt) {

case M: offset— GR[b]; [*m=1*/
GR[b] « GR[b] + GR[X];
break;

default: offset - GRI[b] + GR[X]; Fm=0%/
break;

}

DTLB_purge_entries(space,offset);

}

Exceptions: Privileged operation trap
Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from a
combined TLB. This instruction does not necessarily purge the entry specified by “space”
and “offset”.
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Permute Halfwords PERMH

Format: PERMH,c rt
(10) 3E r r \o\ c0\0\c1\c2\c3\0\ t
6 5 5 1 2 1 2 2 2 1 5

Purpose: To select any combination of four halfwords from a source register, and place that
combination in a result register.

Description: The source register, GR is treated as four 16-bit fields. A 64-bit result is generated,
consisting of four 16-bit fields. Each field in the result is independently selected from one
of the fields in GR. The result is placed in GRR

The choice of which fields are selected for each result field is specified by the completer
which is given as a four-digit number, where each digit is either 0, 1, 2, or 3. Each digit
controls the selection for one result field. For example, a digit value of O specifies that the
result field receives the value from the leftmost source field, and a digit value of 2 selects
the next-to-rightmost source field.is encoded in theQ, c1, c2, andc3 fields of the
instruction.cO encodes the first digit1 the second, etc. Thus) encodes which source

field will appear in the leftmost result fielell which source field will appear in the next-
to-leftmost result field, etc.

The array of boolean variables “c[]” in the operation section represent the conepleter
The variable “c[0]" represents the first digitdn“c[1]” the second digit irt, etc.

Any combination or permutation of the four source fields can be generated.

Operation:  parallel for (i~ 0; i <= 3; i++) {
start — 16 * i;
end — start + 15;
field_select— cfi];
switch (field_select) {
case 0: GR][t[{start..end} GR[r]{0..15};
break;
case 1: GRJt]{start..end}- GR[r]{16..31};
break;
case 2: GRJt){start..end}- GR[r]{32..47};
break;
case 3: GR][t[{start..end} GR[r]{48..63};
break;

}
Exceptions: None.
Notes: The source register specifiar, must appear in both source operand fields of the

instruction, as shown in the format. If it does not, the operation is undefined.
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Programming Note
The following figures illustrate examples of how the source fields are specified and how the
result is generated.

0 1 2 3
r a b c d
c= 0000
¥
t a a a a
0 1 2 3
r a b c d
c= 2031 W
t c a d b
0 1 2 3
r a b c d
t d c b a
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Puge Instruction TLB PITLB

Format: PITLB,scope,cmplt  x(sh)

(26) 01 ‘ b ‘ X ‘ s ‘ 0 ‘e:q 8 ‘m‘ rv
6 5 5 3 2 1

Purpose: To invalidate an instruction TLB entr

Description: The instruction or combined TLB entry (ifhg for the page specified by théfextve

address generated by the instruction isawad. The completescope encoded in thel
field of the instruction, specifies whether thergeuis global to all processors in a
multiprocessor system (no complet@l1=0) or limited to the local processorL (,
complete, el=1.) The complete cmplt encoded in th m field of the instruction,
determines if theffset is the basegiste, b, or the baseegister plus inéx registe, x, and
whether baseegister modification is performed (s@@able7-3 on pag7-52 for the
assembly language completer mnemonics.)

TLB purges are strongly ordered. In a multiprocessor system, a global ThB pauses a
purge request to be broadcast to all instruction and combined TLBs. The other processors
must renove the entry before the issuing processor continues.

Operation:  if (priv != 0)
privileged_operation_trap;
else {
spa@ — SR[assemble_3(s)];
switch (cmplt) {

case M offse —~ GRIb]; [Fm=1*/
GR[h] ~ GR[b] + GR[x];
break;
default offse —~ GRI[b] + GR[X]; [*m=0%/
break;
}
page_sig — 4096 << (2 * GR[b]{60..63}); E
for (i —~ O;i< page_size/4096; i++) {

if (entry — ITLB_search(spacefiset + i*4096))
ITLB_purge_local(entry);

}
if (scope != L)
ITLB_purge_broadcast(spac&get,page_size);
}

Exceptions: Privileged operation trap
Restrictions This instruction may bexecuted only at the mostipi eged bvel.
Notes: This instruction may be used torge both instruction entries and data entries from a

combined TLB.

7-110 Instruction Descriptions PA-RISC 2.0 Architecture


Errata
Previously, the page_size computation incorrectly read:

page_size = (GR[b]{60..63} + 1) * 4096;


Purge Instruction TLB Entry PITLBE

Format: PITLBE,cmplt  x(sr,b)

x

(26) 01 \ b \ \ s \ 09 \m\ v
6 5 5 3 7 1 5

Purpose: To invalidate an instruction TLB entry without matching the address portion.

Description: The instruction or combined TLB entries (if any) specified by an implementation-
dependent function of the effective address generated by the instruction are removed. All
the fields of these entries may be changed to arbitrary values as long as these entries do not
validate any subsequent accesses. The completpl, determines if the offset is the base
register,b, or the base register plus the index registdhe completer, encoded in thre
field of the instruction, specifies base register modification (see Table 7-3 on page 7-52 for
the assembly language completer mnemonics.) The space regjssegncoded in the
field of the instruction.

This is an implementation-dependent instruction that can be used to purge the entire
instruction TLB without knowing the translations in the TLB. No broadcast occurs in a
multiprocessor system.

Operation:  if (priv != 0)
privileged_operation_trap;
else {
space — SR[assemble 3(s)];
switch (cmplt) {

case M: offset— GR[b]; [*m=1*/
GR[b] « GR[b] + GR[X];
break;

default: offset - GRI[b] + GR[X]; Fm=0%/
break;

}

ITLB_purge_entries(space,offset);

}

Exceptions: Privileged operation trap
Restrictions: This instruction may be executed only at the most privileged level.

Notes: This instruction may be used to purge both instruction entries and data entries from a
combined TLB. This instruction does not necessarily purge the entry specified by “space”
and “offset”.
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Pop Branch Target Stack POPBTS

Format:

(23)

Purpose:

POPBTS i
3A 0 0 \ 2 \0\ i \1\0\1
6 5 5 3 1 9 111

To pop one or more entries off the branch target stack.

Description: The top i entries of the branch target stack are popped.

If this instruction is nullified, the results are undefined.

This instruction is executed adl®P on machines that do not implement the branch target
stack.

Operation: ~ for (j=i; j>0; j--) {

pop_from_BTS();
}

Exceptions: None
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Probe Access PROBE

Format: PROBE,cmplt ¢b),rt

(24) 01 \ b \ r \ s \ 23 \eﬂo\ t
6 5 5 2 7 11 5

Purpose:  To determine whether read or write access to a given address is allowed.

Description: A test is performed to determine if access to the address computed by the instruction is
permitted at the privilege level given by the two rightmost bits of the. @Rt is setto 1
if the test succeeds and 0 otherwise.

The completercmplt encoded in the sub-operation fiedd, specifies whether the
instruction checks for readrplt==R) or write tmplt==W) accessq1=0: check for read
accessel=1: check for write access.) If the PSW P-bit is 1, the protection IDs are also
checked. The instruction performs data address translation regardless of the state of the
PSW D-bit.

Operation: space — space_select(s,GR[b],INDEXED);
offset — GR[b];
if (DTLB_search(space,offset))
switch (cmplt) {
case W: if (write_access_allowed(space,offset, GR[r])) [*el=1*/
GR[tf] ~ 1;
else
GR[tf] ~ O;
break;
case R:
default: if (read_access_allowed(space,offset,GR][r])) [*e1=0*/
GR[f] ~ 1;
else
GR[tf] ~ O;
break;
}
else
non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
IPSWI[N] bit to 1, and return to the interrupting instruction.

It is an undefined operation to execut®®ROBE with a nonzercs-field at a nonzero
privilege level when the PSW W-bit is 1.
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Probe Access Immediate PROBEI

Format: PROBEI,cmplt £b),it

24) 01 \ b \ i \ s \ 63 \eﬂo\ t
6 5 5 2 7 11 5

Purpose: To determine whether read or write access to a given address is allowed.

Description: A test is performed to determine if access to the address computed by the instruction is
permitted at the privilege level given by the two rightmost bits of the immediateivalue
GRtis set to 1 if the test succeeds and 0 otherwise.

The completercmplt encoded in the sub-operation fiedd, specifies whether the
instruction checks for readrplt==R) or write tmplt==W) accessg1=0: check for read
accessel=1: check for write access.) If the PSW P-bit is 1, the protection IDs are also
checked. This instruction performs data address translation regardless of the state of the
PSW D-hit.

Operation:  space — space_select(s,GR[b],INDEXED);
offset —« GR[b];
if (DTLB_search(space,offset))
switch (cmplt) {
case W: if (write_access_allowed(space,offset,i)) [*el=1*/
GR[t] « 1;
else
break;
case R:
default: if (read_access_allowed(space,offset,i)) [*e1=0%/
GR[t] « 1;
else
break;
}
else
non-access_data_TLB_miss_fault();

Exceptions: Non-access data TLB miss fault/non-access data page fault

Notes: If this instruction causes a non-access data TLB miss fault/non-access data page fault, the
operating system’s handler is required to search its page tables for the given address. If
found, it does the appropriate TLB insert and returns to the interrupting instruction. If not
found, the handler must decode the target field of the instruction, set that GR to 0, set the
IPSWIN] bit to 1, and return to the interrupting instruction.

It is an undefined operation to execut®ROBEI with a nonzercs-field at a nonzero
privilege level when the PSW W-bit is 1.
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Push Branch Target Stack PUSHBTS

Format:

(23)

Purpose:

Description:

Operation:

Exceptions:

PUSHBTS r
3A 0 r \ 2 \0\ 0 \0\0\1
6 5 5 3 1 9 111

To push a value from a GR onto the branch target stack.

Either the value in GR or an “invalid” value is pushed onto the branch target stack.
If this instruction is nullified, the results are undefined.

This instruction is executed adl®P on machines that do not implement the branch target
stack.

push_onto BTS(GR[b}{0..61});

None.
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Push Nominated PUSHNOM

Format:

(23)

Purpose:

PUSHNOM
3A 0 0 \ 2 \0\ 0 \0\0\1
6 5 5 3 1 9 111

To push the currently nominated address onto the branch target stack.

Description: If there is a current nominated value, it is pushed onto the branch target stack. Otherwise,

an “invalid” value is pushed.
If this instruction is nullified, the results are undefined.

This instruction is executed adl®P on machines that do not implement the branch target
stack.

Operation:  push_onto BTS(BNR);

Exceptions: None.
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Return From Interruption RFI

Format: RFI,cmplt
(33) 00 rv v \ rv \ 6 \ el \ 0
6 5 5 3 4 4 5

Purpose:  To restore processor state and restart execution of an interrupted instruction stream and
optionally restore GRs 1, 8, 9, 16, 17, 24, and 25 from the shadow registers.

Description: The PSW register contents are restored from the IPSW register but are not modified by
this instruction. The IA queues are restored from the IIA queues. Execution continues at
the locations loaded into the IA queues.

The completercmplt encoded in the sub-operation fielt] specifies whether the contents

of GRs 1, 8, 9, 16, 17, 24, and 25 are restored from the shadow registé&rsréstore

from shadow registerg1=0: GRs are unchanged.) Execution of RA with the R
completer when the contents of the shadow registers are undefined leaves the contents of
GRs 1, 8,9, 16, 17, 24, and 25 undefined. After execution RFanith the R completer,

the SHRs are undefined.

Execution of arRFI with the IPSW Q-bit equal to 0 returns to the location specified by the
[IA queues, but leaves the IIAOQ, IIASQ, and IPRs undefined. Software is responsible for
avoiding interruptions during the execution of RRAl. Execution of arRFI instruction

when any of the PSW Q, |, or R bits are ones is an undefined operation. Execution of an
RFI instruction when the PSW L-bit is a one is an undefined operation if the new privilege
level after execution of thRFI is non zero.
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Operation:  if (priv != 0)
privileged_operation_trap;
else {

if (cmplt ==R) {
GR[1] ~ SHRJ[O]; [*e1=5%/
GR[8] ~ SHR[1];
GR[9] ~ SHR[2];
GR[16] ~ SHRJ[3];
GR[17] « SHR[4];
GR[24] —~ SHRI[5];
GR[25] —~ SHRI[6];

} else
; [*do nothing */ [*e1=0*/

PSW ~ IPSW,

IAOQ_Back ~ [IAOQ_Back;

IAOQ_Front ~ [IAOQ_Front;

if (Nlevel_0) {
IASQ_Back —~ IIASQ_Back & ~zero_ext(IlIAOQ_Back{0..31},32);
IASQ_Front — IIASQ_Front & ~zero_ext(IlIAOQ_Front{0..31},32);

}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.

Because this instruction restores the state of the execution pipeline, it is possible for
software to place the processor in states which could not result from the execution of any
sequence of instructions not involving interruptions. For example, it could set the PSW B-
bit to 0 even though the addresses in the IA queues are not contiguous. The operation of
the machine is undefined in such cases, and it is the responsibility of software to avoid
them.

To avoid improper processor states, software must not set the PSW B-bit to 0 with
different privilege levels in the IAOQ.

Notes: When this instruction returns to an instruction which executes at a lower privilege level, a
lower-privilege transfer trap is not taken.

This instruction is the only instruction that can set the PSW Q-bit to 1.
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Reset System Mask RSM

Format: RSM it

(33) 00 i \ 0 \ 73 \ t
6 10 3 8 5

Purpose: To selectively reset bits in the system mask to 0.

Description: The current value of the system mask, PSW{36,37,56..63}, is saved tra@Rthen the
complement of the immediate valuis ANDed with the system mask.

Operation:  if (priv != 0)
privileged_operation_trap;
else {

GRIt] ~ 0

GR[t{36} ~ PSW[W];
GR[t{37} ~ PSWIE];
GR[t{56} ~ PSWIC];
GR[t{57} ~ PSWI[G];
GR[t{58} ~ PSWI[F];
GR[t{59} ~ PSWI[R];
GR[t|{60} ~ PSWIQ];
GR[t{61} ~ PSWI[P];
GR[t{62} ~ PSW[D];
GR[t{63} ~ PSWI[I];
PSW[W]— PSW[W] & (~i{0});
PSWIE] -« PSWIE] & (~i{1});
PSW[O]~ PSWI[O] & (~i{2});
PSW[G]~ PSWIG] & (~i{3});
PSWI[F] « PSWIF] & (~i{4});
PSWI[R] - PSWI[R] & (~i{5)});
PSW[Q] - PSWIQ] & (~{6});
PSWI[P] - PSWIP] & (~i{7});
PSWI[D] - PSWI[D] & (~i{8});
PSWI[I] « PSWI[I] & (~i{9}):

}

Exceptions: Privileged operation trap
Restrictions: This instruction may be executed only at the most privileged level.

Notes: The state of the IPRs, IIA queues, and the IPSW is undefined when this instruction is used
to set the Q-bit to O, if it was not already 0.
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Shift Left and Add SHLADD

Format:

®

Purpose:

Description:

Conditions:

SHLADD,cmplt,cond r1,sa,r2,t
02 r2 | ¢ [f]e1]1]o] sa]d| t
6 5 5 3 1 2 11 2 1 5

To provide a primitive operation for multiplication.

GRrl is shifted leftsa bit positions and added to GR. If no trap occurs, the result is
placed in GR. The variable "carry_borrows" in the operation section captures the 4-bit
carries resulting from the add operation. The completeplt encoded in thel field,
specifies whether the carry/borrow bits in the PSW are updated and whether a trap is taken
on signed overflow as shown in the table below. The shift amount is either 1, 2, or 3, and is
encoded in theafield of the instruction.

Completer | Description el
<none> Shift left and add 1

L Shift left and add logical 2
TSV Shift left and add and trap on signed overflow 3

The following instruction is nullified if the values added satisfy the specified condition,
cond The condition is encoded in tloed, andf fields of the instruction. The boolean
variable "overflow" in the operation section is set if the operation results in a 32-bit signed
overflow @=0) or a 64-bit signed overflovd£1.) For addition with carry in, the field
encodes whether the word carry (PSW C/B{8%0), or the doubleword carry (PSW C/
B{0}, d=1) is used.

For this instruction, signed overflow condition means that either the bit(s) shifted out
differ from the leftmost bit following the shift or an ordinary signed overflow occurred
during the addition. Unsigned overflow means that one or more of the bit(s) shifted out are
1 or an ordinary unsigned overflow occurred during the addition. For 32-bit overflows, it is
the bits shifted out of the lower word that are checked. The conditions take on special
interpretations since the shift operation participates in overflow determination.

Theelfield encodes whether the carry/borrow bits in the PSW are updated and whether a
trap is taken on overflone{=1: carries updated, no trapl]=2: carries not updated, no
trap,e1=3: carries updated, trap on overflow.)

The condition is any of the 32-bit add conditions shown in Table D-6 on page D-5 or any
of the 64-bit add conditions shown in Table D-7 on page D-6. When a condition completer
is not specified, the "never" condition is used. The boolean variable "cond_satisfied" in the
operation section is set when the values added satisfy the specified condition.
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Operation:  res  Ishift(GR[rl],sa) + GR[r2];

if (cmplt == TSV && overflow)
overflow_trap;

else {
GRJt] - res;
if (cmplt!="L)

PSWI[C/B] —~ carry_borrows;

if (cond_satisfied) PSW[N]- 1;

}

Exceptions: Overflow trap

Notes: When the ,L completer is specified, no trapping on overflow is available.
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Shift Right Pair Doubleword SHRPD

Format: SHRPD,cond rl,r2,sa,t

11) 34 \ r2 \ rl \ c \ 0 \0\1\ 0 \ t
6 5 5 3 2 11 4 5
(14) 34 ‘ r2 ‘ rl ‘ c ‘ 0 ‘cd 1‘ cpos ‘ t
6 5 5 3 111 5 5

Purpose: To shift a pair of registers by a fixed or variable amount and conditionally nullify the
following instruction.

Description: The rightmost 63 bits of GRL are concatenated with the 64 bits of @Rand shifted
right the number of bits given by the shift amowat, The rightmost 64 bits of the result
are placed in GR

The shift amountsa, can either be a constant (specifying a fixed shift), or can be SAR, the
Shift Amount Register (CR 11) (specifying a variable shift.) Format 11 is used for variable
shifts; Format 14 is used for fixed shifts. For fixed shifts, the shift ansauirt the
assembly language format is represented bycgeaf(09 in the machine instruction,
whose value is 63a

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in thdield of the instruction.

Conditions: The condition is any of the 64-bit extract/deposit conditions shown in Table D-14 on
page D-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

Operation: if (fixed_shift) [* (Format 14) */
shamt sa;
else [* (Format 11) */
shamt— CR[11];
GR[t] ~ rshift(cat(GR[r1]{1..63},GR[r2]),shamt){63..126};
if (cond_satisfied) PSW[N]- 1,

Exceptions: None.
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Programming Note

A logical right shift of GRr by a variable amount contained in @Reaving the result in GR
may be done by the following sequence:

MTSAR  p
SHRPD  O,r,sart

An arithmetic right shift can be done with an extract instruction. &X&RACT
DOUBLEWORD for an example.

If r1 andr2 name the same register, its contents are rotated and placedt.ifr@Rexample,
the following rotates the contentsrafright by 8 bits:

SHRPD ra,ra,8,ra
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Shift Right Pair Word SHRPW

Format:

(11

(14)

Purpose:

Description:

Conditions:

Operation:

Exceptions:

SHRPW,cond rl1,r2,sa,t

34 \ r2 \ rl \ c \ 0 \o\o\ 0 \ t
6 5 5 3 2 11 4 5
34 ‘ r2 ‘ rl ‘ © ‘0‘1‘0‘ cpos ‘ t
6 5 5 3 111 5 5

To shift the rightmost 32 bits of a pair of registers by a fixed or variable amount and
conditionally nullify the following instruction.

The rightmost 31 bits of GRL are concatenated with the rightmost 32 bits ofr&Rnd
shifted right the number of bits given by the shift amosatThe rightmost 32 bits of the
result are placed in GRThe leftmost 32 bits of GRare undefined.

The shift amountsa, can either be a constant (specifying a fixed shift), or can be SAR, the
Shift Amount Register (CR 11) (specifying a variable shift.) Format 11 is used for variable
shifts; Format 14 is used for fixed shifts. For variable shifts, the leftmost bit of the SAR is
ignored, so the shift amount is between 0 and 31. For fixed shifts, the shift esadunt

the assembly language format is representedplogin the machine instruction, whose
value is 31sa

The following instruction is nullified if the result of the operation satisfies the specified
condition,cond The condition is encoded in thdield of the instruction.

The condition is any of the 32-bit extract/deposit conditions shown in Table D-13 on
page D-9. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the result of the
operation satisfies the specified condition.

if (fixed_shift) [* (Format 14) */
shamt sa;

else [* (Format 11) */
shamt— CR[11}{1..5};

GRJt){32..63} « rshift(cat(GR[r1){33..63},GR[r2]{32..63}),shamt){31..62};

GRJt){0..31} ~ undefined;

if (cond_satisfied) PSW[N]- 1;

None.
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Programming Note

A logical right shift of GRr by a variable amount contained in @Reaving the result in GR
may be done by the following sequence:

MTSAR  p
SHRPW  O,r,sar,t

An arithmetic right shift can be done with an extract instruction. E3@®ACT WORD for an
example.

If r1 andr2 name the same register, its contents are rotated and placedt.ifr@Rexample,
the following rotates the contentsrafright by 8 bits:

SHRPW ra,ra,8,ra
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Special Operation Zero SPOPO

Format: SPOPO,sfu,sop,n

(34) 04 sopl ‘ 0 ‘ sfu ‘n‘ sop2
6 15 2 3 1 5

Purpose:  To invoke a special function unit operation.

Description: The SFU identified bgfuis directed to perform the operation specified by the information
supplied to it. If nullification is specified, the SFU also computes a 1-bit condition that
causes the following instruction to be nullified if the condition is satisfied.

The sopfield in the assembly language format is the concatenation ebfifeandsop2
fields in the machine instruction, sop = cat(sopl,sop2.)

Operation:  sfu_operationO(cat(sopl,sfu,n,sop2),IAOQ_Front{30..31});
if (n && sfu_conditionO(cat(sopl,sfu,n,sop2),IAOQ_Front{30..31}))
PSWIN] « 1;

Exceptions: Assist emulation trap Assist exception trap
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Special Operation One SPOP1

Format:

(35)

Purpose:

Description:

Operation:

Exceptions:

Notes:

SPOP1,sfu,sop,n t

04 sop ‘ 1 ‘ sfu ‘n‘ t
6 15 2 3 1 5

To copy a special function unit register or a result to a general register.

A single word is sent from the SFU identified &fyto GRt. The SFU uses its internal
state and the instruction fields supplied to it to compute or select the result. If nullification
is specified, the SFU also computes a 1-bit condition that causes the following instruction
to be nullified if the condition is satisfied.

GR[t] ~ sfu_operationl(cat(sop,sfu,n),IAOQ_Front{30..31});
if (n && sfu_condition1(cat(sop,sfu,n),IAOQ_Front{30..31}))
PSWIN] « 1;

Assist emulation trap Assist exception trap

The SPECIAL OPERATION ONEinstruction is used to implement thBENTIFY SFU
pseudo-operation. This operation returns a 32-bit identification number from the special
function unitsfuto general registeér The value returned is implementation dependent and
is useful for configuration, diagnostics, and error recovery. The state of the SFU is
undefined after this instruction.

Each implementation must choose an identification number that identifies the version of
the SFU. The values all zeros and all ones are reserved. The assist emulation trap handler
returns zero when executing this instruction. An assist exception trap is not allowed and
this instruction must be implemented by all SFUs. [IENTIFY SFU pseudo-operation is

coded assPOP]sfu,0 t
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Special Operation Two SPOP2

Format: SPOP2,sfu,sop,n r
(36) 04 r ‘ sopl ‘ 2 ‘ sfu ‘ n ‘ sop2
6 5 10 2 3 1 5

Purpose: To perform a parameterized special function unit operation.

Description: GRr is passed to the SFU identifieddfu The SFU uses its internal state, the contents of
the register, and the instruction fields supplied to it to compute a result. If nullification is
specified, the SFU also computes a 1-bit condition that causes the following instruction to
be nullified if the condition is satisfied.

The sopfield in the assembly language format is the concatenation ebfifeandsop2
fields in the machine instruction, sop = cat(sopl,sop2.)

Operation:  sfu_operation2(cat(sopl,sfu,n,sop2),IA0OQ_Front{30..31},GR]r]);
if (n && sfu_condition2(cat(sopl,sfu,n,sop2),IAOQ_Front{30..31},GR][r]))
PSWIN] « 1;

Exceptions: Assist emulation trap Assist exception trap
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Special Operation Three SPOP3

Format: SPOP3,sfu,sop,n rl,r2

(37) 04 r2 rl ‘ sopl ‘ 3 ‘ sfu ‘n‘ sop2
6 5 5 5 2 3 1 5

Purpose: To perform a parameterized special function unit operation.

Description: GRrl and GRr2 are passed to the SFU identifieddiy The SFU uses its internal state,
the contents of the two registers, and the instruction fields supplied to it to compute a
result. If nullification is specified, the SFU also computes a 1-bit condition that causes the
following instruction to be nullified if the condition is satisfied.

The sopfield in the assembly language format is the concatenation ebfifeandsop2
fields in the machine instruction, sop = cat(sopl,sop2.)

Operation:  sfu_operation3(cat(sopl,sfu,n,sop2),IAOQ_Front{30..31},GR[r1],GR[r2]);
if (n && sfu_condition3(cat(sopl,sfu,n,sop2),IAOQ_Front{30..31},GR[r1],GR[r2]))
PSWIN] « 1;

Exceptions: Assist emulation trap Assist exception trap
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Set System Mask SSM

Format:

(33)

Purpose:

Description:

Operation:

Exceptions:

SSM it
00 i \ 0 \ 6B
6 10 3 8 5

To selectively set bits in the system mask to 1.

The current value of the system mask, PSW{36,37,56..63}, is saved tra@Rthen the
immediate valué is ORed with the system mask. Setting the PSW Q-bit, PSW{60}, to 1
with this instruction, if it was not already 1, is an undefined operation.

if (priv 1= 0)
privileged_operation_trap;
else {

if (PSWI[Q] == 0) && (i{6}))
undefined;

else {
GR[t] ~ 0
GR[t{36} ~ PSW[W];
GR[t{37} ~ PSWIE];
GR[t{56} ~ PSWI[O];
GR[t{57} ~ PSWI[G];
GR[t{58} ~ PSWI[F];
GR[t{59} ~ PSWI[R];
GR[t{60} ~ PSWIQ];
GR[t{61} ~ PSWI[P];
GR[t{62} ~ PSW[D];
GR[t{63} ~ PSWI[I];
PSW[W]~ PSWI[W] | i{0};
PSWIE] - PSWIE]| {1}
PSW[O]~ PSWI[O] | i{2};
PSW[G]~ PSWI[G]| i{3};
PSWI[F] -« PSWIF] | i{4};
PSW[R] -~ PSWIR] | i{5};
PSWI[P] - PSWIP]| {7}
PSW[D] -~ PSWID] | i{8};
PSWI[I] « PSWII]| {9}

}

Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level.
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Store Byte STB

Format: STB,cmplt,cc r,d{b)

@ 18 | b | r | s | im14
6 5 5 2 14

(6) 03 ‘ b ‘ r ‘ s ‘a‘l‘ cc‘ 8 ‘m‘ im5
6 5 5 2 11 2 4 1 5

Purpose: To store a byte from a general register.

Description: The rightmost byte in GRis stored in the aligned byte at the effective address. The offset
is formed as the sum of a base regidteand a displacemedt The displacement can be
either long (Format 1) or short (Format 6.) The displacement is encoded into the
immediate field. Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the displacement. The completer also specifies base register modification and
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 for the
assembly language completer mnemonics.) The comptetespecifies the cache control

hint (see Table 6-8 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatiar (), or post-modificationaE0) is performed.

If base register modification is specified drwr, the value stored at the effective address
is the byte from the source register before modification.
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Operation: if (d>15]]d <-16){ /* long displacement */

dx — sign_ext(assemble_16(s,im14),16); [* (Format 1) */
cc — NO_HINT;

} else * short displacement */
dx « low_sign_ext(im5,5); [* (Format 6) */

space— space_select(s,GR[b],format);

if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset- GR[b] + dx;
mem_store(space,offset,0,7,cc,GR[r[{56..63});
GRI[b] « GRIb] + dx;
break;

case MA: offset- GRI[b];
mem_store(space,offset,0,7,cc,GR[r[{56..63});
GRI[b] « GRIb] + dx;
break;

default: offset— GR[b] + dx;
mem_store(space,offset,0,7,cc,GR[r[{56..63});

break;
}
Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap

Data memory protection ID trap
Data memory break trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Store Bytes STBY

Format: STBY,cmplt,cc r,d{b)
(6) 03 ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ C ‘m‘ im5
6 5 5 2 11 2 4 1 5

Purpose: To implement the beginning, middle, and ending cases for fast byte moves with unaligned
sources and destinations.

Description: If the PSW E-bit is 0 and begin (modifieB™ corresponding t@ = 0) is specified, the
rightmost bytes of GR are stored in memory starting at the byte whose address is given
by the effective address. The number of bytes stored is sufficient to fill out the word
containing the byte addressed by the effective address.

If the PSW E-bit is 0 and end (modifigE™ corresponding t@ = 1) is specified, the
leftmost bytes of the rightmost word of GRre stored in memory starting at the leftmost
byte in the word specified by the effective address, and continuing until (but not including)
the byte specified by the effective address. When the effective address specifies the
leftmost byte in a word, nothing is stored, but protection is checked and the cache line is
marked aglirty.

If the PSW E-bit is 1 and begin (modifieB™ corresponding t@ = 0) is specified, the
leftmost bytes of the rightmost word of GRare stored in memory starting at the byte
whose address is given by the effective address. The number of bytes stored is sufficient to
fill out the word containing the byte addressed by the effective address.

If the PSW E-bit is 1 and end (modifigE™ corresponding t@ = 1) is specified, the
rightmost bytes of GR are stored in memory starting at the leftmost byte in the word
specified by the effective address, and continuing until (but not including) the byte
specified by the effective address. When the effective address specifies the leftmost byte in
a word, nothing is stored, but protection is checked and the cache line is matkéd as

If base register modification is specified through completét, ' GRb is updated and then
truncated to a word address. (Table 7-7 defines the assembly language completer
mnemonics.) If base register modification is specifiedand, the value stored at the
effective address is the bytes from the source register before modification.

Table 7-7. Store Bytes Instruction Completers

cmplt Description a/m
<none> or B | Beginning case, don’t modify base register 0 O
B,M Beginning case, Modify base register 0 1
E Ending case, don’t modify base register 1 0
EM Ending case, Modify base register 1 1

The completergc, specifies the cache control hint (see Table 6-8 on page 6-10.) If the first
byte of the addressed cache line is not written to, the processor must perform the store as if
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the cache control hint had not been specified.

Operation: space — space_select(s,GR[b],format);

dx « low_sign_ext(im5,5);

if (cmplt == B,M) [*a=0, m=1*/
offset — GR[b];

else
offset — GR[b] + dx;

pos — 8*(offset & 0x3);

offset — offset & ~0x3; /* word aligned */
switch (cmplt) {
case B: /=0, m=0*/

if (PSW[E] == 0)
mem_store(space,offset,pos,31,cc,GR[r|{pos+32..63});
else
mem_store(space,offset,pos,31,cc,GR[r|{32..63-pos});
break;
case E: =1, m=0*/
if (PSW[E] == 0)
mem_store(space,offset,0,pos-1,cc,GR[r[{32..pos+31});
else
mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
break;
case B,M: la=0, m=1*/
if (PSW[E] == 0)
mem_store(space,offset,pos,31,cc,GR[r|{pos+32..63});
else
mem_store(space,offset,pos,31,cc,GR[r|{32..63-pos});
GR[b] « (GR[b] + dx) & ~0x3;
break;
case E,M: ra=1, m=1*/
if (PSW[E] == 0)
mem_store(space,offset,0,pos-1,cc,GR[r[{32..pos+31});
else
mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
GR[b] « (GR[b] + dx) & ~0x3;

break;
}
Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Data memory break trap

Notes:

7-134

All bits of the original virtual offset are saved, unmasked, to IOR (CR21) if this instruction
traps.

For this instruction, the low 2 bits of the virtual offset are masked to 0 when comparing
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against the contents of the data breakpoint address offset registers.

Programming Note
The STBY instruction with the , E' completer and the effective address specifying the leftmost
byte of the word may be used to implement a memory scrubbing operation. This is possible
because the line is markdidty but the contents are not modified.
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Store Doubleword STD

Format:

©)

6

Purpose:

Description:

STD,cmplt,cc  r,d{b)

1C ‘ b ‘ r ‘ S ‘ im10a ‘m‘a‘o‘i
6 5 5 2 10 1111
03 ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ B ‘m‘ im5

6 5 5 2 11 2 4 1 5

To store a doubleword from a general register.

GRr is stored in the aligned doubleword at the effective address. The offset is formed as
the sum of a base register,and a displacemendt The displacement can be either long
(Format 3) or short (Format 6.) The displacement is encoded into the immediate field.
Optional base modification can also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the displacement. The completer also specifies base register modification and
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 for the
assembly language completer mnemonics.) The comptetespecifies the cache control

hint (see Table 6-8 on page 6-10.)

For long and short displacements, a one imitiield specifies base modification, and the
a field encodes whether pre-modificati@s1), or post-modificationaE0) is performed.

If base register modification is specified drwr, the value stored at the effective address
is the word from the source register before modification.
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Operation: if (d>15]]d <-16){ /* long displacement */

dx « sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3) */
cc — NO_HINT;

} else * short displacement */
dx « low_sign_ext(im5,5); [* (Format 6) */

space— space_select(s,GR[b],format);

if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset- GR[b] + dx;
mem_store(space,offset,0,63,cc,GR][r]);
GRI[b] « GRIb] + dx;
break;

case MA:  offset— GR[b];
mem_store(space,offset,0,63,cc,GR][r]);
GRI[b] « GRIb] + dx;
break;

default: offset— GR[b] + dx;
mem_store(space,offset,0,63,cc,GR][r]);

break;
}
Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap

Unaligned data reference trap

Restrictions: For long displacements (Format 3), only displacements which are multiples of eight may
be used.

If the completeO is specified, the displacement must be 0.
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Store Doubleword Absolute STDA

Format: STDA,cmplt,cc  r,d(b)
(6) 03 ‘ b ‘ r ‘ 0 ‘a‘l‘ cc‘ F ‘m‘ im5
6 5 5 2 11 2 4 1 5

Purpose: To store a doubleword from a general register to an absolute address.

Description: GRr is stored in the aligned doubleword at the effective absolute address. The offset is
formed as the sum of a base regigieand a displacemedt The displacement is encoded
into the immediate field. Optional base modification can also be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the displacement. The completer also specifies base register modification and
ordering constraints (see Table H-1 on page H-4 for the assembly language completer
mnemonics.) The completecc, specifies the cache control hint (see Table 6-8 on
page 6-10.)

If base register modification is specified drdr, the value stored at the effective address

is the doubleword from the source register before modification. Protection is not checked
when this instruction is executed. This operation is only defined if the address is aligned
on an 8-byte boundary.

Operation: if (priv !=0)
privileged_operation_trap;

else {
dx < low_sign_ext(im5,5);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {
case MB:  offset— GR[b] + dx;
phys_mem_store(offset,0,63,cc,GR[r]);
GRI[b] « GRIb] + dx;
break;
case MA: offset- GRI[b];
phys_mem_store(offset,0,63,cc,GR[r]);
GRI[b] « GRIb] + dx;
break;
default: offset— GR[b] + dx;
phys_mem_store(offset,0,63,cc,GR[r]);
break;
}
}

Exceptions: Privileged operation trap

Restrictions: This instruction may be executed only at the most privileged level. If the comPléter
specified, the displacement must be 0.
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Store Doubleword Bytes STDBY

Format: STDBY,cmplt,cc r,d{b)
(6) 03 ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ D ‘m‘ im5
6 5 5 2 11 2 4 1 5

Purpose: To implement the beginning, middle, and ending cases for fast byte moves with unaligned
sources and destinations.

Description: If the PSW E-bit is 0 and begin (modifieB™ corresponding t@ = 0) is specified, the
rightmost bytes of GR are stored in memory starting at the byte whose address is given
by the effective address. The number of bytes stored is sufficient to fill out the doubleword
containing the byte addressed by the effective address.

If the PSW E-bit is 0 and end (modifigE™ corresponding t@ = 1) is specified, the
leftmost bytes of GRr are stored in memory starting at the leftmost byte in the
doubleword specified by the effective address, and continuing until (but not including) the
byte specified by the effective address. When the effective address specifies the leftmost
byte in a doubleword, nothing is stored, but protection is checked and the cache line is
marked aglirty.

If the PSW E-bit is 1 and begin (modifieB™ corresponding t@ = 0) is specified, the
leftmost bytes of GR are stored in memory starting at the byte whose address is given by
the effective address. The number of bytes stored is sufficient to fill out the doubleword
containing the byte addressed by the effective address.

If the PSW E-bit is 1 and end (modifigE™ corresponding t@ = 1) is specified, the
rightmost bytes of GR are stored in memory starting at the leftmost byte in the
doubleword specified by the effective address, and continuing until (but not including) the
byte specified by the effective address. When the effective address specifies the leftmost
byte in a doubleword, nothing is stored, but protection is checked and the cache line is
marked aglirty.

If base register modification is specified through completél, 'GRb is updated and then
truncated to a doubleword address (see Table 7-7 on page 7-133 for the assembly language
completer mnemonics.) If base register modification is specified amgthe value stored

at the effective address is the bytes from the source register before modification.

The completercc, specifies the cache control hint (see Table 6-8 on page 6-10.) If the first
byte of the addressed cache line is not written to, the processor must perform the store as if
the cache control hint had not been specified.
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Operation: space — space_select(s,GR[b],format);
dx « low_sign_ext(im5,5);
if (cmplt == B,M) [*a=0, m=1*/
offset -« GR[b];
else
offset —« GR[b] + dx;
pos — 8*(offset & 0x7);
offset — offset & ~0x7; /* doubleword aligned */
switch (cmplt) {
case B: /a=0, m=0*/
if (PSW[E] == 0)
mem_store(space,offset,pos,63,cc,GR[r[{pos..63});
else
mem_store(space,offset,pos,63,cc,GR[r|{0..63-pos});
break;
case E: 18=1, m=0*/
if (PSW[E] == 0)
mem_store(space,offset,0,pos-1,cc,GR[r[{0..pos-1});
else
mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
break;
case B,M: la=0, m=1*/
if (PSW[E] == 0)
mem_store(space,offset,pos,63,cc,GR[r[{pos..63});
else
mem_store(space,offset,pos,63,cc,GR[r|{0..63-pos});
GR[b] « (GR[b] + dx) & ~0x7;
break;
case E,M: fa=1, m=1*/
if (PSW[E] == 0)
mem_store(space,offset,0,pos-1,cc,GR[r[{0..pos-1});
else
mem_store(space,offset,0,pos-1,cc,GR[r]{64-pos..63});
GR[b] « (GR[b] + dx) & ~0x7;
break;
}
Exceptions: Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap
Data memory break trap
Notes: All bits of the original virtual offset are saved, unmasked, to IOR (CR21) if this instruction
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traps.

For this instruction, the low 3 bits of the virtual offset are masked to O when comparing
against the contents of the data breakpoint address offset registers.
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Programming Note
The STDBY instruction with the ,E completer and the effective address specifying the
leftmost byte of the doubleword may be used to implement a memory scrubbing operation.
This is possible because the line is marttety but the contents are not modified.
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Store Halfword STH

Format:

@

6

Purpose:

Description:

STH,cmplt,cc r,d{b)

19 \ b \ r \ s \ im14
6 5 5 2 14
03 ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ 9 ‘m‘ im5
6 5 5 2 11 2 4 1 5

To store a halfword from a general register.

The rightmost halfword in GRis stored in the aligned halfword at the effective address.
The offset is formed as the sum of a base regisieand a displacemerd. The
displacement can be either long (Format 1) or short (Format 6.) The displacement is
encoded into the immediate field. Optional base modification can also be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the displacement. The completer also specifies base register modification and
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 for the
assembly language completer mnemonics.) The compietespecifies the cache control

hint (see Table 6-8 on page 6-10.)

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatiar (), or post-modificationaE0) is performed.

If base register modification is specified drwr, the value stored at the effective address
is the halfword from the source register before modification.
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Operation:

Exceptions:

if (d>15]]d<-16) { /* long displacement */

dx — sign_ext(assemble_16(s,im14),16); [* (Format 1) */
cc — NO_HINT;

} else * short displacement */
dx « low_sign_ext(im5,5); [* (Format 6) */

space— space_select(s,GR[b],format);

if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset- GR[b] + dx;
mem_store(space,offset,0,15,cc,GR[r[{48..63});
GRI[b] « GRIb] + dx;
break;

case MA: offset- GRI[b];
mem_store(space,offset,0,15,cc,GR[r[{48..63});
GRI[b] « GRIb] + dx;
break;

default: offset— GR[b] + dx;
mem_store(space,offset,0,15,cc,GR[r[{48..63});

break;
}
Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap

Unaligned data reference trap

Restrictions: If the completeO is specified, the displacement must be 0.
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Store Word STW

Format: STW,cmplt,cc r,d{b)

@ 1A/1B \ b \ r \ s \ im14
6 5 5 2 14
(2 1F ‘ b ‘ r ‘ s ‘ imlla ‘ 2 ‘i
6 5 5 2 11 2 1
(6) 03 ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ A ‘m‘ im5
6 5 5 2 11 2 4 1 5

Purpose:  To store a word from a general register.

Description: The rightmost word in GR is stored in the aligned word at the effective address. The
offset is formed as the sum of a base regibteand a displacement The displacement
can be either long (Formats 1 and 2) or short (Format 6.) The displacement is encoded into
the immediate field. Optional base modification can also be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the displacement. The completer also specifies base register modification and
ordering constraints (see Table H-1 on page H-4, and Table H-3 on page H-8 for the

assembly language completer mnemonics.) The comptetexpecifies the cache control
hint (see Table 6-8 on page 6-10.)

For long displacements with pre-decrement or post-increment, Format 1 (opcode 1B) is
used. For long displacements with post-decrement or pre-increment, Format 2 is used. For
long displacements with no base modification, Format 1 (opcode 1A) is used.

For short displacements, a one in thdield specifies base modification, and ¢geld
encodes whether pre-modificatia{), or post-modificationaE0) is performed.

If base register modification is specified d&rdr, the value stored at the effective address
is the word from the source register before modification.
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Operation: if (d>15]]d <-16){ /* long displacement */
if ((cmplt==MB && d>=0) || (cmplt==MA && d<0))

dx « sign_ext(assemble_16a(s,im11a,i),16); [* (Format 2) */
else
dx — sign_ext(assemble_16(s,im14),16); [* (Format 1) */
cc — NO_HINT;
} else * short displacement */
dx « low_sign_ext(im5,5); [* (Format 6) */
space— space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset— GR[b] + dx;
mem_store(space,offset,0,31,cc,GR[r[{32..63});
GRI[b] « GRIb] + dx;
break;

case MA: offset- GR[b];
mem_store(space,offset,0,31,cc,GR[r[{32..63});
GRI[b] « GRIb] + dx;
break;

default: offset— GR[b] + dx;
mem_store(space,offset,0,31,cc,GR[r[{32..63});

break;
}
Exceptions: Data TLB miss fault/data page fault Data memory break trap
Data memory access rights trap TLB dirty bit trap
Data memory protection ID trap Page reference trap

Unaligned data reference trap

Restrictions: For post-decrement and pre-increment with long displacements (Format 2), only
displacements which are multiples of four may be used.

If the completeO is specified, the displacement must be 0.
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Store Word Absolute STWA

Format: STWA,cmplt,cc r,d(b)
(6) 03 ‘ b ‘ r ‘ 0 ‘a‘l‘ cc‘ E ‘m‘ im5
6 5 5 2 11 2 4 1 5

Purpose: To store a word from a general register to an absolute address.

Description: The rightmost word in GRis stored in the aligned word at the effective absolute address.
The offset is formed as the sum of a base registeand a displacemerd. The
displacement is encoded into the immediate field. Optional base modification can also be
performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the displacement. The completer also specifies base register modification and
ordering constraints (see Table H-1 on page H-4 for the assembly language completer
mnemonics.) The completecc, specifies the cache control hint (see Table 6-8 on
page 6-10.)

If base register modification is specified dardr, the value stored at the effective address

is the word from the source register before modification. Protection is not checked when
this instruction is executed. This operation is only defined if the address is aligned on a 4-
byte boundary.

Operation:  if (priv != 0)
privileged_operation_trap;

else {
dx « low_sign_ext(im5,5);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset- GR[b] + dx;
phys _mem_store(offset,0,31,cc,GR[r[{32..63});
GRI[b] « GRIb] + dx;
break;

case MA: offset- GRI[b];
phys _mem_store(offset,0,31,cc,GR[r[{32..63});
GRI[b] « GRIb] + dx;
break;

default: offset— GR[b] + dx;
phys _mem_store(offset,0,31,cc,GR[r[{32..63});
break;

}

Exceptions: Privileged operation trap
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Restrictions: This instruction may be executed only at the most privileged level. If the comPléter
specified, the displacement must be 0.
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Subtract

SuUB

Format:

®

Purpose:

Description:

Conditions:

SUB,cmplt,borrow,trapc,cond rl,r2,t
02 r2 1 | ¢ |f]|e1]oled e3]q] t
6 5 5 3 1 2 11 2 1 5

To do 64-bit integer subtraction, and conditionally nullify the following instruction.

GRr2 is subtracted from GRL. If no trap occurs, the result is placed in G&1d the
carry/borrow bits in the PSW are updated. The variable "carry_borrows" in the operation
section captures the 4-bit carries resulting from the subtract operation. The completer,
cmplt encoded in thelfield, specifies whether a trap is taken on signed overflow. The
completerborrow, encoded in the2field, specifies whether the subtraction is done with
borrow. The completetrapc, encoded in the3field, specifies whether a trap is taken if

the values subtracted satisfy the condition specified.

The following instruction is nullified if the values subtracted satisfy the specified
condition,cond The condition is encoded in tleed, andf fields of the instruction. The
boolean variable "overflow" in the operation section is set if the operation results in a 32-
bit signed overflowd=0) or a 64-bit signed overflovd£1.) For subtraction with borrow,

the d field encodes whether the word borrow (PSW C/B{&}0), or the doubleword
borrow (PSW C/B{0},d=1) is used.

Theelfield encodes whether the a trap is taken on overidwi( no trapel=3: trap on
overflow.) Thee2field encodes whether subtraction with borrow in is perforragdd no
borrow,e2=1: subtraction performed with borrow.) Te&field encodes whether to trap if
the values subtracted satisfy the specified condite*0( no trap,e3=3: trap on
condition.) The following table shows the allowed combinations:

Completer Description el | e2| e3
<none> Subtract 1 0 O
TC Subtract and trap on condition n 0 3
B or DB Subtract with borrow/doubleword borrow 1 [1 O
TSV Subtract and trap on signed overflow 3 |0 O
TSV,TC Subtract and trap on signed overflowor 3 | 0 | 3
condition
B, TSV or DB,TSV | Subtract with borrow/doublewordbor-| 3 | 1 | 0
row and trap on signed overflow

The condition is any of the 32-bit compare or subtract conditions shown in Table D-3 on
page D-4 or any of the 64-bit compare or subtract conditions shown in Table D-4 on
page D-4. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.
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Operation: ~ switch (borrow) {

case B: res- GRI[rl] +OGR[r2] + PSW[C/BJ{8};
break;

case DB: res- GR[rl] +OGR[r2] + PSW[C/BJ{0};
break;

default: res— GRI[rl] +GR[r2] + 1;
break;

}
if (cmplt == TSV && overflow)

overflow_trap;
else if (trapc == TC && cond_satisfied)
conditional_trap;
else {
GRJt] - res;
PSWI[C/B] —~ carry_borrows;
if (cond_satisfied) PSW[N]- 1;
}

Exceptions: Overflow trap
Conditional trap

Notes: When the ,B completer is specified, only 32-bit conditions are available. When the ,DB
completer is specified, only 64-bit conditions are available.
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Subtract from Immediate SUBI

Format: SUBI,cmplt,cond it
9) 25 r t ‘ c ‘ f ‘eﬂ im11
6 5 5 3 11 11

Purpose:  To subtract a register from an immediate value and conditionally nullify the following
instruction.

Description: GRr is subtracted from the sign-extended immediate valfi@o trap occurs, the result is
placed in GR and the carry/borrow bits in the PSW are updated. The immediate value is
encoded into théml1 field. The variable "carry_borrows" in the operation section
captures the 4-bit carries resulting from the subtract operation.

The completercmplt encoded in thelfield, specifies whether a trap is taken on a 32-bit
signed overflow €1=0: no trap, nocmplt el=1: trap on 32-bit signed overflow,
cmplE=TSV.)

The following instruction is nullified if the values subtracted satisfy the specified
condition,cond The condition is encoded in tleandf fields of the instruction. The
boolean variable "overflow" in the operation section is set if the operation results in a 32-
bit signed overflow.

Conditions: The condition is any of the 32-bit compare or subtract conditions shown in Table D-3 on
page D-4. When a condition completer is not specified, the "never" condition is used. The
boolean variable "cond_satisfied" in the operation section is set when the values
subtracted satisfy the specified condition.

Operation: res — low_sign_ext(im11,11) #GR[r] + 1;
if (cmplt == TSV && overflow)
overflow_trap;
else {
GRJ[t] ~ res;
PSWI[C/B] ~ carry_borrows;
if (cond_satisfied) PSW[N]- 1;
}

Exceptions: Overflow trap

Programming Note
SUBTRACT FROM IMMEDIATE can be used to perform a logical NOT operation when coded
as follows:

SUBI -1t [* GR[t] « OGR]r]
all PSW[C/B] are set to ones */
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Synchronize Caches SYNC

Format: SYNC

(33) 00 rv \o\ rv \ o\ 20 0
6 5 1 4 3 8 5

Purpose: To enforce program order of instruction execution.

Description: Any load, store, semaphore, cache flush, or cache purge instructions that fol®¥the
instruction get executed only after all such instructions prior t@¥NC instruction have
completed executing. On implementations which execute such instructions out of
sequence, this instruction enforces program ordering.

Operation:  Enforce program order of memory references
Exceptions: None

Notes: In systems in which all memory references are performed in order, this instruction
executes as a null instruction.

Programming Note
The minimum spacing that is guaranteed to work for "self-modifying code" is shown in the
code segment below. Since instruction prefetching is permitted, any data cache flushes must be
separated from any instruction cache flushes ISy&C. This will ensure that the "new"
instruction will be written to memory prior to any attempts at prefetching it as an instruction.

LDIL [%newinstr,rnew
LDW r%newinstr(0,rnew),temp
LDIL [%instr,rinstr

STW temp,r%instr(0,rinstr)

FDC r%instr(0,rinstr)

SYNC

FIC r%instr(rinstr)

SYNC

(at least seven instructions)
instr

This sequence assumes a uniprocessor system. In a multiprocessor system, software must
ensure no processor is executing code which is in the process of being modified.

PA-RISC 2.0 Architecture Instruction Descriptions/-151



Synchronize DMA SYNCDMA
Format: SYNCDMA
(33) 00 v |1 v | o | 20 0
6 5 1 4 8 5
Purpose:  To enforce DMA completion order.

Description: On implementations which can signal DMA completion prior to achieving cache
coherence, this instruction enforces ordering. All cache coherence actions which are
outstanding as a consequence of prior DMA operations must be completed before the next

memory access is performed.
Operation: Enforce DMA completion order
Exceptions: None

Notes:
as a null instruction.
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Unit Add Complement UADDCM

Format: UADDCM,trapc,cond r1,r2,t
®) 02 r2 | ¢ [f] 2 |o|1] e1]q| t
6 5 5 3 1 2 11 2 1 5

Purpose: To individually compare corresponding sub-units of a doubleword for a greater-than or
less-than-or-equal a relation.

Description: GRr1 is added to the one’s complement of ZRIf no trap occurs, the result is placed in
GR t. The following instruction is nullified if the values added satisfy the specified
condition,cond The completerrapc, encoded in thelfield, specifies whether a trap is
taken if the conditioncond is satisfied by the values added=2: no trap, namplt
el1=3: trap on conditiongmplt==TC.) The condition is encoded in thed, andf fields of
the instruction.

Conditions: The conditioncondis any of the 32-bit unit conditions shown in Table D-11 on page D-8
or any of the 64-bit conditions shown in Table D-12 on page D-8. When a condition
completer is not specified, the "never" condition is used. The boolean variable
"cond_satisfied" in the operation section is set when the values added satisfy the specified
condition.

Operation: res — GR[rl] +GR[r2];
if (trapc == TC && cond_satisfied)
conditional_trap;
else {
GRJ[t] < res;
if (cond_satisfied) PSW[N]- 1;
}

Exceptions: Conditional trap

Programming Note
UNIT ADD COMPLEMENT can be used to perform a logical NOT operation when coded as
follows:

UADDCM  O,rt *GR[f] « OGR[]*

UNIT ADD COMPLEMENT with the TC (Trap on Condition) completer can be used to check
decimal validity and to pre-bias decimal numbeaicontains the number to be checked and
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will contain the number plus the bias as result ofluhBDCM operation.

NINES .equ X'99999999
LDIL I1%NINES,nines
LDO r%NINES(nines),nines

UADDCM,TC,SDC ra,nines,rt
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Unit XOR UXOR
Format: UXOR,cond r1,r2,t
®) 02 r2 | ¢ |f|o]ifa]2]d ¢
6 5 5 3 1 2 11 2 1 5

Purpose: To individually compare corresponding sub-units of two doublewords for equality.

Description: GRrl and GRr2 are XORed and the result is placed in GRhis instruction generates
unit conditions unlikeXOR which generates logical conditions. The following instruction
is nullified if the values XORed satisfy the specified conditmmmnd The condition is
encoded in the, d, andf fields of the instruction.

Conditions: The condition,cond is any of the 32-bit unit conditions not involving carries shown in
Table D-11 on page D-8 ("never", SBZ, SHZ, TR, NBZ, NHZ) or any of the 64-bit unit
conditions not involving carries shown in Table D-12 on page D-8 (*, *SBZ, *SHZ,
*SWZ, *TR, *NBZ, *NHZ, *NWZ.) When a condition completer is not specified, the
"never" condition is used. The boolean variable "cond_satisfied" in the operation section is
set when the values XORed satisfy the specified condition.

Operation: GR[t] « xor(GR[rl], GR[r2]);
if (cond_satisfied) PSW[N]- 1;

Exceptions: None

PA-RISC 2.0 Architecture Instruction Descriptions’-155



Exclusive OR XOR

Format: XOR,cond r1,r2,t
@) 02 r2 ri \ c M 0 \1\0\ 2 \d\ t
6 5 5 3 1 2 11 2 1 5

Purpose: To do a 64-hit, bitwise exclusive OR.

Description: GRr1 and GRr2 are XORed and the result is placed in GRhe following instruction is
nullified if the values XORed satisfy the specified conditioond The condition is
encoded in the, d, andf fields of the instruction.

Conditions: The condition is any of the 32-bit logical conditions shown in Table D-9 on page D-7 or
any of the 64-bit logical conditions shown in Table D-10 on page D-7. The boolean
variable "cond_satisfied" in the operation section is set when the values XORed satisfy the
specified condition.

Operation: GR[t] « xor(GR[rl], GR[r2]);
if (cond_satisfied) PSW[N]- 1;

Exceptions: None
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8 Floating-point Coprocessor

The PA-RISC floating-point coprocessor is an assist processor that is added to a system to improve the
system’s performance on floating-point operations. The floating-point coprocessor contains a register
file which is independent of the processor’s register file. The floating-point coprocessor executes
floating-point instructions to perform arithmetic on this register file and to move data between the
register file and memory. The architecture permits pipelined execution of floating-point instructions,
further increasing the system’s performance.

Floating-point instructions are implementations of the more general coprocessor instructions described
previously in Chapter 6, “Instruction Set Overview”. The floating-point coprocessor responds to
coprocessor instructions with a coprocessor id equal to 0 and 1.

While the floating-point coprocessor is not required to execute instructions sequentially, the coprocessor
and processor must ensure that the instructions appear sequentially executed to the software. At any one
time, the processor and coprocessor may be operating on a number of instructions. For purposes of this
chapter, the current instruction is the instruction pointed to by the IA queues. The term pending
instructions refers to instructions which have entered and left the IA queues, but which the coprocessor
is still executing.

The IEEE Standard

When used in this chapter, the term IEEE standard or simply the standard, refei& ERtiS8tandard

for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-198%A-RISC fully conforms to the
requirements of the IEEE floating-point standard and permits implementation of all IEEE floating-point
recommendations. Where hardware is unable to fully implement the standard, software completes the
implementation.

Though this chapter uses quotes from the IEEE standard as architecture, knowledge of the standard is
not necessary to understand the architecture. Whenever a quote of the standard contains a reference to
another part of the standard, the quote also contains an equivalent reference to a section of this
document. In these quotes, a reference to the IEEE standard is enclosed in parentheses, and the
equivalent reference to this document is enclosed in square brackets.

The Instruction Set

The floating-point instruction set consists of load and store instructions, and operations. Floating-point
load and store instructions copy both single-word and double-word data between memory and the
floating-point registers. Floating-point operations do arithmetic on the floating-point registers and copy

data between floating-point registers.

The floating-point coprocessor operates on single-word and double-word IEEE floating-point numbers,
as well as quad-word numbers, which are an implementation of the IEEE double-extended format. Each
type of floating-point number may represent one of the following: a normalized number, a denormalized
number, a zero, an infinity, or a NaN (Not a Number). These floating-point formats consist of a sign bit,
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an exponent, and a fraction.

The instruction set also has operations that convert among the three formats of floating-point numbers
and between floating-point numbers and single-word, double-word, and quad-word unsigned and two’s
complement integers, as well as an instruction which multiplies two 32-bit unsigned integers with a 64-
bit unsigned integer result.

Coprocessor Registers

The coprocessor contains thirty-two 64-bit floating-point registers. These same 32 locations can be used
as sixty-four 32-bit locations or as sixteen 128-bit locations. Instructions executing at any privilege level
may read or write the floating-point registers. Double-word load/store operations access the entire 64-
bit register; single-word load/stores access either the left portion of a 64-bit register, bits 0 to 31, or the
right portion of a 64-bit register, bits 32 to 63.

By convention, a 32-bit floating-point register is identified by appending a suffix to the identifier of the
64-bit register within which it is contained. The suffix for the left hand side 32-bit register is ‘L’; the use
of this suffix is optional. The suffix for the right hand side 32-bit register is ‘R’; its use is not optional.
Thus, for example, the left half of double-word register 13 (bits 0 to 31) would be referred to as either
13 or 13L; the right half of double-word register 13 (bits 32 to 63) would be referred to as 13R. The
specification ‘L’ or ‘R’ for each register is encoded in the instructions that access these registers.

Table 8-1 illustrates the specification of single-word registers and Table 8-2 illustrates the specification
of double-word registers.
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Table 8-1. Single-Word Floating-Point Registers

Register Purpose
0 Status Register Undefined
1 Undefined Undefined
2 Undefined Undefined
3 Undefined Undefined
4 Floating-point register 4L Floating-point register 4R
5 Floating-point register 5L Floating-point register 5R
6 Floating-point register 6L Floating-point register 6R
7 Floating-point register 7L Floating-point register 7R
8 Floating-point register 8L Floating-point register 8R
9 Floating-point register 9L Floating-point register 9R
10 Floating-point register 10L Floating-point register 10R
11 Floating-point register 11L Floating-point register 11R
12 Floating-point register 12L Floating-point register 12R
13 Floating-point register 13L Floating-point register 13R
14 Floating-point register 14L Floating-point register 14R
15 Floating-point register 15L Floating-point register 15R
16 Floating-point register 16L Floating-point register 16R
17 Floating-point register 17L Floating-point register 17R
18 Floating-point register 18L Floating-point register 18R
19 Floating-point register 19L Floating-point register 19R
20 Floating-point register 20L Floating-point register 20R
21 Floating-point register 21L Floating-point register 21R
22 Floating-point register 22L Floating-point register 22R
23 Floating-point register 23L Floating-point register 23R
24 Floating-point register 24L Floating-point register 24R
25 Floating-point register 25L Floating-point register 25R
26 Floating-point register 26L Floating-point register 26R
27 Floating-point register 27L Floating-point register 27R
28 Floating-point register 28L Floating-point register 28R
29 Floating-point register 29L Floating-point register 29R
30 Floating-point register 30L Floating-point register 30R
31 Floating-point register 31L Floating-point register 31R

PA-RISC 2.0 Architecture

Floating-point Coprocessor 8-3



Table 8-2. Double-Word Floating-Point Registers

Register Purpose

0 Status Register Exception Register 1
1 Exception Register 2 Exception Register 3
2 Exception Register 4 Exception Register 5
3 Exception Register 6 Exception Register 7
4 Floating-point register 4

5 Floating-point register 5

6 Floating-point register 6

7 Floating-point register 7

8 Floating-point register 8

9 Floating-point register 9

10 Floating-point register 10

11 Floating-point register 11

12 Floating-point register 12

13 Floating-point register 13

14 Floating-point register 14

15 Floating-point register 15

16 Floating-point register 16

17 Floating-point register 17

18 Floating-point register 18

19 Floating-point register 19

20 Floating-point register 20

21 Floating-point register 21

22 Floating-point register 22

23 Floating-point register 23

24 Floating-point register 24

25 Floating-point register 25

26 Floating-point register 26

27 Floating-point register 27

28 Floating-point register 28

29 Floating-point register 29

30 Floating-point register 30

31 Floating-point register 31

Single-word register 0 contains the Status Register. Double-word registers 0 - 3 contain the Status
Register and the Exception Registers. Double-word registers 4 - 31 and single-word registers 4R - 31R
and 4L - 31L are data registers.

Registers 0 - 3 are partitioned into eight 32-bit registers. Bits 0 to 31 of double-word register 0 contain
the Status Register, which holds information on rounding, compares, and exceptions. Bits 32 to 63 of
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double-word register 0 contain Exception Register 1. Specifying Floating-point Register O in a non-
load/store operation encodes a floating-point +0 or a fixed-point 0, whichever is appropriate, when used
as a source and is an undefined operation when used as a destination.

Double-word registers 1 to 3 contain the remaining exception registers. The exception registers form a
gueue of instructions which could not normally complete and thus complete with a trapping exception.
The exception registers are accessed using double-word load and store instructions. Single-word loads
and stores of exception registers are undefined operations. Specifying an exception register as a source
or destination of a non-load/store operation is undefined.

The entire state of the floating-point coprocessor is contained in the register file. Saving the entire
register file is sufficient for a context switch. A special instruction sequence allows the saving and
restoring of this state without an interruption. This sequence ensures that context switches and other
operations which affect the state of the coprocessor do not affect a process.

Data Registers

Floating-point registers 4 - 31 contain the 64-bit data registers which instructions use as operands.
Software may access these registers with single-word or double-word load and store instructions.

Each of the floating-point data registers may contain values in a number of formats. The fields in these
formats are packed into words, double-words, or quad-words so that load and store operations do not
require field-shuffling or tag bits.

Single-word formats occupy either the left half (bits 0 to 31, suffix 'L’), or the right half (bits 32 to 63,
suffix 'R’) of a register as shown in Figure 8-1.

0 3132 63
‘ single-word number (suffix L) ‘ single-word number (suffix R) ‘
32 32

Figure 8-1. Single-word Data Format

Double-word formats fill one register as shown in Figure 8-2.

double-word format
64

Figure 8-2. Double-word Data Format

Quad-word formats (128 bits) are packed into adjacent even-odd pairs of registers. An instruction which
references a register containing a quad-word value must name an even numbered register. An operation
which specifies an odd numbered register for a quad-word format is an undefined operation. Quad
formats are assembled in register pairs as shown in Figure 8-3.
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even # registe most significant bits

odd # registe least significant bits
64

Figure 8-3. Quad-word Data Format

Data Formats

Two data types are defined for floating-point coprocessor operations: floating-point formats and fixed-
point formats.

Floating-point Formats

Numbers in the single, double, and quad binary floating-point formats are composed of three fields:
1. A 1-bit signs.
2. A biased exponeng = E+ bias
3. Afraction, f = .blbz...bp_1 .

Note that adding thbiasto the unbiased exponeatproduces the biased exponenfThe numbee is
always non-negative. Alsq is the precision of the number, and is equal to one plus the number of
fraction bits. Figure 8-4 shows the positions of these fields in the registers.
Single Binary Floating-point
‘ s‘ e ‘ fraction ‘
1 8 23

Double Binary Floating-point

M e fraction
1 11 52
Quad Binary Floating-point
H e ‘ high fraction ‘
1 15 48
‘ low fraction ‘

64
Figure 8-4. Floating-point Formats

For each floating-point format, a number may either be a normalized number, a denormalized number,
an infinity, a zero, or a NaN (Not a Number). Each representable nonzero numerical value has just one
encoding. Use the format parameters listed in Table 8-3 and the equations which follow to determine the
representation and value,of a floating-point number.
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Zero: IfE = E,—1 andf = 0, therv = (—1)50 .
E .
Denormalized: IfE = E_;,—1 and #0 ,them = (-1)°2-™"(0.)

. s~E
Normalized: IfE in < E< By thenv = (=1)727(1.1) .
Infinity: If E = Epaxtland f =0, thenv = (—l)soo .
NaN: If E = E,+1andf#0,thervis a NaN, regardless sf
If the number is a NaN, then the leftmost bit in the fractiop, , determines whether the NaN is

signaling or quiet. Ib; is 1, the NaN is a signaling NaNo,If

is 0, it is a quiet NaN.

Table 8-3. Floating-Point Format Parameters

Format
Parameter
Single | Double | Quad

p (precision) 24 53 113
Emax +127 | +1023| +16383
Emin -126 | -1022| -16382
exponenbias +127| +1023| +16383
under/overflonwbias-adjustment 192 1536 24576
exponent width in bits 8 11 15
format width in bits 32 64 128

NaNs are not ordered; neither the fraction nor the sign bits have any significance.

Fixed-Point Formats

Fixed-point values are held in the formats shown in Figure 8-5.
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Single Binary Fixed-point

‘ two’s complement integer ‘
32

‘ unsigned integer ‘
32

Double Binary Fixed-point
‘ two’s complement integer ‘
64

‘ unsigned integer ‘
64

Quad Binary Fixed-point

high two’s complement integer

low two’s complement integer
64

Figure 8-5. Fixed-point Formats

Floating-Point Status Register

The Status Register controls the arithmetic rounding mode, enables user-level traps, indicates
exceptions that have occurred, indicates the results of comparisons, and contains information to identify
the implementation of the coprocessor. The Status Register is located in bits 0 to 31 of Floating-point
Register 0, and is accessed by specifying Floating-point Register 0 with single-word or double-word

load and store instructions.

Non-load/store instructions do not access the Status Register. Specifying Floating-point Register 0 in a
non-load/store operation, encodes a floating-point +0 or a fixed-point 0, whichever is appropriate, when
used as a source and is an undefined operation when used as a destination.

Figure 8-6 shows the three formats of the Status Register. The first format is valid wieDATRIG-

POINT COMPAREandFLOATING-POINT TESTinstructions are being used to generate and test a queue
of comparison results. The second format is valid whien FLOATING-POINT COMPARE and
FLOATING-POINT TESTinstructions are being used to generate and test individual comparison bits. The
third format is only valid immediately after the execution 6L@ATING-POINT IDENTIFY instruction.

This format remains valid until a floating-point instruction is executed which is not a double-word store
of Floating-point Register 0. The first or second format is valid thereafter. See the description of the
FLOATING-POINT IDENTIFY instruction on page 9-9 for more information.
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012345678912345678912345678901

v|z[oJu[i|c] un | cQ [RM| un [T|D|v|Z|0]u]1]
N\ J S
Flags Enables
| 1 1 1 1 1 1 1 |
1 2 3
012345678901234567890123456789 1
‘V‘Z‘O‘U‘I‘ un CA \ un \RM\ un\T\DMz\o\u\l\
\—V—/ \—V—/
Flags Enables
| 1 1 1 1 1 1 1 |
1 2 3
012345678901234567890123456789 1
un model revision un

Figure 8-6. Floating-Point Status Register

Field Description

RM The rounding mode for all floating-point operations. The values corresponding to each
rounding mode are listed in Table 8-4.

Table 8-4. Floating-Point Rounding Modes

Rounding mode| Description
0 Round to nearest
1 Round toward zero
2 Round toward ¢
3 Round toward-o

Enables The exception trap enables. An enable bit is associated with each IEEE exception. When an
enable bit equals 1, the corresponding trap is enabled. An instruction completes with a
delayed trap when the instruction causes an exception whose corresponding enable bit
equals 1. If an enable bit equals 0, the corresponding IEEE exception usually sets the
corresponding exception flag to 1 instead of causing a trap. However, see “Unimplemented
Exception” on page 10-8, “Overflow Exception” on page 10-11, and “Underflow Exception”
on page 10-12 for cases when a trap is taken even when the trap is not enabled. Table 8-5
lists the bits that correspond to each IEEE exception.

Flags The exception flags. A flag bit is associated with each IEEE exception. The coprocessor sets
an exception flag to 1 when the corresponding exception occurs but does not cause a trap. An
implementation may also choose to set a flag bit to 1 when the corresponding exception
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CA

8-10

occurs and causes a trap. éteption flag is ever set to 0 as a sidéfect of floating-point
operationshut it may be set to either 1 or 0 by a load instrucfiadple 8-5 lists the bits that
correspond to each IEE&ception.

Table 8-5. IEEE Exceptions

Bit Name | Description

Vv Invalid operation
4 Division-by-zero
0] Overflow

U Underfow

I

Inexact result

The Compare bit. The C-bit contains the result of the most recent queued compare
instruction. This bit is set to 1 if the result of the most recent queued compare is true, and O if
false. The C-bit is undefined folling a tageted compare. No other non-load/store
instruction dfects this bitput it may be set to 1 or 0 by load instructions.

The Compare Queue. The CQ field contains the results of the second-most recent queued
compare (in CQ{0}) through the twelfth-most recent queued compare (in CQ{1@)yyE
queued compare instruction shifts the CQ field right by one bit (discarding the rightmost bit)
and the C-bit from the pvious queued compare is copied into CQ{0}. The CQ field is
undefined folbwing a tageted compare. No other non-load/store instructibects this

field, but it may be set torg value by load instructions.

The Compare Arna The CA field is an array olgen independent compare bits, each of
which contains the result of the most recent compare instructigatitay that bit. Ay
compare tegeting a particular bit sets that bit to 1 if the result of the compare is true, and O if
false. The CA field is undefined folling a queued compare. No other non-load/store
instruction dfects this fieldput it may be set tony value by load instructions.

The Delayedrrap bit. The coprocessor sets this bit to 1 when an EEé&ption occurs that

is signalled with a trap or when an unimplemergeckeption occurs. When this bit is 1, the
coprocessor is armed to trap, and tket floating-point instruction forces the processor to
take an assisexception trap. No non-load/store instruction§eet this bit, but load
instructions may set this bit to 1 or 0, and douwkted stores of the Statusfister set this

bit to 0 after completion of the store. Alsays and restore software uses this bit to record
the state of traps. Seedfng and Restoring State” on pat0-13 for information on state
swapping and “Interruptions and Exceptions” ongh@+4 for a detailed discussion of the
T-bit's operation.

The Denormalized As Zero bit. The D-bibpides the arithmetic floating-point instructions

a “fast mode” handling of denormalized operands amdrésults. When the D-bit is 1na

of these instructions may optionally produce a correctly signed zero when the result, before
or after rounding, lies betweet?2 ™', and may optionally treatg denormalized operand

as an egiwalently signed zero. When the D-bit is 1, and an arithmetic instruction treats an
operand as a zero, or produces a zero result as descrived thigvalues of the Undeidiv

and Irexact flags become undefined. When the D-bit is 0, all denormalized operands and
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tiny results must be handled as described in the remainder of this chapter.
Implementation of the D-bit is optional; if not implemented, it is a nonexistent bit.

model The implementation-dependent model number. Model number zero (0) is reserved for the
software emulation routines.

revision The implementation-dependent revision number.

un Undefined bits.

Floating-Point Instruction Set

The floating-point instruction set consists of load and store instructions, and floating-point operations.
All these instructions are part of the PA-RISC standard instruction set. When the instruction specifies a
register for double precision and 64-bit fixed-point values, a 5-bit encoding maps directly into the
associated floating-point register. When the instruction specifies a register for single-precision or 32-hit
fixed-point values, a 6-bit encoding maps into the appropriate ‘L’ or ‘R’ single-word floating-point
register.

Instruction Validity

Table 8-6 shows which floating-point instructions are defined, undefined, or will take an Assist
Emulation Trap for various values of the uid field and the Coprocessor Configuration Register.

Table 8-6. Floating-Point Instruction Validity

CCR{0..1}
Opcode
0 1,2 3
0oB/0C trap undefined uid=0: defined
uid=1: undefined
06/09/0E/26| trap undefined defined

Load and Store Instructions

The floating-point load and store instructions are implementations of the PA-RISC coprocessor load and
store instructions described in “Coprocessor Instructions” on page 6-22. Table 8-7 shows the floating-
point load and store instructions.

Table 8-7. Floating-Point Load and Store Instructions

Mnemonic Description

FLDW Load word
FLDD Load doubleword
FSTW Store word
FSTD Store doubleword

The load and store instructions transfer data between the floating-point registers and memory. These
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instructions transfer aligned words or aligned double-words, and form an effective address using a base
register plus either a short displacement value, a long displacement value, or the value of an index
register. They also have completers that specify base register modification, ordering, and cache control
hints.

Single-word loads and stores access either bits 0 to 31 (suffix ‘L") or bits 32 to 63 (suffix ‘R’) of a
register. The ability to specify more than 32 locations is accomplished by the use of bit 25 of the
instruction. A 0 in this bit specifies an access of bits 0 to 31 (left half of the register); a 1 specifies an
access of bits 32 to 63 (the right half of the register). However, single-word loads and stores of floating-
point registers OR (the right half of floating-point register 0), 1, 2, and 3 are undefined operations.

Double-word loads and stores can access any of the floating-point registers and may be used to load or
store a pair of single-word values in the left and right halves of a register.

A single-word or double-word load or store of Floating-point Register O forces the coprocessor to
complete all pending floating-point instructions and signal all floating-point exceptions for those
instructions. Additionally, a double-word store of Floating-point Register 0 cancels traps due to all
previous instructions and, after completion of the store, sets the Status Register T-bit to 0.

Single-word stores of register 0 do not cancel traps. Also, single-word loads of register 0 that set the
Status Register T-bit to 1 are undefined operations.

Load and store instructions may cause a number of memory reference traps. They are not arithmetic
instructions and do not cause IEEE exceptions.

Load and store instructions that access the 1/0 address space are defined operations.

Floating-point Operations

There are three categories of floating-point operation instructions. Each instruction in the first category
performs a single operation. Instructions in the second category perform fused operations. Instructions
in the third category perform multiple operations.

Single-operation Instructions

This section describes the single-operation floating-point instructions. Single-operation floating-point
instructions are encoded using two major opcodes - OC and OE. Most of the functions in the 0C opcode
are also duplicated in the OE opcode with the following exceptions:

« Instructions using the OE opcode can address both the left and right halves of the floating-point
register set whereas the instructions using the 0C opcode can only address the left halves of the
floating-point register set.

e TheFLOATING-POINT IDENTIFY andFLOATING-POINT TESTinstructions are available only in the
0C opcode.

« The format completer for the quad-word data type is available only in the OC opcode.
e TheFIXED-POINT MULTIPLY UNSIGNED instruction is available only in the OE opcode.
There are four classes of operations:

e Class 0 contains single source, single destination operations and includes the non-arithmetic
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operations.
« Class 1 consists of the conversion operations.
 Class 2 operations provide mechanisms to compare two operands.
 Class 3 consists of the arithmetic operations with two sources and one destination.
Figure 8-7 shows the format of these operations.

Floating-point operation class zero: 1 source, 1 destination*

oc \ r \ 0 \ sub \fmt\ 0 \ 0 \o\ t
6 5 5 3 2 2 3 1 5
0E \ r \ 0 \ sub\o\f\o\o\r\t\o\ t
6 5 5 3 11 2 1111 5

Floating-point operation class one: 1 source, 1 destination

oc \ r \o\sub\df\sf\l\o\o\ t
6 5 3 3 2 2 2 3 1 5
0E \ r \ 0 \ sub \o\df\o\sf\ 1 \o\r\t\o\ t
6 5 3 3 1111 2 1111 5

Floating-point operation class two: 2 sources, no destination*

0C \ rl \ r2 \ sub \fmt\ 2 \ 0 \n\ c
6 5 5 3 2 2 3 1 5
OE \ rl \ r2 \ sub \rz\f\ 2 \o\rl\o\o\ c
6 5 5 3 11 2 1111 5

Floating-point operation class three: 2 sources, 1 destinationt

oc | 1| 2 | sub [fmt| 3| 0 |0 t
6 5 5 3 2 2 3 1 5
OE ‘ rl ‘ r2 ‘ sub ‘rz‘f‘ 3 ‘x‘rl‘t‘o‘ t
6 5 5 3 11 2 1111 5
* The FLOATING-POINT IDENTIFY andFLOATING-POINT TESTinstructions have no source

or destination operands, and no format specifiers, so the register and format fields equal 0.

T TheFIXED-POINT MULTIPLY UNSIGNED instruction has no format specifier, so the format
field equals O.
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Figure 8-7. Single-operation Instruction Formats

Whenever single-precision operands are specified for the OE opcodettbhi position 25 of class

zero, one, and three instructions represents a sixth bit ¢ffidld, and the or rl1 at bit position 24
represents a sixth bit of theorrl field. Similarly, ther2 at bit position 19 represents a sixth bit of the

field. These bits specify the left side single-word register, bits 0 to 31, when 0, and the right side single-
word register, bits 32 to 63, when 1. That bit position 23 of a class three instruction indicates, when

1, that the sub-opcode is to be interpreted as a fixed-point operation.

Table 8-8 shows the floating-point operations, their mnemonics, classes, and sub-opcodes.

Table 8-8. Floating-Point Operations

Opcode | Sub-op | Class| Mnemonic | Operation
0oC 0 FID Identify coprocessor
OE 0 undefined
0C/OE 1 undefined
0C/OE 2 FCPY Copy
0C/OE 3 0 FABS Absolute value
0C/OE 4 FSQRT Square root
0C/OE 5 FRND Round to integer
0C/OE 6 FNEG Negate
0C/OE 7 FNEGABS| Negate absolute value
0C/OE 0 Convert from floating-point to floating-point
0C/OE 1 Convert from fixed-point to floating-point
0C/OE 2 Convert from floating-point to fixed-point
0C/OE 3 Convert from floating-point to fixed-point with explicit
round to zero rounding
0C/OE 4 1 FCNV undefined
0C/OE 5 Convert from unsigned fixed-point to floating-point
0C/OE 6 Convert from floating-point to unsigned fixed-point
0C/OE 7 Convert from floating-point to unsigned fixed-point
with explicit round to zero rounding
0C/OE y 5 FCMP Arithmetic comparen(= 0)
oC y FTEST Test condition bih(= 1)
0C/OE 0 FADD Add
0C/OE 1 FSUB Subtract
0C/OE 2 FMPY Multiply & = 0)
0C/OE 3 3 FDIV Divide
oC 4 reserved
OE 4 undefined
0C/OE 5-6 reserved
0C/OE 7 undefined

While the coprocessor may simultaneously operate on more than one instruction, the coprocessor is
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restricted by the number of exception registers to executing no more than seven floating-point
operations at one time.

All the operations which have at least one floating-point operand are considered arithmetic instructions
and will generate an invalid exception when operating on a signaling NaN, except FaOHKBNG-

POINT NEGATE FLOATING-POINT NEGATE ABSOLUTE VALUE FLOATING-POINT COPY, and
FLOATING-POINT ABSOLUTE VALUE instructions, which are considered non-arithmetic and never
generate any IEEE exceptions.

The FLOATING-POINT IDENTIFY andFLOATING-POINT TESTinstructions do not cause exceptions.

Table 8-9 shows the only fixed-point operation, its mnemonic, class and sub-opcode.
Table 8-9. Fixed-Point Operations

Opcode | Sub-op | x-bit | Class| Mnemonic | Operation
OE 2 1 3 XMPYU Fixed-point Multiply Unsigned

Operand Format Completers

For class 0, 2 and 3 operations, except FIMED-POINT MULTIPLY UNSIGNED, the source and
destination widths are the same and the instructions operate only on floating-point numbers. Except for
the FLOATING-POINT IDENTIFY, FLOATING-POINT TEST andFIXED-POINT MULTIPLY UNSIGNED
operations, each has an accompanying completer which specifies the data width the operation is using.

Table 8-10 shows the instruction completers and their corresponding format codes for the 0C and OE
opcodes.

Table 8-10. Single-Operation Instruction Format Completers

Opcode | Mnemonic Code | Description Data Size
0C/OE | <none> 0 single-word number 32 bits
0C/OE | SGL 0 single-word number| 32 bhits
0C/OE | DBL 1 double-word number 64 bits

oC QUAD 3 quad-word number 128 bits
oC 2 undefined

The Code field above indicates the encoding corresponding to each completer. The absence of a
completer specifies a single-word number. An operation witode value of 2 is an undefined
operation. In the OE opcode, orfpdevalues 0 and 1 can be specified.

The operations in class 1 (the conversion instructions) have two completers which specify the source
and destination formats independently. However, the floating-point to floating-point conversions single-
to-single and double-to-double in the OC and OE opcodes are undefined operations; In addition, in the
0C opcode, quad-to-quad floating-point conversion is an undefined operation (quad precision cannot be
specified in the OE opcode). Table 8-11 shows the conversion instruction completers and their
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corresponding format codes.

Table 8-11. Conversion Instruction Format Completers

Opcode | Mnemonic | Code | Description Data Size
SGL single-word floating-point
OC/OE | W 0 single-word signed integer 32 bits
uw single-word unsigned integer
DBL double-word floating-point
O0C/OE | DW 1 double-word signed integer 64 bits
UbDW double-word unsigned integer
QUAD qguad-word floating-point
oC Qw 3 quad-word signed integer 128 bits
uQw quad-word unsigned integer
oC 2 undefined

The Codefield above indicates the encoding corresponding to each completer, which appeas$ in the
anddf fields of the instruction. An operation wittCadevalue of 2 is an undefined operation. In the OE
opcode, onlyCodevalues 0 and 1 can be specified.

Comparison Conditions

The FLOATING-POINT COMPAREInstruction has an additional completer which indicates the condition
being tested. These conditions are listed in Table 8-12 which is derived from the IEEE standard.

Table 8-12. Floating-Point Compare Instruction Conditions

Relations Relations
Condition Code Condition Code
> | < | = | unordered > | < | = | unordered
false? F| F| F F 0 7<= T F| F F 16
false FI|F|F F* 1 > T|F|F F* 17
? F|F |F T 2 > T| F| F T 18
l<=> F|F|F T* 3 I<= T|F|F T* 19
= FIF|T F 4 1?2< T|F|T F 20
= FIF|T F* 5 >= T|F|T F* 21
?= FIF|T T 6 ?>= TIF| T T 22
l<> FIF|T T* 7 I< T |F|T T* 23
17>= FIT|F F 8 2= T|T|F F 24
< FI|T|F F* 9 <> T|T|F F* 25
?< FI|T]|F T 10 1= T|T|F T 26
I>= F|T |F T* 11 I=T TI|T|F T* 27
17> F|T|T F 12 1? T T| T F 28
<= FIT|T F* 13 <=> T|T|T F 29
7<= F|T|T T 14 true? T T| T T 30
1> F|T |T T* 15 true T|T|T T* 31
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Comparisons are exact and neither overflow or underflow. Between any two operands, one of four

mutually exclusive relations is possible: less than, equal, greater than, and unordered. The last case
arises when at least one operand is a NaN. Every NaN compares unordered with every operand,
including itself. Comparisons ignore the sign of zero, so +0 is equal to -0.

In the table aboveConditionis the condition mnemonic used in the assembly languag€aatels the
machine language encoding.

There are two types of floating-point compare instructions — targeted compares and queued compares.

« A targeted compare targets a specific bit of the compare array (CA) in the floating-point Status
Register (see the second format in Figure 8-6 on page 8-9). The CA-bit specified by the instruction
is set to the result in the appropriate relations column, 1 for a true result, O for false.

< A queued compare updates the compare queue (CQ) in the floating-point Status Register (see the
first format in Figure 8-6 on page 8-9). The CQ field in the floating-point Status Register is shifted
right by one bit (discarding the rightmost bit) and the C-bit is copied into CQ{0}. Then, the C-bit in
the floating-point Status Register is set to the result in the appropriate relations column, 1 for a true
result, O for false.

The asterisk (*) indicates that the instruction causes an invalid operation exception if its operands are
unordered. However, if at least one operand is a signaling NaN, the compare instruction always causes
an invalid operation exception.

Test Conditions
There are two types #LOATING-POINT TESTinstructions — targeted tests and queue tests.

» A targeted test tests a specific bit of the compare array (CA) in the floating-point Status Register
(see the second format in Figure 8-6 on page 8-9). If the CA-bit specified by the instruction is 1, the
PSWI[N] bit is set to 1. No condition may be specified for a targeted test.

* A gueue test tests for a specific condition in the C-bit and compare queue (CQ) in the floating-point
Status Register (see the first format in Figure 8-6 on page 8-9). Each queue test instruction has an
additional completer which indicates the condition being tested. These conditions are listed in
Table 8-13. If the condition being tested is true, the PSW[N] bit is set to 1.
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Table 8-13. Floating-Point Test Instruction Conditions

Completer| Description Condition Code
<none> Simple Test C== 0
ACC Graphics (12-bit) Trivial Accept C ==0 && CQ{0..10} == 1
ACC8 Graphics 8-bit Trivial Accept C==0&& CQ{0..6} == 5
ACC6 Graphics 6-bit Trivial Accept C==0&& CQ{0..4} == 9
ACC4 Graphics 4-bit Trivial Accept C==0&&CQ{0..2} == 13
ACC2 Graphics 2-bit Trivial Accept C==0&& CQ{0} == 17
REJ Graphics (12-bit) Trivial Reject C==1&& CQ{5}==1|] 2

CQ{0} == 1 && CQf6} == 11|
CQ{1}==1&& CQ7}==11]]|
CQ{2} ==1&& CQf8} == 11|
CQ{3}==1&& CQ9}==11]]
CQ{4}==1 && CQ{10} ==
REJ8 Graphics 8-bit Trivial Reject C==1&&CQ{3}==1]| 6
CQ{0} == 1 && CQf4} == 11|
CQ{1}==1&& CQ5} ==11]]
CQ{2} ==1 && CQ{6} ==

Fused-Operation Instructions

The floating-point instruction set includes instructions which perform a fused floating-point multiply
and add operation. Fused-operation instructions are four-operand instructions which perform a two-
input multiply whose intermediate result is optionally negated and is then added to the third input
operand. This final result is then rounded and placed in the destination register. That-is+(gst *

op2) + op3. These instructions are encoded using the 2E opcode.

The format of the fused-operation instructions is as follows:
2E ‘ rmil ‘ rm2 ‘ ra ‘rz‘ f ‘ ra ‘rl‘ t ‘ e‘ t
6 5 5 3 11 3 111 5

Figure 8-8. Fused-Operation Instruction Format

Therm1, rm2, andt fields specify the two source operands for the multiply and the destination operand
for the final result. These fields occupy the same positions within the instruction word as the operands of
a class 3 single-operation floating-point instruction. fehigeld specifies the source operand for the add
operation.

Table 8-14 lists the two fused-operation instructions, their mnemonics and sub-ops (encoded in the
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field).

Table 8-14. Fused-Operation Instructions

Sub-op | Mnemonic Operation

0 FMPYFADD Multiply Fused Add
1 FMPYNFADD | Multiply Negate Fused Add

The f field in the floating-point fused-operation instructions is the operand format completer. Only
single-word and double-word formats are supported. The interpretation of the format completer is the
same as for the single-operation OE opcode instructions as given in Table 8-10 on page 8-15.

Multiple-Operation Instructions

The floating-point instruction set includes instructions which perform more than one independent
floating-point operation. Multiple-operation instructions are five-operand instructions which combine a
three-operand multiply with a two-operand operation (ADD or SUB) of the form: .dedtst <op>
source. These instructions are encoded using the 06 and 26 opcodes.

The format of the multiple-operation instructions is as follows:
op ‘ rml ‘ rm2 ‘ ta ‘ ra ‘ f ‘ tm
6 5 5 5 5 1 5

Figure 8-9. Multiple-Operation Instruction Format

The rm1, rm2, andtm fields specify the two source operands and the destination operand for the
multiply operation. These fields occupy the same positions within the instruction word as the operands
of a class 3 single-operation floating-point instruction. Taeand ta fields specify source and
destination operands for the ALU operation.

The behavior of the multiple-operation instructions is undefineal $pecifies the same registertas
or if ta specifies the same register as anynuf, rm2, ortm. The behavior of these instructions is also
undefined ifra specifies double-precision register O or single-precision register 16L.

Table 8-15 lists the two multiple-operation instructions, their mnemonics and opcodes.

Table 8-15. Multiple-Operation Instructions

Opcode | Mnemonic | Operation

06 FMPYADD | Multiply/Add
26 FMPYSUB | Multiply/Subtract

Thef field in the floating-point multiple-operation instructions is the operand format completer. Only
single-word and double-word formats are supported. The interpretation of the format completer is given
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in Table 8-16.

Table 8-16. Multiple-Operation Instruction Format Completers

Mnemonic Code | Description Data Size
<none> or SGL 1 single-word number 32 hits
DBL 0 double-word number 64 bits
NOTE

Note that the instruction format completers for the multiple-operation instructions do not
follow the same pattern as those for the single-operation and fused-operation instructions.

Because the floating-point multiple-operation instructions have only five-bit operand specifiers, these
instructions operate on only 32 locations, even when the single-word data format is specified. When
double-word data is specified, the interpretation of these operand specifiers is the same as for the single-
operation instructions. For single-word data, however, the operand specifiers are restricted to the top 16
registers (32 locations). The details of the interpretation of the operand specifier field in the instruction

are shown in Table 8-17.
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Table 8-17. Single-Precision Operand Specifier Use in Multi-Operation Instructions

Regigtgr specif_ier Register selected
field in instruction
0 16L*
16 16R
1 17L
17 17R
2 18L
18 18R
3 19L
19 19R
4 20L
20 20R
5 21L
21 21R
6 22L
22 22R
7 23L
23 23R
8 24L
24 24R
9 25L
25 25R
10 26L
26 26R
11 27L
27 27R
12 28L
28 28R
13 29L
29 29R
14 30L
30 30R
15 31L
31 31R
*not allowed
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NOTE

Double-word Format Single-word Format
Operand Specifier Operand Specifier
ninjn (@assumed)In | n|{n|nj|n

ni|n
// L/R Select

nnnnn 1 nnnn

Register File Address Register File Address

The L/R Select bit in the single-word format specifies the suffix ‘L’ single-word register, bits 0
to 31, when 0, and the suffix ‘R’ single-word register, bits 32 to 63, when 1.

Rounding
The specification for the rounding operation from the IEEE standard is:

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit in
the destination’s format while signaling the inexact exception (7.5) [see “Inexact Exception”
on page 10-10]. Except for binary-decimal conversion (whose weaker conditions are specified
in 5.6 [not included]), every operation specified in Section 5 [see “Floating-point Operations”
on page 8-12] shall be performed as if it first produced an intermediate result correct to infinite
precision and with unbounded range, and then rounded that result according to one of the
modes in this section.

The rounding modes affect all arithmetic operations except comparison. The rounding modes
may affect the signs of zero sums (6.3) [see “Sign Bit” on page 8-24], and do affect the
thresholds beyond which overflow (7.3) [see “Overflow Exception” on page 10-11] and
underflow (7.4) [see “Underflow Exception” on page 10-12] may be signaled.

[8]4.1 Round to nearest. An implementation of this standard shall provide round to nearest as
the default rounding mode. In this mode the representable value nearest to the infinitely precise
result shall be delivered; if the two nearest representable values are equally near, the one with
its least-significant bit zero shall be delivered. However, an infinitely precise result with

E _
magnitude at least2 (2 -2 p) shall roundstowith no change in sign; herg,,,  and

p are determined by the destination format (83) [see “Floating-point Formats” on page 8-6]
unless overridden by a rounding precision mode (4.3) [not possible in PA-RISC].

[8]4.2 Directed Roundings. An implementation shall also provide three user-selectable
directed rounding modes: round toware,+ound toward-c, and round toward 0. When
rounding toward e, the result shall be the format's value (possibh) €losest to and no less
than the infinitely precise result. When rounding toweaxd the result shall be the format’'s
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value (possibly-) closest to and no greater than the infinitely precise result. When rounding
toward O, the result shall be the format’s value closest to and no greater in magnitude than the
infinitely precise result.

TheRM field in the Status Register determines the rounding mode.

While the above IEEE quote describes the process of rounding, an operation does not always return a
rounded result. The result of an operation may be affected if the operation causes an exception.

Infinity Arithmetic
From the standard:

[8]6.1 Infinity Arithmetic. Infinity arithmetic shall be construed as the limiting case of real
arithmetic with operands of arbitrarily large magnitude, when such a limit exists. Infinities
shall be interpreted in the affine sense, that is:

—oo < (every finite number< +oo

Arithmetic with an infinite operand is always exact and can only signal invalid and unimplemented
exceptions. An infinite result is created from finite operands only by a non-trapping overflow exception
or a non-trapping division-by-zero exception.

Operations With NaNs
From the standard:

[8]6.2 Operations with NaNs. Two different kinds of NaN, signaling and quiet, shall be
supported in all operations. Signaling NaNs afford values for uninitialized variables and
arithmetic-like enhancements (such as complex-affine infinities or extremely wide range) that
are not the subject of the standard. Quiet NaNs should, by means left to the implementor’s
discretion, afford retrospective diagnostic information inherited from invalid or unavailable
data and results. Propagation of the diagnostic information requires that information contained
in the NaNs be preserved through arithmetic operations and floating-point format conversions.

An operation causes an invalid exception when at least one operand is a signaling NaN and the
operation is any arithmetic operation. Also, certain compare operations cause an invalid exception if an
operand is a quiet NaN. See “Comparison Conditions” on page 8-16 for more detail.

Converting either a quiet or a signaling NaN to an integer format causes an invalid exception.

A NaN is created in two ways. Any operation that causes a non-trapping invalid exception returns a
guiet NaN. Otherwise, an operation returns a quiet NaN when at least one of its operands is a quiet
NaN, and the operation is any arithmetic operation.

An operation converts a signaling NaN to a quiet NaN when the operation causes a non-trapping invalid
exception and one of its operands is a signaling NaN. If both operands are signaling NaNs, the operation
converts the contents of the first operand (theegister).

An operation which converts a signaling NaN to a quiet NaN sets the first bit of the fragtion () to 0. If
the remaining bits in the fraction are all zerb§.(.bp_1 =0 ), the operation must set the second bit
in the fraction to 1. Otherwise, if the remainder of the fraction is not 0, an implementation has the option
of setting the second bit in the fraction to 1, or leaving it unchanged. Only the first and second bits in the
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fraction may change when creating a quiet NaN from a signaling NaN. The remaining fraction bits are
copied from the signaling NaN.

When one of its operands is a quiet NaN, but neither operand is a signaling NaN, an operation copies
the quiet NaN to the destination. If both operands are quiet NaNs] thegister is copied to the
destination.

The creation of a quiet NaN when neither input is a NaN sets the second fraction bit () to 1 and sets
each of the remaining fraction bits to 0.

A conversion operation which does not trap, and which converts a NaN to a smaller floating-point
format, preserves the most-significant portion of the fraction while returning a quiet NaN. But if the
most-significant portion of the fraction is all zeros, the second bit of the fraction must be set to 1 to
prevent the number from becoming an infinity. A conversion which does not trap, and which converts a
NaN to a larger floating-point format, augments the fraction with zeros to the right of the smaller
fraction while returning a quiet NaN.

Load and store instructions, as well as HMOATING-POINT NEGATE FLOATING-POINT NEGATE
ABSOLUTE VALUE, FLOATING-POINT COPY andFLOATING-POINT ABSOLUTE VALUE instructions,
are not arithmetic and do not signal an invalid operation exception.

Sign Bit
From the standard:

[8]6.3 The sign bit. This standard does not interpret the sign of a NaN. Otherwise the sign of a
product or quotient is the exclusive OR of the operands’ signs; and the sign of the sum, or of a
differencex—y regarded as a sux¥ (-y) , differs from at most one of the addends’ signs.
These rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two operands with like
signs) is exactly zero, the sign of that sum (or difference) shall be "+" in all rounding modes

except round towaredoo, in which mode the sign shall be™' However, x+ x = X—(—X)
retains the same sign agven wherx is zero.

Except that/~0 shall be-0", every valid square root shall have positive sign.
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9 Floating-Point Instruction Set

This chapter pvides a description of each of the instructions supported by the floating-point
coprocesso The instructions are listed in alphabetical ordecording to the name of the instruction -
as opposed to the instruction mnemonic.

The Description section of each non-load/store instruction contains a list of the Floating-Point
Exceptions which the instruction may cause. Each instruction descriptiom aseptionssection

which lists the processor interruptions that may occur while the instruction is pointed to by the front of
the 1A queues.

In the following pages, the notation, FPR, refers to floating-point coprocessgsters 0 through 31.

FPSR refers to the Floating-point Status Register. Refer to “Instruction Notations” on page xviii for the
explanation of the operation section. The mem_load and the mem_store descriptions are located in
“Memory Reference Instructions” on pa-6.
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Floating-Point Absolute Value FABS

Format: FABS,fmt rt

(49) 0E \ r \ 0 \ 3 \o\f\ 0 \o\r\t\o\ t
6 5 5 3 11 2 1111 5
(45) 0C \ r \ 0 \ 3 \fmt\ 0 \ 0 \o\ t
6 5 3 2 2 3 1 5

Purpose: To perform a floating-point absolute value.

Description: The floating-point register specified bys copied to the floating-point register specified
by t with the sign bit set to 0. This instruction is non-arithmetic and does not cause an
invalid operation exception when the sign of a NaN is set to 0.

Floating-point exceptions:
¢ Unimplemented

Operation: FPR[t){all_bits_except_sign}—~ FPR[r|{all_bits_except_sign};
FPR[t}{sign_bit} ~ O;

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Add FADD

Format: FADD,fmt rl1,r2;t

(52) 0E \ rl \ r2 \ 0 \rz\f\ 3 \o\rl\t\o\ t
6 5 5 3 11 2 1111 5
(48) 0C \ ri \ r2 \ 0 \fmt\ 3 \ 0 \o\ t
6 5 5 3 2 2 3 1 5

Purpose: To perform a floating-point addition.

Description: The floating-point registers specified lyandr2 are interpreted in the specified format
and arithmetically added. The result is calculated to infinite precision and then rounded to
the specified format according to the current rounding mode. The result is placed in the
floating-point register specified lby
Floating-point exceptions:

¢ Unimplemented
« Invalid operation
* Overflow

e Underflow

* Inexact

Operation: FPR[t] — FPR[r1] + FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Compare FCMP

Format: FCMP,fmt,cond rl1,r2,cbit /*targeted compare*/
FCMP,fmt,cond r1,r2 /*queued compare*/
(51) OE | | 2 | y [2f] 2 |o||o]o] c
6 5 5 3 11 2 1111 5
47) oc | | 2 | y |mt|]2]| o |of c
6 5 5 3 2 2 3 1 5

Purpose: To perform a floating-point comparison.

Description: The floating-point registers specified lyandr2 are interpreted in the specified format
and arithmetically compared. A result is determined based on the comparison and the
condition,cond The condition is encoded in thdield of the instruction.

There are two types of floating-point compare instructions — targeted compares and
queued compares.

« A targeted compare targets a specific bit of the compare array (CA) in the floating-
point Status Register (see the second format in Figure 8-6 on page 8-9.) The CA-bit
specified bychit is set to 1 if the comparison result is true, or set to 0 otherwise. The
CA-bit to set is encoded in tlydfield of the instruction asbit + 1.

* A queued compare updates the compare queue (CQ) in the floating-point Status
Register (see the first format in Figure 8-6 on page 8-9) and is specified by omitting
the cbit operand. The CQ field in the floating-point Status Register is shifted right by
one bit (discarding the rightmost bit) and the C-bit is copied into CQ{0}. Then, if the
comparison result is true, the C-bit in the floating-point Status Register is set to 1,
otherwise the C-bit is set to 0. A queued compare is encoded witald of 0.

If at least one of the values is a signaling NaN, or if at least one of the values is a NaN and
the low-order bit of the condition is 1, an invalid operation exception is signaled.

For unimplemented and trapped invalid operation exceptions, the state of the C-bit and CA
field is unchanged, and the CQ field is not shifted.

For untrapped invalid operation exceptions, the state of the C-bit, or the CA-bit specified
by the instruction is the AND of the unordered relation (which is true) and bit 3 of the
field.

Comparisons are exact and neither overflow nor underflow. Four mutually exclusive
relations are possible resultess thanequal greater than andunordered The last case
arises when at least one operand is a NaN. Every NaN compaoedered with
everything, including itself. Comparisons ignore the sign of zero+8o= -0
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Operation:

Exceptions:

PA-RISC 2.0 Architecture

Floating-point exceptions:
¢ Unimplemented
« Invalid operation

if (NaN(FPR[r1]) || NaN(FPR[r2]))
if (c{4})
invalid_operation_exception;
else {
greater_than— false;
less_than- false;
equal_to ~ false;
unordered — true;
}
else {
greater_than— FPR[rl] > FPR[r2];
less_than—~ FPR[rl] < FPR][r2];
equal_to « FPR[rl] = FPR[r2];
unordered — false;

}
it (y) {
FPSR[CA{y-1}] < (((c{0} ==1) && greater_than) ||
((c{1} ==1) && less_than) ||
((c{2} == 1) && equal_to) ||
((c{3} == 1) && unordered));
}else {
FPSR[CQ] ~ rshift(FPSR[CQ],1);
FPSR[CQ{0}] - FPSRIC];
FPSRIC] « (((c{0} == 1) && greater_than) ||
((c{1} == 1) && less_than) ||
((c{2} == 1) && equal_to) ||
((c{3} == 1) && unordered));
}

Assist emulation trap
Assist exception trap

[*targeted compare*/

/*queued compare*/
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Floating-Point Convert FCNV

Format: FCNV,sf,df rt
FCNVt,sf,df rt

(50) 0E \ r \ 0 \ sub \o\df\o\sf\ 1 \o\r\t\o\ t
6 5 3 3 1111 2 1111 5
(46) 0C \ r \ 0 \ sub \ df \ sf \ 1 \ 0 \o\ t
6 5 3 3 2 2 2 3 1 5

Purpose: To change the value in a floating-point register from one format to a different format.

Description: The floating-point register specified bys interpreted in the specified source fornsét,
and arithmetically converted to the specified destination fohathe result is placed in
the floating-point register specified by

Thesfanddf completers specify both the type of conversion and the size of the source and
destination formats, and are encoded inghl sf anddf fields of the instruction (see
Table 8-8 on page 8-14 and Table 8-11 on page 8-16.)

If the “;t” (truncate) completer is specified, the current rounding mode is ignored and the
result is rounded toward zero. Otherwise, rounding occurs according to the currently
specified rounding mode.
Floating-point exceptions:

* Unimplemented

« Invalid operation

« Overflow

« Underflow

* Inexact
" Not reported unless both source and destination formats are floating-point formats.

Operation:  if (truncate)
FPR[t] — convert(FPR][r],sf,df,ROUND_TOWARD_ZERO);
else
FPR[t] « convert(FPR[r],sf,df,FPSR[RM]);

Exceptions: Assist emulation trap
Assist exception trap

Restrictions: The",t” completer may only be specified with a fixed-point destination format.
Specifying the same source and destination format is an undefined operation.

Specifying any quadword format in the OE opcode is an undefined operation.
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Floating-Point Copy FCPY

Format: FCPY,fmt rt

(49) 0E \ r \ 0 \ 2 \o\f\ 0 \o\r\t\o\ t
6 5 5 3 11 2 1111 5
(45) 0C \ r \ 0 \ 2 \fmt\ 0 \ 0 \o\ t
6 5 5 3 2 2 3 1 5

Purpose: To copy a floating-point value to another floating-point register.

Description: The floating-point register specified bys copied into the floating-point register specified
by t. This operation is non-arithmetic and does not cause an invalid operation exception
when a NaN is copied.

Floating-point exceptions:
¢ Unimplemented

Operation: FPR[t] - FPR[r];

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Divide FDIV

Format: FDIV,fmt r1,r2,t

(52) 0E \ rl \ r2 \ 3 \rz\f\ 3 \o\rl\t\o\ t
6 5 5 3 11 2 1111 5
(48) 0C \ ri \ r2 \ 3 \fmt\ 3 \ 0 \o\ t
6 5 5 3 2 2 3 1 5

Purpose: To perform a floating-point division.

Description: The floating-point registers specified lyandr2 are interpreted in the specified format
and arithmetically divided. The result is calculated to infinite precision and then rounded
to the specified format according to the current rounding mode. The result is placed in the
floating-point register specified lby
Floating-point exceptions:

¢ Unimplemented
« Invalid operation
« Division-by-zero
e Overflow

¢ Underflow

* |Inexact

Operation: FPR[t] « FPR[rl]/FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Identify FID

Format: FID
(45) 0C \ 0 0 \ 0 \ 0 \ 0 \ 0 \o\ 0
6 5 5 3 2 2 3 1 5

Purpose: To validate fields in the Status Register which identify the floating-point coprocessor.

Description: The modelandrevisionfields in the Status Register become defined. The contents of the
other fields in the Status Register are undefined after the execution of this instruction. The
model and revision fields remain defined until a floating-point instruction is executed
which is not a double-word store of register 0.

Floating-point exceptions:
* None

Operation: FPSR[model]~ implementation-dependent model number
FPSRJrevision]— implementation-dependent revision number

Exceptions: Assist emulation trap

Notes: This instruction must be implemented. Software may use the following sequence to obtain
themodelandrevisionfields in the Status Register:
.CODE
LDIL L%fpreg0,r2 ; load address of
LDO R%fpreg0(r2),r2 ; fp reg0 save area
FSTD fr0,0(r2) ; save fp reg0, cancel exception traps
FID ; identify coprocessor
LDIL L%version,r2 ; load address of
LDO R%version(r2),r2  ; model/rev save area
FSTD fr0,0(r2) ; store coprocessor id, cancel
; exception traps
.DATA
fpreg0  .DOUBLE 0
version .DOUBLE 0

For the FID instruction to work correctly, the floating-point instructions immediately
preceding and following it must be double-word stores of Floating-Point Register 0. If not,
the instruction is an undefined operation.

The sequence described will work in user mode. For example, if a context switch occurs
just prior toFID but after the firsESTD 0,0(2)instruction, the floating-point state save and
state restore sequence will restore the state of the Status Register ("T" bit off, cancel trap)
just prior to the execution &fiD.
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Floating-Point Load Doubleword FLDD

Format:

©)

(41)

(39)

Purpose:

Description:

FLDD,cmplt,cc x|d{b),t

14 \ b \ t \ s \ im10a \m\a\l\i
6 5 5 2 10 1111
0B ‘ b ‘ im5 ‘ S ‘a‘l‘ cc ‘0‘ 0 ‘O‘m‘ t
6 5 5 2 11 2 1 2 11 5
0B \ b \ X \ s \u\o\ cc\o\ 0 \o\m\ t
6 5 5 2 11 2 1 2 11 5

To load a doubleword into a floating-point coprocessor register.

The aligned doubleword at the effective address is loaded into floating-point redisesr

offset is formed as the sum of a base regibtemd either an index register(Format 39),

or a displacemerd. The displacement can be either long (Format 3) or short (Format 41.)
The displacement is encoded into the immediate field. Optional base modification can also
be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the index register or displacement. The completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completercc, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long and short displacements, a one imitield specifies base modification, and the
a field encodes whether pre-modificati@{), or post-modificationaE0) is performed.
For indexed loads, a one in thefield specifies base modification, and a one irnutheld
specifies index prescaling.

Specifying Floating-Point Register 0 forces the coprocessor to complete all previous
floating-point instructions.
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Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[X],3);
break;
case M:
default: dx—~ GR[X];
break;
}
elseif (d >15]|d <-16) { /* long displacement */
dx « sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3) */
cc — NO_HINT;
} else * short displacement */
dx < low_sign_ext(im5,5); /* (Format 41) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
FPR[t] « mem_load(space,offset,0,63,cc);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Assist emulation trap
Data memory protection ID trap

Restrictions: For loads with long displacements (Format 3), only displacements which are multiples of
eight may be used.

If the completeO is specified, the displacement must be 0.
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Floating-Point Load Word FLDW

Format:

(43)

(44)

(41)

(39)

Purpose:

Description:

FLDW,cmplt,cc x|d{b),t

17 \ b \ t \ s\ imlla \o\t\i
6 5 5 2 11 111
16 ‘ b ‘ t ‘ s‘ imlla ‘a‘t‘i
6 5 5 2 11 111
09 \ b \ im5 \ s \a\l\ cc\o\ 0 Mm\ t
6 5 5 2 11 2 1 2 11 5
09 ‘ b ‘ X ‘ S ‘u‘o‘ cc‘o‘ 0 ‘t‘m‘ t
6 5 5 2 11 2 1 2 11 5

To load a word into a floating-point coprocessor register.

The aligned word at the effective address is loaded into floating-point regiber offset

is formed as the sum of a base regidieand either an index regist&r(Format 39), or a
displacemend.. The displacement can be either long (Formats 43 and 44) or short (Format
41.) The displacement is encoded into the immediate field. Optional base modification can
also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. This completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completerce, specifies the cache control hint (see Table 6-7 on page 6-10.)

For long displacements with base modification, Format 44 is used, aafi¢ltbencodes
whether pre-modificationagl), or post-modification aE0) is performed. For long
displacements with no base modification, Format 43 is used.

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed loads, a one in tme field specifies base modification, and a one inutfield
specifies index prescaling.

Specifying floating-point registers OR, 1L, 1R, 2L, 2R, 3L, or 3R is an undefined
operation. Specifying Floating-Point Register OL forces the coprocessor to complete all
previous floating-point instructions. However, loading Floating-Point Register OL with a
value that sets the Status Register T-bit to 1 is an undefined operation.
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Operation: if (indexed_load) /* indexed (Format 39)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[x],2);
break;
case M:
default: dx—~ GR[X];
break;
}
elseif (d >15]|d <-16) { /* long displacement */
dx « sign_ext(assemble_16a(s,im11a,i),16); /* (Formats 43 and 44) */
cc — NO_HINT;
} else * short displacement */
dx < low_sign_ext(im5,5); /* (Format 41) */

space— space_select(s,GR[b],format);
switch (cmplt) {
case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;
case MA:
case M:
case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;
break;
default: offset— GR[b] + dx;
break;
}
FPR[t] « mem_load(space,offset,0,31,cc);
if (cmplt == O)
enforce_ordered_load,;

Exceptions: Assist exception trap Unaligned data reference trap
Data TLB miss fault/data page fault Page reference trap
Data memory access rights trap Assist emulation trap
Data memory protection ID trap

Restrictions: For loads with long displacements (Formats 43 and 44), only displacements which are
multiples of four may be used.

If the completeO is specified, the displacement must be 0.
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Floating-Point Multiply FMPY

Format: FMPY,fmt rl1,r2t

(52) 0E \ rl \ r2 \ 2 \rz\f\ 3 \o\rl\t\o\ t
6 5 5 3 11 2 1111 5
(48) 0C \ ri \ r2 \ 2 \fmt\ 3 \ 0 \o\ t
6 5 5 3 2 2 3 1 5

Purpose: To perform a floating-point multiply.

Description: The floating-point registers specified lyandr2 are interpreted in the specified format
and arithmetically multiplied. The result is calculated to infinite precision and then
rounded to the specified format according to the current rounding mode. The result is
placed in the floating-point register specifiedt.by
Floating-point exceptions:

* Unimplemented
« Invalid operation
* Overflow

e Underflow

* Inexact

Operation: FPR[t] — FPR[r1] * FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Multiply/Add FMPYADD

Format: FMPYADD,fmt rmi,rm2,tm,ra,ta

(53) 06 rml ‘ rm2 ‘ ta ra ‘ f ‘ tm
6 5 5 5 5 1 5

Purpose:  To perform a floating-point multiply and a floating-point add.

Description: The floating-point egisters specifiedyprml1 ard rm2 are interpreted in the specified
format and arithmetically multiplied. The result is calculated to infinite precision and then
rounded to the specified format according to the current rounding mode. The result is
placed in the floating-poinegister specified yotm.

The floating-point egisters specifiedybta ard ra are interpreted in the specified format
and arithmetically added. The result is calculated to infinite precision and then rounded to
the specified format according to the current rounding mode. The result is placed in the
floating-point egister specified yta.

The belavior of this instruction is undefinefiria specifies the samegister &tm, or if ta
specifies the samegister as ay of rm1, rm2, or tm. The belvior of this instruction is
also undefined ira specifies double-precisiongister 0 or single-precisiorgister 16L.
Floating-pointexceptions:

e Unimplemented

« Invalid operation (see Notes) E

« Overflow (see Notes)

* Underfow (see Notes)

 Inexact (see Notes)

Operation: FPR[tn] « FPR[rm1] * FPR[rm2];
FPR[t§ — FPR[ta] + FPR[ral;

Exceptions: Assist emulation trap
Assistexception trap

Notes: When operating on single-precision operands, eagibter field specifies one ofgisters
16L through 31L, or one of 16R through 31R. $able 8-17 on pag8-21 for the egister
specifier encodings.

This instruction can be decomposed into FMPY &AMDD and then the full set of
floating-pointexceptions can be reported (see "Exception Registers" on page 10-1).
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Errata
Previously, the "see Notes" and the pointer to page 10-1 in the Notes section were missing.


Floating-Point Multiply Fused Add FMPYFADD

Format: FMPYFADD,fmt rml1,rm2,ra,t
(54) 2E rml ‘ rm2 ‘ ra ‘rz‘ f ‘ ra ‘rl‘ t ‘0‘ t
6 5 5 3 11 3 111 5

Purpose: To perform a floating-point multiply and fused add.

Description: The floating-point egisters specifiedyprml1 ard rm2 are interpreted in the specified
format and arithmetically multiplied. The intermediate result is calculated to infinite
precision with an unboundezkponent (and is not rounded.) The floating-pogafister
specified § ra is interpreted in the specified format, arithmetically added to the result
obtained by the multiply operation and then rounded to the specified format according to
the current rounding mode. The result is placed in the floating-fgister specified yot.

Floating-pointexceptions:
« Unimplemented E

Operation: FPR[] « (FPR[rm1] * FPR[rm2]) + FPR][ra];

Exceptions: Assist emulation trap
Assistexception trap
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Errata
Previously, Invalid operation, Overflow, Underflow, and Inexact, were listed as possible exceptions, but these cannot be reported on this instruction.  See "Exception Registers" on page 10-1 for details.


Floating-Point Multiply Ngate Fused Add FMPYNFADD

Format: FMPYNFADD,fmt rm1,rm2,rat
(54) 2E ‘ rml ‘ rm2 ‘ ra ‘rz‘ f ‘ ra ‘rl‘ t ‘ 1‘ t
6 5 5 3 11 3 111 5

Purpose: To perform a floating-point multipl negate, and fused add.

Description: The floating-point egisters specifiedyprml1 ard rm2 are interpreted in the specified
format and arithmetically multiplied. The intermediate result is calculated to infinite
precision with an unboundezkponent (and is not rounded.) The floating-pogafister
specified g ra is interpreted in the specified format, arithmetically added todieted
result obtained by the multiply operation and then rounded to the specified format
according to the current rounding mode. The result is placed in the floating-point register
specified iy t.

Floating-pointexceptions:
e Unimplemented

Operation: FPR[] « —(FPR[rm1] * FPR[rm2]) + FPR[ra];

Exceptions: Assist emulation trap
Assistexception trap
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Errata
Previously, Invalid operation, Overflow, Underflow, and Inexact, were listed as possible exceptions, but these cannot be reported on this instruction.  See "Exception Registers" on page 10-1 for details


Floating-Point Multiply/Subtract FMPYSUB

Format: FMPYSUB,fmt rml,rm2,tm,ra,ta

(53) 26 rml ‘ rm2 ‘ ta ra ‘ f ‘ tm
6 5 5 5 5 1 5

Purpose: To perform a floating-point multiply and a floating-point subtract.

Description: The floating-point egisters specifiedyprml1 ard rm2 are interpreted in the specified
format and arithmetically multiplied. The result is calculated to infinite precision and then
rounded to the specified format according to the current rounding mode. The result is
placed in the floating-poinegister specified yotm.

The floating-point egisters specifiedybta ard ra are interpreted in the specified format
and arithmetically subtracted. The result is calculated to infinite precision and then
rounded to the specified format according to the current rounding mode. The result is
placed in the floating-poinegister specified ta.

The belavior of this instruction is undefinefiria specifies the samegister &tm, or if ta
specifies the samegister as ay of rm1, rm2, or tm. The belvior of this instruction is
also undefined ira specifies double-precisiongister 0 or single-precisiomgister 16L.
Floating-pointexceptions:

¢ Unimplemented

« Invalid operation (see Notes) E

« Overflow (see Notes)

* Underfow (see Notes)

 Inexact (see Notes)

Operation: FPR[tn] « FPR[rm1] * FPR[rm2];
FPR[td ~ FPR[ta] - FPR[ra];

Exceptions: Assist emulation trap
Assistexception trap

Notes: When operating on single-precision operands, eagibter field specifies one ofgisters
16L through 31L, or one of 16R through 31R. $able 8-17 on pag8-21 for the egister
specifier encodings.

This instruction can be decomposed into FMPY and FSUB and then the full set of
floating-pointexceptions can be reported (see "Exception Registers" on page 10-1).
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Errata
Previously, the "see Notes" and the pointer to page 10-1 in the Notes section  were missing.


Floating-Point Negate FNEG

Format: FNEG,fmt rt

(49) OE \ r \ 0 \ 6 \o\f\ 0 \o\r\t\o\ t
6 5 5 3 11 2 1111 5

(45) oc \ r \ 0 \ 6 \fmt\ 0 \ 0 \o\ t
6 5 3 2 2 3 1 5

Purpose: To negate a floating-point value.

Description: The floating-point register specified bys copied into the floating-point register specified
by t and negated. This operation is non-arithmetic and does not cause an invalid operation
exception when a NaN is negated.

Floating-point exceptions:
¢ Unimplemented

Operation: FPR[t){all_bits_except_sign}—~ FPR[r|{all_bits_except_sign};
FPR[t|{sign_bit} — [FPR[r}{sign_bit};

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Negate Absolute Value FNEGABS

Format: FNEGABS,fmt rt

(49) 0E \ r \ 0 \ 7 \o\f\ 0 \o\r\t\o\ t
6 5 5 3 11 2 1111 5
(45) 0C \ r \ 0 \ 7 \fmt\ 0 \ 0 \o\ t
6 5 3 2 2 3 1 5

Purpose: To negate a floating-point absolute value.

Description: The floating-point register specified bys copied into the floating-point register specified
by t with the sign bit set to 1. This operation is non-arithmetic and does not cause an
invalid operation exception when the sign of a NaN is set to 1.

Floating-point exceptions:
¢ Unimplemented

Operation: FPR[t){all_bits_except_sign}—~ FPR[r|{all_bits_except_sign};
FPR[t{sign_bit} ~ 1,

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Round to Integer FRND

Format: FRND,fmt rt

(49) OE \ r \ 0 \ 5 \o\f\ 0 \o\r\t\o\ t
6 5 5 3 11 2 1111 5

(45) oc \ r \ 0 \ 5 \fmt\ 0 \ 0 \o\ t
6 5 5 3 2 2 3 1 5

Purpose: To round a floating-point value to an integral value.

Description: The floating-point register specified byis interpreted in the specified format and
arithmetically rounded to an integral value. This result remains a floating-point number.
Results are rounded according to the current rounding mode with the proviso that when
rounding to nearest, if the difference between the unrounded operand and the rounded
result is exactly one half, the rounded result is even. The result is placed in the floating-

point register specified by An inexact exception is signaled when the result and source
are not the same.

Floating-point exceptions:
¢ Unimplemented
« Invalid operation
* Inexact

Operation: FPRJ[t] —~ floating_point_round(FPR([r]);

Exceptions: Assist emulation trap
Assist exception trap

PA-RISC 2.0 Architecture Floating-Point Instruction Set9-21



Floating-Point Square Root FSQRT

Format: FSQRT,fmt rt

(49) 0E \ r \ 0 \ 4 \o\f\ 0 \o\r\t\o\ t
6 5 5 3 11 2 1111 5
(45) 0C \ r \ 0 \ 4 \fmt\ 0 \ 0 \o\ t
6 5 3 2 2 3 1 5

Purpose: To perform a floating-point square root.

Description: The floating-point register specified byis interpreted in the specified format and the
positive arithmetic square root is taken. The result is calculated to infinite precision and
then rounded to the specified format according to the current rounding mode. If the source
register contains-0 , the result will beD . The result is placed in the floating-point
register specified bl
Floating-point exceptions:

* Unimplemented
« Invalid operation
* Inexact

Operation: FPR[t] « square_root(FPR[r]);

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Store Doubleword FSTD

Format:

©)

(42)

(40)

Purpose:

Description:

FSTD,cmplt,cc r,x|d(b)

1C \ b \ t \ s \ im10a \m\a\l\i
6 5 5 2 10 1111
0B b im5 S ‘a‘l‘ cc ‘1‘ 0 ‘O‘m‘ r
6 5 5 2 11 2 1 2 11 5
0B \ b \ X \ s \u\o\ cc\l\ 0 \o\m\ r
6 5 5 2 11 2 1 2 11 5

To store a doubleword from a floating-point coprocessor register.

Floating-point register is stored in the aligned doubleword at the effective address. The
offset is formed as the sum of a base regibtemd either an index registeriFormat 40),

or a displacemerd. The displacement can be either long (Format 3) or short (Format 42.)
The displacement is encoded into the immediate field. Optional base modification can also
be performed.

The completercmplt, determines whether the offset is the base register, or the base
register plus the index register or displacement. This completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completercc, specifies the cache control hint (see Table 6-8 on page 6-10.)

For long and short displacements, a one imitield specifies base modification, and the
a field encodes whether pre-modificati@{), or post-modificationaE0) is performed.
For indexed stores, a one in thdield specifies base modification, and a one irutfield
specifies index prescaling.

Specifying Floating-Point Register 0 forces the coprocessor to complete all previous
floating-point instructions and sets the Status Register T-bit to 0 following completion of
the store.
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Operation: if (indexed_store) [* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[X],3);
break;
case M:
default: dx~ GR[X];
break;
elseif (d >15]|d <-16) { /* long displacement */
dx ~ sign_ext(assemble_16a(s,cat(im10a,0),i),16); /* (Format 3) */
cc — NO_HINT;
} else * short displacement */
dx < low_sign_ext(im5,5); [* (Format 42) */
space— space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;

case MA:

case M:

case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;

break;
default: offset— GR[b] + dx;
break;
}
mem_store(space,offset,0,63,cc,FPR[r]);
Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Assist emulation trap

Unaligned data reference trap

Restrictions: For stores with long displacements (Format 3), only displacements which are multiples of
eight may be used.

If the completeO is specified, the displacement must be 0.
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Floating-Point Store Word FSTW

Format:

(43)

(44)

(42)

(40)

Purpose:

Description:

FSTW,cmplt,cc rx|d(b)

1F | b | r | s | imlla o] r]i
6 5 5 2 11 111
1E ‘ b ‘ r ‘ s‘ imlla ‘a‘r‘i
6 5 5 2 11 111
09 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘l‘ 0 ‘r‘m‘ r
6 5 5 2 11 2 1 2 11 5
09 ‘ b ‘ X ‘ S ‘u‘o‘ cc‘l‘ 0 ‘r‘m‘ r
6 5 5 2 11 2 1 2 11 5

To store a word from a floating-point coprocessor register.

Floating-point register is stored in the aligned word at the effective address. The offset is
formed as the sum of a base regidberand either an index register(Format 40), or a
displacemend.. The displacement can be either long (Formats 43 and 44) or short (Format
42.) The displacement is encoded into the immediate field. Optional base modification can
also be performed.

The completercmplt determines whether the offset is the base register, or the base
register plus the index register or displacement. This completer also specifies base register
modification, optional index prescaling, and ordering constraints (see Table H-1 on
page H-4, and Table H-3 on page H-8 for the assembly language completer mnemonics.)
The completerce, specifies the cache control hint (see Table 6-8 on page 6-10.)

For long displacements with base modification, Format 44 is used, aafi¢lteencodes
whether pre-modificationagl), or post-modification aE0) is performed. For long
displacements with no base modification, Format 43 is used.

For short displacements, a one in thdield specifies base modification, and ¢héeld
encodes whether pre-modificatioa={), or post-modificationa&0) is performed. For
indexed stores, a one in thefield specifies base modification, and a one inutfield
specifies index prescaling.

Specifying floating-point registers OR, 1L, 1R, 2L, 2R, 3L, or 3R is an undefined
operation. Specifying Floating-Point Register OL forces the coprocessor to complete all
previous floating-point instructions.
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Operation: if (indexed_store) [* indexed (Format 40)*/
switch (cmplt) {

case S:
case SM:  dx- Ishift(GR[x],2);
break;
case M:
default: dx~ GR[X];
break;
}
elseif (d >15]|d <-16) { /* long displacement */
dx ~ sign_ext(assemble_16a(s,im11a,i),16); /* (Formats 43 and 44) */
cc — NO_HINT;
} else * short displacement */
dx < low_sign_ext(im5,5); [* (Format 42) */
space— space_select(s,GR[b],format);
if (cmplt == O)

enforce_ordered_store;
switch (cmplt) {

case MB:  offset- GR[b] + dx;
GRI[b] « GR[b] + dx;
break;

case MA:

case M:

case SM:  offset- GR[b];
GRI[b] « GR[b] + dx;

break;
default: offset— GR[b] + dx;
break;
}
mem_store(space,offset,0,31,cc,FPR[r]);
Exceptions: Assist exception trap Data memory break trap
Data TLB miss fault/data page fault TLB dirty bit trap
Data memory access rights trap Page reference trap
Data memory protection ID trap Assist emulation trap

Unaligned data reference trap

Restrictions: For stores with long displacements (Formats 43 and 44), only displacements which are
multiples of four may be used.

If the completeO is specified, the displacement must be 0.
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Floating-Point Subtract FSUB

Format: FSUB,fmt rl1,r2;t

(52) 0E \ rl \ r2 \ 1 \rz\f\ 3 \o\rl\t\o\ t
6 5 5 3 11 2 1111 5
(48) 0C \ ri \ r2 \ 1 \fmt\ 3 \ 0 \o\ t
6 5 5 3 2 2 3 1 5

Purpose: To perform a floating-point subtraction.

Description: The floating-point registers specified lyandr2 are interpreted in the specified format
and arithmetically subtracted. The result is calculated to infinite precision and then
rounded to the specified format according to the current rounding mode. The result is
placed in the floating-point register specifiedt by
Floating-point exceptions:

¢ Unimplemented
« Invalid operation
* Overflow

e Underflow

* Inexact

Operation: FPR[t] — FPR[rl]- FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap
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Floating-Point Test FTEST

Format:

(47)

Purpose:

Description:

Conditions:

Operation:

Exceptions:

Restrictions:

FTEST chit [*targeted test*/
FTEST,cond /*queue test*/
ocC 0 o |y |o|2] o |1 ¢
6 3 2 2 3 1 5

To test the results of one or more earlier comparisons.

The specified condition in the floating-point Status Register is tested. The coruditidn,
is encoded in the field of the instruction. If the condition is satisfied, then the following
instruction is nullified.

There are two types of floating-point test instructions — targeted tests and queue tests.

» A targeted test tests a specific bit of the compare array (CA) in the floating-point
Status Register (see the second format in Figure 8-6 on page 8-9.) If the CA-bit
specified bycbitis 1, the PSW[N] bit is set to 1. The CA-bit to test is encoded in the
field of the instruction as xarpit+1,1.) No condition may be specified for a targeted
test and the field must be 0.

< A queue test tests for a specific condition in the C-bit and compare queue (CQ) in the
floating-point Status Register (see the first format in Figure 8-6 on page 8-9) and is
specified by omitting thebit operand. A queue test is encoded withfizld of 1.
Floating-point exceptions:
* None

For targeted tests, no condition may be specified. For queue tests, the condition is any of
the conditions shown in Table 8-13 on page 8-18. When a condition completer is not
specified, the “Simple Test” (C == 1) condition is used. The boolean variable
“cond_satisfied” in the operation section is set when the specified condition is satisfied.

if (y==1){ [*queue test*/
if (cond_satisfied)
PSW[N] < 1;
}else { [*targeted test*/
if (FPSR[CA{xor(y,1)-1}]) { I*test CA{cbit}*/
PSWIN] < 1
}

Assist emulation trap
Assist exception trap

It is an undefined operation to mix targete@MP instructions with queueTEST
instructions or to mix queueCMPs with targeted=TESTs. For a targete8TEST to be
defined, anFCMP to the same CA bit must precede it without any intervening queued
FCMP For a queu€TESTto be defined, enough queustivPs must be executed to define
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the CQ bits being tested without any intervening targe@dpPs. Any FTEST may follow
a load of the FPSR, because the load defines all of the C-, CA-, and CQ-bits.

Notes: This instruction must be implemented, may not be queued and may not cause any assist
exception traps. However, any assist exception traps caused by previous instructions may
be taken while this instruction is in the IA queue.
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Fixed-point Multiply Unsigned XMPYU

Format: XMPYU rl1,r2,t
(52) OE rl \ r2 \ 2 \rz\o\ 3 \1\r1\o\o\ t
6 5 5 3 11 2 1111 5

Purpose: To perform unsigned fixed-point multiplication.

Description: The floating-point registers specified by andr2 are interpreted as unsigned 32-bit
integers and arithmetically multiplied. The unsigned 64-bit result is placed in the floating-
point register specified dy

Floating-point exceptions:
e Unimplemented

Operation: FPRJt] « FPR[r1] * FPR[r2];

Exceptions: Assist emulation trap
Assist exception trap
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10 Floating-Point Exceptions

Floating-point instructions may cause an interruption in the processor, an exception in the coprocessor,
or both. Interruptions are described in Chapter 5, “Interruptions” and always force the processor to

branch to a location in the Interruption Vector Table. Floating-point coprocessor exceptions may or may

not force the processor to trap (that is, force the processor to take an interruption). In this chapter, an
instruction which causes a floating-point exception is called an excepting instruction.

Floating-point exceptions are divided into immediate trapping exceptions and delayed trapping
exceptions. Immediate trapping exceptions always force the processor to trap. Delayed trapping
exceptions are further divided into exceptions that always trap, and exceptions that will trap only when
the corresponding trap is enabled. An immediate trapping exception forces the processor to signal an
assist exception trap when the excepting instruction is the current instruction being executed. A delayed
trapping exception forces the processor to signal an assist exception trap when the current instruction is
a floating-point instruction, and the excepting instruction is a pending instruction.

The only immediate trapping exception is the reserved-op exception. This exception cannot be disabled.

The only delayed trapping exception that cannot be disabled is the unimplemented exception. The other
delayed trapping exceptions are the IEEE exceptions. Each has a corresponding bit in the Status
Register which enables and disables the delayed trap. The IEEE exceptions are the following: invalid
operation, division-by-zero, overflow, underflow, and inexact.

Exception Registers

The exception registers contain information on floating-point operations that have completed execution
and have caused a delayed trapping exception. All the registers must be present and storage provided for
loads and stores even if an implementation never uses a particular register to record exception state.

The exception registers are accessed with double-word load and store instructions. Single-word loads
and stores of registers OR, 1L, 1R, 2L, 2R, 3L, and 3R are undefined. Specifying an exception register as
a source or destination of a non-load/store operation is undefined.

For single-operation instructions, an exception register contains a modified copy of an excepting

instruction that traps. The coprocessor replaces the field that normally contains the instruction opcode
with a code that indicates the type of exception detected. The remaining fields are duplicates from the
original instruction.

The fused-operation instructionSLOATING-POINT MULTIPLY FUSED ADD and FLOATING-POINT
MULTIPLY NEGATE FUSED ADD) cannot directly cause trapping IEEE exceptions, because the
exception state cannot be represented in the exception registers. When one of these instructions would
cause a trapping IEEE exception, the implementation causes, instead, an unimplemented exception. The
fused-operation instruction is placed in an exception register along with the appropriate unimplemented
exception code.

The multiple-operation instructionsFL{OATING-POINT MULTIPLY/ADD and FLOATING-POINT
MULTIPLY/SUBTRACT) cannot directly cause trapping IEEE exceptions, because the exception state
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cannot be represented in the exception registers. When one of these instructions would cause a trapping
IEEE exception, the implementation does one of the following:

e Cause, instead, an unimplemented exception. The multiple-operation instruction is placed in an
exception register along with the appropriate unimplemented exception code. Or,

« Treat the multiple-operation instruction as two separate single-operation instructions. In this case,
an instruction pattern is fabricated for the portion of the instruction that caused the trapping
exception (e.g., the instruction pattern fa*L&DATING-POINT ADD if the add operation caused the
exception), and this pattern, along with the appropriate exception code, is placed in an exception
register. The other operation, if it does not also cause a trapping exception, completes normally. If
both operations cause trapping IEEE exceptions, then two instruction patterns are fabricated and
placed in two exception registers. These two instructions have the same ordering constraints with
respect to other instructions as for other single-operation instructions as described in the next
section.

Figure 10-1 shows the format of the exception registers.The exception and ei fields are explained in the
paragraphs that follow.

exception ei
6 26

Figure 10-1. Floating-Point Exception Register Format

exception  The exception code corresponding to the exception detected as shown in Table 10-1.
Exception codes not listed are reserved.
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Table 10-1. Floating-Point Exception Codes

Exception code Opcode | Description
000000 OC/OE | No exception
100000 OC/OE | Invalid operation
010000 OC/OE | Division-by-zero
001000 OC/OE | Overflow
pp0100 OC/OE| Underflow
000010 OC/OE | Inexact
000001 OC/OE | Unimplemented
001010 OC/OE | Inexact & Overflow
pp0110 OC/OE | Inexact & Underflow
001001 oC Unimplemented
001011 OE Unimplemented
000011 06 Unimplemented
100011 26 Unimplemented
101011 2E Unimplemented
ppl1100 2E Underflow
010010 2E Inexact
ppll110 2E Underflow and Inexact
011000 2E Overflow
011010 2E Overflow and Inexact
110000 2E Invalid

The two bits labeled ‘pp’ in the exception code contain information regarding the
parameters for the underflow exceptions. See “Underflow Exception” on page 10-12 for a
detailed description of this field.

ei All bits other than the major opcode, copied from the excepting instruction. This field is
undefined if the exception code is set to ‘no exception’.

Exception Register Operation

When all pending instructions are forced to complete, all operations which complete with a trapping
exception are placed in the exception registers together with their corresponding exception codes. In
order to complete an operation, the coprocessor may place the operation in an exception register and
mark it with an unimplemented exception.

The coprocessor places the excepting instruction that first entered the IA queues in any of Exception
Registers 1 through 7. Other instructions which complete with a trap are placed in any of the other
available Exception Registers (those which are not already occupied by excepting instructions).
Excepting instructions may be placed in the Exception Registers 1 through 7 in any order as long as the
data dependencies are preserved (the order need not be the order in which they were fetched but must be
ordered for the data dependencies). If an instruction completes without a trapping exception, no record
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of that instruction appears in the exception registers. The exception queue need not be packed.

Once software has processed the exception registers, it must clear the exception registers by setting
them all to zeros before non-load/store instructions can be executed.

If the T-bit equals 0 and any exception register has an exception field not equal to "no exception",
execution of any non-load/store floating-point instruction is an undefined operation.

Interruptions and Exceptions

Floating-point instructions may cause interruptions in the processor, exceptions in the coprocessor, or
both. Coprocessor exceptions are divided into immediate trapping exceptions and delayed trapping
exceptions. The only immediate trapping exception is the reserved-op exception. The delayed trapping
exceptions consist of the unimplemented exception and the IEEE exceptions.

The IEEE exceptions are the following:
« invalid operation
« division-by-zero
* inexact
« overflow
* underflow

While the unimplemented and reserved-op exceptions must always trap, the IEEE exception traps may
be disabled.

Each IEEE exception has a corresponding enable bit in the Status Register. When an enable bit is 1, the
corresponding trap is enabled, and if the corresponding exception occurs, a delayed trap is taken.
However, on the overflow and underflow exceptions, an implementation may choose to ignore the
enable bit and always trap on the exception. In such implementations, the corresponding trap is always
enabled.

Immediate Trapping

Floating-point instructions may cause three types of immediate trapping interruptions: memory
reference interruptions, the assist emulation trap, and the reserved-op exception. Immediate trapping
exceptions and interruptions always cause a trap or fault when the front of the IA queues points to the
interrupting instruction. An interrupting instruction must not alter its operands.

As described in Chapter 4, “Control Flow”, when the processor detects a memory reference problem, a
memory reference fault or trap occurs. Only load and store instructions cause memory reference
interruptions. The memory reference interruptions associated with floating-point instructions are the
following:

» Data TLB miss fault/Data page fault
» Data memory access rights trap

» Data memory protection ID trap
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< Unaligned data reference trap
« Data memory break trap

e TLB dirty bit trap

 Page reference trap

« Data debug trap

As described in “Coprocessor Configuration Register” on page 6-22, the Coprocessor Configuration
Register (CCR) in the processor controls the assist emulation trap. Software may set this register to
force an assist emulation trap on every occurrence of a floating-point instruction. See “Coprocessor
Instructions” on page 6-22 for more information.

Finally, attempting an instruction with a reserved sub-opcode may cause an immediate assist exception
trap. See “Reserved-op Exception” on page 10-8 for details.

Delayed Trapping

Delayed traps report an exception when the excepting instruction is a pending instruction but is not in
the IA queues. The following descriptions indicate when the processor and coprocessor may take a
delayed trap and must take a delayed trap. Normally, a delayed trap forces the processor to take an assist
exception trap. However, if the current instruction is a double-word store of Floating-point Register 0,

all the floating-point registers are set normally as if a trap occurred, but the processor does not take the
assist exception trap.

The coprocessor may signal a delayed trap when at least one of the following occurs:

« A pending instruction caused an unimplemented exception and the current instruction is a floating-
point instruction, or

« A pending instruction caused an IEEE exception, the corresponding exception trap is enabled, and
the current instruction is a floating-point instruction.

A delayed trap must occur when at least one of the following conditions exist:
« The T-bitis 1 and the current instruction is any floating-point instruction.
» The exception queue is full and the current instruction is any floating-point instruction.

« A pending instruction causes a trapping exception and the current instruction is a load or store of
Floating-point Register 0.

e The current instruction is a load or store of an exception register that will be set by a pending
instruction.

e The current instruction is a load or store of the destination register of a pending, trapping
instruction or an operation which depends on a pending, trapping instruction.

e The current instruction is a load of the source register of a pending, trapping instruction or an
operation which depends on a pending, trapping instruction.

» The current instruction isELOATING-POINT TESTinstruction and the previol OATING-POINT
COMPARE either is pending and caused a trapping exception or depends on a pending, trapping
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instruction.

An instruction depends on a previous instruction whenever it must wait for the previous instruction to
complete in order to ensure that the instructions appear sequentially executed to software. Instruction
dependency is transitive. For example, if the exception queue is full, and every instruction in the queue
depends on the instruction immediately preceding it, then each instruction in the queue depends on all
the instructions preceding it.

When a delayed trap occurs, the following happens:
1. The coprocessor completes all pending floating-point instructions.

2. The coprocessor sets the exception registers as described in “Exception Register Operation” on
page 10-3.

3. The coprocessor sets the Status Register T-bit to 1.

4. For each pending instruction that completes with a trapping IEEE exception, the corresponding
exception flag may either be set to 1, or left unchanged, but cannot be set to 0.

5. If the current instruction is any floating-point instruction except a double-word store of Floating-
point Register 0, the processor takes an assist exception trap. Otherwise, if the current instruction is
a double-word store of Floating-point Register 0, the store completes, no trap occurs, the T-bit is set
to 0 and execution proceeds normally.

Any pending instruction which depends on a pending, trapping instruction must complete with an
unimplemented exception.

Table 10-2 specifies the status of the source and destination registers when an instruction causes a
delayed trap. When the table indicates the original operand values are preserved, and if the destination
register is not one of the source registers, the contents of the destination register are undefined.

Table 10-2. Delayed Trap Results

Exception type Trapped result

Invalid operation original operand values preserved
Division-by-zero original operand values preserved
Overflow rounded bias-adjusted result in destination
Underflow rounded bias-adjusted result in destination
Inexact rounded result in destination
Unimplemented original operand values preserved

As indicated in the table, trapping overflow exceptions and underflow exceptions return a rounded bias-
adjusted result. A bias-adjusted result is obtained by dividing (in the case of overflow) or multiplying (in
the case of underflow) the infinitely precise resul2by  and then rounding. The bias adjustisent,

192 for single-word numbers, 1536 for double-word numbers, and 24576 for quad-word numbers.

Non-trapping Exceptions

If an IEEE exception occurs, but the corresponding trap is disabled, then the coprocessor sets the
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corresponding flag bit in the Status Register to 1. Table 10-3 lists the results returned by an operation
which completes with a non-trapping exception with a floating point destination format.

Table 10-3. Non-trapped Exception Results

Exception type Non-trapped result

Invalid operation quiet NaN in destination
Division-by-zero properly signed in destination
Overflow rounded result in destination
Underflow rounded result in destination
Inexact rounded result in destination

Multiple Exceptions

If the current instruction causes a reserved-op exception, and at the same time the coprocessor signals a
delayed trap caused by a previous exception, the delayed trap occurs. Software then retries the
instruction to handle the reserved-op exception.

The only other exceptions which may both occur on the same instruction are one of the following:
« inexact and overflow exceptions
« inexact and underflow exceptions

When one of these two cases occur, the action taken is as follows:

1. If both traps are enabled when the coprocessor takes a delayed trap, the implementation may set
either or both corresponding status flags to 1, or leave them unchanged. The coprocessor sets the
exception field in the corresponding exception register to the value that indicates both exceptions
occurred.

2. If only one trap is enabled when the coprocessor takes a delayed trap, the coprocessor sets the
corresponding exception field to the value that indicates the enabled trap. The implementation may
either set the flag bit that corresponds to the enabled trap to 1, or leave it unchanged. The
coprocessor sets the flag bit that corresponds to the disabled trap to 1.

3. If neither trap is enabled, the coprocessor sets both corresponding status flags to 1.

If the overflow or underflow exception caused a trap on the instruction, a rounded bias-adjusted result is
returned. Otherwise, a rounded result is returned.

Trap Handlers

Programming Note
The IEEE standard strongly recommends that users be allowed to specify a trap handler for any
of the five standard exceptions. The mechanisms to accomplish this are programming language
and operating system dependent.

Since the coprocessor continues to trap if the Status Register T-bit is 1, the trap handler must
first set the bit to 0 by executing a double-word store of register 0. The trap handler may then
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emulate any of the instructions in the exception queue beginning with the instruction in
Exception Register 1 and proceeding sequentially to the end.

The trap handler must clear all the exception registers. If the trap handler chooses not to
emulate all the instructions, it must reset the T-bit to 1 before returning to the trapped process.

To emulate an instruction, the trap handler computes or specifies a substitute result to be placed
in the destination register of the operation. The trap handler may determine what operation was
being performed and what exceptions occurred during the operation by examining the
corresponding exception register. On overflow, underflow, and inexact exceptions, the trap
handler has access to the correctly rounded result by examining the destination register of the
operation. On unimplemented, invalid operation, and divide-by-zero exceptions, the trap
handler has access to the operand values by examining the source registers of the instruction.

Reserved-op Exception

When a non-load/store instruction has a reserved sub-opcode, an implementation signals either a
reserved-op exception or an unimplemented exception.

A reserved-op exception always forces the processor to take an immediate assist exception trap. It does
not set the exception registers or the T-bit, and does not change any of the flag bits in the Status Register.
The reserved-op exception cannot be disabled.

Programming Note
Trapping is immediate for reserved-op exceptions. The trap handler must check for a Status
Register T-bit equal to 0 to determine that the trap was caused by a reserved-op exception.
When a reserved-op exception occurs, software interprets the contents of the IIR, nullifies the
instruction pointed to by the front of the IIA queues, and returns control to the trapping
process.

Unimplemented Exception

If an implementation chooses not to execute an instruction, the instruction signals an unimplemented
exception. An unimplemented exception always causes a delayed trap on a later floating-point
instruction. It does not change the Status Register Flag bits and cannot be disabled. When a non-load/
store floating-point operation references a reserved sub-opcode, an implementation signals either an
unimplemented exception or a reserved-op exception.

An implementation may signal an unimplemented exception on any floating-point instruction except the
FLOATING-POINT TESTinstruction, theFLOATING-POINT IDENTIFY instruction, a load instruction, or
a store instruction.

When a trap forces the coprocessor to complete all pending instructions, implementations may put
uncompleted instructions in the exception registers and set the correspercipgionfield to the
appropriate unimplemented exception code.

A conversion to a floating-point format always causes an unimplemented exception when the result
overflows, the result lies too far outside the range for the exponent to be bias-adjusted, and the overflow

10-8  Floating-Point Exceptions PA-RISC 2.0 Architecture



trap is enabled. Table 10-4 shows the result values which produce an unimplemented exdstien;
bias-adjustment value for the destination formas, the precision, andis the source value.

Table 10-4. Overflow Results Causing Unimplemented Exception

Rounding Mode Ranges
nearest —o<V< _Z(Emax+ a)(z -2 2(Emax+ a)(2 -2 P <v<+m
o0 —oo<vs—2(EmaX+a+l) Z(Emax+a+l)sv<+oo
to +oo oo <y g Emax T2+ D) 2(Emax+a)(2_2—(p_1))<V<+oo
to —oo oo <y < 2T W 5 _ o(p=1)y pEma @)

Similarly, an unimplemented exception is always caused by a conversion to a floating-point format that
underflows, lies too far outside the range for the exponent to be bias-adjusted, and the underflow trap is
enabled. Table 10-5 shows the floating-point underflow results which cause an unimplemented
exception;a is the bias-adjustment value for the destination formas, the precision, and is the

source value.

Reporting these overflows and underflows as unimplemented exceptions allows a trap handler the
ability to inspect the source operands. Source operands are not preserved on overflow or underflow
trapping exceptions.

Table 10-5. Underflow Results Causing Unimplemented Exception

Rounding Mode Range
nearest _2(Emin_a)(l _o Py oy o 2(Emin_a)(1 _g(pr Dy
00 B =2
10 +eo pEmn = o Emn =D g 5P
0 —oo =g 5Py <y < plFmn ™

Finally, the unimplemented exception is always signaled when the operand of a conversion to an integer
format is a NaN. Low-level trap handlers may choose to silently deliver a result or convert it to an
invalid exception.

Invalid Operation Exception

An instruction signals the invalid operation exception if an operand is invalid for the operation to be
performed. When the exception occurs without a trap and a floating-point formated result is delivered,
the coprocessor delivers a quiet NaN to the destination register. If an integer result is delivered, then the
closest integer is delivered. For example, a signed conversion of an infinity will deliver the appropriately
signed largest integer. Unsigned conversions will deliver either a zero or the maximum integer.
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If the exception causes a trap, the coprocessor leaves the operands unchanged.
The invalid operations are:
1. Any arithmetic operation on a signaling NaN except for conversions to integer formats.
. Magnitude subtraction of infinities likg-o) + (—0)  ¢#o0) — (+) ;
. The multiplication of O aneb;
. The division operation8/0 and/c ;
. Square root if the operand is less than zero;

. Comparison using conditions involving a "T" or conditions involving "<", ">", "true", or "false"
without a "?", when the operands are unordered. See “Comparison Conditions” on page 8-16.

o 0~ WDN

7. Conversion to an integer format of @apor when the result overflows. Table 10-6 shows the results
which produce an integer overflow. In the tablg, is the most positive integer representable by
the destination format is the most negative (zero for unsigned integers)jsatite source
value.

'min

Table 10-6. Integer Results Causing Invalid Exception

Rounding Mode Ranges
nearest V<lin—=1/2 vl +1/2
to 0 Vv lhin—1 vzl .+l
to +oo vV lhin—1 V> oy
to —o V<Iin vzl .. t+1

Integer overflow is determined after rounding as if the result has infinite width. For example, an
unsigned conversion of -0.25 is zero (and inexact) in all rounding modes except . In rounding mode
—oo , the operation results in an invalid exception.

Division-by-zero Exception

From the standard:

[8]7.2 Division by zero. If the divisor is zero and the dividend is a finite nonzero number, then
the division by zero exception is signaled. The result, when no trap occurs, is a correctly signed
o (6.3) [see “Sign Bit” on page 8-24].

When a trap occurs, the operands must be left unchanged.

Inexact Exception

From the standard:

[8]7.5 Inexact. If the rounded result of an operation is not exact or if it overflows without an
overflow trap, then the inexact exception shall be signaled. The rounded or overflowed result
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shall be delivered to the destination or, if an inexact trap occurs, to the trap handler [the
destination register in this architecture].

A conversion to a fixed-point format also signals the inexact exception when the result is not exact.

Overflow Exception

To determine overflow on an operation, the coprocessor uses the result that would have occurred had the
result been computed and rounded as if the destination’s exponent range were unbounded. On all

operations except converts, the coprocessor signals an overflow exception when the magnitude of this
result exceeds the destination format'’s largest finite number. The same is true of conversion operations,

except that when this result is beyond the range of bias-adjusted numbers and the overflow trap is

enabled, the instruction causes an unimplemented exception.

An instruction cannot cause an overflow exception when at least one operand is a NaN or infinity.

Table 10-7 summarizes the result values that cause an overflow exception. In th& table, is the
maximum exponent value for the destination formas, the precision of the format, amds the value
of the exact result before rounding.

Table 10-7. Results Causing Overflow Exception

Rounding Mode Ranges
nearest zEmax(Z _oP) syt | —w <vs _2Emax(2 _oP)
o0 Z(Emax+ Y <v<+o | —wm <v< —2(Emax+ Y
to +oo ZEmaX(Z_ 2—(p—1)) cy<in | —o <y< _Z(Emax+ 1)
t0 —e 2Emet D | heo’ | o << _2Emax(2 _o(p- 1))

*  When the overflow trap is enabled and the operation is a conversion to a floating-point format,
this bound is limited to bias-adjusted humbers. See “Unimplemented Exception” on page 10-8.
When no trap occurs, the result of an overflow exception is one of the following:
1. Round to nearest carries all overflowsotwvith no change in sign.
2. Round toward 0 carries all overflows to the format's largest finite number with no change in sign.

3. Round toward-« carries positive overflows to the format’s largest finite number, and carries
negative overflows tec.

4. Round toward e carries negative overflows to the format’s most negative finite number, and
carries positive overflows taoes:

When an overflow exception causes a trap, the excepting operation returns a bias-adjusted number to the
destination register.

The overflow exception is not signaled for integer results. The coprocessor signals integer overflows
with an unimplemented exception.
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Underflow Exception
From the standard:

[8]7.4 Underflow. Two correlated events contribute to underflow. One is the creation of a tiny

min

E . T .
nonzero result betweet? which, because it is tiny, may cause some other exception later

such as overflow upon division. The other is extraordinary loss of accuracy during the
approximation of such tiny numbers by denormalized numbers.

Tininess is detected on a nonzero result which lies strictly betw@Ee'Pi” , when the result is rounded
as if the exponent range were unbounded. Note that rounding for detection of tininess and rounding to
determine a result are distinct. In certain cases, the coprocessor signals an underflow exception even
though it returns a normalized result to the destination register.

Table 10-8 shows the range of exact results which will cause detection of tininess. In thg table, is
the minimum exponent value for the destination formas, the precision of the format, ands the
value of the exact result before rounding.

Table 10-8. Results Causing Tininess

Rounding Mode Range
nearest _ZEmin(l _ Py oy o zEmin(l _g(pr D)y
0 _ptmin ¢y < g5
10 4o 2N ey<2 (1P
0 — 21— Py <y <2

Loss of accuracy occurs when the coprocessor detects an inexact result, where the result returned after
rounding differs from what the result would have been if the destination had infinite precision and
unbounded range.

An instruction causes an underflow exception when the underflow trap is enabled and tininess occurs.
An instruction also causes an underflow exception when the underflow trap is disabled and both tininess
and loss of accuracy occur.

An operation which causes a non-trapping underflow exception may return a zero, denormalized

min

E
number, or+2

Trapped underflows on all operations except conversions deliver a bias-adjusted result to the destination
register. Trapped underflow on conversions to a floating-point format delivers a bias-adjusted result
when the result can be represented by a bias-adjusted number. If not, an unimplemented exception is
signaled instead of an underflow exception.

Conversion to an integer format cannot underflow. The result when the magnitude of the source operand
is less than 1 is either 0, +1,-6t depending on the rounding mode and the sign of the source operand.

When an instruction causes a trapping underflow exception and the trap enable bit equals 0, the leftmost
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two bits in the corresponding exception registexseptionfield are set (see Figure 10-2). The first
parameter bit, the round away (RA) bit, is set to 1 whenever the result is rounded away from zero. The
second is the inexact (I) bit which is set to 1 if the rounded bias-adjusted result is not the infinitely
precise result. The trap handler uses this information to denormalize the result and prevent errors caused
by rounding twice.

RA\l\o\l o1 | o
i 1T 1r 1 1 1

Figure 10-2. Exception Field Underflow Parameters

Saving and Restoring State

To save state, software first performs a double-word store of register 0, then double-word stores of
registers 1, 2, and 3, and a sufficient number of double-word stores to save registers needed at a later
time. Thirty-two double-word coprocessor stores are sufficient to save the entire state of the floating-
point coprocessor.

A double-word store of register 0 cancels all pending traps, forces the completion of all previous
instructions, suppresses any ensuing trap, completes the store, and sets the Status Register T-bit to 0.
When the store cancels a trap, the value written to memory has the bit corresponding to the Status
Register T-bit set to 1; otherwise, this bit is set to 0. This special treatment of a double-word store lets
the save routine be nested, does not require the assistance of a trap handler, and need not have the IIA
gueues enabled.

To restore state, software performs double-word loads of all required registers, followed by a double-
word load of Floating-point Register 0. Thirty-two double-word loads are sufficient to restore the entire
state of the coprocessor. A double-word load of Floating-point Register 0 which sets the Status Register
T-bit to 1 re-arms a trap. The next floating-point instruction will cause a trap (apart from a double-word
store of Floating-point Register 0).

The following sequences save and restore the entire state of the coprocessor.

; enter with SaveAreaPtr pointing at the first double-word of the save area

| Instruction | Comment
SAVEFPU

FSTD,MA FPRO,8(SaveAreaPtr) ;quiescent, cancel trag
FSTD,MA FPR1,8(SaveAreaPtr) ;save exception register
FSTD,MA FPR2,8(SaveAreaPtr) ;save exception register
FSTD,MA FPR3,8(SaveAreaPtr) ;save exception register
FSTD,MA FPR4,8(SaveAreaPtr) ;save data register
FSTD,MA FPR5,8(SaveAreaPtr) ;save data register

FSTD,MA FPR30,8(SaveAreaPtr) ;save data register
FSTD FPR31,0(SaveAreaPtr) ;save last data registef
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; enter with SaveAreaPtr pointing at the last double-word of the save area.
RSTFPU [ Instruction | Comment
FLDD 0(SaveAreaPtr),FPR31 ;restore data register
FLDD,MB -8(SaveAreaPtr),FPR30 ;restore data register

FLDD,MB -8(SaveAreaPtr),FPR4 ;restore data register
FLDD,MB -8(SaveAreaPtr),FPR3 ;restore exception register
FLDD,MB -8(SaveAreaPtr),FPR2 ;restore exception register
FLDD,MB -8(SaveAreaPtr),FPR1 ;restore exception register
FLDD,MB -8(SaveAreaPtr),FPRO ;restore exception register

;potentially re-arm trap

The only required ordering in these sequences is that Floating-point Register 0 must be saved first and
restored last.
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11 Performance Monitor Coprocessor

The performance monitor coprocessor is an optional, implementation-dependent coprocessor which
provides a minimal common software interface to implementation-dependent performance monitor
hardware.

The performance monitor coprocessor responds to coprocessor instructionsigi¢ioaal to 2.

Performance Monitor Instructions

The performance monitor instruction set consists of two instructiPBRFORMANCE MONITOR
ENABLE (PMENB) and PERFORMANCE MONITOR DISABLE (PMDIS) which provide a common
software interface to enable and disable the implementation-dependent performance monitor features.

The following figure shows the format of these operations and Table 11-1 shows the operations, their
mnemonics, and sub-opcodes:

oC rv sub ‘ 2 ‘n‘ rv
6 12 5 3 1 5

Table 11-1. Performance Monitor Operations

Opcode | Sub-op Mnemonic | Operation
oC 1 PMDIS Disable performance monitor
oC 3 PMENB Enable performance monitor
oC 0,2,4..F undefined
oC 10..1F reserved

The performance monitor coprocessor instructions are described at the end of this chapter.

When a performance monitor coprocessor instruction is executed and CCR{2} is 0, the coprocessor
instruction causes an assist emulation trap. It is an undefined operation to set CCR{2} to 1 if the
performance monitor coprocessor is nonexistent.

Performance Monitor Interruptions

Interruption vector number 29 in interruption group 2 is defined as the performance monitor
coprocessor interrupt for implementation-dependent use by the performance monitor coprocessor. The
interrupt is unmasked when the PSW F-bit is 1, and is masked when the PSW F-bit is 0. See Chapter 5,
“Interruptions” for additional details.

Reserved Sub-Opcode Exception

When a performance monitor coprocessor instruction has a reserved sub-opcode, the implementation
must signal a reserved-op exception by taking an assist exception trap.
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Monitor Units

The monitor units are hardware units used to collect the necessary information during performance
monitoring. The number of the monitor units and their hardware types are implementation dependent.

If a monitor unit provides counters, the most significant bit of the counter is required to be an overflow
indicator. The bit must be set when the counter overflows and must remain set until explicitly reset by
software. When the overflow indicator is set the remaining bits of the counter are undefined.

NOTE
If counters are used to implement the measurement units, it is recommended that the counters
be at least 32 bits wide.
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Performance Monitor Disable PMDIS

Format: PMDIS,n

(55) 0C \ rv 1 \ 2 \n\ v
6 12 5 3 1 5

Purpose: To disable the implementation-dependent performance monitor coprocessor, and
conditionally nullify the following instruction.

Description: Disable all measurement units, after the current instruction. The following instruction is
nullified if measurement is enabled and the ,N completer is specified. The completer is
encoded in the field of the instruction.

Operation:  if (n && measurement_enabled)
PSWIN] — 1;
measurement_enabled 0;

Exceptions: Assist emulation trap
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Performance Monitor Enable PMENB

Format:

(65)

Purpose:

PMENB
oC rv 3 \ 2 \ o\ v
6 12 5 3 1 5

To enable the implementation-dependent performance monitor coprocessor.

Description: Enable the measurement units, starting with the next instruction.

Operation: measurement_enabled 1;

Exceptions: Assist emulation trap
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A Glossary

Absolute Address
See Physical Address.

Access Rights

A function of virtual address translation that controls access to each page through privilege levels
for read, write, execute, and gateway. The TLB contains, within each entry, information used to
determine who may have access to that page. This information is divided into two groups: (1) page
access (access ID) which is used to determine if a process or user may access a page; and (2) the
access rights field that is combined with the user’s privilege level and the WD bit of the PID
register to determine if the type of access the user is requesting will be allowed.

Address

PA-RISC is a byte-addressable system which uses both virtual and absolute addresses. A virtual
address can be split into two parts: the high-order bits which are the space identifier and the low-
order bits that give the offset within the space. Absolute addresses do not have space identifiers;
only a 64-bit offset. Doublewords, words, and halfwords are always located at addresses which are
aligned to their size (in bytes). Quadwords are aligned on doubleword boundaries.

Address Translation
For a virtual memory system, the process whereby the virtual (logical) address of data or
instructions is translated to its absolute address in physical memory.

Aliasing
The condition when the same physical memory location is accessed by different virtual addresses
or by both an absolute and a virtual address.

Alter

The action of setting the E-bit of a TLB entry to 0 and modifying some portion of the physical
page number field. Altered entries in the TLB are still visible to software through the insert TLB
protection instructions.

Architecture

Refers to the time-independent functional appearance of a computer system. An implementation
of an architecture is an ensemble of hardware, firmware, and software that provides all the
functions as defined in the architecture.

Arithmetic and Logical Unit (ALU)

The part of a PA-RISC processor that performs arithmetic and logic operations on its inputs,
producing output and status information.
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Assist Processor

A processor which may be added to the basic PA-RISC system to enhance performance or
functionality for algorithms which experience substantial gains from the use of specialized
hardware. Assist processors are differentiated by the level at which they interface with the memory
hierarchy. (See special function units and coprocessors).

B-bit (Taken Branch in Previous Cycle)

A bit in the PSW that is 1 if the previous instruction was a taken branch.

Base Register
A register that holds the numeric value that is used as a base value in the calculation of addresses.
Displacements or index values are added to this base value.

Base-Relative Branch
When a general register is used as the base offset to obtain the target address, the branch is called
base relative.

Biased Exponent
The exponent field for a floating-point number. It consists of the true exponent plus the bias.

Binary Floating-point Number
A number format consisting of the three components: sign, exponent, and significand.

Block TLB
A block TLB provides fixed address translations which map address ranges larger than a page.

Byte
A group of eight contiguous bits which is the smallest addressable unit on a PA-RISC system.

C-bit (Code Address Translation Enable)

A bit in the PSW that specifies whether virtual address translation of the instruction address is to
be performed.

Cache

A high-speed buffer unit between main memory and the CPU. The cache is continually updated to
contain recently accessed contents of main memory to reduce access time. When a program makes
a memory request, the CPU first checks to see if the data is in the cache so that it can be retrieved
without accessing memory. There may be one cache for both instructions and data or separate
caches for each.
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Cache Coherence

The property of multiple caches whereby they provide identical shared memory images.
Processors in a multiprocessor system are said to be cache coherent if they provide the image of
single cache.

Cache Control Hint

A 2-hit field in some memory reference instructions which provides a hint to the processor on how
to resolve cache coherence. The processor may disregard the hint without compromising system
integrity, but performance may be enhanced by following the hint.

Cache Miss
A cache miss occurs when the cache does not contain a copy of the cache line being requested by
the address. The cache is updated with data and re-accessed.

Carry/Borrow Bits
A 16-bit field in the PSW that indicates if a carry or borrow occurred from the corresponding
nibble (4 bits) as a result of the previous arithmetic operation.

Central Processing Unit (CPU)
The part of a PA-RISC processor that fetches and executes instructions.

Check
The interruption condition when the processor detects an internal or external malfunction. Checks
may be either synchronous or asynchronous with respect to the instruction stream.

Coherence Check

An action taken by hardware to insure coherence.

Combined TLB
Some systems have a TLB which provides address translation for both instruction and data
references.

Compatibility

The ability for software developed for one machine type to execute on another machine type. PA-
RISC provides compatible execution of application programs written for earlier-generation
Hewlett-Packard computer systems.

Completer

A machine instruction field used to specify instruction options. Typical options include address
modification, address indexing, precision of operands, and conditions to be tested to determine
whether to nullify the following instruction.
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Condition
The state of a value or a relationship between values used in determining whether an instruction is
to branch, nullify, or trap.

Control Register (CR)

A register which contains system state information used for memory access protection,
interruption control, and processor state control. A PA-RISC processor contains 25 control
registers (7 more are reserved).

Coprocessor

A type of assist processor which interfaces to the memory hierarchy at the level of the cache.
Coprocessors are special purpose units that work with the main processor to speed up specialized
operations such as floating-point arithmetic and graphics processing. Coprocessors generally have
their own internal state and hardware evaluation mechanism.

Coprocessor Configuration Register (CCR)

The CCR (in CR 10) is an 8-bit register which records the presence and usability of coprocessors.
Each bit position (0-7) corresponds to the coprocessor with the same unit number. Setting a bit in
the CCR to 1 enables the use of the corresponding coprocessor, if present and operational. If a
CCR bhit is 0, the corresponding coprocessor, if present, is logically decoupled and an attempt to
reference the coprocessor causes an assist emulation trap.

Current Instruction
The instruction whose address is in the front element of the instruction address queues (IASQ and
IAOQ).

D-bit (Data Address Translation Enable)
A bit in the PSW that specifies whether virtual address translation of data addresses is to be
performed.

Data Cache (D-cache)
A high-speed storage device which contains data items that have been recently accessed from
main memory. The D-cache can be accessed independently of the instruction cache (I-cache) and
no synchronization is performed.

Data TLB (DTLB)

A separate TLB which does address translation only for data memory references.

Denormalized Numbers

Any non-zero floating-point number with the exponent field all zeros. Denormalized numbers are
distinguished from normal numbers in that the value of the “hidden” bit to the left of the implied
binary point is zero.
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Dirty
A block of memory (commonly a cache line or a page) which has been written to is referred to as
dirty.

Disabling an Interrupt
A disabled interrupt is prevented from occurring. The interruption does not wait until re-enabled
and it is not kept pending.

Displacement
The amount that is added to a base register to form an offset in the virtual address computation.

Dynamic Displacement
If the displacement value is computed during the course of program execution and is obtained
from a general register, it is called dynamic.

E-bit (Little Endian Memory Access Enable)
A bit in the PSW which determines whether memory references assume big endian or little endian
byte ordering.

Effective Address
The address of the operand for the current instruction, derived by applying specific address
building rules.

Equivalently Aliased

A condition when two virtual addresses map to the same physical address, and where the two
addresses are identical in the following bits: Offset bits 12 through 31. If the use of space bits in
generating the cache index is enabled, the addresses must also be identical in these bits: Space
Identifier bits 36 through 39, 44 through 47, and 52 through 63.

Equivalently Mapped

A condition when a virtual address is equal to its absolute address.

Exponent
The part of a binary floating-point number that normally signifies the integer power to which two
is raised in determining the value of the represented number.

External Branch Instructions

The target of these instructions may lie in a different address space than that of the instruction. The
external branch instructions agE andBLE.
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External Interrupt Enable Mask (EIEM)
The EIEM (CR 15) is a 64-bit register containing one bit for each external interrupt class. When
set to 0O, bits in the EIEM mask interruptions pending for the external interrupts corresponding to
those bit positions.
External Interrupt Request Register (EIR)
The EIR register (CR 23) is a 64-bit register containing one bit for each external interrupt. When
set to 1, a bit designates that an interruption is pending for the corresponding external interrupt.
F-bit (Performance Monitor Interruption Unmask)
A bit in the PSW used to unmask the performance monitor interruption.

Fault

The interruption condition when the current instruction requests a legitimate action which cannot
be carried out due to a system problem such as the absence of a main memory page. After the
system problem is cleared, the faulting instruction will execute normally. Faults are synchronous
with respect to the instruction stream.

Floating-point Register (FPR)

A storage unit which constitutes the basic resource of the floating-point coprocessor. Floating-
point registers are at the highest level of memory hierarchy and are used to load data from and
store data to memory and hold operands and results of the floating-point coprocessor. The floating-
point coprocessor contains 32 double-precision (64-bit) floating-point registers which may also be
accessed as 64 single-precision (32-bit), or 16 quad-precision (128-bit) registers.

Following Instruction

The instruction whose address is in the back element of the instruction address queues (IASQ and
IAOQ). This instruction will be executed after the current instruction. This instruction is not
necessarily the next instruction in the linear code space.

Fraction

The portion of the significand explicitly contained in a binary floating-point number. The rest of
the significand is the “hidden” bit to the left of the implied binary point. The “hidden” bit normally
has the value one.

G-bit (Debug Trap Enable)
A bit in the PSW used to enable data and instruction debug traps.

General Register (GR)

A storage unit which constitutes the basic resource of the CPU. General registers are at the highest
level of memory hierarchy and are used to load data from and store data to memory and hold
operands and results from the ALU. A PA-RISC processor contains 32 general registers.
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H-bit (Higher Privilege Transfer Trap Enable)
A bit in the PSW that enables an interruption whenever the following instruction will execute at a
higher privilege level.

High-Priority Machine Check (HPMC)
An interruption which occurs when a hardware error has been detected which requires immediate
attention.

I-bit (External, Power Failure, and LPMC Interruption Unmask)
A bit in the PSW used to unmask external interrupts, power failure interrupts, and low-priority
machine check interruptions.

IAOQ (Instruction Address Offset Queue)
A two-element queue of 64-bit registers that is used to hold the Instruction Address offset (1A
offset). The first element is IAOQ_Front and holds the IA offset of the current instruction. The
other element is IAOQ_Back and holds the IA offset of the following instruction.

IA-Relative Branches
When a displacement is added to the current Instruction Address offset (IA offset) to obtain the
target address, the branch is called IA relative.

IASQ (Instruction Address Space Queue)
A two-element queue of up to 64-bit registers that is used to hold the Instruction Address space
(IA space). The first element is IASQ_Front and holds the IA space of the current instruction. The
other element is IASQ_Back and holds the IA space of the following instruction.

IIAOQ (Interruption Instruction Address Offset Queue)
A two-element queue of 64-bit registers that is used to save the Instruction Address offset for use
in processing interruptions.

IIASQ (Interruption Instruction Address Space Queue)
A two-element queue of up to 64-bit registers that is used to save the Instruction Address space for
use in processing interruptions.

Infinity
The binary floating-point numbers that have all ones in the exponent and all zeros in the fraction.
The values of these two numbers are distinguished only by the sign. Thus, theysaug—eo.

Instruction Cache (I-cache)

A high-speed storage device that contains instructions that have been recently accessed from main
memory. The I|-cache can be accessed independently of the data cache (D-cache) and no
synchronization is performed.
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Instruction TLB (ITLB)
A separate TLB which does address translation only for instructions.

Interrupt
The interruption condition when an external entity (such as an 1/0 device or the power supply)
requires attention. Interrupts are asynchronous with respect to the instruction stream.

Interruption
An event that changes the instruction stream to handle exceptional conditions including traps,
checks, faults, and interrupts.

Interruption Instruction Register (IIR)
The IIR (CR 19) is used by the hardware to store the instruction that caused the interruption or the
instruction that was in progress at the time the interruption occurred.

Interruption Offset Register (IOR)

The IOR (CR 21) receives a copy of the offset portion of a virtual address at the time of an
interruption whenever the PSW Q-bit is 1. The value copied is dependent upon the type of
interruption.

Interruption Parameter Registers (IPRs)

The Interruption Instruction Register or IR (CR 19), Interruption Space Register or ISR (CR 20),
and Interruption Offset Register or IOR (CR 21) are collectively termed the Interruption Parameter
Registers or IPRs. They are used to pass the interrupted instruction and a virtual address to an
interruption handler. These registers are set (or frozen) at the time of an interruption when the
PSW Q-bit is 1. The IPRs can be read reliably only when the PSW Q-bit is 0. The values saved in
these registers are dependent upon the type of interruption.

Interruption Processor Status Word (IPSW)

The IPSW (CR 22) receives the value of the PSW when an interruption occurs. The layout of
IPSW is identical to that of PSW and it always reflects the machine state at the point of
interruption.

Interruption Space Register (ISR)

The ISR (CR 20) receives a copy of the space portion of a virtual address at the time of an
interruption whenever the PSW Q-bit is 1. The value copied is dependent upon the type of
interruption.

Interruption Vector Address (IVA)

The IVA (CR 14) contains the absolute address of an array of service procedures assigned to
interruptions.
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Interspace Branches
When the target of the branch lies in a different address space as that of the branch instruction, it is
referred to as an interspace branch.

Intraspace Branches
When the target of the branch lies in the same address space as that of the branch instruction, it is
referred to as an intraspace branch.

Interval Timer
Two internal registers which are both accessed through Control Register 16. The Interval Timer is
a free-running counter that signals an interruption when equal to a comparison value.

Invalidate
The action of setting the E-bit of a TLB entry to a 0, leaving the virtual page number and physical
page number fields unchanged. Invalid entries in the TLB are still visible to software through
insert TLB protection instructions.

L-bit (Lower Privilege Transfer Trap Enable)
A bit in the PSW that enables an interruption whenever the following instruction will execute at a
lower privilege level.

Local Branch Instructions

The target of these instructions always lie in the same address space as that of the instruction.

Low-Priority Machine Check (LPMC)

An interruption which occurs when a recoverable hardware error has been detected.

M-bit (High-Priority Machine Check Mask)
A bit in the PSW that disables the recognition of an HPMC.

Many-Reader/One-Writer Non-Equivalent Aliasing

A condition where multiple virtual addresses are non-equivalent aliases. Generally, before

enabling a write-capable translation, any non-equivalent read-only aliases must be disabled, and
the affected address range flushed from the cache. Similarly, before re-enabling the read
translation(s), the write-capable translation must be disabled, and the affected address range
flushed from the cache.

Masking an Interrupt

A masked interrupt can still be recognized as a pending event but occurrence of the interrupt is
delayed until it is unmasked.
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Memory
A device capable of storing information in binary form. The term “memory” typically refers to
main memory.

Memory Address Space
The memory address space consists of absolute addresses in the range 0x0000000000000000
through OXEFFFFFFFFFFFFFFF.

Memory-mapped I/0
Control of input and output through load and store instructions to particular virtual or physical
addresses.

Move-in

The action of bringing data or instructions into a cache.

Multiprocessor

A computer with multiple processors.

NaN

The binary floating-point numbers that have all ones in the exponent and a non-zero fraction. NaN
is the term used for a binary floating-point number that has no value (i.e., “Not a Number”). The
two types of NaNs, quiet and signaling, are distinguished by the value of the most significant bit in
the fraction field. A zero indicates a quiet NaN and a one indicates a signaling NaN.
Non-Equivalently Aliased
A condition when two virtual addresses map to the same physical address, but do not meet the
requirements for equivalently aliased addresses. (See “Equivalently Aliased” on page A-5.)
Nullify

To nullify an instruction is equivalent to skipping over that instruction. A nullified instruction has
no effect on the machine state (except that the IA queues advance and the PSW B, N, X, Y, and Z
bits are set to 0). The current instruction is nullified when the PSW N-bit is 1.

P-bit (Protection Identifier Validation Enable)
A bit in the PSW that is used as a protection identifier validation enable bit. If the P-bit is 1, the
Protection Identifiers in control registers 8, 9, 12, and 13 are used to enforce protection.

Page
Virtual memory is partitioned into pages which can be resident in matching size blocks (called
page frames) in memory. The smallest page size is 4096 bytes (4 Kbytes).

Page Group
Eight contiguous pages, with the first of these pages beginning on a 32-Kbyte boundary.
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Physical Address

The address that is the result of the virtual address translation or any address that is not translated.
A physical address is the concatenation of the physical page number and the offset. Physical
addresses are also referred to as absolute addresses.

Privilege Level

The PA-RISC access control mechanisms are based on 4 privilege levels numbered from 0 to 3,
with 0 being the most privileged. The current privilege level is maintained in the front element of
the Instruction Address Offset Queue (IAOQ_Front).

Processor Status Word (PSW)

A 64-bit register which contains information about the processor state.

Q-bit (Interruption State Collection Enable)
A bit in the PSW that, when set to 1, enables collection of the machine state at the instant of
interruption (IIASQ, 1IAOQ, IIR, ISR, and IOR).

R-bit (Recovery Counter Enable)
A bit in the PSW that enables recovery counter trapping and decrementing of the Recovery
Counter.

Read-Only Non-Equivalent Aliasing
A condition where multiple virtual addresses map to the same physical address, and where each
virtual address has a read-only translation.

Recovery Counter
The Recovery Counter (CR 0) counts down by 1 during execution of each non-nullified instruction
for which the PSW R-bit is 1.

Remove
The action of taking a TLB entry out of the TLB. Insertion of translations into the TLB, for
example, causes other entries to be removed.

S-bit (Secure Interval Timer)
A bit in the PSW that, when set to 1, allows the Interval Timer to be read only by code executing at
the most privileged level.

SFU Configuration Register (SCR)

The SCR (in CR 10) is an 8-hit register which records the presence and usability of SFUs (Special
Function Units), Each bit position (0-7) corresponds to the SFU with the same unit number.
Setting a bit in the SCR to 1 enables the use of the corresponding SFU if present and operational.
If a SCR bit is 0, the corresponding SFU if present, is logically decoupled and an attempt to
reference the SFU causes an assist emulation trap.
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Shadow Register (SHR)

A register into which the contents of a general register are copied upon interruptions. A PA-RISC
processor contains 7 shadow registers which receive the contents of GRs 1, 8, 9, 16, 17, 24, and
25. The contents of the shadow registers are copied back to these GRSREJ RN FROM
INTERRUPTION AND RESTORENStruction.

Shift Amount Register (SAR)

The SAR (CR 11) is used by the variable shift, extract, deposit, and branch on bit instructions. It
specifies the number of bits or the ending bit position of a quantity that is to be shifted, extracted or
deposited.

Sign
A one bit field in which one indicates a negative value and zero indicates a positive value.

Significand
The component of a binary floating-point number that consists of the implicit (or “hidden”)
leading bit to the left of the implied binary point together with the fraction field to its right.

Space Identifier (Space ID)
An up to 64-bit value which combines with the offset to form the upper portion of a virtual
address.

Space Register (SR)
A register used to specify the space identifier for virtual addressing. A PA-RISC processor
contains 8 space registers.

Special Function Unit (SFU)
A type of assist processor which interfaces to the memory hierarchy at the general register level. It
acts as an alternate ALU for the main processor and may have its own internal state.

Static Displacement

If the displacement is a fixed value that is known at compile time, it is called static.

Strong Ordering

The property that accesses to storage, such as loads and stores, appear to software to be done in
program order. In multiprocessing systems, strong ordering means that accesses by a given
processor appear to that processor as well as to all other processors in the system, to be done in
program order.

System Mask

The W, E, O, G, F, R, Q, P, D, and | bits of the PSW are known as the system mask. Each of these
bits, with the exception of the Q-bit, may be set to 1, set to 0, written, and read by the system
control instructions that manipulate the system mask.
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T-bit (Taken Branch Trap Enable)
A bit in the PSW that enables the taken branch trap.

Taken Branch
Conditional branches are considered to be “taken” if the specified condition is met. Unconditional
branches are always “taken”.

TLB Entry
A virtual to physical address translation, either valid or invalid, which is present in the TLB.
Entries are visible to software through either references (such as loads, stores, and semaphores) or
insert TLB protection instructiond{LBP andIDTLBP).

TLB Miss Handling
The action taken, either by hardware or software, on a TLB miss. This involves inserting the
missing translation into the proper TLB.

TLB Miss
The condition when there is no entry in the TLB matching the current virtual page number. In this
case, the TLB is updated either by software or by hardware.

TLB Slot

A hardware resource in the TLB which holds a TLB entry.

Translation Lookaside Buffer (TLB)

A hardware unit which serves as a cache for virtual-to-absolute memory address mapping. When a
memory reference is made to a given virtual address, the virtual page number is passed to the TLB
and the TLB is searched for an entry matching the virtual page number. If the entry exists, the

absolute page number (contained in the entry) is concatenated with the page offset from the
original virtual address to form an absolute address.

Trap

The interruption condition when either (1) the function requested by the current instruction cannot
or should not be carried out, or (2) system intervention is requested by the user before or after the
instruction is executed.

Virtual Addressing

A capability that eliminates the need to assign programs to fixed locations in main memory.
Addresses supplied by a program are treated as logical addresses which are translated to absolute
addresses when physical memory is addressed.

Write Disable (WD) Bit

The low-order bit of each of the four protection identifiers (PIDs) which, when 1, disables the use
of that PID for validating write accesses.
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X-bit (Data Memory Break Disable)
A bit in the PSW that disables the data memory break trap if equal to 1. A data memory break trap
happens if a write is attempted to a page whose TLB B-bit is 1.

Y-bit (Data Debug Trap Disable)
A bit in the PSW that disables the data debug trap if equal to 1. A data debug trap happens if a
memory reference is performed to an address which matches an enabled data breakpoint.

Z-bit (Instruction Debug Trap Disable)

A bit in the PSW that disables the instruction debug trap if equal to 1. An instruction debug trap
happens if an attempt is made to execute an instruction at an address which matches an enabled
instruction breakpoint.
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B Instruction Formats

The PA-RISC instruction formats are shown below. The most general form of each format is given.
Individual instructions in each class may have reserved or zero fields in place of one or more of the
fields shown. Refer to Table B-1 at the end of this appendix for a description of the field names used in
the following instruction formats.

1. Loads and Stores, Load and Store Word Modify, Load Offset
op b ‘ tr ‘ S ‘ iml14
6 5 5 2 14

2. Load and Store Word Modify (Complement)
op ‘ b ‘ t/r ‘ S ‘ imlla ‘ 2 ‘ i
6 5 5 2 11 2 1

3. Load and Store Doubleword
op ‘ b ‘ t/r ‘ S ‘ im10a ‘m‘a‘e‘i
6 5 5 2 10 1111

4. Indexed Loads

op ‘ b ‘ X ‘ S ‘u‘o‘ cc‘ ext4 ‘m‘ t

6 5 2 11 2 4 1 5
5. Short Displacement Loads

op ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ ext4 ‘m‘ t

6 5 5 2 11 2 4 1 5
6. Short Displacement Stores

op ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ ext4 ‘m‘ im5

6 5 5 2 11 2 4 1 5
7. Long Immediates

op ‘ t/r ‘ im21

6 5 21
8. Arithmetic/Logical

op ‘ r2 ‘ rl ‘ c M ea ‘eqed ed ‘d‘ t

6 5 5 3 1 2 11 2 1 5
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9. Arithmetic Immediate
op ‘ r ‘ t ‘ c ‘ f ‘e:q im11
6 5 5 3 11 11

op ‘ r2 ‘ rl ‘e‘ ea‘o‘eb‘ sa ‘0‘ t
6 5 5 1 2 1 2 4 1 5

11.Variable Shift Pair
oo | 2 | n | c |exold o | ¢
6 5 5 3 2 11 4 5

12.Variable Extract

op ‘ r ‘ t ‘ c ‘extz‘s# d ‘cl‘ 0 ‘ clen

6 5 5 3 2 111 3 5
13.Variable Deposit

op ‘ t ‘ rfim5 ‘ c ‘eth‘n# d ‘cl‘ 0 ‘ clen

6 5 5 3 2 111 3 5
14.Fixed Shift Pair

op ‘ r2 ‘ rl ‘ c ‘O‘cdd‘ cpos ‘ t

6 5 5 3 111 5 5
15.Fixed Extract

op ‘ r ‘ t ‘ c ‘cl‘ p ‘s# pos ‘ clen

6 5 5 3 111 5 5
16.Fixed Deposit

op ‘ t ‘ rfim5 ‘ c ‘cl‘cd@ cpos ‘ clen

6 5 5 3 111 5 5
17.Conditional Branch

op ‘ r/r2 ‘ r1/im5 ‘ c ‘ wl ‘ n ‘w

6 5 5 3 11 11
18.Branch on Bit

op ‘ p ‘ r ‘ C ‘cq wl ‘n‘w

6 5 5 3 1 11 11
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19.Branch External

op ‘ b ‘ wil ‘ S ‘ w2 ‘n‘w

6 5 5 11 11
20.Branch, Branch and Link

op ‘ tiw3 ‘ wl ‘ ext3 ‘ w2 ‘n‘w

6 5 5 3 11 11
21.Branch and Link Register, Branch Vectored

op ‘ t/b ‘ X ‘ ext3 ‘ ‘n‘o

6 5 5 3 11 11
22.Branch Vectored External

op ‘ b ‘ 0 ‘ ext3 ‘1‘ 0 ‘n‘p

6 5 5 3 1 10 11
23.Branch Target Stack

op ‘ 0 ‘ r ‘ ext3 ‘O‘ ‘ ‘O 1

6 5 5 3 1 111
24.Data Memory Management, Probe

op ‘ b ‘ r/x ‘ S ‘ ext8 ‘m‘ t

6 5 5 2 8 1 5
25.Short Displacement, Flush Data Cache

op ‘ b ‘ im5 ‘ S ‘ ext8 ‘m‘ t

6 5 5 2 8 1 5
26.Instruction Memory Management

op ‘ b ‘ r/x/im5 ‘ S ‘ ext7 ‘ m‘ 0

6 5 5 3 7 1 5
27.Break

op ‘ im13 ‘ ext8 ‘ im5

6 13 8 5
28.Diagnose

op ‘ im26

6 26

PA-RISC 2.0 Architecture

Instruction Formats B-3



29.Move to/from Space Register

op ‘ rv ‘ r ‘ S ‘ ext8 ‘ t

6 5 5 8 5
30.Load Space ID

op ‘ ‘ rv ‘ S ‘O‘ ext8 ‘ t

6 5 2 1 8 5
31.Move to Control Register

op ‘ t ‘ r ‘ rv ‘ ext8 ‘ 0

6 5 5 3 8 5
32.Move from Control Register

op ‘ r ‘ 0 ‘rv‘ e ‘rv‘ ext8 ‘ t

6 5 5 111 8 5
33.System Control

op | bims | dims | 0 | ext8 |

6 5 5 3 8 5
34.Special Operation Zero

op ‘ sopl ‘ 0 ‘ sfu ‘n‘ sop2

6 15 2 3 1 5
35.Special Operation One

op ‘ sop ‘ 1 ‘ sfu ‘n‘ t

6 15 2 3 1 5
36.Special Operation Two

op ‘ r ‘ sopl ‘ 2 ‘ sfu ‘n‘ sop2

6 5 10 2 3 1 5
37.Special Operation Three

op ‘ r2 ‘ rl sopl ‘ 3 ‘ sfu ‘n‘ sop2

6 5 5 5 2 3 1 5
38.Coprocessor Operation

op ‘ sopl ‘ uid ‘n‘ sop2

6 17 3 1 5

B-4
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39.Coprocessor Indexed Loads

op ‘ b ‘ X ‘ S ‘u‘o‘ cc‘o‘ uid ‘m‘ t

6 5 5 2 11 2 1 3 1 5
40.Coprocessor Indexed Stores

op ‘ b ‘ X ‘ S ‘u‘o‘ cc‘l‘ uid ‘m‘ r

6 5 5 2 11 2 1 3 1 5
41.Coprocessor Short Displacement Loads

op ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘o‘ uid ‘m‘ t

6 5 5 2 11 2 1 3 1 5
42 .Coprocessor Short Displacement Stores

op ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘l‘ uid ‘m‘ r

6 5 5 2 11 2 1 3 1 5
43.Floating-point Load and Store Word

op ‘ b ‘ t/r ‘ S ‘ imlla ‘e‘h‘i

6 5 5 2 11 111

44 Floating-point Load and Store Word Modify
op ‘ b ‘ tr ‘ S ‘ imlla ‘a‘
6 5 5 2 11 111

45.Floating-point Operation Zero, Major Opcode 0C
op ‘ r ‘ 0 ‘ sop ‘fmt‘ 0 ‘ 0 ‘0‘ t
6 5 5 3 2 2 3 1 5

46.Floating-point Operation One, Major Opcode 0C
op ‘ r ‘O‘SOp‘df‘sf‘l‘O‘O‘ t
6 5 3 3 2 2 2 3 1 5

47 .Floating-point Operation Two, Major Opcode 0C
op ‘ rl ‘ r2 ‘ sop ‘fmt‘ 2 ‘ 0 ‘n‘ c
6 5 5 3 2 2 3 1 5

48.Floating-point Operation Three, Major Opcode 0C
op ‘ rl ‘ r2 ‘ sop ‘fmt‘ 3 ‘ 0 ‘0‘ t
6 5 5 3 2 2 3 1 5
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49.Floating-point Operation Zero, Major Opcode OE
op ‘ r ‘ 0 ‘ sop‘o‘f‘ O‘O‘rto

[tlo] ¢
6 5 5 3 11 2 111

|
1 5

50.Floating-point Operation One, Major Opcode OE
op ‘ r ‘ 0 ‘ sop ‘O‘df‘o‘sf‘ 1 ‘O‘r‘t‘o
6 5 3 3 1111 2 111

|
1 5
51.Floating-point Operation Two, Major Opcode OE
op ‘ rl ‘ r2 ‘ sop ‘rz‘f‘ 2 ‘O‘rl‘o‘o‘ c
6 5 5 3 11 2 1111 5

52.Floating-point Operation Three, Major Opcode OE
op ‘ rl ‘ r2 ‘ sop ‘rz‘f‘ 3 ‘x‘rl‘t‘o‘ t
6 5 5 3 11 2 1111 5

53.Floating-point Multiple-operation
op ‘ rml ‘ rm2 ‘ ta ‘ ra ‘ f ‘ tm
6 5 5 5 5 1 5

54 .Floating-point Fused-operation
op ‘ rml ‘ rm2 ‘ ra ‘rz‘ f ‘ ra ‘rl‘ t ‘ e‘ t
6 5 5 3 11 3 111 5

55.Performance Monitor
op ‘ rv ‘ sub ‘ 2 ‘ n ‘ rv
6 12 5 3 1 5
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The field names used in the previous instruction format layouts are described in Table B-1. Some of the
field names may be followed by one or two digits. Those digits indicate the length of the field. An
example of a field name may be5 which indicates the field is a 5-bit immediate value. But names,
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such agl, which refers to the first source register field, are the actual field names.

Table B-1. Field Names for Instruction Formats

Field Description

a modify before/after bit

b base register

c condition specifier

cc cache control hint

cl, clen complement of extract/deposit length
cp, Cpos complement of deposit/shift bit position
d word/doubleword bit

df floating-point destination format

e, ea, eb, ec, ed, or
ext

operation code extension

f

condition negation bit

f or fmt floating-point data format
h floating-point register half
im immediate value
modify bit
n nullify bit
nz deposit zero/not zero bit
op operation code
p extract/deposit/shift bit position
pos extract bit position
r,rl, orr2 source register

ra, rml, or rm2

floating-point source register

v

reserved instruction field

S 2 or 3 bit space register

sa shift amount

se extract sign-extend bit

sf floating-point source format

sfu special function unit number

sop, sopl, or sop2 special function unit or coprocessor operation
t, ta, or tm target register

u shift index bit

uid coprocessor unit identifier

w, wl, w2, or w3

word offset/word offset part

X

index register

Instruction Formats
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C Operation Codes

This appendix provides a complete description of all of the PA-RISC 2.0 instruction operation codes.

Major Opcode Assignments

The major opcode assignments are listed in Table C-1. Instructions are shown in uppercase. Instruction
classes are capitalized. Extensions of the major opcodes can be found in the tables indicated, where
applicable. In the following discussions of opcode extensions the major opcode class hames are shown
in parentheses.
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Table C-1. Major Opcode Assignments

bits 0:1
bits 2:5
0 1 2 3
System_op
0 (Table C-2) LDB CMPB (true) BB (sar)
Mem_Mgmt
1 (Tables C-3 and LDH CMPIB (true) BB
C-4)
Arith/Log
2 (Table C-5) LDW CMPB (false) MOVB
Index_Mem
3 (Table C-6) LDW (mod) CMPIB (false) MOVIB
Sh_Ex_Dep
SPOPN Load_dw -~ =
4 = CMPICLR (Tables C-10
(Table C-15) (Table C-7) and C-11)
. Sh_Ex_Dep
5 DIAG — (Taﬁlléb(lj-g) (Tables C-10
and C-11)
Sh_Ex_Dep
6 FMPYADD FLDW (mod) FMPYSUB (Table C-10)
7 . Load w CMPB .
(Table C-8) (dw true)
8 LDIL STB ADDB BE
(true)
Copr_w ADDIB
9 (Table C-14) STH (true) BE.L
ADDB Branch
A ADDIL STW (false) (Table C-13)
Copr_dw ADDIB
B (Table C-14) STW (mod) (false) CMPIB (dw)
Store_dw Addi Sh_Ex_Dep
C COPR (Table C-7) | (Table C-9) | (Table C-10)
Addi Sh_Ex_Dep
D LDO - (Table C-9) | (Table C-10)
Float . .
Fp_fused Multimedia
E (Tables C-20 | FSTW (mod) T~ i
through C-24) (Table C-25) | (Table C-12)
F Product Store_w CMPB L
Specific (Table C-8) (dw false)

Operation Codes
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Opcode Extension Assignments

Many instructions require both a major opcode and an opcode extension to be uniquely identified. The
extension can be one to nine bits, depending on the major opcode.

System Control Instructions (System_op)

Figure C-1 shows the format of the system control instructions (major opcode 00) and Table C-2 lists
the opcode extensions. Bits 19:21 encode the source of the operation and bits 24:26 encode the
destination.

0
5 19 26
00 birlexts | exts | Ofs | exts t
6 5 5 3 8 5
Figure C-1. Format for System Control Instructions
Table C-2. System Control Instructions
Opcode Extension
Instruction hex binary hex
bits bit bits bits bits bits bits
0:5 17 19:21 | 22:23 | 24:26 | 19:26 | 11:15
BREAK 00 - 000 00 000 00 im5
SYNC 00 0 001 00 000 20 0
SYNCDMA 00 0 001 00 000 20 10
RFI 00 rv 011 00 000 60 rv
RFI,R 00 rv 011 00 101 65 rv
SSM 00 0 011 01 011 6B [
RSM 00 0 011 10 011 73 [
MTSM 00 0 110 00 011 C3 r
LDSID 00 - 100 00 101 85 rv
MTSP 00 - 110 00 001 C1 r
MFSP 00 - 001 00 101 25
MFIA 00 rv 101 00 101 A5 0
MTCTL 00 rv 110 00 010 Cc2 r
MTSARCM 00 rv 110 00 110 C6 r
MFCTL 00 0 010 00 101 45 0
MFCTL,W 00 1 010 00 101 45 0
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Bits Value  Description

19:21/24:26 000 no source / no destination
001 system resource
010 control register
011 PSW system mask
100 space register
101 general register destination
110 general register source
22:23 01 encodes SSM
10 encodes RSM
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Memory Management Instructions (Mem_Mgmt)

Figure C-2 shows the format of the memory management instructions (major opcode 01). The opcode
extensions (bits 19:26) for instruction memory management instructions are listed in Table C-3. The
opcode extensions (bits 18:26) for data memory management instructions are listed in Table C-4 on
page C-6. This group includes instructions that access the translation lookaside buffers and the caches.

Instruction Memory Management

0
5 19 25 27 31
01 b r/x/im5 ‘ s ‘ ext? ‘m‘ exts
6 5 5 3 7 1 5
Data Memory Management, Probe
0
5 18 25 27 31
01 b r/x/im5 ‘ S ‘ ext8 ‘m‘ ext5
6 5 5 2 8 1 5
Figure C-2. Formats for Memory Management Instructions
Table C-3. Instruction Memory Management Instructions
Opcode Extension Modify
Instruction hex binary hex binary
bits bit bits bits bit bits bits bit
0:5 19 20:21 | 22:24 | 25 19:25 | 27:31 26
IITLBT 01 0 10 000 0 20 0 0
PITLB 01 0 00 100 0 08 rv m
PITLBE 01 0 00 100 1 09 rv m
PITLB,L 01 0 01 100 0 18 rv m
FIC,0A 01 0 00 101 0 0A rv m
FICE 01 0 00 101 1 0B rv m
Bits Value  Description
19 0 instruction memory management
22:24 000 insert instruction
100 purge TLB instruction
101 flush instruction
22 1 modify (bit 26) enable
24 1 nonprivileged instruction
26 m modification is allowed for this instruction
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Table C-4. Data Memory Management Instructions

Opcode Extension Modify
Instruction hex binary hex binary
bits bit bit bits bits bit bits bits bit
0:5 18 19 20:21 | 22:24 | 25 18:25 | 27:31 26
IDTLBT 01 0 1 10 000 0 60 0 0
PDTLB 01 0 1 00 100 0 48 v m
PDTLBE 01 0 1 00 100 1 49 rv m
PDTLB,L 01 0 1 01 100 0 58 rv m
FDC (index) 01 0 1 00 101 0 4A rv m
FDC (imm) 01 1 1 00 101 0 CA rv 0
FDCE 01 0 1 00 101 1 4B v m
PDC 01 0 1 00 111 0 4E 0 m
FIC,4F 01 0 1 00 111 1 4F 0 m
PROBE,R 01 0 1 00 011 0 46 t 0
PROBEI,R 01 1 1 00 011 0 C6 t 0
PROBE,W 01 0 1 00 011 1 47 t 0
PROBEI,W 01 1 1 00 011 1 c7 t 0
LPA 01 0 1 00 110 1 4D t m
LCI 01 0 1 00 110 0 4C t 0

Bits Value  Description

18 0 non-immediate value
1 immediate value
19 1 data memory management

22:24 000 insert instruction
011 probe instruction
100 purge TLB instruction
101 flush instruction
110 load instruction
111 purge cache instruction

22 1 modify (bit 26) enable

23 1 store result

24 1 nonprivileged instruction

26 m modification is allowed for this instruction
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Arithmetic/Logical Instructions (Arith/Log)

Figure C-3 shows the format of the arithmetic/logical instructions. The opcode extensions for the
arithmetic/logical instructions (major opcode 02) are listed in Table C-5.

0
5 20 25
2 | 2 | 1 | c|f] et |d ot
6 5 5 3 1 6 1 5
Figure C-3. Format for Arithmetic/Logical Instructions
Table C-5. Arithmetic/Logical Instructions
Opcode Extension
Instruction 2 ALY L2
bits bits bits bits
0:5 20:21 22:25 20:25
ADD 02 01 1000 18
ADD,L 02 10 1000 28
ADD, TSV 02 11 1000 38
ADD,C 02 01 1100 1C
ADD,C, TSV 02 11 1100 3C
SHLADD (1) 02 01 1001 19
SHLADD,L (1) 02 10 1001 29
SHLADD,TSV (1) 02 11 1001 39
SHLADD (2) 02 01 1010 1A
SHLADD,L (2) 02 10 1010 2A
SHLADD,TSV (2) 02 11 1010 3A
SHLADD (3) 02 01 1011 1B
SHLADD,L (3) 02 10 1011 2B
SHLADD,TSV (3) 02 11 1011 3B
SUB 02 01 0000 10
SUB,TSV 02 11 0000 30
SUB,TC 02 01 0011 13
SUB,TSV,TC 02 11 0011 33
SUB,B 02 01 0100 14
SUB,B, TSV 02 11 0100 34
DS 02 01 0001 11
ANDCM 02 00 0000 00
AND 02 00 1000 08
OR 02 00 1001 09
XOR 02 00 1010 0A
UXOR 02 00 1110 OE
CMPCLR 02 10 0010 22
UADDCM 02 10 0110 26
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C-8

Table C-5. Arithmetic/Logical Instructions (Continued)

Opcode Extension
Instruction L SUTERY L
bits bits bits bits
0:5 20:21 22:25 20:25
UADDCM,TC 02 10 0111 27
DCOR 02 10 1110 2E
DCOR,I 02 10 1111 2F
HADD 02 00 1111 OF
HADD,SS 02 00 1101 0D
HADD,US 02 00 1100 oc
HSUB 02 00 0111 07
HSUB,SS 02 00 0101 05
HSUB,US 02 00 0100 04
HAVG 02 00 1011 0B
HSHLADD (1) 02 01 1101 1D
HSHLADD (2) 02 01 1110 1E
HSHLADD (3) 02 01 1111 1F
HSHRADD (1) 02 01 0101 15
HSHRADD (2) 02 01 0110 16
HSHRADD (3) 02 01 0111 17
Bits Value  Description
20:21 00 unit/logical; do not set carry/borrow bits.
01 arithmetic; set carry/borrow bits; do not trap.
10 unit/logical; do not set carry/borrow bits.
11 arithmetic; set carry/borrow bits; trap on overflow.

Operation Codes
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Indexed and Short Displacement Load/Store Instructions (Index_Mem)

Figure C-4 shows the formats of the indexed and short displacement load and store instructions. The
opcode extensions (bits 22:25) for indexed and short displacement memory reference instructions
(major opcode 03) are listed in Table C-6. The short displacement forms are distinguished from the
indexed instructions by bit 19 (0O=indexed, 1=short).

Indexed Loads

g 19 22 25
03 b X ‘ S ‘u‘o‘ cc‘ ext4 ‘m‘ t
6 5 5 2 11 2 4 1 5
Short Displacement Loads
(5) 19 22 25
03 b im5 ‘ S ‘a‘l‘ cc‘ ext4 ‘m‘ t
6 5 5 2 11 2 4 1 5
Short Displacement Stores, Store Bytes Short
g 19 22 25
03 b r ‘ S ‘a‘l‘ cc‘ ext4 ‘m‘ im5
6 5 5 2 11 2 4 1 5

Figure C-4. Formats for Indexed and Short Displacement Load/Store Instructions
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Table C-6. Indexed and Short Displacement Load/Store Instructions

Opcode Extension
Instruction e binary hex
bits bit bits bits bits
0:5 19 22:23 24:25 22:25

LDB (index) 03 0 00 00 0
LDH (index) 03 0 00 01 1
LDW (index) 03 0 00 10 2
LDD (index) 03 0 00 11 3
LDDA (index) 03 0 01 00 4
LDCD (index) 03 0 01 01 5
LDWA (index) 03 0 01 10 6
LDCW (index) 03 0 01 11 7
LDB (short) 03 1 00 00 0
LDH (short) 03 1 00 01 1
LDW (short) 03 1 00 10 2
LDD (short) 03 1 00 11 3
LDDA (short) 03 1 01 00 4
LDCD (short) 03 1 01 01 5
LDWA (short) 03 1 01 10 6
LDCW (short) 03 1 01 11 7
STB (short) 03 1 10 00 8
STH (short) 03 1 10 01 9
STW (short) 03 1 10 10 A
STD (short) 03 1 10 11 B
STBY (short) 03 1 11 00 C
STDBY (short) 03 1 11 01 D
STWA (short) 03 1 11 10 E
STDA (short) 03 1 11 11 F
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Load/Store Doubleword Instructions (Load_dw and Store_dw)

Figure C-5 shows the formats of the long displacement load and store doubleword instructions. The
opcode extensions (bit 30) for long displacement load and store doubleword instructions (major
opcodes 14 and 1C) are listed in Table C-7.

0

5 30
op b tr ‘ S ‘ iml10a ‘m‘a‘e‘i
6 5 5 2 10 1111

Figure C-5. Format for Load/Store Doubleword Instructions

Table C-7. Load/Store Doubleword Instructions

Opcode Extension
Instruction e ALY
bits bit
0:5 30
LDD (long) 14 0
STD (long) 1C 0
FLDD (long) 14 1
FSTD (long) 1C 1
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Load/Store Word Instructions (Load_w and Store_w)

Figure C-6 shows the formats of the long displacement load and store word instructions. The opcode

extensions (bit 29) for long displacement load and store word instructions (major opcodes 17 and 1F)
are listed in Table C-8.

Floating-Point Load/Store Word

0
5 29
op b ‘ t/r ‘ S ‘ imlla ‘e‘h‘i
6 5 5 2 11 111
Load/Store Word and Modify (Complement)
0
5 29
op b ‘ tr ‘ S ‘ imlla ‘e‘o‘i
6 5 5 2 11 111

Figure C-6. Format for Load/Store Word Instructions

Table C-8. Load/Store Word Instructions

Opcode | Extension

Instruction i SIE Y

bits bit

0:5 29
FLDW (long) 17 0
FSTW (long) 1F 0
LDW (mod comp) 17 1
STW (mod comp) 1F 1
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Arithmetic Immediate Instructions (Addi, Subi)

Figure C-7 shows the format of the arithmetic immediate instructions. The opcode extensions (bit 20)

for the arithmetic immediate instructions (major opcodes 25, 2C, and 2D) are listed in Table C-9. The
extension fielde, determines whether or not the instruction traps on overflow.

0

5 20
op r t ‘ c ‘ f ‘e# imll
6 5 5 3 11 11

Figure C-7. Format for Arithmetic Immediate Instructions

Table C-9. Arithmetic Immediate Instructions

Opcode | Extension
Instruction 19K ity

bits bit

0:5 20
ADDI 2D 0
ADDI,TC 2C 0
SUBI 25 0
ADDI, TSV 2D 1
ADDI, TSV, TC 2C 1
SUBI, TSV 25 1
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Shift, Extract, and Deposit Instructions (Sh_Ex_Dep)

Figure C-8 shows the formats of the shift, extract, and deposit instructions. The opcode extensions (bits
19:21) for the fixed shift, extract, and deposit instructions (major opcodes 34, 35, 36, 3C, and 3D) are
listed in Table C-10. The opcode extensions (bits 19:22) for the variable shift, extract, and deposit

instructions (major opcodes 34 and 35) are listed in Table C-11.

Variable Shift Pair

0
5 19:20 22
op r2 rl ‘ c ‘ext2‘0‘d‘ 0 ‘ t
6 5 5 3 2 11 4 5
Variable Extract
0
5 19:20 22
op r t ‘ c ‘eth‘sqd‘cl‘ 0 ‘ clen
6 5 5 3 2 111 3 5
Variable Deposit
0
5 19:20 22
op t rfim5 ‘ c ‘ext2‘n4d‘cl‘ 0 ‘ clen
6 5 5 3 2 111 3 5
Fixed Shift Pair
0
5 21
op r2 rl ‘ c ‘O‘cdd‘ cpos t
6 5 5 3 111 5 5
Fixed Extract
0
5 21
op r t ‘ c ‘cl‘ p ‘s# pos clen
6 5 5 3 111 5 5
Fixed Deposit
0
5 21
op t r/im5 ‘ c ‘cl‘cd@ cpos clen
6 5 5 3 111 5 5

Figure C-8. Formats for Shift, Extract, and Deposit Instructions
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Table C-10. Fixed Shift/Extract/Deposit Instructions

Opcode Extension
Instruction e binary | binary | binary
bits bit bit bit
SHRPD 3% 5 : -
SHRPW 34 0 1 0
EXTRD 36 ol 0 -
EXTRW 34 1 1 -
DEPD 3C o e >
DEPDI 3D o o o
DEPW 35 0 1 i
DEPWI 35 1 1 e

Table C-11. Variable Shift/Extract/Deposit Instructions

Opcode Extension
Instruction hex binary hex binary | binary

bits bits bits bit bit

0:5 19:20 19:20 21 22
SHRPD 34 00 0 0 1
SHRPW 34 00 0 0 0
EXTRD 34 10 2 se 1
EXTRW 34 10 2 se 0
DEPD 35 00 0 nz 1
DEPDI 35 10 2 nz 1
DEPW 35 00 0 nz 0
DEPWI 35 10 2 nz 0

PA-RISC 2.0 Architecture

Operation CodesC-15



Multimedia Instructions (Multimedia)

Figure C-9 shows the formats of the multimedia instructions. The opcode extensions (bits 16, 17:18,
and 20:21) for the multimedia instructions (major opcode 3E) are listed in Table C-12

Halfword Permute

0
5 16 20:21
3E r r \o\ co\o\ c1\c2\c3\o\ t
6 5 5 1 2 1 2 2 2 1 5
Halfword Shifts
0
5 16 20:21
3E O/r r/O ‘1‘ ea‘o‘ eb‘ sa ‘0‘ t
6 5 5 1 2 1 2 4 1 5
Halfword Mix
0
5 16 20:21
3E r2 r1 \1\ ea\o\ eb\ 0 \o\ t
6 5 5 1 2 1 2 4 1 5
Figure C-9. Formats for Multimedia Instructions
Table C-12. Multimedia Instructions
Opcode Extension
Instruction e ey e
bits bit bits bits bits bits
0:5 16 17:18 20:21 17:18 20:21
PERMH 3E 0 - - - -
HSHL 3E 1 00 10 0 2
HSHR,U 3E 1 10 10 2 2
HSHR,S 3E 1 10 11 2 3
MIXW,L 3E 1 00 00 0 0
MIXW,R 3E 1 10 00 2 0
MIXH,L 3E 1 00 01 0 1
MIXH,R 3E 1 10 01 2 1

C-16  Operation Codes PA-RISC 2.0 Architecture



Unconditional Branch Instructions (Branch)

Figure C-10 shows the formats of the unconditional branch instructions. The opcode extensions (bits
16:18 and 31) for the unconditional branch instructions (major opcode 3A) are listed in Table C-13.

Branch

0

5 16 18 31
3A tiw3 wil ‘ ext3 ‘ w2 ‘n‘w
6 5 5 3 11 11

Branch Vectored External

0

5 16 18 31
3A b 0 | ex3|1 rv [n|rv
6 5 5 3 1 10 11

Branch and Link Register, Branch Vectored

0

5 16 18 31
3A t/b 0/x ‘ ext3 ‘O‘ rv ‘n‘rv
6 5 5 3 1 10 11

Figure C-10. Formats for Unconditional Branch Instructions

Table C-13. Unconditional Branch Instructions

Opcode Extension
Instruction e binary hex binary

bits bits bits bit

0:5 16:18 16:18 19
BL 3A 000 0 -
B,GATE 3A 001 1 _
B,L,PUSH 3A 100 4 _
B,L (long) 3A 101 5 _
BLR 3A 010 2 0
BV 3A 110 6 0
BVE 3A 110 6 1
BVE L 3A 111 7 1
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Coprocessor Loads and Stores (Copr_w and Copr_dw)

Figure C-11 shows the formats of the coprocessor load and store instructions. The opcode extensions
for the coprocessor memory reference instructions (major opcodes 09 and 0OB) are listed in Table C-14.
Opcode 09 indicates the instruction operates on word data (Copr_w). Opcode OB indicates the
instruction operates on doubleword data (Copr_dw). The short displacement forms are distinguished
from the indexed instructions by bit 19 (0 = indexed; 1 = short) and loads from stores by bit 22 (0 =
load; 1 = store).

Coprocessor Indexed Loads

C5) 19 22
op b X ‘ S ‘u‘o‘ cc‘O‘ uid ‘m‘ t
6 5 5 2 11 2 1 3 1 5
Coprocessor Indexed Stores
(5) 19 22
op b X ‘ S ‘u‘o‘ cc‘l‘ uid ‘m‘ r
6 5 2 11 2 1 3 1 5
Coprocessor Short Loads
C5) 19 22
op b im5 ‘ S ‘a‘l‘ cc‘O‘ uid ‘m‘ t
6 5 5 2 11 2 1 3 1 5
Coprocessor Short Stores
(5) 19 22
op b im5 ‘ S ‘a‘l‘ cc‘l‘ uid ‘m‘ r
6 5 5 2 11 2 1 3 1 5

Figure C-11. Formats for Coprocessor Load/Store Instructions
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Table C-14. Coprocessor Load and Store Instructions

PA-RISC 2.0 Architecture

Opcode Extension
Instruction L BITETy

bits bit bit

0:5 19 22

CLDW (index) 09 0 0
CLDD (index) 0B 0 0
CSTW (index) 09 0 1
CSTD (index) 0B 0 1
CLDW (short) 09 1 0
CLDD (short) 0B 1 0
CSTW (short) 09 1 1
CSTD (short) 0B 1 1
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Special Function Unit Instructions

Figure C-12 shows the formats of the special function unit instructions. The opcode extensions for the
special function unit instructions (major opcode 04) are listed in Table C-15.

Special Operation Zero

0
5 21:22
04 sopl ‘ 0 ‘ sfu ‘n‘ sop2
6 15 2 3 1 5
Special Operation One
0
5 21:22
04 sop ‘ 1 ‘ sfu ‘n‘ t
6 15 2 3 1 5
Special Operation Two
0
5 21:22
04 r sopl ‘ 2 ‘ sfu ‘n‘ sop2
6 5 10 2 3 1 5
Special Operation Three
0
5 21:22
04 rl r2 sopl ‘ 3 ‘ sfu ‘n‘ sop2

6 5 5 5 2 3 1 5

Figure C-12. Formats for Special Function Unit (SFU) Instructions

Table C-15. Special Function Unit (SFU) Instructions

Opcode Extension

Instruction e Ty e
bits bits bits

0:5 21:22 21:22
SPOPO 04 00 0
SPOP1 04 01 1
SPOP2 04 10 2
SPOP3 04 11 3
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Floating-Point Coprocessor Operation Instructions

Figures C-13, C-14, and C-15 show the formats of the floating-point coprocessor operation instructions.
The opcode extensions for the floating-point coprocessor operation instructions (major opcode 0C, uid
0, major opcode OE, and major opcode 2E) are listed in Tables C-16 through C-24.

Major Opcode 0C

Floating-Point Operation Zero

g 16 18 21:22 26
ocC r 0 |subl|mt|o| o o]
6 5 5 3 2 2 3 1 5
Floating-Point Operation One
g 14 16 21:22 26
ocC r | o |sub|di|st|1]| 0 |o] 't
6 5 3 3 2 2 2 3 1 5
Floating-Point Operation Two
g 16 18 21:22 26
ocC ri r2 ‘ sub ‘fmt‘ 2 ‘ 0 ‘n‘ c
6 5 5 3 2 2 3 1 5
Floating-Point Operation Three
g 16 18 21:22 26
ocC r1 2 | sub|fmt| 3] 0 o] ¢
6 5 5 3 2 2 3 1 5

Figure C-13. Formats for Floating-Point Operations - Major Opcode 0C
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Table C-16. Floating-Point Class Zero - Major Opcode 0C Instructions

Opcode| Uid | Class| Sub-Op Cond/Targ Nullify
hex hex hex hex hex binary
Instruction _ _ bits _ _ _
bits bits 212 bits bits bit
0:5 23:25 2' 16:18 27:31 26
FID ocC 0 0 0 0 0
FCPY ocC 0 0 2 t 0
FABS oC 0 0 3 t 0
FSQRT oC 0 0 4 t 0
FRND ocC 0 0 5 t 0
FNEG ocC 0 0 6 t 0
FNEGABS oC 0 0 7 t 0

Table C-17. Floating-Point Class One - Major Opcode OC Instructions

Opcode| Uid | Class| Sub-Op| Cond/Targ | Nullify
hex hex hex hex hex binary
Instruction _ . bits _ _ _

bits bits 212 bits bits bit
0:5 23:25 2' 14:16 27:31 26
FCNYV (float/float) ocC 0 1 0 t 0
FCNYV (int/float) 0oC 0 1 1 t 0
FCNYV (float/int) 0oC 0 1 2 t 0
FCNV,T (float/int) oC 0 1 3 t 0
FCNV (uint/float) oC 0 1 5 t 0
FCNV (float/uint) oC 0 1 6 t 0
FCNV,T (float/uint) ocC 0 1 7 t 0

Table C-18. Floating-Point Class Two - Major Opcode OC Instructions

Opcode| Uid | Class| Sub-Op| Cond/Targ | Nullify
hex hex hex hex hex binary
Instruction bits
bits bits 212 bits bits bit
0:5 23:25 2‘ 16:18 27:31 26
FCMP oC 0 2 y c 0
FTEST ocC 0 2 y c 1
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Table C-19. Floating-Point Class Three - Major Opcode 0OC Instructions

Opcode| Uid | Class| Sub-Op| Cond/Targ | Nullify
hex hex hex hex hex binary
Instruction _ _ bits _ _ _
bits bits 212 bits bits bit
0:5 23:25 2‘ 16:18 27:31 26
FADD oC 0 3 0 t 0
FSUB ocC 0 3 1 t 0
FMPY oC 0 3 2 t 0
FDIV oC 0 3 3 t 0
Reserved ocC 0 3 4-6 - 0
Undefined ocC 0 3 7 - 0
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Major Opcode OE (Float)

Floating-Point Operation Zero

g 16 18 21:22 26
OE r 0 | sub|o|[f]| oo|r|[t|o] ¢
6 5 5 3 11 2 1111 5
Floating-Point Operation One
g 14 16 21:22 26
OE r | o | sub|ofdflo|s 1 |o|r|t|o] ¢
6 5 3 3 1111 2 1111 5
Floating-Point Operation Two
g 16 18 21:22 26
OE r1 2 | sub [iZf]| 2 [ojlojo] ¢
6 5 5 3 11 2 1111 5
Floating-Point Operation Three
g 16 18 21:22 26
OE r1 2 | sub 2f| 3 |ofrat]o] ¢
6 5 5 3 11 2 1111 5
Fixed-Point Operation Three
g 16 18 21:22 26
OE r1 2 | sub [r2f] 3 [1frat|o] ¢
6 5 5 3 11 2 1111 5

Figure C-14. Formats for Floating-Point Operations - Major Opcode OE
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Table C-20. Floating-Point Class Zero - Major Opcode OE Instructions

Opcode| Class| Sub-Op| Fixed | Nullify | Format | Cond/Targ
hex hex hex binary | binary hex hex
Instruction _ bits _ _ _ _ _

bits 212 bits bit bit bits bits

0:5 2‘ 16:18 23 26 19:20 25,27:31
FCPY OE 0 2 0 0 fmt t
FABS OE 0 3 0 0 fmt t
FSQRT OE 0 4 0 0 fmt t
FRND OE 0 5 0 0 fmt t
FNEG OE 0 6 0 0 fmt t
FNEGABS OE 0 7 0 0 fmt t

Table C-21. Floating-Point Class One - Major Opcode OE Instructions

Opcode| Class| Sub-Op| Fixed | Nullify | Format| Cond/Targ
hex hex hex binary | binary hex hex
Instruction . bits . . . . .

bits 212 bits bit bit bits bits

0:5 2‘ 14:16 23 26 17:20 25,27:31
FCNV (float/float) OE 1 0 0 0 df,sf t
FCNV (int/float) OE 1 1 0 0 df,sf t
FCNV (float/int) OE 1 2 0 0 df,sf t
FCNV,T (float/int) OE 1 3 0 0 df,sf t
FCNV (uint/float) OE 1 5 0 0 df,sf t
FCNYV (float/uint) OE 1 6 0 0 df,sf t
FCNV,T (float/uint) OE 1 7 0 0 df,sf t

Table C-22. Floating-Point Class Two - Major Opcode OE Instructions

Opcode| Class| Sub-Op| Fixed | Nullify | Format Cond/Targ
hex hex hex binary | binary | binary hex
Instruction bits
bits 212 bits bit bit bit bits
0:5 2‘ 16:18 23 26 20 25,27:31
FCMP OE 2 y 0 0 f 0,c
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Table C-23. Floating-Point Class Three - Major Opcode OE Instructions

Opcode | Class| Sub-Op| Fixed | Nullify | Format Cond/Targ
hex hex hex binary | binary | binary hex
Instruction _ bits _ _ _ _ _

bits 212 bits bit bit bit bits

0:5 2' 16:18 23 26 20 25,27:31
FADD OE 3 0 0 0 f t
FSUB OE 3 1 0 0 f t
FMPY OE 3 2 0 0 f t
FDIV OE 3 3 0 0 f t
Undefined OE 3 4 0 0 - -
Reserved OE 3 5-6 0 0 - -
Undefined OE 3 7 0 0 - -

Table C-24. Fixed-Point Class Three - Major Opcode OE Instructions

Opcode | Class| Sub-Op| Fixed | Nullify | Format Cond/Targ

hex hex hex binary | binary | binary hex
Instruction bits
bits 212 bits bit bit bit bits
0:5 2' 16:18 23 26 20 25,27:31
XMPYU OE 3 2 1 0 0 t
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Major Opcode 2E (Fp_fused)

o

5 20 26
rl r2 ‘ r3 ‘rZ‘ f ‘ r3 ‘rl‘ t ‘ s‘ t
6 5 5 3 11 3 111 5

Figure C-15. Format for Floating-Point Fused-Operation Instructions

Table C-25. Floating-Point Fused-Operation Instructions

Opcode| Sub-Op|  Format

Instruction hex binary binary
bits bit bit
FMPYFADD 2E 0 f
FMPYNFADD 2E 1 f
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Performance Monitor Coprocessor Instructions

Figure C-16 shows the format of the performance monitor coprocessor operation instructions. The
opcode extensions for the performance monitor coprocessor instructions (major opcode 0C, uid 2) are

listed in Table C-26.

0
5 18 22 26
oC rv ‘ sub ‘ 2 ‘ n ‘ rv
6 12 5 3 1 5

Figure C-16. Format for Performance Monitor Coprocessor Instructions

Table C-26. Performance Monitor Coprocessor Instructions

Opcode Uid Sub-Op Nullify
Instruction hex hex hex binary
bits bits bits bit
0:5 23:25 18:22 26
PMDIS ocC 2 1 n
PMENB oC 2 3 0
Undefined oC 2 0,2,4..F -
Reserved oC 2 10..1F -
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D Conditions

The condition completer field;ond in the assembly language form of an instruction specifies a
condition or the negation of a condition. This field expands in the machine language form to fill the
condition field,c, (normally 3 bits wide), the 1-bit negation fieldand the 1-bit doubleword field, as
required. For some instructions, the negation or doubleword attributes of the condition are controlled by
the opcode.

This appendix defines all conditions for the instruction set.

Arithmetic/Logical Conditions

The arithmetic/logical operations generate the set of conditions as shown in Table D-1. No overflow
conditions result from logical operations. In the tablis,the machine language encoding indicating the
condition. While most instructions perform only doubleword arithmetic/logical operations, both word
and doubleword conditions are available. Doubleword conditions are computed based on the 64-bit
result of the arithmetic operation, the (leftmost) carry bit of the result, and the overflow indication. Word
conditions are computed based on the least significant 32 bits of the 64-bit result of the arithmetic
operation, and the carry bit and overflow indication out of bit 32 of the doubleword result.

The terms signed overflow and unsigned overflow are defined for the arithmetic instructions in
Table D-2.

Table D-1. Arithmetic/Logical Operation Conditions

c Description
0 | never; nothing
1| allbitsare 0
2 | (leftmost bit is 1) xor signed overflow
3 | all bits are 0 or (leftmost bit is 1 xor signed overflow)
adds subtracts/compares
4 | no unsigned overflow unsigned overflow
5 | all bits are 0 or no unsigned overflow all bits are 0 or unsigned overflow
6 | signed overflow
7 | rightmost bit is 1
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Table D-2. Overflow Results

Instructions Unsigned Overflow Signed Overflow
Adds The result of an unsigned addition The result of signed addition is not
is %Ezegter than representable in two’s complement notation
27""=1 (carry ==1). (both source operands have the same sign and
wheresizeis the operand size the sign of the result is different)
(either 32 or 64).
Subtracts The result of an unsigned The result of signed subtraction is not
and subtraction is less than 0 (i.b.is | representable in two’s complement notation
Compares | greater tha@ain the operatiow=a | (both the source operands have different signs
- b; borrow == 0). and the sign of the result differs from the sign
of the first operand; i.ea has a different sign
thanb andc in the operatior = a - b).
Divide Step | One or more of the bits shifted oyt One or more of the bits shifted out differs
and Shift is 1, or the result of the operation |sfrom the leftmost bit following the shift, or the
and Adds not in the range 0 through result of the operation is not representable in

2SIZE_ 1
wheresizeis the operand size
(either 32 or 64).

two’s complement notation.

When implementing thé®IVIDE STEP and SHIFT AND ADD instructions, the overflow condition

XORed into conditions 2 and 3 may optionally include the overflow that is generated during the pre-
shift operation. The only overflow that must be included is the one actually generated by the arithmetic

operation.

If a signed overflow occurs during the shift operation DAADE STEP or SHIFT AND ADD instruction,

conditions 2 and 3 are not meaningful; therefore, the result of a condition 2 or condition 3 test is not

predictable.

D-2

Conditions

PA-RISC 2.0 Architecture



Programming Note
The figure below shows signed number addition and indicates the signed overflow condition

when both operands are small positive numbers, large positive numbers, large negative
numbers, or small negative numbers.

sign sign sign sign
v | v | v | v |
GRIr]| 0|0 ¢ of1]¢ 1)0]¢ 1)1+
1 1 1 1
| | | |
GrRI2[ 00|+ ol1]s [a]ols [1]1]5
1 1 1 1
GR[t] | 0 }ove?f(l)ow 1 overflow | O overflow | 1 ovePf?ow
small large large small
positive positive negative negative
numbers numbers numbers numbers

Signed overflow can occur only when adding numbers with the same sign. Addition of
numbers with unlike signs will always result with a “no overflow” condition.

The interpretation of the arithmetic/logical conditions varies according to the operation performed. The
interpretation for all the subtracts and the register forms of comparisons are shown in Tables D-3 and
D-4. The interpretation for the immediate form of comparisons are shown in Table D-5.

In these tablessondis in assembly language format and, andd are in machine language format.

opdl denotes operand 1 (an immediate value or a register’s contents) in the assembly language
instruction format andpd2denotes operand 2 (a register’'s contents). The condition, <<, “opd1 is less
than opd2 (unsigned)” is equivalent to unsigned overflow in Table D-1.
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Table D-3. Compare/Subtract Instruction Word Conditions

cond Description c f d
never 0 0 0
= opdl is equal to opd2 (word) 1 0 0
< opdl is less than opd2 (signed word) 2 0
<= opdl is less than or equal to opd2 (signed word) 3 0
<< opdl is less than opd2 (unsigned word) 4 0
<<= opdl is less than or equal to opd2 (unsigned word) 5 0
SV opdl minus opd2 overflows (signed word) 6 0
oD opdl1 minus opd2 is odd 7 0 0
TR always 0 1 0
<> opdl is not equal to opd2 (word) 1 1 0
>= opdl is greater than or equal to opd2 (signed word) 2 1
> opdl is greater than opd2 (signed word) 3 1
>>= opdl is greater than or equal to opd2 (unsigned word) 4 1
>> opdl is greater than opd2 (unsigned word) 5 1
NSV opd1 minus opd2 does not overflow (signed word) 6 1
EV opd1 minus opd?2 is even 7 1 0

Table D-4. Compare/Subtract Instruction Doubleword Conditions

cond Description c f d
* never 0 0 1
*= opd1 is equal to opd2 (doubleword) 1 q 1
*< opd1 is less than opd2 (signed doubleword) 2 0 1
*<= opdl is less than or equal to opd2 (signed doubleword) 3 0
*<< opdl is less than opd2 (unsigned doubleword) 4 0 1
*<<= | opdl is less than or equal to opd2 (unsigned doubleword) 5 0
*SV opd1 minus opd2 overflows (signed doubleword) 6 0 1
*OD | opdl minus opd2 is odd 7 0 1
*TR always 0 1 1
*<> opd1 is not equal to opd2 (doubleword) 1 1 1
*>= opdl is greater than or equal to opd2 (signed doubleword) 2 1
*> opdl is greater than opd2 (signed doubleword) 3 1 1
*>>= | opdl is greater than or equal to opd2 (unsigned doubleword) 4 1
*>> opdl is greater than opd2 (unsigned doubleword) 5 1
*NSV | opdl minus opd2 does not overflow (signed doubleword) 6 1
*EV opdl1 minus opd2 is even 7 1 1
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Table D-5. Compare Immediate and Branch Instruction Doubleword Conditions

cond Description c

*<< opd1 is less than opd2 (unsigned doubleword) 0
*= opd1 is equal to opd2 (doubleword) 1
*< opd1 is less than opd2 (signed doubleword) 2
*<= opdl is less than or equal to opd2 (signed doubleword) 3

*>>= | opdl is greater than or equal to opd2 (unsigned doubleword) 4
*<> opd1 is not equal to opd2 (doubleword) 5
*>= opdl is greater than or equal to opd2 (signed doubleword) 6
*> opd1 is greater than opd2 (signed doubleword) 7

The interpretation for the register form of adds are shown in Tables D-6 and D-7. The interpretation for
the immediate form of adds are shown in Table D-6.

Condis in assembly language format and, andd are in machine language format.

Table D-6. Add Instruction Word Conditions

cond Description c f d
never 0 0 0
= opdl is equal to negative of opd2 (word) il 0 0
< opdl is less than negative of opd2 (signed word) 2 0 0
<= opdl is less than or equal to negative of opd2 (signed word) 3 0 0
NUV | opd1l plus opd2 does not overflow (unsigned word) 4 0 0
ZNV | opdl plus opd2 is zero or no overflow (unsigned word) 5 0 0
SV | opdl plus opd2 overflows (signed word) 6 0 0
OD | opdl plus opd2 is odd 7 0 0
TR | always 0 1 0
<> opdl is not equal to negative of opd2 (word) 1 1 0
>= opdl is greater than or equal to negative of opd2 (signed word) 2 1 0
> opd1 is greater than negative of opd2 (signed word) 3 1 0
UV | opdl plus opd2 overflows (unsigned word) il il 0
VNZ | opd1l plus opd2 is nonzero and overflows (unsigned word) 5 1 0
NSV | opdl plus opd2 does not overflow (signed word) 6 1 0
EV | opdl plus opd2 is even 7 1 0
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Table D-7. Add Instruction Doubleword Conditions

cond Description c f d
* never 0 0 1
*= opd1 is equal to negative of opd2 (doubleword) 1 0 1
*< opd1 is less than negative of opd2 (signed doubleword) 2 0 1
*<= opdl is less than or equal to negative of opd2 (signed doubleword) 3 0 1
*NUV | opd1 plus opd2 does not overflow (unsigned doubleword) 4 0 1
*ZNV | opdl plus opd2 is zero or no overflow (unsigned doubleword) 5 0 1
*SV opd1 plus opd2 overflows (signed doubleword) 6 0 1
*OD | opd1l plus opd2 is odd (doubleword) 1 @ 1
*TR always 0 1 1
*<> opd1 is not equal to negative of opd2 (doubleword) 1 1 1
*>= opd1 is greater than or equal to negative of opd2 (signed doubleword) 2 1 1
*> opd1 is greater than negative of opd2 (signed doubleword) 3 1 1
*UV | opdl plus opd2 overflows (unsigned doubleword) 4 1 1
*VNZ | opdl plus opd2 is nonzero and overflows (unsigned doubleword) 5 1 1
*NSV | opdl plus opd2 does not overflow (signed doubleword) 6 1 1
*EV opd1 plus opd2 is even 7 1 1

Table D-8. Add and Branch Instruction Conditions when PSW W-bit is 1

cond Description c f
never 0 0
= opdl is equal to negative of opd2 (word) il 0
< opdl is less than negative of opd2 (signed word) 2 0
<= opdl is less than or equal to negative of opd2 (signed word) 3 0
NUV | opdl plus opd2 does not overflow (unsigned word) 4 0
*= opd1 is equal to negative of opd2 (doubleword) 5 0
*< opd1 is less than negative of opd2 (signed doubleword) 6 0
*<= opdl is less than or equal to negative of opd2 (signed doubleword) 7 0
TR always 0 1
<> opdl is not equal to negative of opd2 (word) 1 1
>= opdl is greater than or equal to negative of opd2 (signed word) 2 1
> opdl is greater than negative of opd2 (signed word) 3 1
uv opd1 plus opd2 overflows (unsigned word) il 1
*<> opd1 is not equal to negative of opd2 (doubleword) 5 1
*>= opdl is greater than or equal to negative of opd2 (signed doubleword) 6 1
*> opd1 is greater than negative of opd2 (signed doubleword) 7 1

The interpretation of the condition completers for 8#FT AND ADD instructions is similar to the
ADD instructions (Tables D-6 and D-7). If no overflow occogsllis the shifted value. For example,
the completer “=" implies that the shiftegbdl equals the negative @ipd2 If overflow occurs, the
interpretations in Tables D-6 and D-7 do not apply. Table D-1 and the definition of overflow in
Table D-2 can be used to determine if the condition is satisfied.

The interpretation of the condition completers for ®IDE STEP instruction are similar to the
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subtract or add conditions, depending on the state of the PSW V-bit. If no overflow occunpdhisn
the shifted value. If overflow occurs, the interpretations in Tables D-3 and D-6 do not apply. Again,
Tables D-1 and D-2 can be used to determine if the condition is satisfied.

For logical operations, the conditions are computed based only on the result. The interpretation of the
arithmetic/logical conditions for logical instructions is shown in Tables D-9 and D-10. In these tables,
condis in assembly language format and, andd are in machine language format. Other values of the
condition field are undefined for the logical operations.

Table D-9. Logical Instruction Word Conditions

cond Description c f d
never 0 0 0
= all bits in word are 0 1 0 0
< leftmost bit in word is 1 2 0 0
<= leftmost bit in word is 1 or all bits in word are 0 3 D 0
OD | rightmost bit is 1 7 0 0
TR | always 0 1 0
<> some bits in word are 1 1 1 0
>= leftmost bit in word is O 2 1 0
> leftmost bit in word is 0, some bits in word are 1 ] 1 0
EV | rightmost bitis O 7 1 0

Table D-10. Logical Instruction Doubleword Conditions

cond Description c f d

* never 0 0 1

*= all bits in doubleword are 0 1 0 1
*< leftmost bit in doubleword is 1 2 0 1
*<= | |leftmost bit in doubleword is 1 or all bits in doubleword are 0O 3 0 1
*OD | rightmost bitis 1 7 0 1
*TR | always 0 1 1
*<> | some bits in doubleword are 1 1 1 1
*>= | |leftmost bit in doubleword is 0 2 1 1
*> leftmost bit in doubleword is 0, some bits in doubleword are 1 3 1 1
*EV | rightmost bit is 0 7 1 1

Unit Conditions

The operations concerned with sub-units of a doubleword generate the conditions shown in Tables D-11
and D-12. The conditions are computed based on the 64-bit result of the unit operation and the sixteen
4-bit carries. In these tablespnd is in assembly language format aadf, andd are in machine
language format.
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Table D-11. Unit Instruction Word Conditions

cond Description c f d
never 0 0 0
undefined 1 0 0

SBZ Some Byte in word Zero 2 0 0

SHzZ Some Halfword Zero 3 0 0

SDC | Some Digit in word Carry 4 0 0
undefined 5 0 0

SBC Some Byte in word Carry 6 0 0

SHC | Some Halfword Carry 7 0 0

TR always 0 1 0
undefined 1 1 0

NBZ | No Bytes in word Zero 2 1 0

NHZ No Halfwords Zero 3 1 0

NDC | No Digit in word Carries 4 1 0
undefined 5 1 0

NBC | No Byte in word Carries 6 1 0

NHC No Halfword Carries 7 1 0

Table D-12. Unit Instruction Doubleword Conditions
cond Description c f d
* never 0 0 1
*SWZ | Some Word in doubleword Zero 1 Q 1
*SBZ | Some Byte in doubleword Zero 2 0 1
*SHZ | Some Halfword in doubleword Zero 3 Q 1
*SDC | Some Digit in doubleword Carry 4 0 1
*SWC | Some Word in doubleword Carry 5 q 1
*SBC | Some Byte in doubleword Carry 6 q 1
*SHC | Some Halfword in doubleword Carry 7 Q 1
*TR always 0 1 1
*NWZ | No Words in doubleword Zero 1 1 1
*NBZ | No Bytes in doubleword Zero 2 1 1
*NHZ | No Halfwords in doubleword Zero 3 1 1
*NDC | No Digit in doubleword Carries 4 1 1
*NWC | No Words in doubleword Carry 5 1 1
*NBC | No Byte in doubleword Carries 6 1 1
*NHC | No Halfword in doubleword Carries 7 1 1

Shift/Extract/Deposit Conditions

The shift, extract, and deposit operations generate the conditions shown in Tables D-13 and D-14. The
conditions are computed based on the result of the operation. In these dabteis, in assembly
language format and andd are in machine language format. TM®VE AND BRANCH and MOVE
IMMEDIATE AND BRANCH instructions also use the extract/deposit conditions.
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Table D-13. Shift/Extract/Deposit Word Instruction Conditions

cond Description c d
never 0 0
= all bits in word are 0 1 0
< leftmost bit in word is 1 2 0
oD rightmost bit is 1 3 0
TR always 4 0
<> some bits in word are 1 5 0
>= leftmost bit of word is O 6 0
EV rightmost bit is 0 7 0

Table D-14. Shift/Extract/Deposit Doubleword Instruction Conditions

cond Description c d

* never 0 1
*= all bits in doubleword are 0 1 1
*< leftmost bit in doubleword is 1 2 1
*OD rightmost bit is 1 3 1
*TR always 4 1
*<> some bits in doubleword are 1 5 1
*>= leftmost bit in doubleword is 0 6 1
*EV rightmost bit is 0 7 1

Branch On Bit Conditions

The branch on bit operations generate the conditions shown in Table D-15. In thisdablés in
assembly language format andndd are in machine language format.

Table D-15. Branch On Bit Instruction Conditions

cond Description c d
< leftmost bit in word is 1 0 0
>= leftmost bit in word is 0 1 0
*< leftmost bit in doubleword is 1 0 1

*>= leftmost bit in doubleword is 0 1 1
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E Instruction Notation Control Structures

The control structures used in the instruction notation in Chapter 7, “Instruction Descriptions” and
Chapter 9, “Floating-Point Instruction Set” are relatively standard. The expression statements describe a
computation performed by the ALU or some other hardware for its side effects rather than the value of
the computation. The functions listed Table E-1 are used to localize long calculations that are used in
several places.

Table E-1. Long Calculation Functions

Function Description
assemble_3(x) Assembles a 3-bit space register number:
return(cat(x{2},x{0..1}))
assemble_6(x,y) Assembles a 6-bit extract/deposit length specifier:
return(32 * x + 32 —y)
assemble_12(x,y) Assembles a 12-bit immediate:
return(cat(y,x{10},x{0..9}))
assemble_16(x,y) Assembles a 16-bit immediate in one of two ways, depending on the
PSW W-bit:
if (PSW[W])
return(cat(y{13},xor(y{13},x{0}),xor(y{13},x{1}),y{0..12}))
else
return(cat(y{13},y{13},y{13},y{0..12}))
assemble_16a(x,y,z) Assembles a word-aligned 16-bit immediate in one of two ways,
depending on the PSW W-bit:
if (PSW[W])
return(cat(z,xor(z,x{0}),xor(z,x{1}),y,0{0..1}))
else
return(cat(z,z,z,y,0{0..1}))
assemble_17(x,y,z) Assembles a 17-bit immediate:
return(cat(z,x,y{10},y{0..9}))
assemble_21(x) Assembles a 21-bit immediate:
return(cat(x{20},x{9..19},x{5..6},x{0..4} ,x{7..8}))
assemble_22(a,b,c,d) Assembles a 22-bit immediate:
return(cat(d,a,b,c{10},c{0..9}))
cat(x1, ..., xn) Concatenates the passed argumdnts;oughxn.
low_sign_ext(x,len) Removes the rightmost bik@nd extends the field to the left with that
bit to form a 64-bit quantity. The field is of sitssn:
return(sign_ext(cat(x{len-1},x{0..len-2}),len))
Ishift(argl,arg?) arglis logically shifted left by the number of bits specifiecig2. The
size of the result is determined by the sizargflL
mem_load See “Memory Reference Instructions” on page 6-6.
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Table E-1. Long Calculation Functions (Continued)

Function Description

mem_store See “Memory Reference Instructions” on page 6-6.

rshift(argl,arg2) arglis logically shifted right byarg2 bits. The size of the result is
determined by the size afgl.

send_to_copr(u,t) Sends the 5-bit value coprocessor unit

sign_ext(x,len) Extends on the left with sign bits to form a 64-bit quantity, taking the
leftmost bit for the field of sizken as the sign bit.

sign_ext_16(x,len) Extendson the left with sign bits to form a 16-bit quantity, taking the

leftmost bit for the field of sizken as the sign bit.
store_in_memory(space,offset,low,high,hint,data)

The function store_in_memory is identical to mem_store except that it
forces the data to be stored into main memory. The data may optionally
remain in the cache.

xor(x1, ..., xn) Produces the bitwise exclusive or of the passed arguments.
zero_ext(x,len) Extendson the left, for the field of siden, with zeros to form a 64-bit
guantity.

Miscellaneous Constructs

Numerous mnemonic constructs are used to represent things that do not fit easily into the rest of the
notation described in the previous table or whose details are more implementation-dependent than
defined. Table E-2 defines these constructs.

Table E-2. Miscellaneous Constructs

Function Description

absolute_address(space,offset) Returns the absolute address corresponding to
the passed virtual address.

clear_BTS() Sets the valid bit in every entry of the Branch
Target Stack to 0.

coherence_index(space,offset) Returns the coherence index corresponding to

the passed effective address. See “Cache
Coherence with I1/0” on page F-11.
coherent_system Boolean; the value is 1 if the system is fully
coherent; the value is 0 if the system is partially

or completely non-coherent.
coprocessor_condition(id,opcode,n) A coprocessor specific condition is returned
based on the arguments and the current state of
the coprocessor.

coprocessor_op(id,opcode,n,priv) A coprocessor specific operation is performed
based on the arguments and the current state of
the coprocessor.
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Table E-2. Miscellaneous Constructs (Continued)

Function

Description

DTLB_alloc(space,offset)

Allocates a slot in the data TLB based on the
space and offset arguments, and returns a pointer
to the slot.

DTLB_purge_broadcast(space,offset,page_s

ze) In a multiprocessor system, the other processors
are made to search their data TLBs for one or
more entries which match the address range
specified by space, offset, and page_size. All
matching entries are removed.

DTLB_purge_entries(space,offset)

Removes one or more data TLB entries. The
entries to be removed are selected based on
some implementation-dependent function of the
arguments space and offset. No address
matching is done. If there are entries which
would match space and offset, these need not be
among the entries removed.

DTLB_purge_local(space,offset)

Removes the specified TLB entry.

DTLB_search(space,offset)

Searches the data TLB for a valid entry whose
virtual address range encompasses the page
including the virtual address specified by space
and offset, and returns a pointer to the slot
containing the entry if one is found. If no
matching entry is found, NULL is returned.

Dcache_flush(space,offset)

If the cache line containing the effective address
is present, it is invalidated. If the line is dirty it is
written back to main memory.

Dcache_flush_entries(space,offset)

Zero or more cache lines specified by an
implementation-dependent function of the
address are invalidated. If any of these lines are
dirty, they are written back to main memory. No
address matching is done. If there are entries
which would match space and offset, these need
not be among the entries invalidated.

Dcache_flush_or_purge(space,offset)

If the cache line specified by the effective
address is present, it is invalidated. If the line is
dirty, it may optionally be written back to
memory.

Icache_flush(space,offset)

If the cache line containing the effective address
is present, it is invalidated. If the line is dirty, it
is written back to main memory.
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Table E-2. Miscellaneous Constructs (Continued)

Function

Description

Icache_flush_entries(space,offset)

Zero or more cache lines specified by an
implementation-dependent function of the
address are invalidated. If any of these lines are
dirty, they are written back to main memory
(only possible in a combined cache.) No address
matching is done. If there are entries which
would match space and offset, these need not be
among the entries invalidated.

ITLB_alloc(space,offset)

Same as DTLB_alloc except that a new slot is
allocated in the instruction TLB.

ITLB_purge_broadcast(space,offset,page_siz

7e) Same as DTLB_purge_broadcast except that the
instruction TLB is purged.

ITLB_purge_entries(space,offset)

Same as DTLB_purge_entries except that the
instruction TLB is purged.

ITLB_purge_local(space,offset)

Same as DTLB_purge_local except that the
instruction TLB is purged.

ITLB_search(space,offset)

Same as DTLB_search except that the
instruction TLB is searched.

measurement_enabled

Boolean; when the value is 1, the performance
monitor coprocessor is enabled to make
measurements; when the value is 0, the
measurements are disabled. This condition is
independent of the state of CCR bit 2.

phys_mem_load(addr,low,high,hint)

Returns the data in physical memory (consisting
of memory and the cache) starting at the low'th
bit beyond the beginning of the byte at address,
addr, and ending at the high’th bit beyond the
beginning of the byte at address, addr. If the
PSW E-bit is 1, the data bytes are swapped
before they are returned. The cache control hint,
hint, is a recommendation to the processor on
how to resolve cache coherence. See “Cache
Control” on page 6-9. This function is used for

absolute accesses to memory.
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Table E-2. Miscellaneous Constructs (Continued)

Function

Description

phys _mem_store(addr,low,high,hint,data)

Stores the data in physical memory (consisting
of memory and the cache) starting at the low'th
bit beyond the beginning of the byte at address,
addr, and ending at the high'th bit beyond the
beginning of the byte at address, addr. If the
PSW E-bit is 1, the data bytes are swapped
before they are stored. The cache control hint,
hint, is a recommendation to the processor on
how to resolve cache coherence. See “Cache
Control” on page 6-9. This function is used for
absolute accesses to memory.

pop_from_BTS()

Removes the top entry from the Branch Target
Stack. All other entries are moved up one
register, and the entry at the bottom of stack is
marked invalid. The entry which was removed
from the top of stack is returned. The valid bit is
returned as bit {62} of the return value.

push_onto_BTS(offset)

All entries in the Branch Target Stack are moved
down one register. The value which was at the
bottom of stack is discarded. The argument is
placed in the top of stack entry, and the valid bit
for the top of stack entry is set to 1.

read_access_allowed(space,offset,x)

In non-Level 0 systems, returns 1 if read access
is allowed to the effective address at the
privilege level given by the two rightmost bits of
X. Returns 0 otherwise. Always returns 1 in
Level 0 systems.

select_data_cache_entries(space,offset)

An implementation-dependent function which
returns a list of zero or more entries.

select_instruction_cache_entries(space,offse

v

An implementation-dependent function which
returns a list of zero or more entries.

sfu_conditionO(opcode,priv)
sfu_condition1(opcode,priv)
sfu_condition2(opcode,priv,r)
sfu_condition3(opcode,priv,rl,r2)

An SFU specific condition is returned based on
the SFU instruction format, the arguments, and
the current state of the special function unit.

sfu_operationO(opcode,priv)
sfu_operation1(opcode,priv)
sfu_operation2(opcode,priv,r)
sfu_operation3(opcode,priv,rl,r2)

An SFU specific operation is performed based
on SFU instruction format, the arguments, and
the current state of the special function unit.
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Table E-2. Miscellaneous Constructs (Continued)

Function Description
space_select(s_field,base,format) Returns the space ID selected by the s-field of
the instruction and the base register value as
follows:
if (PSW[W])

if (format == LONG_DISP)
return(SR[base{0..1} + 4]);
else * short or indexed */
if (s_field == 0)
return(SR[base{0..1} + 4]);
else if (priv == 0)
return(SR[s_field]);

else
undefined;
else [* PSW[W] ==0*
if (s_field == 0)
return(SR[base{32..33} + 4]);
else
return(SR([s_field]);
virt_mem_load(space,offset,low,high,hint) Returns the data in virtual memory (consisting

of memory and the cache) starting at the low'th
bit beyond the beginning of the byte at address,
space,offset and ending at the high'th bit beyond
the beginning of the byte at address,
space,offset. If the PSW E-bit is 1, the data bytes
are swapped before they are returned. The cache
control hint, hint, is a recommendation to the
processor on how to resolve cache coherence.
See “Cache Control” on page 6-9. This function
is used for virtual accesses to memory.
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Table E-2. Miscellaneous Constructs (Continued)

Function

Description

virt_mem_store(space,offset,low,high,hint,dat

a) Stores the data in virtual memory (consisting of
memory and the cache) starting at the low’th bit
beyond the beginning of the byte at address,
space,offset and ending at the high'th bit beyond
the beginning of the byte at address,
space,offset. If the PSW E-bit is 1, the data bytes
are swapped before they are stored. The cache
control hint, hint, is a recommendation to the
processor on how to resolve cache coherence.
See “Cache Control” on page 6-9. This function
is used for virtual accesses to memory.

write_access_allowed(space,offset,x)

In non-Level 0 systems, returns 1 if write access
is allowed to the effective address at the
privilege level given by the two rightmost bits of
X. Returns 0 otherwise. Always returns 1 in
Level O systems.
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F TLB and Cache Control

This appendix provides detailed information relating to operation of the TLB (Translation Lookaside
Buffer) and cache in a PA-RISC system. It describes how software can control the contents of the TLB
under various conditions such as TLB miss handling and also specifies the operation requirements of
the TLB.

The appendix also describes the responsibilities of system software in regards to handling address
aliasing as well as cache move-in rules. Finally, a brief summary of the guidelines relating to coherency
in multiprocessor systems is provided.

TLB Control

TLBs function as buffers for the most frequently used address translations. Terms used to describe
TLBs are given below.

Entry The term entry refers to a translation which is present in the TLB. Entries are visible
to software through references (such as load, store, and semaphore instructions,
access rights probes, and tl@AD PHYSICAL ADDRESSInstruction).

Slot Hardware resources in the TLB which hold entries are referred to as slots.
Remove An entry is removed when some action causes it to be inaccessible to software.

Insertion of translations into the TLB, for example, causes other entries to be
removed. Entries can be explicitly removed by purging them.

NOTE
From a hardware perspective, a translation is removed when it is displaced by the insertion of
another translation. If each slot has an associated valid bit which causes that slot not to
participate in TLB lookup, then a translation is removed if the slot that contains it is marked
invalid. This would be one way of implementing TLB purges.

Several mechanisms can be used by software to remove a specific translation from the ITLB or DTLB.
First, when a new translation is inserted into the TLB, any old translations which overlap the virtual
address range of the new translation are removed. Second, a specific virtual address and page size may
be used to purge (remove) the associated translations from the TLBURGE INSTRUCTION TLB
andPURGE DATA TLB instructions perform this function. These instructions also optionally cause the
translation to be removed from the TLBs of other processors in a multiprocessor system.

Translations may also be removed from the TLB usindPthRGE INSTRUCTION TLB ENTRYand the
PURGE DATA TLB ENTRY instructions. These purge some machine-specific number of entries in the
TLB without regard for the translation. These instructions are used by system software to clear the
entire instruction or data TLB.

Because the TLB is managed by a mixture of hardware and software mechanisms, software may not, in
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general, rely on the existence of translations in the TLB and hardware may, in general, remove TLB
entries at any time, provided that forward progress is assured. There are limited situations, however, in
which software may rely on a translation existing in the TLB. This means that software may make
virtual accesses using this relied-upon translation, and no TLB miss fault will occur. Hardware is
required to retain this TLB entry as long as the constraints of the limited situation are met. These
situations are described in “TLB Operation Requirements” on page F-3.

NOTE
As a result, the following hardware actions are allowed, except in the defined limited
situations.

« A TLB miss fault may be taken even though the translation exists in the TLB.
« In the event of a TLB error, one or more entries may be removed.

Note also that software may not rely on the existence of any translations in the TLB
immediately after any group 1, 2, or 4 interruption.

Software TLB Miss Handling

In order to insure forward progress, some restrictions are placed on software which performs TLB miss
handling.

For instruction TLB miss handling, the following restrictions apply:

« Software can insert multiple instruction address translations into the ITLB, provided that the
translation which caused the trap is inserted last.

« Software must not execute a purge TLB instruction using the virtual address corresponding to the
data address translation needed for the execution of the trapping instruction.

 Software must not insert translations into the DTLB.
For non-access instruction TLB miss handling, the following restrictions apply:

» Software can only insert into the ITLB up to all of the eight translations for the page group. The
translation which caused the trap must be inserted last.

» Software must not execute a purge TLB instruction using the virtual address corresponding to the
data address translation needed for the execution of the trapping instruction.

 Software must not insert translations into the DTLB.
For data TLB miss handling and non-access data TLB miss handling, the following restrictions apply:

« Software can only insert into the DTLB up to all of the eight translations for the page group. The
translation which caused the trap must be inserted last.

« Software must not execute a purge TLB instruction using the virtual address corresponding to the
instruction address translation needed for the execution of the trapping instruction.

The following restrictions apply to all four TLB miss handlers:
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« Software must not make any virtual references.

« Software must not execute aRYRGE DATA TLB ENTRY or PURGE INSTRUCTION TLB ENTRY
instructions.

Hardware TLB Miss Handling

The default endian bit (see “Byte Ordering (Big Endian/Little Endian)” on page 2-19) determines how
data from the hardware-visible page table is interpreted by the hardware TLB miss handler, if
implemented. If the default endian bit is 0, the hardware-visible page table entries are loaded as
doublewords in big-endian format; if the default endian bit is 1, the entries are loaded as doublewords in
little-endian format.

If a data prefetch instruction (described in “Data Prefetch Instructions” on page 6-11) references an
address which misses in the data TLB, the hardware TLB miss handler should not be invoked.

TLB Operation Requirements

Software may rely on the existence of particular translations in the TLB only in certain situations. The
following describes the situations in which software may rely upon the fact that a specific translation
will continue to exist in the TLB. In these situations, software may make virtual accesses using the
relied-upon translation, and no TLB miss fault will occur (including non-access TLB miss faults).

1. When an instruction takes one of the following interruptions, the associated data address translation
will remain in the DTLB, and is termed the relied-upon translation.

Intr. No. | Interruption
18 data memory protection/unaligned data reference trap
19 data memory break trap
20 TLB dirty bit trap
21 page reference trap
22 assist emulation trap
26 data memory access rights trap
27 data memory protection ID trap
28 unaligned data reference trap

The translation will continue to remain in the DTLB, meaning no data TLB miss fault will occur on
virtual data accesses which use this translation, for as long as software meets the following
constraints:

« No virtual data references are made to pages other than the page corresponding to the relied-
upon translation.

« The execution stream does not contain nullified instructions which, had they not been nullified,
would have made virtual data references to pages other than the page corresponding to the
relied-upon translation.

* No memory management instructions other the®A are executed. (See “Memory

PA-RISC 2.0 Architecture TLB and Cache Control F-3



F-4

Management Instructions (Mem_Mgmt)” on page C-5 for a list of memory management
instructions.)

« No purge TLB instructions which would purge the relied-upon translation are executed by
other processors in a multiprocessor system.

* No virtual instruction references are made.
* No DIAGNOSE instructions are executed.

< No attempt is made to execute undefined instructions.

Programming Note
Software may rely upon this translation in order to improve performance in handling the
above-mentioned traps. For example, the absolute address which corresponds to the virtual
address used in the trapping instruction can be determined by using this code sequence:

LPA  x(s,b)t

Because no TLB miss fault can occur, the interruption handler need not incur the overhead of
making itself interruptible.

. If the PSW Q-bit is 1, and is set to 0 bRBSET SYSTEM MASKor MOVE TO SYSTEM MASK

instruction, the instruction address translation used to fetciR$iMeor MTSM instruction will
continue to remain in the ITLB, and is termed the relied-upon translation. No instruction TLB miss
fault will occur on virtual instruction accesses which use this translation for as long as software
meets the following constraints:

e TheRSM or MTSM instruction which sets the PSW Q-bit to 0 (the cleaR8g or MTSM) is
preceded by anoth&SM, SSM, or MTSM instruction which does not affect the PSW Q-bit,
and which appears at least 8 instructions prior.

e The instructions between the initREM, SSM, or MTSM instruction and the clearir@SMm or
MTSM do not include any memory management instructions, virtual data references, or
instruction references to pages other than the code page containing the &l8&rmgMTSM
instruction.

e The clearingRSM or MTSM instruction is not within 8 instructions of a page boundary.
« No virtual data references are made.

* The execution stream does not contain nullified instructions which would have made virtual
data references had they not been nullified.

¢ NOFLUSH INSTRUCTION CACHEinstructions are executed with the PSW D-bit equal to 1.

« No memory management instructions are executed. (See Appendix C, “Operation Codes” for a
list of memory management instructions.)

« No purge TLB instructions which would purge the relied-upon translation are executed by
other processors in a multiprocessor system.
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* No instruction references are made to pages other than the code page containing the clearing
RSM or MTSM instruction.

« No DIAGNOSE instructions are executed.
« No undefined instructions are attempted to be executed.

« No instructions are executed which are followed, within 8 words, by a branch instruction, a
memory management instructiorDBAGNOSE instruction, an undefined instruction, or a page
boundary.

Programming Note
Software may rely upon this instruction translation in order to improve performance in process
dispatch. For example, in this code sequence:

SSM 0,gr0 ; initial RSM, SSM or MTSM
LDW ; set up process state
; must be at least 7 instructions
; between the system mask instructions
LDW
RSM 8,gr0 ;setPSW Q-bhitto 0
MTCTL regl,cr20; set up IIASQ
MTCTL reg2,cr20

MTCTL reg3,cr2l; set up IIAOQ
MTCTL reg4,cr2l

LDW ; set up last of process state
LDW
RFI ; dispatch process

Because no TLB miss fault can occur, the interruption handler need not incur the overhead of
disabling code translation just prior to process dispatch. Note that the LDW instructions in this
sequence must use absolute addresses. (Use absolute loads, or do these with the PSW D-bit
equal to 0.)

Address Aliasing

Normally, a virtual address does not translate to two different absolute addresses. It is the responsibility
of memory management software to avoid the ambiguity such occurrences would create.

Caches are required to permit a physical memory location to be accessed by both an absolute and a
virtual address when the virtual address is equal to the absolute address. Such a virtual address is said to
be equivalently-mapped. For equivalently-mapped addresses in the memory address space, note that
since the upper 2 bits of the offset are not used in forming the absolute address, these bits need not
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match the corresponding bits in the virtual address for the two addresses tovhkeetyrmapped.

The instruction and data caches are required to detect that the same physical memory location is being
accessed by two virtual addresses that satisfy all trewialy requirements:

1. The two virtual addresses map to the same absolute address.
2. Offset bits 44 through 63 are the same in both virtual addresses.

3. If the use of space bits in generating the cachexiiglenabled, the two virtual addressesehthe
samevalues for the follwing space identifier bits: 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, and 47.

Processors must gvide an implementation-dependent mechanism to enable/disable the use of space
bits in generating the cache exd

NOTE
Implementations are encouraged tooyie a mechanism to enable/disable the three
contiguous groups of 4 space bits (bits 36 through 39, bits 40 through 43, and bits 44 through
47) independenyl

When space bits are enabled for use in generating the caeRefordeach space bit that participates,
the correspondingftset bit which gets ORed with it in the generation of virtual addresses is always
forced by hardware to O for address generation purposes.

These rules pvide dfset aliasing on 16 Mbyte boundaries, with optional supportffsebaliasing orE
smaller pwer of two sized boundaries, and either restricted or unlimited space aliasing.

Two virtual addresses that satisfy all of theabrequirements are called @calent aliases of each
othe. Virtual addresses that satisfy rulett violate rule 2 or 3 are non-agalent aliases, and are more
restricted in their useFor non-eqivalent aliases, read-only aliasing is supported with minimal
restrictions, and nmy-reader/one-writer aliasing is supported with more significant restrictions.

General, if system software must use multiple addresses for the same data, these addresses are
equvalent aliases (or are an absolute address and awmakeily-mapped virtual address). This
description of non-edualent aliasing, and the restrictions on waifte only apply in rare situations

when non-egiralent aliasing is necesyar

For the purposes of supporting non-e@lent aliasing, a read-only translation is defined as one where
the TLB and page table both meet at least one of thevioly conditions:

« The page type in the access rights field is 0, 2, 4, 5, 6, or 7:ABeess Control” on pag3-11.)
e The D-bit (dirty bit) is O.
A translation not meeting this requirement is termed a write-capable translation.

Software is atbwed to lave aiy number of read-only non-eiyalently aliased translations to a physical
page, as long as there are no other translations to the page. This is referred to as read-only non-
equvalent aliasing.

Before a write-capable translation is enablldnon-eqivalently-aliased translations must be ceed
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from the page table and purged from the TLB. (Note that the caches are not required to be flushed at this
time.) The write-capable translation may then be used to read and/or modify data on that page. Before
any non-equivalent aliased translation is re-enabled, the virtual address range for the writable page (the
entire page) must be flushed from the cache, and the write-capable translation removed from the page
table and purged from the TLB. If an old read-only translation is re-enabled, or a translation is enabled
that is equivalently-aliased to an old translation, the virtual address range for the re-enabled translation
must be flushed from the cache before accesses are made to the page. (This flushing is only required if
the re-enabled virtual page has not been flushed since it was last accessed.) This is referred to as many-
reader/one-writer non-equivalent aliasing.

Absolute read accesses can be made to a page which is mapped with a non-equivalently-mapped read-
only translation, as long as the absolute address range accessed is flushed before enabling any write-
capable translation. Since absolute accesses do not cause prefetching, it is not necessary to flush the
entire page - only the accessed range need be flushed.

All other uses of non-equivalent aliasing (including simultaneously enabling multiple non-equivalently
aliased translations where one or more allow for write access) are prohibited, and can cause machine
checks or silent data corruption, including data corruption of unrelated memory on unrelated pages. It is
the responsibility of privileged software to avoid non-equivalent aliasing, except as described above.
This requires flushing the affected address range from the caches prior to any of the following:

» Changing the address mapping in the TLBs.

< Making an absolute access to a location which might reside in the caches as a result of an access by
a virtual address that was not equivalently mapped.

« Making a virtual access to a location which might reside in the caches as a result of an access by its
absolute address that was not equivalently mapped.

< Making a virtual access to a location which may reside in the caches as a result of an access by
another virtual address that was not equivalently aliased.

NOTE
The restrictions on non-equivalent aliases are necessary to allow the design of high-
performance caches and memory interconnect, including multi-level caches (including victim
or miss caches) and directory-based coherency structures. Coherency schemes are greatly
simplified by allowing the assumption that there is at most a single private copy of a physical
line at any time. The read-only translation informs hardware to request a shared or public copy
of the line.

Cache Move-in Restrictions
Data and instructions from memory can be brought into cache only under certain circumstances. Two

different schemes are used for controlling cacheability — one for virtual accesses and one for absolute
accesses.
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Virtual Accesses

For virtual accesses, cache move-in is controlled by a mapping-based approach. Generally, if a
translation exists in the TLB that permits access, the memory on that page may be brought into the
cache. The access information in the TLB entry must meet a simple check, however, to permit move-in.
This is required in order to allow for translations which can be used for cache flushing purposes, but
which do not enable move-in. This is described in detail in following sections.

Since TLB miss handling may insert into the TLB any entry in the page table for which the R-bit
(Reference bit) is 1, system software should consider the page table as the main tool for controlling
cacheability of memory.

Absolute Accesses

For absolute accesses, cache move-in is controlled by a reference-based approach. Generally, only
instructions and data referenced by executed instructions may be brought into the cache. The definition
of “reference” is somewhat loose to permit instruction prefetching and instruction pipelining.

No data reference may cause a move-in to the instruction cache and no instruction reference may cause
a move-in to the data cache. This means that the executiofLofS&i DATA CACHE or PURGE DATA

CACHE instruction guarantees that the addressed line, if it has been referenced as data but not as
instructions, is no longer present in the cache system. Similarly, ¢ily$H INSTRUCTION CACHE
instruction is required to guarantee that a line which has been referenced as instructions but not as data,
is no longer present in the cache system. The actions which constitute a reference are described in “Data
Cache Move-In" on page F-8 and “Instruction Cache Move-In”" on page F-9.

If implemented, the U (Uncacheable) bit is found in the data TLB entry associated with a page. Whether
or not the U-bit is implemented, the state of this bit if implemented, whether the memory reference is
virtual or absolute, and whether the reference is made from a page in the memory or I/O address spaces,
determine if the reference may be moved into the data cache. The detailed rules for moving references
into the data cache are specified in “Data Cache Move-In” on page F-8.

Data Cache Move-In

For virtual accesses, cache move-in is permitted only if there is a translation for the virtual address
which meets both of these conditions:

« The page type field in the access rights for the entry contains a value in the range 0 to 3 (access
rights allow read access).

e The T-bit in the entry is 0.

For absolute accesses, data lines are brought into the cache only as a result of references. Except where
noted, a data reference may move in all of the lines on the page containing the reference. The following
actions constitute a data reference, and may cause move-in to the data cache:

« Execution of a load, store, or semaphore instruction

« Interruption of a load, store, or semaphore instruction by any interruption except the ones listed
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below:

Intr. No. | Interruption
6 instruction TLB miss fault
7 instruction memaory protection trap
8 illegal instruction trap
10 privileged operation trap

NOTE
Because protection is checked (interruption 10), the reference cannot bring in any data which
could not have been accessed.

» A load or store instruction which is left at the front of the interruption queues because of a prior
instruction which took a group 4 interruption, provided that the load or store would not have taken
any of the above interruptions (6, 7, 8, 10).

Data items which would have been referenced by a nullified load, store, or semaphore instruction are
not moved in.

The instructions DWA, LDDA, STWA, and STDAare exceptions to the general rule that a data reference
may cause all of the lines in the page containing the reference to be moved in. These instructions can
cause only the referenced line to be moved into the data cache.

Instruction Cache Move-In

For virtual accesses, cache move-in is permitted only if there is a translation for the virtual address
which meets both of these conditions:

* The page type field in the access rights for the entry contains a value in the range 2 to 7 (access
rights allow execute access).

» The access rights for the entry does not match this binary pattern: “111 0X 1X", where each X
stands for either a 1 or a 0 (execute-only page where<fl2< PL1 but PL2 > PL1).

For absolute accesses, instructions are brought into the instruction cache, or combined data and
instruction cache, only as a result of references. Except where noted, an instruction reference may move
in all of the lines on the page containing the reference, as well as all of the lines on the next sequential
page. The following actions constitute an instruction reference, and may cause move-in to the
instruction cache:

« Execution of an instruction

« Execution of a nullified instruction. This action can cause only those lines on the page containing
the instruction to be moved in

< Execution of a branch can cause all of the lines on the page containing the target of the branch to be
moved in.

< Execution of a branch to a target instruction which is the last instruction on a page, followed by an
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instruction which traps (in the branch delay slot), can cause all of the lines on the page containing
the target instruction, as well as all of the lines on the next sequential page to be moved in.

« Interruption of an instruction by any interruption

e A branch instruction which takes a group 4 interruption can cause all of the lines on the page
containing the instruction which would have been branched to, to be moved in.

Instructions which would have been branched to by nullified or untaken branches are not moved in.

Programming Note
If a data page immediately follows an instruction page, it is possible that the entire data page
may have been moved into the instruction cache because of these move-in rules. Software must
be aware of this fact and flush both the instruction and the data caches in order to remove the
data page from the cache.

I/O Addresses and Uncacheable Memory

Accesses to the I/0O address space, whether through absolute accesses or through virtual accesses that
map to the 1/0O address space, are never cached.

Virtual accesses for which the U-bit in the TLB entry is 1 are not cached.

Cache Flushing

Cache control instructions have two effects on caching. One is that they force particular lines to be
removed from the cache. The other is that, for absolute accesses, they disable further cache move-in
from the affected memory range until further references to that range are made.

For virtual accesses, a purge TLB instruction stops (disables) any subsequent move-in operations to that
page. Subsequent accesses must trigger a TLB miss, and then may move into the cache only if the new
translation from the page table allows it.

For absolute accesses, a flush cache or purge cache instruction to a page stops (disables) any subsequent
move-in operations to that page until another reference to that page is made. In a multiprocessor system,
these instructions stop any subsequent move-in operations to that page on all processors until another
reference to that page is made.

Once a line could have been brought into a cache, the only way software can insure that the line has
been removed from the cache is to

» Purge the translation from the TLB and insure that the corresponding page table entry does not
allow cache move-in (if the cached memory was brought in due to a virtual access), and

* Flush or purge the line and execut8¥aNC instruction, or flush the entire cache with flush-entry
instructions and executeS¥NC instruction.

Once a line has been made cacheable, even if it is subsequently forced out of the cache by other
accesses, the cache system can move it in again at will, until the enabling translation is removed (for
virtual accesses) or until the line is flushed (for absolute accesses).
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System software can create translations which allow a virtual address range to be flushed from the
caches, but which do not enable cache move-in. There are two ways of creating such a translation:

« Create a translation in which the page type field in the access rights has the value 0 or 1 (this
prevents |-cache move-in), and has the T-bit 1 (this prevents D-cache move-in), or

< Create a translation in which the page type field in the access rights has the value 7 (this prevents D-
cache move-in), and has the special access rights pattern “111 0X 1X” (this prevents I-cache move-
in).

Cache Coherence with I/O

Accesses to memory by I/O modules may be either coherent or non-coherent with processor data
caches.

Coherent I/O

Processors in systems with coherent I/O modules must implemehOAi2 COHERENCE INDEX
instruction, which loads the coherence index corresponding to a given virtual address into a general
Register. Coherent /0O modules provide the coherence index along with the absolute address of data it is
reading from or writing to memory. The coherence index must provide enough information such that,
together with the absolute address, the processor can find data that was brought into its data cache by the
original virtual address.

Software need not flush or purge data from the data cache when sharing the data with a coherent I/O
module. For I/O output (e.g., memory to secondary storage), the coherent I/O module performs coherent
read operations which will read the data from memory or a processor’s data cache depending on where
the most up-to-date copy is located. For 1/O input, the coherent I/O module performs coherent write
operations which will write the data to memory and also update or invalidate matching lines in
processor data caches.

Coherent I/O operations are not coherent with instruction caches. Software is responsible for flushing
the appropriate instruction cache lines before or after the 1/0O operation.
Non-coherent I/O

Non-coherent I/O modules process data in memory; this data can be non-coherent with processor
caches. Software is required to insure that:

1. The contents of the appropriate caches are flushed to main memory prior to an I/O output (e.g.,
memory to secondary storage) operation.

2. The contents of the appropriate caches are purged or flushed prior to an I/O input (e.g., secondary
storage to memory) operation.

3. The contents of the appropriate caches are purged following an 1/O input operation, if the cache
move-in rules would have allowed the processor to move the data into the cache during the 1/0
operation.
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Operations Defined for I/O Address Space

Semaphore instructions are undefined if the address maps to the I/O address space. Additionally,
semaphore instructions are undefined if the address maps to a page in the memory address space for
which the TLB U-bit is 1.

Cache flush and purge instructions execute as NOPs if the address maps to the I/O address space.

Data prefetch instructions directed to the I/O address space or to a page in the memory address space for
which the TLB U-bit is 1 behave as described in “Data Prefetch Instructions” on page 6-11 except that
they must not affect the cache state and may optionally generate a transaction to the addressed device.

All accesses other than those listed above are defined to the I/O address space.

Cache and TLB Coherence in Multiprocessor Systems

Multiprocessor systems may include PA-RISC processors as well as other processors.

The cache-coherent part of a multiprocessor system is required to behave as if there were logically a
single D-cache and a single I-cache. If there are multiple physical D-caches, they must cross-interrogate
for current data and must broadcast purge and flush operations exdepCtandFICE. Purge and

flush operations do not cause TLB faults on other processors. Multiple I-caches require only that flushes
be broadcast. The I-cache is read-only, and software is responsible for coherence when modifications
are made to the instruction stream.

The non-cache-coherent part of a multiprocessor system (if any) may either cross-interrogate with the
caches in the cache-coherent part of the system, or may have an independent cache system. This design
decision is generally based on the frequency of data sharing.

In the cache-coherent part of a multiprocessor system, all data references to cacheable pages must be

satisfied by data that was obtained using cache coherence checks, and has remained coherent since the
data was moved in. Data references to uncacheable pages do not need to be satisfied by data that was
obtained using cache coherence checks. Data from an uncacheable page could be in a cache if it was

moved in when that page was marked cacheable, but the page is now marked uncacheable.

Implementations with write buffers must also check buffer contents on cache coherence checks, in order
to insure proper ordering of storage accesses.

Instruction references need not be satisfied by data that was obtained using cache coherence checks.

Instruction caches are read-only. In the case of a separate instruction cache implementation, instruction
cache lines must never be written back to main memory.

Each processor in a multiprocessor system must have its own TLB system. All TLBs in a
multiprocessor system are required to broadcast global purges to all other TLBs. The originating
processor’s purge instruction suspends until all target processors complete the purge. TLB inserts, local
purges and theDTLBE andPITLBE instructions are not broadcast and do not affect translation on other
processors.
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G Memory Ordering Model

This appendix begins with a description of the memory ordering model that must be implemented by
PA-RISC systems to ensure proper operation in multiprocessor systems. The informal description is
followed by a formal model which describes the behavior of any correct implementation.

Atomicity of Storage Accesses

All load, store, and semaphore instructions (with one exception below) access storage atomically. For
example, a double-word load instruction executing on one processor concurrently with a double-word

store instruction to the same address executing on another processor will receive either the entire old
value or the entire new value.

The STORE BYTES and STORE DOUBLEWORD BYTHSstructions, when referencing the memory
address space are atomic, but when referencing the I/O address space, are not guaranteed to execute
atomically. Doubleword load and store instructions which reference the I/O address space may or may
not be atomic, depending on the capabilities of the bus.

Ordering of References

References to the address space (both to memory and I/O) through load, store, and semaphore
instructions always appear to the executing processor to be done in program order. However, from the
viewpoint of a second processor in a multiprocessor system or from an I/O module, the apparent order
of memory references may be different in certain situations.

Ordering Definitions

A processor (or I/O module) A is said to have observed a store by another processor B if processor A
executes a load instruction and receives the value stored by processor B.

A store is said to be performed by a processor when another processor or I/O module observes that
store.

A load is said to be performed by a processor A if there are no unobserved stores from any processor
that could affect the value of that load.

References to the address space through load, store, semaphore, and TLB purge instructions are referred
to as accesses. Cache flush and purge operations are discussed separately and are not considerec
accesses. All accesses can be classified as either strongly ordered, ordered, or weakly ordered.

The following accesses are termed strongly ordered:
» Accesses to the I/O address space.
» Accesses to any page for which the TLB U-bit is 1.
* The semaphore instructiornsDCW, LDCD).
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e TheSYNC instruction forces ordering as though it were a strongly ordered access.
* The TLB purge instruction$*(TLB, PDTLB).

The following accesses are ternwdered
 Certain loads and stores, when used with a special ordered con@leter,

« Virtual accesses made when the PSW[O] bit is 1, to an address in a page for which the TLB O-bit is
1.

» Absolute accesses made when the PSW[O] bit is 1.

Accesses which are neither strongly ordered nor ordered are teen&ly ordered

Ordering Requirements

An access which is strongly ordered is guaranteed to be performed before any subsequent accesses are
performed and is guaranteed not to be performed until after all prior accesses have been performed.

An ordered load is guaranteed to be performed before any subsequent accesses are performed.
All prior accesses are guaranteed to be performed before an ordered store is performed.
An ordered store is guaranteed to be performed before any subsequent ordered load.

Weakly ordered accesses may appear to another processor or /0O module to be performed in any order,

provided that they meet the constraints of other strongly ordered accesses and of other ordered loads and
ordered stores.

The effect of these ordering constraints is transitive. That is,

if a sequence of memory accesses initiated by a first processor must, according to these
rules, be observed by a second processor to have been performed prior to a sequence
of memory accesses initiated by this second processor,

and if the same sequence of memory accesses initiated by the second processor must,
according to these rules, be observed by a third processor to have been performed
prior to a sequence of memory accesses initiated by this third processor,

then the sequence of memory accesses initiated by the first processor must be observed by
the third processor to have been performed prior to the sequence of transactions
initiated by the third processor.

NOTE
An example of the observability of the ordering of accesses can be seen by considering two
processes, A and B, running concurrently on a multiprocessor system.

process A process B
load x load y
store y store x
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If process B observes As store to y, and the references to y are ordered accesses, then process
B may rely on the fact that its store to x will not affect the value seen by process A.

Cache flush operations are weakly ordered. Flush operations may be delayed or held pending, and a
sequence of flush operations may be executed in any order. There are some constraints, however, on
their ordering:

« A flush data cache operation is guaranteed not to be performed until after all prior accesses to
addresses within the same cache line have been performed.

» A flush data cache operation is guaranteed to be performed before any subsequent purge operation
to the same cache line, to prevent loss of data.

If a combined cache is implemented, these same constraints apply to flush instruction cache operations.

Cache purge operations are weakly ordered. Cache purge operations may be delayed or held pending,
and a sequence of cache purge operations may be executed in any order. There are some constraints,
however, on their ordering:

* A purge data cache operation is guaranteed not to be performed until after all prior accesses to
addresses within the same cache line have been performed.

* A purge data cache operation is guaranteed to be performed before any subsequent access of any
address within the same cache line, to prevent loss of data.

The SYNC instruction is used to ensure ordering of cache flush and purge operations, when necessary.
After executing aSYNC instruction, any pending flush and purge operations are completed before
performing any subsequent load, store, semaphore, flush, or purge instructions.

The SYNC instruction enforces the ordering of only those flush and purge operations caused by the
instructions executed on the same processor which execugNRanstruction.

In multiprocessor systems, to allow non-privileged code to do cache management, system software must
execute &8YNC instruction when switching processes.
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Programming Note
It is important to be aware of the delayed nature of cache flush and purge operations, and to use
SYNC instructions to force completion where necessary. The following example illustrates this.

Consider two processes sharing a memory locatishich is protected by a semaphsre

process A on Processor | process B on Processor | note

LDCW s A acquires semaphore

PDC x A executes purge

SYNC Force completion of purge

STW s A releases semaphore
LDCW s B acquires semaphore
STW x

In the absence of the SYNC instruction, it would be possible for process B’s stotte to
complete before the purge »fis completed (since the purge may have been delayed). The
purge ofx could then destroy the new value.

MTCTL and MFCTL instructions involving the EIR and the EIEM must appear to preserve program
order.

Interrupts must be masked immediately following a MTCTL to the EIEM register that masks interrupts
or an RSM or MTSM that sets the PSW I-bit to 0.

Modification of resources which affect data access take effect imnmediately. Acknowledgment of a data
TLB purge request from another processor must not be made until after the purge has logically been
performed. Data access resources include Protection Identifier Registers, PSW, and TLB entries.
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The following table summarizes these ordering requirements.

Second Reference
First
Reference g[rr((j) Qgelzl Ordered | Ordered (\g\szl:lgd (\;\fjil:gd |C::|?j(:f]]7
Load Store
Access Load Store Purge
Strongly
Ordered @) e} o) o o 13
Access
Ordered o o o o . P
Load
Ordered o o o ~ ) P
Store
Weakly
Ordered 0] _ o) _ B 3
Load
Weakly
Ordered 0] _ o) _ B 3
Store
Cache
Flush/ L2 2 2 2 2 4
Purge

Sequences marked with O must appear to other processors and I/O modules to be performed in program
order.

Notes:

1. The SYNC instruction is different from other strongly ordered accesses in that it also forces
ordering with respect to cache flush and purge operations.

2. A purge operation is guaranteed to be performed before any subsequent access is performed to an
address within the same cache line.

3. Any access is guaranteed to be performed before a subsequent flush data cache or purge operation
is performed to an address within the same cache line. If a combined cache is implemented, then
additionally any access is guaranteed to be performed before a subsequent flush instruction cache
operation is performed to an address within the same cache line.

4. Any flush data cache operation is guaranteed to be performed before a subsequent purge operation
is performed to the same cache line. If a combined cache is implemented, then additionally any
flush instruction cache operation is guaranteed to be performed before a subsequent purge
operation is performed to the same cache line.
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Completion of Accesses

PA-RISC processors are inherently asynchronous and software may not rely on instruction timing for
correct operation. Implementations are permitted to execute instructions out of order and need only
preserve the appearance of sequential execution. For example, in the absence of other constraints which
would force execution, flush and purge operations may be indefinitely delayed. To insure that progress
is made, however, the following requirements must be met.

« Instruction streams must make forward progress. This means that any operation, on which an
instruction stream is dependent, must be performed in some finite period.

« All load and store operations to the 1/0 space must be performed in some finite period.

« Execution of asYNC instruction forces all prior flush operations from the same instruction stream
to be performed in some finite period.

For performance and testability reasons, it is occasionally necessary to know when an access to I/0O
space has completed. This would not normally be possible due to the asynchronous nature of execution.
In order to provide this capability, the following two special sequences are defined. These sequences
place additional requirements on implementations for the completion of accesses. When these code
sequences are used, the additional completion requirements hold.

When this code sequence is executed, the instruction labeled ‘access A completed on bus’ is not
executed, and the source registers not read until after the LDW (or STW) labeled ‘access A has
completed on the bus.

LDW (or STW) from (to) I/O space ;access A

SYNC

LDW from 1/O space, but notto GR 0

(at least seven instructions)

Instruction ; access A completed on bus

When this code sequence is executed, the instruction labeled ‘access B completed on module’ is not
executed, and the source registers not read until after the STW instruction labeled ‘access B’ has
completed on the 1/O module.

STW to I/0 space ; access B
LDW from the same I/O space module
SYNC
LDW from 1/O space, but not to GR 0
(at least seven instructions)
Instruction ; access B completed on module
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Formal Memory Model

The purpose of this Memory Model is to define the values which may be returned by the Load
instructions within any program. Any correct system implementation must, for every possible program,
return only the Load values permitted by this Memory Model. Likewise, any correct program must
behave according to its specification for all combinations of Load return values permitted by this
Memory Model. The Model therefore represents the full range of behaviors allowed in the memory
system, including all caches and interconnect.

The Model accepts as input an “Execution Trace” (a description of the behavior of a hypothetical
program running on a hypothetical machine) and determines whether the behavior is consistent with the
rules governing the memory system. The strategy used by the Model is to include the Execution Trace
with hardware-generated cache control operations in a “Memory Trace” which must obey certain rules.
Each cache line in memory is modelled as a Finite State Machine which takes values from Store
operations in the Execution Trace and determines what values can be returned to Load operations.
Although the Model may mimic the mechanisms used by some implementations, this does not imply
that these are the only acceptable mechanisms for enforcing memory ordering; any implementation is
acceptable if it always produces only Load values that are permitted by this Model.

This Model makes some simplifications in order to remain small enough to be useful. First, the Model
assumes a static page table. That is, mappings for virtual pages must not change physical address,
permissions, or cacheability during the interval studied by the Model. Second, there must be no non-
equivalent aliasing of virtual addresses. Third, the move-in restrictions which are specific to STWA and
LDWA instructions are not modelled.

This Memory Model is expressed both in natural language and in Formal syntax to facilitate reasoning
about memory properties and the verification of new designs.

The Execution Trace

The Execution Trace is defined to represent all software-controlled memory operations executing in a
system during some interval. The interval may begin with power-up or some appropriate initial state.
This Memory Model is concerned with the behavior of Memory rather than with the internal state of
processors or other modules, so the Execution Trace includes only operations which affect memory. The
system may include any number of processors and I/O devices, and the Execution Trace is defined to
include the memory operations executed by all these modules. These operations include all PA
instructions executing on processors, as well as all memory references sourced by I/O devices and non-
PA processors. The Execution Trace therefore includes the memory-related instruction stream of every
module in the system.

The Execution Trace is analogous to a hardware logic analyzer trace which monitors the memory
activity of every module in the system, with two differences. First, the Execution Trace records every
memory operation as if it were instantaneous and atomic, as described at the beginning of this appendix.
A real hardware logic analyzer might observe that each operation progresses through several phases
which might be pipelined or overlapped with other operations. Second, the Execution Trace records no
ordering information between different modules. A real hardware logic analyzer would at least have an
approximate notion of whether an operation on one module occurred before or after an operation on
another module. The Execution Trace is therefore consistent with software’s limited view of the system,
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where a program executing on one processor cannot directly observe the activity of another processor.

We represent an Execution Trace as a partially-ordered set of memory references. These memory
references are a collection of the following:

Reference | Description

Load Data or Instruction fetch

Store Data store

Flush Request to remove a line from cache
Sync Synchronize caches

TLB_Purge | Remove TLB entry

A Semaphore (e.g. a LDCW instruction) is represented as an atomic combination of a Load and a Store.
There is no cache Purge operation in this list, because this model takes advantage of the fact that any
cache Purge is allowed to be treated as a Flush. All known HP implementations use this simplification,
so this Model does, too.

Each memory reference in the Execution Trace may have the following attributes:

Attribute Description

Type Load, Store, TLB_Purge, Flush, or Sync.

Strength Strong, Ordered, or Weak.

Coherent | T or F. Distinguishes between Coherent and Non-coherent access.

Virtual T or F. Distinguishes between Virtual and Absolute addressing.

Icache T or F. Determines whether a reference will use the I-cache or D-cache (if one exists).
Semald T or F. Indicates this Load is part of a Semaphore. The Store follows immediately.
Value The sequence of bytes stored or loaded by the reference.

Size The number of bytes stored or loaded (the length of the Value sequence).

Page The physical memory page addressed by the reference.

Line The line offset addressed within the page.

Byte The byte offset addressed within the line.

Source The module which originated the reference.

RefNum A consecutive numbering of memory references from each Source.

The last six attributes are all modeled as non-negative integers. The attributes of a memory reference are
accessed in this model using extractor functions. For example, sPaigethe physical page number
addressed by reference’‘and “Type)” is “Load” when X" is any Load reference.

There are many restrictions on the values of these attributes. For example, the Line offset must be less
than the page size, the Byte offset plus the Size of a reference must not exceed the line size, semaphore
operations must be properly aligned, the Byte of a TLB_Purge operation is undefined, and the Strength
of a TLB_Purge is always Strong. For the sake of brevity, these restrictions are not described here, but
they should be obvious from other chapters.

In this Model, each Load reference in the Execution Trace has a Value. This represents the data value
returned to that Load in the single run represented by the Execution Trace. The goal of this Memory
Model is to determine whether the Load Values included in any given Execution Trace are consistent
with the allowed behavior of a memory system.
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Instruction Order

The ordering of memory references within an Execution Trace is described by the Instruction Order
relationship. Instruction Order is determined by the code or internal behavior of each module.
Instruction Order is a partial order over the complete set of memory references in an Execution Trace,
but it is a total order over the set of references sourced by any single module. That is, any two references
from a single processor have an explicit order (as given in the code executing on that processor), while
two references from different modules are not related by Instruction Order.

Every memory reference in an Execution Trace is assigned a numeric reference index which indicates
its position in its source module’s instruction stream. For any given module, the index numbers of the
references in its instruction stream increase monotonically with time. Two operations which form an
atomic semaphore must be consecutively numbered.

The Instruction Order relationship is represented by the overloaded binary infix operator “<”. The
expression “refl < ref2” should be read “refl precedes ref2 in some module’s instruction stream.” This
also implies that refl and ref2 are both references in the Execution Trace.

Relation Abbreviation for
(x<y) (Sourcex)=Sourcey) and RefNum{)<RefNumygy))

Many properties follow directly from the fact that Instruction Order is represented by a sequence of
integers. The following are only examples:

Theorem Note

x<y)andy<2 O (x<2 Order is transitive
(x<y)O ~(y<Xx) Order is antisymmetric
(Sourcex)=Sourcey)) O (x<y)or (y<x)or x=y) Trichotomy

The Execution Trace, then, is specified as a set of memory references with its Instruction Order
relationship. The Execution Trace is the only input to the Memory Model, and the only output of the
Model will be a binary value to indicate whether the given Execution Trace (with its included Load
values) is possible in a correct memory system.

Line States

This Memory Model is concerned with the possible values that each cache line may have in main
memory and in the cache system. Each line is modelled as a Finite State Machine which includes state
representing the line’s value and its status in the cache system.

Assume that all cache lines contaibytes. A line valuev is then a sequence otyteswg , ... , Wy 1.
We define two functions Get and Put to extract and modify bytes within a limigsdfis a byte offset
within a cache linesizeis a positive integer such thaffset+ size< n, andval is a sequence dfize
bytes, then:

PA-RISC 2.0 Architecture Memory Ordering Model G-9



Function Definition

Getfv,offset,size | Returns the sequUeN®Bgiset, --- \Wofisetrsizel
Putfv,offset,vdl | Returnsw', the sequence ofbytes identical tav, except
thatw ggrseFvalg , ... \Wofisetsize1=Valsize1

A cache-coherent system must behave as if it contains a single D-cache and a single I-cache, shared by
all modules. A data cache may consist of data-only and combined caches, and an instruction cache may
consist of instruction-only and combined caches. Software must be aware of the possible existence of
these different kinds of caches, because of possible interference between coherent data accesses, non-
coherent instruction accesses, and DMA. Likewise, this Model must be aware of the possible states of
these caches.

A physical system might include multiple processor modules, each of which has an I-cache and a D-
cache consisting of several levels. The system is free to transfer data lines between these caches and
levels in order to satisfy coherent Load requests. At any given time, several copies of a line may exist in
various parts of the cache structure.

The Model allows multiple copies of any line to be moved into the cache system. A Load from any
module may then access any of these multiple copies. All of these multiple copies may remain valid
simultaneously in cache until a Flush is executed, a coherent Store requires a private copy of a line, or
hardware spontaneously chooses to invalidate one or more copies of the line to make room for other
data in the cache.

The states of a given line in the memory system consists of the following five components:

Component | Meaning Description
MemVal(s) Memory Value Value of the line in memory.
Statusg) Data Cache Status One of: PrivClean (private clean), PrivDirty (pri-

vate dirty), or Public (shared or not present in any
data cache).

DonlyCVs(s) | Data-only Cache Values Set of distinct values of copies of the line present
in data-only caches.

lonlyCVs(s) | Instruction-only Cache Values Set of distinct values of copies of the line present
in instruction-only caches.

CombCVs§) | Combined Cache Values Set of distinct values of copies of the line present
in combined caches.
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In addition to these components we define the following shorthand:

Notation Abbreviation for Description

DataCVs§) CombCVs§) O DonlyCVsf) | Set of distinct values of copies of the line present
in data caches, including both data-only and com-
bined caches.

InstCVsE) CombCVs§) O lonlyCVs(s) Set of distinct values of copies of the line present
in instruction caches, including both instruction-
only and combined caches.

AlICVs(s) CombCVs§) 0 DonlyCVsf) | Set of distinct values of copies of the line present
O lonlyCVs(s) in caches of any kind.

The Memory Trace

The Memory Trace, like the Execution Trace, is a set of memory operations which includes some

ordering information. The Memory Trace is a super-set of the Execution Trace, so every memory

reference in the Execution Trace also appears in the Memory Trace. In addition, the Memory Trace

includes cache management operations and a Memory Order which are not under program control, but
rather are controlled by the hardware.

The cache management operations may transfer data lines between cache and memory, and may also
modify the data cache status. Like the memory references in the Execution Trace, these operations have
a Type attribute and some additional attributes. A cache management operation must have one of the

following five types, with the listed attributes in addition to its Type attribute:

Type Description Attributes
Moveln Move a line into cache. This operation takes a “snap-shottache, Page, Line

of a line in memory and copies it into I-cache or D-cache.
MakePrivate | Change the data cache status from Public to PrivClear. Page, Line
CopyOut Copy a dirty line to memory, leaving a clean copy in cache. Page, Line
MakePublic | Change the data cache status from PrivClean to Public. Page, Line
Invalidate Remove a copy of a line from I-cache or D-cache. Icache, Page, Line

Implementations often combine several of these conceptual operations into a single hardware operation.

The Memory Trace is then a uniform set of operations, the Type of each operation being Load, Store,
Flush, Sync, TLB_Purge, Moveln, MakePrivate, CopyOut, MakePublic, or Invalidate. In all the formal
notation in this Model, the variablesy, andz are assumed to be members of the set of operations
defined by the Memory Trace.

Memory Order

The Memory Trace includes a Memory Order relation that determines the order in which all operations
“appear” to be executed by the memory system. This ordering interleaves the instruction orderings of
the modules while allowing some specific reordering of the memory references issued by each module;
in addition, it incorporates the cache management operations listed above.

The Memory Order relationship is a total ordering over the complete set of operations in the Memory
Trace. Two operations in a given Memory Trace may be completely independent of each other, but they
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are still given an explicit (though arbitrary) ordering in the Memory Order relationship. We wfiae O

thei-th operation in this total ordering. The indéx in the range & i < NumOpns, where NumOpns is

the number of operations in the Memory Trace. The operations in the Memory Trace affect the state of
the memory system. Thus the sequence of operatiores@lts in a sequence of states Spaltg) 0< i

< NumOpns, for every line with page addresand line offset within p, the initial state of the line

being Statgf,1,0). For a given Execution Trace, the Memory Order and the cache management
operations are constrained by a set of ordering rules, coherence rules and move-in rules that are stated
later.

Function | Definition

O Thei-th operation in the Memory Trace.

Statep,l,i) | The states of the linel on pagg immediately prior to the
execution of operation;O

Final Goal

The behavior of the memory system is observed through the values returned by the Load operations.
Hence the ultimate goal of this Memory Model is to determine whether the values returned by the Load
operations in a given Execution Trace are permissible in a correct memory system. An Execution Trace
is said to be “OK in PA” if and only if there exists a Memory Trace that extends the Execution Trace as
described above (and therefore includes its load values), and also satisfies the ordering rules, coherence
rules, and move-in rules given in the following sections.

Definition
OK _in_PA(ExecutionTrace) =
there exists MemTrace such that
(  (MemTrace extends ExecutionTrace) and
ObeysRulel(ExecutionTrace,MemTrace) and
ObeysRule2(ExecutionTrace,MemTrace) and ...

)

We now define the order, coherence, and move-in rules. For clarity, the formal notation given here will
avoid passing ExecutionTrace and MemTrace as parameters into every function, and will instead
assume that the relationship “<” and the functiona@e globally defined to match the current
ExecutionTrace and MemTrace;, @, and Q are arbitrary operations within the current MemTrace,
unless otherwise specified. (Formally, free occurrences of the varialplds are to be considered
universally quantified over the range@,j,k < NumOpns.) To simplify the notations, we define some
more shorthand:

Notation Abbreviation for Description
Beforef) State(Page(®Line(0),i) The state of a linbeforeit is operated on by O
After(i) State(Page(®Line(Q),i+1) The state of a linafter it is operated on by O

Note that Beforef and After{) refer implicitly to a specific line, the one thati®concerned with, and

that this line changes from one operationt®the next. These notations are well-defined whenever
Type(Q) O {Sync, TLB_Purge}, since Sync and TLB_Purge operations are the only ones that do not
have both Page and Line attributes.
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Order Rules

We define a relationship called OrderSensitive which represents the ordering requirements from the
informal description at the beginning of this appendix. Pairs of operations for which this relationship
holds are required to retain their relative ordering as they are processed by the memory system. In
addition to the explicit rules stated in the informal description, there is the implicit requirement that all
accesses from a single source to a single line are OrderSensitive. Note that the OrderSensitive function
is neither symmetric nor transitive. Thus, OrderSenskjyp(does not necessarily imply
OrderSensitive(x).

Definition
IsAccessX) = (Typek)=Load or TypeX)=Store or Type()=TLB_Purge)
IsLdOrStk) = (Typek)=Load or TypeX)=Store)

StronglyOrdered(y) =
(IsAccessX) and IsAccess]) and
(Strengthk)=Strong or Strengtlj=Strong)
Orderedx,y) =
(Typef)=Load and StrengtR=Ordered and IsAccess) or
(IsAccessX) and Type§)=Store and Strengty)cOrdered) or
(Type)=Store and Strengtkf=Ordered and Typg(=Load and Strengtki(=Ordered)
FlushOrdered(y) =
(IsLdOrStk) and Typey)=Flush and Paggl=Pagey) and Linek)=Line(y)) or
(Type)=TLB_Purge and Typgj=Flush and Pagg(=Pagey))
SyncOrdered(y) =
(Type)=Sync) or
(Typefy)=Sync)
AccessOrdered(y) =
(IsLdOrStk) and IsLdOrStf) and Sourced=Sourcey) and
Pagex)=Pagey) and Linek)=Line(y))

OrderSensitiveqy) =
( StronglyOrdered(y) or
Orderedx,y) or
FlushOrdered(y) or
SyncOrdered(y) or
AccessOrdered(y)

)

Rule 1 is obeyed when the Memory Order relationship of MemTrace preserves the Instruction Order
relationship of ExecutionTrace for all memory references which are considered OrderSensitive:

Rule 1 (Required ordering)

If OrderSensitive(Q0;) and (@ < Q)
then { <)).
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If two operations are atomically linked as a semaphore in the Instruction Order, then Rule 2 states that
they must be consecutive in the Memory Order:

Rule 2 (Semaphore atomicity)
If

Source(Q) = Source(§) and

Semald(®) and

RefNum(Q)+1 = RefNum(Q)
then (+1 =j).

Coherence and Move-in Rules

The first rule in this section specifies that loads, flushes, syncs and TLB purges do not directly change
the state of the memory system. (Flushes, however, change the state indirectly, by instructing the
hardware to initiate cache line invalidations, as we shall see later.) The rule also specifies that an
operation that concerns a specific line does not change the state of any other line. Note that syncs and
TLB purges are the only operations that do not have a Line attribute.

Rule 3 (Stability)
For everyp, |, if
Type(Q) O {Load, Flush, Sync, TLB_Purge} or
(Type(Q) O {Sync, TLB_Purge} and Page(- p) or
(Type(Q) O {Sync, TLB_Purge} and Line(Q# 1)
then
Statep,l,i+1) = Stateg,l,i).

The following few rules concern move-ins. The Icache attribute of a move-in operatapecies
whether the operation is an instruction cache move-in (Ilcaghd(Oor a data cache move-in
(Icache(®)=F). The Value attribute gives the value of the cache line that is moved in. An instruction
move-in may bring a copy of a line into an instruction-only or a combined cache, but not into a data-
only cache. The copy of the line may be obtained from memory or from another cache of any kind,
including a data-only cache. If the data cache status is private clean or private dirty, then an instruction
move-in cannot result in an additional line value being added to the set of line values already present in
the combined caches.

(Note that, although we mention line copies in the informal descriptions of the rules, the formal rules
are concerned withalues of line copiesather than with the copies themselves.)
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Rule 4 (Move-in to instruction caches)

If Type(O)=Moveln and Icache(®=T

then
MemVal(After()) = MemVal(Beforei)) and
Status(Afteri)) = Status(Beforg)) and
Value(Q) O AlICVs(Before()) O {MemVal(Beforef))} and
InstCVs(After{)) = InstCVs(Beford() O {Value(O)} and
DonlyCVs(After()) = DonlyCVs(Beforei)) and
if Status(Before]) O {PrivClean, PrivDirty}
then CombCVs(Afteif) = CombCVs(Beforaj).

A move-in operation to the data caches for a given line is only allowed when the data cache status for
that line is Public. A data move-in may bring a copy of a line into a data-only or a combined cache, but

not into an instruction-only cache. The copy of the line may be obtained from memory or from a cache

other than an instruction-only cache.

Rule 5 (Move-in to data caches)
If

Type(Q) = Moveln and
Icache(®) = F
then
Status(Befora]) = Public and
Status(Afteri)) = Public and
MemVal(After()) = MemVal(Beforei)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
Value(Q) O DataCVs(Beforea}) O {MemVal(Before())} and
DataCVs(After{)) = DataCVs(Before)) O {Value(G))}.

The following move-in rules are a simplified version of what appears in Appendix F. Full details can be
found there.

Move-ins are allowed or disallowed on a per-page basis. If a physical page belongs to I/0O space, its lines
cannot be moved in. Otherwise they can be moved in under two circumstances: (i) the physical page is
the translation of a virtual page that is mapped cacheable, or (ii) the move-in is justified by an absolute
reference. In the latter case, the absolute reference must be a store or data load to the same page (in the
case of a data move-in), or an instruction load to the same or to the preceding page (in the case of an
instruction move-in). Furthermore, the reference must precede the move-in with no intervening flush, or
else the move-in must immediately precede the memory reference (with perhaps an intervening
MakePrivate operation, since MakePrivate is separate from Moveln in the Memory Model).
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Rule 6 (Allowable instruction move-ins)

If
Type(Q) = Moveln and
Icache(@ =T

then
Page(® O IO_Space and
(MappedCacheable(Pagg)(Cor
there exist$ < NumOpns such that
Virtual(Q)) = F and
Type(Q) = Load and
Icache(Q) = T and
Page(Q) U {Page(Q), Page(®)-1} and
(j=i+1or

( j<iandthereis nksuch that
j<k<iand
Type(Q) = Flush and
Icache(@) =T and
Page(Q) = Page(®
)))-

Rule 7 (Allowable data move-ins)
If

Type(Q) = Moveln and
Icache(®) = F

then
Page(® O I10_Space and
(MappedCacheable(Pageg)jCor
there exist$ < NumOpns such that
Virtual(O;) = F and
Type(Q) U {Load, Store} and
Icache(Q) = F and
Page(Q) = Page(®) and
(j =i+l or
(j =i+2 and Type(Q1) = MakePrivate) or
(j <i and there is nk such that
j<k<iand
Type(Q) = Flush and
Icache(Q) = F and
Page(Q) = Page(®
))-

A MakePrivate operation on a given line may take place when the data cache status for the line is Public
and there is only one distinct line value in the data-only and combined caches. (If there are more than
one, hardware may use invalidations to reduce the number to one prior to executing the MakePrivate
operation; MakePrivate and those preceding invalidations are usually combined into a single hardware
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operation.)

Rule 8 (MakePrivate)
If

Type(Q) = MakePrivate

then
Status(Befora]) = Public and
(there existsv such that DataCVs(Befoig( = {w}) and
Status(Afteri)) = PrivClean and
MemVal(After()) = MemVal(Beforei)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
CombCVs(After{)) = CombCVs(Beforé)) and
DonlyCVs(After()) = DonlyCVs(Beforei().

A CopyOut operation on a given line may take place when the data cache status for the line is PrivDirty,
the resulting status being PrivClean. The rule asserts that the value of the line in memory after the
operation is one of the values of the line in the data-only or combined caches before the operation. In
fact, when the data cache status is private (clean or dirty), there is only one such value; this is not

asserted by any one rule, but it follows globally from the set of rules, as we shall see at the end of the
section (cf. Theorem 1).

Rule 9 (CopyOut)
If

Type(Q) = CopyOut

then
Status(Befora}) = PrivDirty and
Status(Afteri)) = PrivClean and
MemVal(After()) O DataCVs(Befora}) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
CombCVs(After{)) = CombCVs(Beforéf) and
DonlyCVs(After()) = DonlyCVs(Beforei().

A MakePublic operation for a given line may take place when the data cache status is PrivClean for that
line.

Rule 10 (MakePublic)
If

Type(Q) = MakePublic

then
Status(Befora}) = PrivClean and
Status(Afteri)) = Public and
MemVal(After(i)) = MemVal(Beforel)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
CombCVs(After{)) = CombCVs(Beforéf) and
DonlyCVs(After()) = DonlyCVs(Beforei)).

Hardware is allowed to perform invalidations at any time. The intended meaning of an Invalidate
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operation is the removal afne copy rather tharall copies. Removing all copies from the cache
structure, or from the instruction-only caches, combined caches, or data-only caches, can be
accomplished by multiple invalidations, but it is not an atomic hardware operation.

If O; is an Invalidate operation, then Icachg(©T is used to indicate that the invalidation occurs in an

instruction-only cache, while Icachg}& F is used to indicate that it occurs in a combined or data-only
cache.

Rule 11 (Invalidate copy in an instruction-only

cache)

If
Type(Q) = Invalidate and
Icache(® =T

then
Status(After()) = Status(Before)) and
MemVal(After()) = MemVal(Beforel)) and
lonlyCVs(After()) O lonlyCVs(Before()) and
CombCVs(After{)) = CombCVs(Beforéf) and
DonlyCVs(After()) = DonlyCVs(Beforei)).

In the case of a data or combined cache, an invalidation is allowed only if the data cache status is public.
If the status is private clean, a MakePublic must be done first, and if the status is private dirty, an

invalidation must be preceded by a CopyOut and a MakePublic. Hardware often combines these
conceptual operations into a single hardware transaction.

Rule 12 (Invalidate copy in a data or combined cache)
If
Type(Q) = Invalidate and
Icache(®) = F
then
Status(Befora}) = Public and
Status(Afteri)) = Public and
MemVal(After()) = MemVal(Beforel)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
CombCVs(After{)) 0 CombCVs(Befora}) and
DonlyCVs(After()) O DonlyCVs(Beforei)).

A flush operation ©for a given line causes no immediate change in the state of the line, but it instructs
the hardware to perform a series of invalidations of copies of the line. An instruction flush operation,
indicated by Icache(®= T, is a request to invalidate all copies in the instruction-only and combined
caches. A subsequent Sync operation must wait for these invalidations to be completed. Thus, in the
state before the Sync, any copies of the line in those caches must be new copies, brought into the caches
by move-ins following the Flush.
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Rule 13 (Flush instruction cache)
If

Type(Q) = Flush and
Icache(® =T and
Type(Q) = Sync and
O <O
then
for everyw [0 InstCVs(State(Page(fLine(Q),k))
there exist$ in the rangé <j <k such that
Type(Q) = Moveln and
Page(Q) = Page(Q) and
Line(Q) = Line(Q) and
Value(Q) =w.

A data flush operation, indicated by Icachg(©F, is a request to invalidate all copies in the data-only
and combined caches. A subsequent Sync operation must wait for these invalidations to be completed.

Thus, in the state before the Sync, any copies of the line in those caches must be new copies, brought
into the caches by move-ins following the Flush.

Rule 14 (Flush data cache)
If

Type(Q) = Flush and
Icache(®) = F and
Type(Q) = Sync and
O <&
then
for everyw [0 DataCVs(State(Page{Q.ine(Q),k))
there existg in the rangé <j <k such that
Type(Q) = Moveln and
Page(Q) = Page(Q) and
Line(Q) = Line(Q) and
Value(Q) =w.

A non-coherent store to a given line modifies the memory copy of the line.

Rule 15 (Non-coherent store)
If

Type(Q) = Store and
Coherent(Q) = F
then
Status(Afteri)) = Status(Before)) and
MemVal(After()) = Put(MemVal(Before}),Byte(Q),Value(Q)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
CombCVs(After{)) = CombCVs(Beforef) and
DonlyCVs(After()) = DonlyCVs(Beforei().
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If the data cache status of a given line is private (clean or dirty), then a coherent store modifies the copy
or copies of the line present in the data or combined caches, the resulting status being private dirty.

Even though the status is private, there may be multiple copies: for example, there could be a valid copy
in a level-1 cache and a valid copy in the corresponding level-2 cache. However, as we shall see later, it
follows globally from the set of rules that there must be only one distinct value for the line in the data or
combined caches. Thus, if there are multiple valid copies, they must have the same value. A coherent
store modifies this unique value in each of those copies.
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Rule 16 (Coherent store to cache)
If

Type(Q)=Store and
Coherent(Q) = T and
Status(Befora}) (1 {PrivClean, PrivDirty}
then
Status(Afteri)) = PrivDirty and
MemVal(After()) = MemVal(Beforei)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
for everyw
(if CombCVs(Beforei)) = {w} then CombCVs(Afteri)) = {Put(w,Byte(Q),Value(Q))}) and
(if CombCVs(Beford() = O then CombCVs(Aftei}) = 00) and
(if DonlyCVs(Before()) = {w} then DonlyCVs(After()) = {Put(w,Byte(Q),Value(Q))}) and
(if DonlyCVs(Before()) = O then DonlyCVs(Afteri() = O).

If the data cache status is public, a coherent store is allowed to write directly to memory, but only if
there are no copies of the line in the data-only or combined caches. It then has the same effect as a non-
coherent store. (The concept of a coherent store to memory is included for the sake of completeness. It
may be useful in implementations where some of the processors have no data cache, while others do.)

Rule 17 (Coherent store to memory)
If

Type(Q) = Store and
Coherent(Q) = T and
Status(Befora}) = Public
then
DataCVs(Beford]) = 0 and
Status(Afteri)) = Public and
MemVal(After()) = Put(MemVal(Before}),Byte(Q),Value(Q)) and
lonlyCVs(After()) = lonlyCVs(Beforei)) and
DataCVs(After()) = 0.

An instruction load from a given line may get its value from memory or from any copy of the line in an
instruction or combined cache.

Rule 18 (Value returned by instruction load)
If

Type(Q) = Load and
Icache(@ =T
then
there existsv [0 {MemVal(Before())} O InstCVs(Before() such that

Value(Q) = Getf,Byte(Q),Size(Q)).
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A non-coherent data-load is allowed to obtain its value from memory or a data-only or combined cache.

Rule 19 (Value returned by non-coherent data load)
If

Type(Q) = Load and
Icache(®) = F and
Coherent(Q) = F
then
there existsv (0 {MemVal(Before())} O DataCVs(Befora]) such that

Value(Q) = Getv,Byte(Q),Size(Q)).

A coherent data load from a given line may get its value from memory or from any copy of the line in a
data-only or combined cache. However, if the data cache status is PrivDirty, then a copy of the line in a
data or combined cache must be used. As mentioned earlier, it follows from the global set of rules that
there is only one distinct value of the line in the data-only and combined caches.

Rule 20 (Value returned by coherent data load)
If

Type(Q) = Load and
Icache(®) = F and
Coherent(Q =T
then
there existsv such that
Value(Q) = Getfv,Byte(Q),Size(Q)).
and
if Status(Beford}) = PrivDirty
thenw [0 DataCVs(Beforef)
elsew [ DataCVs(Befora}) O {MemVal(Before())}.

In the initial state, all caches must be empty, and the data cache status must be public.

Rule 21 (Initial State)

For everyp, I,
Status(Stateyl,0)) = Public and
lonlyCVs(Stateg,1,0)) =0 and
CombCVs(Statgyl,0)) =0 and
DonlyCVs(Statgg,1,0)) =0.

This ends the rules of the Memory Model. Additional architectural rules are derivable as logical
consequences of these rules. As an example, the next section proves a sample theorem.
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Proof of Coherence for Private Lines

Theorem 1 (Coherence of private lines)

If a memory trace obeys the coherence and move-in rules, then for eldgymOpns,
for every physical page addrggsand for every line offsdt if s = Stateg,l,i) and Sta-
tus() O {PrivClean, PrivDirty}, then the set DataC\8sfias exactly one element.

PROOF. For arbitrarp andl, we prove by induction onthe invariant: ifs = Statusg,l,i), then either
Status$) = Public or DataCVsj has one element.

The invariant holds for the initial state, since
Status(Statexl,0)) = Public.

Assume that it holds far< NumOpns and let = Statep,l,i+1). We reason by cases on the operation
O,. If s = s, then the invariant holds fo*1; hence we need only consider operations that change the
state of the line addressed pyand|. By Rule 3 such an operation must be a store or a cache
management operation concerning the line. We check now that in every case the invariant hdlds for

By Rule 15, if Q is a non-coherent store, then Steg)ist Status§) and DataCVs) = DataCVsé),
Hence, since the invariant holds fdsy induction hypothesis, it holds forl.

By Rule 16, if Qis a coherent store to cache, then Status{PrivClean, PrivDirty}. In that case, by
the induction hypothesis, DataCgshas one element. This means that either

DonlyCVs(s) = CombCVs$) = {w} or
(DonlyCVs(s) = {w} and CombCVs§) = [0) or
(DonlyCVs() =0 and CombCVg) = {w})
for some line valua. Then, again by Rule 16, we have
DonlyCVs(s) = CombCVs$) = {w’} or
(DonlyCVs() = {w} and CombCVs§) =) or
(DonlyCVs() =0 and CombCVg) = {w'})
respectively, with
w' = Putiw,Byte(Q),Value(Q)).
Hence DataCVs) has one element, and the invariant holds +dr.

By Rule 17, if Qis a coherent store to memory, then Statys(Public, and hence the invariant holds
fori+1.

By Rule 4, if Q is a move-in to the instruction caches, Staus(Status§). Hence if Status) =
Public, then Status] = Public, and the invariant holds fo#1. If, on the other hand, Statgs(d
{PrivClean, PrivDirty}, then DataCVs| must have one element by induction hypothesis, and Rule 4
specifies in this case that CombC¥ps(= CombCVs§), in addition to the requirement that
DonlyCVs(s) = DonlyCVsg) which applies to any status. Thus DataG3js(coincides with
DataCVs§) and therefore has one element.
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By Rule 5, if Q is a move-in to the data caches, then StsijjusPublic, and hence the invariant holds
fori+1.

By Rule 8, if Q is a MakePrivate operation, then DataG¥d(as one element, and DataC8)s¢
DataCVs§). Hence DataCVsl) has one element and the invariant is satisfiedtbr

By Rule 9, if Q is a CopyOut operation, then Stag)s{ PrivDirty. Hence, by induction hypothesis,
DataCVs§) must have one element. But, by Rule 9 again, Data)\stincides with DataCV§.
Thus DataCV«)) has one element, and the invariant holdsfdr.

By Rule 10, if Qis a MakePublic operation, then Stasf)s¢ Public and the invariant holds fo¥1.
By Rule 11, if Qis an invalidation in an instruction-only cache, then

Status$) = Status§) and

DataCVs§) = DataCVs§).
Hence, since the invariant holds fdyy induction hypothesis, it holds for1.

Finally, by Rule 12, if Qis an invalidation in a data or combined cache, then Ssgtafublic and the
invariant holds foi+1.

We have now examined all cases, and thus completed the induction step and the proof.
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H Address Formation Details

This appendix provides detailed descriptions and illustrations of how various types of addresses are
formed in a PA-RISC processor.

Memory Reference Instruction Address Formation

Addresses are formed by the combination of a Space ID and an address Offset. Address Offsets may be
formed as the sum of a base register and any one of the following: a long displacement, a short
displacement (which leaves more instruction bits for other functions), or an index register.

Long Displacement Addressing

Memory reference instruction formats that have long displacements form the effective memory
reference address by adding a displacement to a base value specified through the instruction. The entity
being transferred can be a doubleword, word, halfword, or a byte.

The displacement can be any of the following:
 a 16-hit byte displacement (restricted to 14 bits when PSW W-bit =0)
 a 12-hit word displacement for word loads and stores
« an 11-bit doubleword displacement for doubleword loads and stores.

The opcode specifies the particular data transfer to be performed and the form of the displacement. The
displacements are encoded in two’'s complement notation with the sign bit always placed in instruction
bit 31. The formats for long displacement instructions are:

op ‘ b ‘ tr ‘ S ‘ im14
6 5 5 2 14
op ‘ b ‘ tr ‘ S ‘ imlla ‘ op ‘i
6 5 5 2 11 2 1
op ‘ b ‘ tr ‘ S ‘ iml10a ‘m‘ op ‘i
6 5 5 2 10 1 2 1

Space selection is done differently for 64-bit programs (when the PSW W-bit is 1) than it is for 32-bit
programs (when the PSW W-bit is 0). For 64-bit programs, there is little need for providing direct user
program access to an address space larger than 64 bits. Therefore, it is anticipated that most programs
(other than system software) will use only implicit pointers. For this reason, for 64-bit programs, all
long displacement loads and stores inherently compute their addresses as implicit pointers, and the s-
field is used to extend the displacement by 2 bits, providing an effective 16-bit displacement. When the
s-field is used to encode more displacement bits, they are encoded in a special fashion in order to. allow
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the encoding for displacements which do not require the additional 2 bits of range to be the same for 32-
bit and for 64-bit programs. (See the function “assemble_16" in “Instruction Notation Control
Structures” on page E-1 for more details on encoding.) For 32-bit programs, the s-field simply specifies
the space register.

When data translation is enabled, the effective space ID is the contents of a selected space register. If the
PSW W-bit is 0 (a 32-bit program), and the s-field is non-zero, the space register is selected directly by
the s-field (explicit pointer). If the PSW W-bit is 0 and the s-field is 0, the effective space ID is the
contents of the space register whose number is the sum of 4 plus bits 32..3® ¢ingpRcit 32-bit

pointer). If the PSW W-bit is 1 (a 64-bit program), the effective space ID is the contents of the space
register whose number is the sum of 4 plus bits 0..1 ofoQGRplicit 64-bit pointer). When data
translation is disabled, no space register selection is done and the offset is used directly as the address.

The effective offset is the sum of the contents oftGIRd the sign-extended displacemerfeor 32-bit
programs, the offset is truncated to 32 bits (the upper 32 bits are forced to 0).

The address calculation is shown in Figure H-1 and Figure H-2 in three parts: Figure H-1 shows space
identifier selection, and Figure H-2 shows offset computation. Space and offset are then bit-wise ORed,
as shown in Figure H-3 to form the full virtual address.

IRIED s-field
PSW W-bit—p Space Registers Space Registers
2
2 SR[1]
4 SR[2]
SR[3
3 [3]
SR[4]
SR[5]
SR[6]
SR[7]
Space ID Space ID
Data Data
Reference Reference
implicit pointer explicit pointer

Figure H-1. Space Identifier Selection
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General Registers  Displacement General Registers  Displacemenf
0 0
Low Sign Low Sign
Extend Extend
64 64
B 64 64
> ase + Base »+)
64 64
31 31
Offset Computation Offset Computation
Pre-modify Post-modify
Figure H-2. Offset computation with long displacement
3 6 6
0 2 1 1 3
offset ‘ a‘ A ‘ B
3 3 6
0 2 4 3
spacq C ‘ d ‘ D ‘
GVA | C | d] A|D | B

Figure H-3. Global Virtual Address Formation

Base register modification can be optionally performed, and can either be done before or after the offset
calculation, as shown in Figure H-2. Base register modification is specified by the opcode, or in the case
of doubleword loads and stores, by the m-field.

Short Displacement Addressing

This section describes memory reference instruction formats, where the effective memory reference
address is formed by the addition of a short 5-bit displacement to a base value specified in the
instruction. The sign bit of the short displacement is the rightmost bit of the 5-bit field, which is in two’s
complement notation. The entity being transferred can be a doubleword, word, halfword, or a byte.
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The format of the short displacement load instructions is:
03 ‘ b ‘ im5 ‘ S ‘a‘l‘ cc‘ ext4 ‘m‘ t
6 5 5 2 11 2 4 1 5

and that of the short displacement stores is:
03 ‘ b ‘ r ‘ S ‘a‘l‘ cc‘ extd ‘m‘ im5
6 5 5 2 11 2 4 1 5

The ext4field in the instruction format above specifies a load or a store and the data siaearntine
fields specify the following functions:
a =0 modify after if m = 1.
=1 modify before if m = 1.

m=0 no address modification.
=1 address modification.

In addition the combinatioa= 0,m = 1, andm5 = 0 specifies an ordered load or store.

The cc field specifies the cache control hint (see Table 6-7 on page 6-10, Table 6-8 on page 6-10, and
Table 6-9 on page 6-11).

In the instruction descriptions that follow, some information is coded into the instruction names and the
remainder is coded in the completer field (denotedraplt in the descriptions). Table H-1 lists the
assembly language syntax of the completer, the functions performed, and the values coded, mo the
andimb bit fields of the instruction.

Table H-1. Short Displacement Load and Store Instruction Completers

cmplt Description a| mj|imb
<none> don’t modify base register x 0 x
MA Modify base register After 0 1| #0

MB Modify base register Before 1 1 x
0] Ordered access 0 1 O

Notes: x indicates don't care.

In the above tablegmpltis in assembly language format amdn, andim5 are in machine language
format.

The space identifier is computed like any other data memory reference (see Figure H-1 on page H-2).
The calculation of the offset portion of the effective address for different completers is shown in
Figure H-4. Space and offset are combined like any other data memory reference (see Figure H-3 on
page H-3).
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64 64
General ~ Short General ~ Short
Registers Displacement Registers Displacement
im5 im5
Low Sign Low Sign
Exten Exten
64 64
64 64
> Base L = »(+ > Base
64 64
31 31
A 4
[ofiset |
Offset Computation Offset Computation
,MB Completer ,MA Completer
General ~ Short
Registers Displacement
im5
Low Sign
Exten
64
Base JL»
31 64

Offset Computation

No Completer Specified

Figure H-4. Offset computation with short displacement
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Store Bytes Instructions

STORE BYTES and STORE DOUBLEWORD BYTHSovide the means for doing unaligned byte moves
efficiently. These instructions use a short 5-bit displacement to store bytes to unaligned destinations.
The short displacement field is in two’s complement notation with the sign bit as its rightmost bit.

The format of the&STORE BYTES and STORE DOUBLEWORD BYTHiSstructions is:
03 b r ‘ S ‘a‘l‘ cc‘ ext4 ‘m‘ im5
6 5 5 2 11 2 4 1 5

The ext4field in the instruction format above specifies the data sizeaTdram fields specify the
following functions:

a=0 store bytes beginning at the effective byte address in the word
or doubleword.
=1 store bytes ending at the effective byte address in the word or doubleword.

m=0 no address modification.
=1 address modification.

Theccfield specifies the cache control hint (see Table H-2 on page H-6).

In the instruction descriptions that follow, some information is coded into the instruction names and the
remainder is coded in the completer field (denotedrhplt in the descriptions). Table H-2 lists the
assembly language syntax of the completer, the functions performed, and the values codedinto the
andm fields of the instruction.

Table H-2. Store Bytes Instruction Completers

cmplt Description a/m
<none> or B | Beginning case, don't modify base register 0 O
B,M Beginning case, Modify base register 0 1
E Ending case, don't modify base register 1 0
EM Ending case, Modify base register 1 1

In the above tablempltis in assembly language format andndm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure H-1 on page H-2).
The calculation of the offset portion of the effective address for different completers is shown in
Figure H-5. Space and offset are combined like any other data memory reference (see Figure H-3 on
page H-3).

The actual offset and modified address involves some alignment and other considerations. Refer to the
instruction description pages for an exact definition.
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64 64
General . Short General ~ Short
Registers Displacement Registers Displacement
im5 im5
Low Sign Low Sign
Exten Exten
64
» Base o4 + Base
64
31 31
v
Offset
Offset Computation Offset Computation
,E,M Completer ,B,M Completer

General ~ Short

Registers Displacement

im5
Low Sign
Extend
Base
31

Offset Computation

,B or ,E or No Completer Specified

Figure H-5. Offset computation for Store Bytes and Store Doubleword Bytes
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Indexed Addressing

This section describes memory reference instruction formats, where the effective memory reference
address is formed by the addition of an index value to a base value specified in the instruction. The
entity being transferred can be a doubleword, word, halfword, or a byte.

The format for indexed instructions is:
03 b X ‘ S ‘U‘O‘ cc‘ ext4 ‘m‘ t
6 5 5 2 11 2 4 1 5

Theu field specifies is the index register is shifted by the data size specifiedeixt4field and them
field specifies if base register modification is performed.

Index shift by data size means that the index value (contents aj GRnultiplied by the size of the

data item being referenced - 1 if it is a byte, 2 for a halfword, 4 for a word, and 8 for a doubleword
(these correspond to shifts by 0, 1, 2, and 3 bits, respectively). Base register modification also results in
the contents of GR being replaced by the sum of the index value and the previous contentdof GR

Theccfield specifies the cache control hint (see Table 6-7 on page 6-10 and Table 6-9 on page 6-11).

In the instruction descriptions, the teampltis used to denote the completer which is encoded in the
and m fields. The list of completers and the address formation functions they specify appear in
Table H-3.

Table H-3. Indexed Instruction Completers

cmplt Description ujlm
<none> no index shift, don’t modify base register 0O O
M no index shift, Modify base register 0 1
S Shift index by data size, don’t modify base register| 1 0
SMor S,M | Shift index by data size, Modify base register 1 1

In the above tablempltis in assembly language format andndm are in machine language format.

The space identifier is computed like any other data memory reference (see Figure H-1 on page H-2).
The calculation of the offset portion of the effective address for different completers is shown in
Figure H-6. Space and offset are combined like any other data memory reference (see Figure H-3 on
page H-3).
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General Registers

0
3 left Shifted
Index  —spi®|  Index
64
64
Base
31

Offset Computation

General Registers

0

Index

64
64

,S Completer
General Registers
0
left Shifted
Index  —chi®l  Index
64
5 64
> ase »+)
64
31

Offset Computation
,SM or ,S,M Completer

31

Base

»+)
64

Offset Computation
,M Completer

General Registers

0

31

Index

Base

Offset Computation
No Completer Specified

Figure H-6. Offset computation with indexed addressing

Absolute Address Formation

The formation of absolute addresses varies depending on the setting of the PSW W-bit which specifies
whether the system is to support full 64-bit offsets or the 32-bit offsets compatible with PA-RISC 1.0

and 1.1 systems.
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Absolute Accesses when PSW W-bitis 1

When the PSW W-bit is 1 (see “Processor Status Word (PSW)” on page 2-7 for the definition of the
PSW W-bit), an absolute address is a 62-bit unsigned integer whose value is the address of the lowest-
addressed byte of the operand it designates (see Figure H-7).

n# Absolute Byte Address
2 62

Figure H-7. 62-bit Absolute Pointer

The 2-bit ne field is a non-existent field (i.e., software may write any value, but hardware
implementations must ignore them).

A 64-bit physical address is formed by extending a 62-bit absolute address as shown in Figure H-8 and
described by the following pseudo-code:

if (abs_addr{2..9} = OxF0) { /* if not in PDC Address Space */
phys_addr{2..63}~ abs_addr{2..63};
if (abs_addr{2..5} == OxF) /* if /0O Address Space */
phys_addr{0..1}~ Ox3;
else /* if Memory Address Space */
phys_addr{0..1}~ OxO;
}else { /* if PDC Address Space */

phys_addr{0..7}~ OxFO;
phys_addr{8..9}~ processor-specific;
phys_addr{10..63}~ abs_addr{10..63};

NOTE
Restricting absolute addresses when the PSW W-bit is 1 to 62 bits in size enables software to
access any objects in a quarter of the 64-bit Physical Address Space by two means:

 Using a 62-bit absolute address
 Using a virtual address which implicitly uses any of Space Registers 4 through 7.

Maintaining a 64-bit virtual address space enables software to virtually access hardware
subsystems such as I/0O busses which define 64 bit physical addresses.
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64 bit Physical 62-bit Absolute
Address Space Accesses with
PSW W-bit = 1

0x00000000 00000000

0x00000000 00000000

0x3C000000 00000000

Memory
Address Space

Address Spacg

B

PDC Add. Sp. 0x3C000000 00000000
0x3C400000 00000000
Space OX3FFFFFFF FFFFFFFF

Bits 0 and 1 of
absolute address are
non-existent and
must be ignored by
hardware
implementations

0xF0000000 00000000 ~BDC Address
Space

I/O Address
Space

0xF1000000 00000000

0xFC400000 00000000

OXFFFFFFFF FFFFFFFF

Figure H-8. 62-bit Absolute Accesses when PSW W-bit is 1

Absolute Accesses when PSW W-bit is O

When the PSW W-bit is 0, an absolute address is a 32-bit unsigned integer whose value is the address of
the lowest-addressed byte of the operand it designates (see Figure H-9)

non-existent Absolute Byte Address
32 32

Figure H-9. 32-bit Absolute Pointer

A 64-bit physical address is formed by extending the 32-bit Absolute Address as shown in Figure H-10
and described by the following pseudo-code:
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H-12

if (abs_addr{32..39} |= OxFO) {
phys_addr{32..63}~ abs_addr{32..63};
if (abs_addr{32..35} == OxF)
phys_addr{0..31}- OXFFFFFFFF;
else
phys_addr{0..31}~ 0x00000000;
}else {
phys_addr{0..7}~ OxFO;
phys_addr{8..39}~ processor-specific;
phys_addr{40..63}~ abs_addr{40..63};

64 bit Physical
Address Space

0x00000000 00000000

0x00000000 FO000000
Memory
Address Space
0xFO000000 00000000 PDC Address
Space
0xF1000000 00000000
I/O Address
Space

OxFFFFFFFF F1000000
OXFFFFFFFF FFFFFFFF

/* if not in PDC Address Space */
/* if /O Address Space */
* if Memory Address Space */

/* if PDC Address Space */

32-bit Absolute
Accesses with
PSW W-bit =0

0x00000000

Memory
Address Spadg

PDC Add. Sp. | 0xF0000000

0xF1000000
OXFFFFFFFF

Figure H-10. 32-bit Absolute Accesses when PSW W-bit is 0

Address Formation Details
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Figure H-11 illustrates the relationship between the 64-bit Physical Address Space, absolute accesses
when the PSW W-bit is 0, and an example, 40-bit, implemented physical address space.

64-bit Physical 40-bit Physical Absolute
Address Space Address Space Accesses with
Implementation PSW W-bit=0

0x00000000 00000000

0x00 00000000

Memory
Address Spacg
Memory
Address Space
OxFO 00000000

PDC Address PDC Add. Sp |0xF0000000

Space — 0xF1000000
mwa

O Adadress,

Space

OXFFFFFFFF
OXFF FFFFFFFF

0x000000EF FFFFFFFF

0x00000000
Memory

Address Space

0xFO0000000 00000000
PDC Address
Space

0xF1000000 00000000

I/O Address
Space

OxFFFFFFF1 00000000

OXFFFFFFFF FFFFFFFF

Figure H-11. Physical Address Space Mapping - An Example
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I Programming Notes

This appendix is a collection of programming tips and notes that provide brief examples of how to
effectively use the PA-RISC instruction set to accomplish commonly needed operations.

The following topics are covered:
* privilege level changes
* testing the current state of the PSW[W] bit
 branching
« static branch prediction
* returning from interruption
* trap handlers
* reserved op exception
« endian byte swapping
* halfword byte swap
« word byte swap

 doubleword byte swap

Privilege Level Changes

Branch instructions may change the privilege level depending on the type of branch performed. Since
privilege levels are determined by the two rightmost bits in the offset part of the instruction address,
privilege level changes are a function of the offset computation.

Since a branch instruction may be executed in the delay slot of another branch instruction, an interesting
case arises because of the way the privilege level changes are defined to take effect.

Consider the case where a taken IA relative branch is placed in the delay slot of a base relative branch
that lowers the privilege level of its target instruction. First, the base relative branch will execute and
schedule change of privilege level for its target. Then, in the delay slot, the IA relative branch will
execute and it will schedule its target to execute at the same privilege level as its own. Then, the target of
the base relative branch will execute at the new (demoted) privileged level. The next instruction,
however, which is the target of the IA relative branch, will have the same privilege level as that of the IA
relative branch, and thus will cause the privilege level to be restored to the original (higher) value as
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shown in the folbwing:

PROGRAM SEGMENT

Location | Instruction Comment

100 STW r7, 0(r8) ; hon-branch instruction

104 BV ro(r7) ; branchvectored to 200 and changewvp> 2
108 BLR r4, r0 ; A relative branch to location 400

10C ADD r2,r6, r9 ; hext instruction in linear code sequence
200 LDW 0(r3), r11 ; target of branclvectored instruction

400 LDW 0(r15), r4 ; target of 1A relatve branch instruction
404 STW r4, 0(r18)

EXECUTION SEQUENCE

Location | Instruction Comment

100 STW r7, 0(r8) ;priv=0

104 BV ro(r7) ;priv=0

108 BLR r4, r0 ; priv=0

200 LDW 0(r3), r11 ; priv = 2 decreased by branebctored instr
400 LDW 0(r15), r4 ; priv =0 changed back by IA reie¢ branch
404 STW r4, 0(r18) ypriv=0

Testing the Current State of the PSWBIt

Some code may wish to be callable from code which may be running with eithewr rmarmwide
addressing.

The following instruction sequence can be used to determine whether wide 64-bit address generation is
enabled. Thealue of PSW[W] is returned iregister r28 (O=naow, 1=wide).

PROGRAM SEGMENT T
Location | Instruction Comment
100 ADDB,*>N %r0,%r0,label ; branch if naiow addressing
104 BV 0(2) ; return

-2 Programming Notes PA-RISC 2.0 Architecture


Errata
Previously, location 100 incorrectly read:

ADDB,*=,N  %r0,%r0,%label


PROGRAM SEGMENT
108 LDI 1,%r28 ;returnal
label:
10C BV 0(2) ; return
110 LDI 0,%r28 ;returna 0

Procedure Call and Return

Example instruction sequences which perform the different types of procedure calls are shown below.
The following examples illustrate ways to use offsets of different lengths. The simplest case is that of
intraspace calls which can be done by any of the following code sequences, assuming that the
convention that SR 4 tracks IASQ is observed:

call: B,L target,rp or LDIL [%target,rp
<delay slot> BE,L r%target(SR4,rp),SR0O,GR31
COPY GR31,rp ;delay slot

return: BV 0(rp) or BE 0(SRO,rp)
<delay slot> <delay slot>

Making interspace calls which might decrease privilege level is shown below:

call: LDW space_id,GR1 or LDIL [%target, rp
MTSP GR1,SR4 LDO r%target, rp, rp
LDIL |%target,rp BVE,L (rp),rp
BE,L r%target(SR4,rp),SR0,GR31 <delay slot>

COPY GR31,rp ;delay slot

return: BE 0(SRO,rp) or BVE (rp)
<delay slot> <delay slot>

Static Branch Prediction

Branch prediction is quite important to overall performance. PA-RISC includes a set of conventions
which allow the programmer to indicate whether a particular branch is more likely to be taken or not
taken (based on static information, or on information obtained from feedback-directed compilation).
The way this information is encoded in the branch instructions does not change the semantics of the
instructions, but only provides hints to improve the success in predicting branch outcomes.

The static prediction hints are encoded by utilizing the fact that there are, in many of the important
cases, two ways of specifying the same branching operation. For such cases, one of these ways has been
defined to carry the static hint of ‘likely taken’, and the other, the static hint of ‘likely not taken’. These
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hints also take into account whether the branch is backward or forward.
All of the unconditional branches (B, BLR, BV, BE, BVE) are defined to carry the hint of ‘likely taken’.

For the conditional branches, the hint is defined as follows. If the ,TR completer is specified (always
taken), then the hint is defined to be ‘likely taken’. For other branch conditions, the hint depends on
whether the branch is forward (positive displacement) or backward (negative displacement). For most of
the conditional branches (ADDB, ADDIB, BB, CMPIB, MOVB, MOVIB), backward branches have the
hint ‘likely taken’ and forward branches have the hint ‘likely not taken'.

For CMPB, there is additional flexibility. Since the same comparison can be made by swapping the two
operands and choosing the opposite condition, this can be used to encode the branch hint. If the r1
register specifier is a lower-numbered register than the r2 register specifier, then backward branches
have the hint ‘likely taken” and forward branches have the hint ‘likely not taken’, otherwise the hint is
the opposite.

These branch hints are summarized in the following table.

STATIC BRANCH PREDICTION HINTS

Unconditional Conditional
B, BLR, BV, ,TR condition other conditions
BE, BVE
ADDB, ADDIB, ADDB, ADDIB,
BB, CMPIB, BB, CMPIB,
MOVB, MOVIB, MOVB, MOVIB,
CMPB CMPB with r1<r2| CMPB with r1>=r2
taken taken backward: taken backward: not taken

forward: not taken forward: taken

Additionally, if a branch is executed in the shadow of a ‘likely taken’ branch, then the prediction for the
second branch is ‘likely not taken’, regardless of the above table.

There are situations where it is desirable to code a branching sequence as a nullifying instruction
followed by an unconditional branch. An example would be if one wanted to branch based on an
extract/deposit condition. In such cases, if the branch is likely taken, then a normal unconditional
branch can be used.

EXECUTION SEQUENCE
Location Instruction Comment
100 EXTR,= r4,15,16,r0 ; if bit field is not zero
104 B target ; then branch (predicted taken)

If the branch is likely not taken, this can be achieved by using a conditional branch which will always be
taken, and which has the desired hint. The branch to use depends on whether the target is forward or
back. The two cases are shown below.
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If the target of the branch is forward, then we can use the following sequence. The COMIB is effectively
an unconditional branch. Since the branch is forward, the above table shows the COMIB to be likely not

taken.
EXECUTION SEQUENCE
Location Instruction Comment
100 EXTR,= r4,15,16,r0 ; if bit field is not zero
104 COMIB,<> 1,r0,forward_target ; then branch (predicted not taken)
If the target of the branch is backward, then we can use this sequence. Here again, the COMB is

effectively an unconditional branch. Since the branch is backward, and since rl = r2, the above table
shows the COMB to be likely not taken.

EXECUTION SEQUENCE
Location Instruction Comment
100 EXTR,= r4,15,16,r0 ; if bit field is not zero
104 COMB,= r0,r0,backward_target ; then branch (predicted not taken)

Return from Interruption

Only those interruptions which are themselves uninterruptible (they leave the PSW Q-bit 0) may return
from the interruption using theFI,R instruction. Interruption handling code which is interruptible (they
set the PSW Q-bit to 1) must return from the interruption usingfhastruction.

Fast interruption handling is achieved using shadow registers, since GRs 1, 8, 9, 16, 17, 24, and 25 are
copied to the shadow registers on interruptions. In this example, it is assumed that at most seven general
registers need to be used in the interruption handling routine.

using RFI using RFI,R
interrupt interrupt
save GRs <no save>

[process interrupt] [process interrupt]
<no restore>

RFI,R

restore GRs
RFI

Trap Handlers

The IEEE standard strongly recommends that users be allowed to specify a trap handler for any of the
five standard exceptions. The mechanisms to accomplish this are programming language and operating
system dependent.

Since the coprocessor continues to trap if the Status Register T-bit is 1, the trap handler must first set the
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bit to 0 by executing a double-word store of register 0. The trap handler may then emulate the
instructions in the exception queue beginning with the instruction in Exception Register 1 and
proceeding sequentially to the end.

The trap handler must clear all the exception registers before returning with the T-bit cleared to 0. If the
trap handler chooses not to emulate all the instructions, it must set the T-bit to 1 before returning to the
trapped process to trap immediately again.

To emulate an instruction, the trap handler computes or specifies a substitute result to be placed in the
destination register of the operation. The trap handler may determine what operation was being
performed and what exceptions occurred during the operation by examining the corresponding
exception register. On overflow, underflow, and inexact exceptions, the trap handler has access to the
correctly rounded result by examining the destination register of the operation. On unimplemented,
invalid operation, and divide-by-zero exceptions, the trap handler has access to the operand values by
examining the source registers of the instruction.

Reserved-op Exception

When a non-load/store instruction has a reserved sub-opcode, an implementation signals either a
reserved-op exception or an unimplemented exception.

A reserved-op exception always forces the processor to take an immediate assist exception trap. It does
not set the exception registers or the T-bit, and does not change any of the flag bits in the Status Register.
The reserved-op exception cannot be disabled.

Trapping is immediate for reserved-op exceptions. The trap handler must check for a Status Register T-
bit equal to 0 to determine that the trap was caused by a reserved-op exception. When a reserved-op
exception occurs, software interprets the contents of the IR, nullifies the instruction pointed to by the
front of the IIA queues, and returns control to the trapping process.

Endian Byte Swapping

Rearranging bytes within halfwords, words or doublewords from little endian to big endian or vice versa
can be accomplished with just a few instructions. The three examples that follow illustrate byte
swapping for the common cases.

Halfword Byte Swap

The following instruction sequence returns in register r28 the byte-reversed halfword value held in r26.

PROGRAM SEGMENT
Location | Instruction Comment
100 EXTRW,U %r26,23,8,%r28 ; extract instruction
104 BV 0(2) ; return
108 DEPW %r26,23,8,%r28 ; deposit instruction
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The following figure illustrates how the bytes are manipulated during this instruction sequence

Inputs Instruction Output
r28

r26

EXTRW,U r26, 23, 8,128 0 0 0| a

r26 28 r28

0 0 alb 0 0 0| a DEPW r26, 23, 8, 128 0 0 b| a

Word Byte Swap
The following instruction sequence returns in register r28 the byte-reversed word value held in r26.

PROGRAM SEGMENT
Location | Instruction Comment
100 SHRPW %r26,%r26,16,%r28 ; shift right instruction
104 DEPW %r28,15,8,%r28 ; deposit instruction
108 BV 0(2) ; return
10C SHRPW %r26,%r28,8,%r28 ;shift right

The following figure illustrates how the bytes are manipulated during this instruction sequence

Inputs Instruction Output
r26 r26 r28
a b c| d a b c| d SHRPW r26, r26, 16, r28c d al| b
r28 r28
c d alb DEPW 28, 15,8,r28 | ¢ b alb
r26 r28 r28
a b c| d c b al b SHRPW r26, r28, 8, r28 d c b a

Doubleword Byte Swap
The following instruction sequence returns in register r28 the byte-reversed doubleword value held in

PA-RISC 2.0 Architecture Programming Notes |-7



r26. The original value in r26 is destroyed.

PROGRAM SEGMENT
Location | Instruction Comment
100 PERMH,321 %r26,%r26 ;permute instruction
0
104 HSHL %r26,8,%r28 ; shift
108 HSHR,U %r26,8,%r26 ; shift
10C BV 0(%r2) ;return
202 OR %r28,%r26,%r28 ;OR the shifted registers

The following figure illustrates how the bytes are manipulated during this instruction sequence:

Inputs

Instruction Output

r26
2] b] c[d]e| f[o]n]

r26
alh[ e[ f]c[d]a]b]

r26
o[ e[f]c]d]a]b]

r26 r26
[h[o] flo]d[o[b[o] ~ [o]g]o]e[o[c|o[a]

-8 Programming Notes

r26
PERMH,3210 126, rda| h| e[ f [ c| d| a| b]|

28
HsHL 126, 8,128 [n[o] t[o]d]o]b]o]

r26
HSHR,U 26, 8,126 (0] g| 0[e]0]c|0]a]

r28
OR 28,126,128 [n]q[ f[e[d]c[b]a]
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J PA-RISC 2 Instruction Completers
& Pseudo-Ops

The instruction set descriptions provided in this book use instruction mnemonics that differ in some

subtle (and not so subtle) ways from the earlier PA-RISC instruction set descriptions. This appendix is
intended as an aid to those who were familiar with the 1.0 and 1.1 instruction mnemonics and may
wonder where their favorite instructions that they remember from the old days have gone. Generally, the
answer is that those instructions have simply been given a new, sleeker identity.

The motivation behind this renaming/reorganizing effort was to present a simpler, more easily
understood view of the PA-RISC instruction set. The major changes involve the use of more completers
and the introduction of a number of new pseudo-op mnemonics .

PA-RISC 2 Instruction Completers

The 2.0 instruction mnemonics use more completers instead of separate instructions for closely related
functions. For example, the 1.x read and write versions ¢fRIBEiInstruction were replaced in 2.0 by

a singlePROBE nstruction with two completer® andw. All 64-bit conditions on the arithmetic and
logical instructions provide new condition completers using the existing 32-bit symbols but with a “*”
prepended.

One problem which occurs when multiple encodings are compressed into a single mnemonic is how to
force a particular encoding if you really care (for example, when writing test code). New completers
have been added in 2.0 to allow the programmer to force the desired encoding. Table J-1 shows all of
the completers that can be used with PA-RISC 2.0.

Table J-1. Summary of PA 2.0 Instruction Completers

Completer | Meaning
B borrow
C carry
CAO0 - CA6 floating-point condition array bits 0 — 6
DB doubleword borrow
DC doubleword carry
DW doubleword
GATE gateway
I intermediate
L logical
local
link
left
NWC no word carries
NWZ no words zero
POP pop branch target stack

PA-RISC 2.0 Architecture PA-RISC 2 Instruction Completers & Pseudo-OpsJ-1



J-2

Table J-1. Summary of PA 2.0 Instruction Completers (Continued)

Completer | Meaning
PUSH push branch target stack
QW gquadword
R read
restore
right
S signed
SWC some word carry
SWz some word zero
T truncate
TC trap on condition
TSV trap on signed overflow
U unsigned
ubDW unsigned doubleword
UuQw unsigned quadword
uw unsigned word
W wide
word
write
Z zero
* 64-bit never condition
*= 64-bit equal condition
*< 64-bit less than condition
*<= 64-bit less than or equal to condition
*<< 64-bit unsigned less than condition
*<<= 64-bit unsigned less than or equal-to condition
*SV 64-bit signed overflow condition
*OD 64-bit odd condition
*TR 64-bit always condition
*<> 64-bit not equal condition
*>= 64-bit greater than or equal to condition
*> 64-bit greater than condition
*>>= 64-bit unsigned greater than or equal to condition
*>> 64-bit unsigned greater than condition
*NSV 64-bit no signed overflow condition
*EV 64-bit even condition
*NUV 64-bit no unsigned overflow condition
*ZNV 64-bit zero or no unsigned overflow condition
*UV 64-bit unsigned overflow condition
*VNZ 64-bit nonzero and unsigned overflow condition
*NBC 64-bit no byte carries condition
*NBZ 64-bit no bytes zero condition
*NDC 64-bit no digit carries condition
*NHC 64-bit no halfword carries condition

PA-RISC 2 Instruction Completers & Pseudo-Ops
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Table J-1. Summary of PA 2.0 Instruction Completers (Continued)

Completer | Meaning
*NHZ 64-bit no halfwords zero condition
*NWC 64-bit no word carries condition
*NWZ 64-bit no words zero condition
*SBC 64-bit some byte carry condition
*SBZ 64-bit some byte zero condition
*SDC 64-bit some digit carry condition
*SHC 64-bit some halfword carry condition
*SHZ 64-bit some halfword zero condition
*SWC 64-bit some word carry condition
*SWZ 64-bit some word zero condition
LDISP force long-displacement encoding for loads, stores, branches
SDISP force short-displacement encoding for loads, stores, branches
oC force OC encoding for floating-point
OE force OE encoding for floating-point
0A force OA encoding foFIC
4F force 4F encoding fa¥iC

Pseudo-Op Mnemonics

All 1.x instruction mnemonics are supported either directly or via 2.0 pseudo-ops as listed in Table J-2.
Note that only 1.x instructions whose mnemonics changed are listed in Table J-2.

Table J-2. 1.x versus 2.0 Mnemonics

1.x Instruction 2.0 Instruction

ADDBF,cond,n rl,r2,target ADDB,cond,n rl,r2,target
ADDBT,cond,n rl,r2target ADDB,cond,n r1,r2,target
ADDC,cond rl1,r2;t ADD,C,cond r1,r2;t
ADDCO,cond rl,r2,t ADD,C,TSV,cond rl,r2,t
ADDIBF,cond,n i, target ADDIB,cond,n i,rtarget
ADDIBT,cond,n i,rtarget ADDIB,cond,n i,rtarget
ADDIL ir ADDIL i,r,%R1
ADDIO,cond i,rt ADDI, TSV,cond i,rt
ADDIT,cond i,rt ADDI, TC,cond i,rt
ADDITO,cond i,rt ADDI, TSV,TC,cond i,rt
ADDL,cond rl,r2,t ADD,L,cond r1,r2;t
ADDO,cond rl1,r2;t ADD,TSV,cond rl1,r2,t
BL,n target,t B,L,n target,t

BLE,n wd(sr,b) BE,L,n wd(sr,b),%SR0,%R31
BVB,cond,n rtarget BB,cond,n r,%SAR,target
CLDDS,uid,cmplt,cc  d(s,b),t CLDD,uid,cmplt,cc  d(s,b),t
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Table J-2. 1.x versus 2.0 Mnemonics (Continued)

1.x Instruction

2.0 Instruction

CLDDX,uid,cmplt,cc  x(s,b),t
CLDWS,uid,cmplt,cc  d(s,b),t
CLDWX,uid,cmplt,cc  x(s,b),t
COMBF,cond,n rl,r2target
COMBT,cond,n rl,r2target
COMIBF,cond,n i, target
COMIBT,cond,n i, target
COMICLR,cond it
CSTDS,uid,cmplt,cc r,d(s,b)
CSTDX,uid,cmplt,cc  r,x(s,b)
CSTWS,uid,cmplt,cc r,d(s,b)
CSTWX,uid,cmplt,cc  r,x(s,b)
DEP,cond r,p,len,t
DEPI,cond i,p,len,t
EXTRS,cond r,p,len,t
EXTRU,cond r,p,len,t
FCNVFFsf,df rt
FCNVFX,sf,df rt
FCNVFEXT,sf,df rt
FCNVXF,sf,df rt
FLDDS,cmplt,cc  d(s,b),t
FLDDX,cmplt,cc  x(s,b),t
FLDWS,cmplt,cc d(s,b),t
FLDWX,cmplt,cc  x(s,b),t
FSTDS,cmplt,cc r,d(s,b)
FSTDX,cmplt,cc r,x(s,b)
FSTWS,cmplt,cc r,d(s,b)
FSTWX,cmplt,cc r,x(s,b)
GATE,n target,t
IDCOR,cond r,t
LDBS,cmplt,cc  d(s,b),t
LDBX,cmplt,cc  x(s,b),t
LDCWS,cmplt,cc  d(s,b),t
LDCWX,cmplt,cc  x(s,b),t
LDHS,cmplt,cc  d(s,b),t
LDHX,cmplt,cc  x(s,b),t
LDWAS,cmplt,cc  d(b),t

FCNV,T,sf,df

CLDD,uid,cmplt,cc  x(s,b),t
CLDW,uid,cmplt,cc  d(s,b),t
CLDW,uid,cmplt,cc  x(s,b),t
CMPB,cond,n r1,r2,target
CMPB,cond,n r1,r2,target
CMPIB,cond,n i,rtarget
CMPIB,cond,n irtarget
CMPICLR,cond i,rt
CSTD,uid,cmplt,cc  r,d(s,b)
CSTD,uid,cmplt,cc  r,x(s,b)
CSTW,uid,cmplt,cc r,d(s,b)
CSTW,uid,cmplt,cc  r,x(s,b)
DEPW,cond r,p,len,t
DEPWI,cond i,p,len,t
EXTRW,S,cond r,p,len,t
EXTRW,U,cond r,p,len,t

rt

rt
rt

rt

FLDD,cmplt,cc  d(s,b),t
FLDD,cmplt,cc  x(s,b),t
FLDW,cmplt,cc d(s,b),t
FLDW,cmplt,cc  x(s,b),t
FSTD,cmplt,cc r,d(s,b)
FSTD,cmplt,cc  r,x(s,b)
FSTW,cmplt,cc r,d(s,b)
FSTW,cmplt,cc r,x(s,b)

target,t

DCOR,l,cond rt
LDB,cmplt,cc  d(s,b),t
LDB,cmplt,cc x(s,b),t
LDCW,cmplt,cc  d(s,b),t
LDCW,cmplt,cc  x(s,b),t
LDH,cmplt,cc  d(s,b),t
LDH,cmplt,cc  x(s,b),t
LDWA,cmplt,cc  d(b),t

PA-RISC 2 Instruction Completers & Pseudo-Ops
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Table J-2. 1.wersus 2.0 Mnemonics (Continued)

1.x Instruction

2.0 Instruction

LDWAX,cmplt,cc  x(b),t
LDWM d(s,b),t
LDWS,cmplt,cc d(s,b),t
LDWX,cmplt,cc  x(s,b),t
PROBER (s,b),t
PROBERI (s,b),it
PROBEW (s,by,t
PROBEWI (s,b),i,t
RFIR

SH1ADD,cond rl,r2,t
SH1ADDL,cond rl,r2;t
SH1ADDO,cond rl1,r2,t
SH2ADD,cond rl,r2,t
SH2ADDL,cond rl,r2;t
SH2ADDO,cond rl1,r2,t
SH3ADD,cond rl,r2,t
SH3ADDL,cond rl,r2;t
SH3ADDO,cond rl1,r2,t
SHD,cond rl1,r2,p,t
STBS,cmpilt,cc r,d(s,b)
STBYS,cmplt,cc r,d(s,b)
STHS,cmplt,cc r,d(s,b)
STWAS,cmplt,cc r,d(b)
STWM r,d(s,b)
STWS,cmpilt,cc r,d(s,b)
SUBB,cond r1,r2,t
SUBBO,cond r1,r2;t
SUBIO,cond ,t
SUBO,cond rl,r2;t
SUBT,cond r1,r2;t
SUBTO,cond rl,r2;t
UADDCMT,cond rl,r2,t
VDEPRcond r,len,t
VDEPI,cond ilen,t
VEXTRS,cond r,len,t
VEXTRU,cond r,len,t

LDWA,cmplt,cc  x(b),t
LDW,cmplt Id(s,b),t
LDW,cmplt,cc  d(s,b),t
LDW,cmplt,cc  x(s,b),t
PROBE,R (s,b),t
PROBEILLR (s,b),it
PROBE,W (s,b),t
PROBEI,W (s,b),i,t

RFI,R

SHLADD,cond r1,1,r2,t
SHLADD,L,cond r1,1,r2,t
SHLADD,TSV,cond rl1,1,r2t
SHLADD,cond r1,2,r2,t
SHLADD,L,cond r1,2,r2,t
SHLADD,TSV,cond r1,2,r2,t
SHLADD,cond r1,3,r2,t
SHLADD,L,cond r1,3,r2,t
SHLADD,TSV,cond r1,3,r2,t
SHRPW,cond r1,r2,p,t
STB,cmplt,cc r,d(s,b) E
STBY,cmplt,cc r,d(s,b)
STH,cmplt,cc r,d(s,b)
STWA,cmplt,cc r,d(b)
STW,cmplt r,Id(s,b)
STW,cmplt,cc r,d(s,b)
SUB,B,cond r1,r2,t
SUB,B,TS/,cond r1,r2,t
SUBI,TSV,cond it
SUB,TSV,cond rl,r2,t
SUB,TC,cond rl1,r2;t
SUB, TS/, TC,cond rl,r2,t
UADDCM,TC,cond rl,r2;t
DEPW,cond r,%SAR,len,t
DEPWI,cond i,%SAR,len,t
EXTRW,S,cond r,%SAR,len,t
EXTRW,U,cond r,%SAR,len,t
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Errata
Previously, the text in the 2.0 Instruction column for the 1.x instruction "STBS,cmplt,cc" incorrectly read:

STB,,cmpltcc  r,d(s,b)


Table J-2. 1.wersus 2.0 Mnemonics (Continued)

1.x Instruction 2.0 Instruction

VSHD,cond rl1,r2,t SHRPWV,cond rl,r2,%SAR,t
ZDERcond r,p,len,t DEPW,Z,cond r,p,len,t
ZDEPI,cond ip,len,t DEPWI,Z,cond i,p,len,t
ZVDEPRcond r,len,t DEPW,Z,cond r,%SAR,len,t
ZVDEPI,cond ilen,t DEPW,Z,cond i, %SAR,lent EL
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Errata
Previously, the text in the 2.0 Instruction column for the 1.x instruction "ZVDEPI,cond" incorrectly read:

DEPW,Z,cond  i,%SAR,len,t


Index

A

absolute accesses-1, G-2
absolute_address(E-2
access ID 3-13
access rights 3-13
access type
execute 3-12
read 3-12
write  3-12
ADD 7-2
ADD (seeADD)
ADD AND BRANCH 7-4
ADD IMMEDIATE AND BRANCH 7-6
ADD IMMEDIATE LEFT 7-7
ADD TO IMMEDIATE 7-5
ADDB (seeADD AND BRANCH)
ADDI (seeADD TO IMMEDIATE)
ADDIB (seeADD IMMEDIATE AND BRANCH)
ADDIL (seeADD IMMEDIATE LEFT)
address aliasingF-5
equivalent aliasesF-6
many-reader/one-writerF-6
non-equivalent aliasesr-6
read-only F-6
AND 7-8
AND (seeAND)
AND COMPLEMENT 7-9
ANDCM (seeAND COMPLEMENT)
assemble_12()E-1
assemble_16() E-1
assemble_16a()E-1
assemble_17()E-1
assemble_21()E-1
assemble_22()E-1
assemble_3() E-1
assemble_6() E-1
assist emulation trap5-12
assist exception traps-9
assist processorl-13
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atomicity G-1

B

B (seeBRANCH)
BB (seeBRANCH ON BIT)
BCD, (seebinary coded decimal)
BE (seeBRANCH EXTERNAL)
binary coded decimal7-35
binary coded decimal data type-19
bit data type 2-18
bits

ignored 2-17

nonexistent 2-17

reserved 2-17

undefined 2-17
Block Copy cache control hint6-10
BLR (seeBRANCH AND LINK REGISTER)
BRANCH 2-8, 6-14, 7-10
BRANCH AND LINK REGISTER 6-14 7-16
BRANCH EXTERNAL 6-15 7-15
BRANCH ON BIT 7-13
BRANCH VECTORED 6-147-18
BRANCH VECTORED EXTERNAL 6-157-19
branches 4-1

base relative 4-2

conditional 4-2, 6-15

delay slot 4-1

delayed 4-1

dynamic displacement4-2

external 6-15

IA relative 4-2

interspace 6-15

intraspace 6-14

local 6-14

not-taken 4-2

static displacment4-2

taken 4-2

unconditional 4-2, 6-14
BREAK 7-17

Index IN-1



BREAK instruction trap 5-8

BV (seeBRANCH VECTORED)

BVE (seeBRANCH VECTORED EXTERNAL)
byte data type 2-18

C

cache

clean 3-17

dirty 3-17

move-in F-8
cache control hints6-9

Block Copy 6-10

Coherent Operation6-11

load 6-10

semaphore 6-10

Spacial Locality 6-10

store 6-10
CALL 7-11
cat() E-1
CCR (eeCoprocessor Configuration Register)
check 5-1
CLDD (see COPROCESSOR LOAD DOUBLE-

WORD)

CLDW (seeCOPROCESSOR LOAD WORD)
CLEAR BRANCH TARGET STACK 7-25
CLRBTS (eeCLEAR BRANCH TARGET STACK)
CMPB (seeCOMPARE AND BRANCH)
CMPCLR 6eeCOMPARE AND CLEAR)

CMPIB (see COMPARE IMMEDIATE AND
BRANCH)

CMPICLR (see COMPARE IMMEDIATE AND
CLEAR)

coherence_index()E-2
coherent input/ouputF-11
Coherent Operation cache control hist11
coherent_systemE-2
COMPARE AND BRANCH 7-26
COMPARE AND CLEAR 7-27
COMPARE IMMEDIATE AND BRANCH 7-28
COMPARE IMMEDIATE AND CLEAR 7-29
conditional trap 5-9
conditions
arithmetic/logical D-1
floating-point compare 8-16
floating-point test 8-17
shift/extract/deposit D-8

IN-2 Index

unit D-7
control registers 2-10
COPR 6eeCOPROCESSOR OPERATION)
COPR,0,0%eelDENTIFY COPROCESSOR)
coprocessor 1-13, 6-22
Coprocessor Configuration Registe2-12, 6-22
COPROCESSOR LOAD DOUBLEWORD 7-21
COPROCESSOR LOAD WORD 7-23
COPROCESSOR OPERATION 7-30
COPROCESSOR STORE DOUBLEWORD 7-31
COPROCESSOR STORE WORD  7-33
coprocessor_condition()E-2
coprocessor_op()E-2
COPY 7-82
CRs geecontrol registers)
CSTD Gee COPROCESSOR STORE DOUBLE-

WORD)

CSTW 6eeCOPROCESSOR STORE WORD)

D

data memory access rights trap-10
data memory break trapp-11
data memory protection ID traps-10
data memory protection trap/unaligned data refer-
ence trap 5-11
data TLB miss fault/data page faub-9
data types
binary coded decimal2-19
bit 2-18
byte 2-18
double-precision floating-point2-19, 8-6
integer 2-18
guad-precision floating-point8-6
signed halfword 2-18
signed word 2-18
single-precision floating-point2-19, 8-6
unsigned halfword 2-18
unsigned word 2-19
Dcache_flush() E-3
Dcache_flush_entries()E-3
Dcache_flush_or_purge()E-3
DCOR (eeDECIMAL CORRECT)
DECIMAL CORRECT 7-35
DEPD (eeDEPOSIT DOUBLEWORD)
DEPDI (see DEPOSIT DOUBLEWORD IMMEDI-
ATE)
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DEPOSIT DOUBLEWORD 7-37

DEPOSIT DOUBLEWORD IMMEDATE 7-39
DEPOSIT WORD 7-41

DEPOSIT WORD IMMEDATE 7-43

DEPW ce2 DEPOSIT WORD)

DEPWI (see DEPOSIT WORD IMMEDATE)
DIAG (se= DIAGNOSE)

DIAGNOSE 7-45

Direct /0 1-13

Direct Memory Access@ 1-13

DIVIDE STEP 2-8, 7-46

double-precision floating-point data g/p2-19
DS (see DIVIDE STEP)

DTLB_alloc() E-3
DTLB_purge_broadcast( E-3
DTLB_purge_entrie3( E-3
DTLB_purge_local( E-3

DTLB_search( E-3

E

EIEM (seeExternal Interrupt Enable Mask)
EIRR (seeExternal Interrupt Request Register)
endian bi 2-19

equivalent aliase F-6

equivalently-mappsg F-5

excepting instructio 10-1

EXCLUSIVE OR 7-154

external interrup 5-6

External Interrupt Enable Mis 2-13
External Interrupt Request Registe2-16
EXTRACT DOUBLEWORD 7-47
EXTRACTWORD 7-49

EXTRD (see EXTRACT DOUBLEWORD)
EXTRW (see EXTRACT WORD)

F

FABS (se2 FLOATING-POINT ABSOLUTEVALUE)
FADD (see FLOATING-POINT ADD)

fault 5-1

FCMP (e FLOATING-POINT COMPARE)

FCNV (see FLOATING-POINT CONVERT)

FCPY (e FLOATING-POINT COPY)

FDC (see FLUSH DATA CACHE)

FDCE e FLUSH DATA CACHE ENTRY)

FDIV (see FLOATING-POINT DIVIDE)
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FIC (see FLUSH INSTRUCTION CACHE)
FICE (se2e FLUSH INSTRUCTION CACHE ENTRY)
FID (see FLOATING-POINT IDENTIFY)
FIXED-POINT MULTIPLY UNSIGNED 9-30
FLDD (see FLOATING-POINT LOAD DOUBLE-
WORD)
FLDW (see FLOATING-POINT LOAD WORD)
floating-point
DBL format complete 8-15
delayed trappig 10-5
exception registasr 10-1
exceptios 10-4
division by zeo 10-10
invalid operatio 10-9
non-trappitg 10-6
overflow 10-11
reserved operatio 10-8, I-6
unimplementd 10-8
immediate trappig 10-4
interruptiors 10-4
Not a NumbeB-7, 8-23
QUAD format complete 8-15
registes 8-2
roundirg 8-22
SGL format complete 8-15
FLOATING-POINT ABSOLUTEVALUE 9-2
FLOATING-POINT ADD 9-3
FLOATING-POINT COMPARE 9-4
FLOATING-POINT COPY 9-7
FLOATING-POINT DIVIDE 9-8
FLOATING-POINT IDENTIFY 9-9
FLOATING-POINT LOAD DOUBLEWORD 9-10
FLOATING-POINT LOAD WORD 9-12
FLOATING-POINT MULTIPLY 9-14
FLOATING-POINT MULTIPLY FUSED ADD 9-16
FLOATING-POINT MULTIPLY NEGATE FUSED
ADD 9-17
FLOATING-POINT MULTIPLY/ADD 9-15
FLOATING-POINT MULTIPLY/SUBTRACT 9-18

E]

FLOATING-POINT NEGATE ABSOLUTE VALUE
9-20
FLOATING-POINTROUND TO INTEGER 9-21
FLOATING-POINT SQJARE ROOT 9-22
Floating-Point Status Registe8-8
C-bit 8-10

Index IN-3


Errata
The index should contain these additional entries:

FLOATING-POINT CONVERT  9-6

FLOATING-POINT NEGATE 9-19


CQ field 8-10
D-bit 8-10
Enables field 8-9
Flags field 8-9
| bits 8-10
model field 8-11
O bits 8-10
revision field 8-11
RM field 8-9
T-bit 8-10
U bits 8-10
V bits 8-10
Z bits 8-10
FLOATING-POINT STORE DOUBLEWORD 9-23
FLOATING-POINT STORE WORD 9-25
FLOATING-POINT SUBTRACT 9-27
FLOATING-POINT TEST 9-28
FLUSH DATA CACHE 7-51
FLUSH DATA CACHE ENTRY 7-53
FLUSH INSTRUCTION CACHE 7-54
FLUSH INSTRUCTION CACHE ENTRY 7-56
FMPY (seeFLOATING-POINT MULTIPLY)
FMPYADD (see FLOATING-POINT MULTIPLY/
ADD)
FMPYFADD (see FLOATING-POINT MULTIPLY
FUSED ADD)
FMPYNFADD (see FLOATING-POINT MULTIPLY
NEGATE FUSED ADD)
FMPYSUB (cee FLOATING-POINT MULTIPLY/
SUBTRACT)
FNEG (eeFLOATING-POINT NEGATE)
FNEGABS 6eeFLOATING-POINT NEGATE ABSO-
LUTE VALUE)
FPSR $eeFloating-Point Status Register)
FRND (see FLOATING-POINT ROUND TO INTE-
GER)
FSQRT 6eeFLOATING-POINT SQUARE ROOT)
FSTD (ee FLOATING-POINT STORE DOUBLE-
WORD)
FSTW ceeFLOATING-POINT STORE WORD)
FSUB (6eeFLOATING-POINT SUBTRACT)
FTEST 6eeFLOATING-POINT TEST)

G

general registers2-2
GRs 6eegeneral registers)

IN-4 Index

H

HADD (seeHALFWORD PARALLEL ADD)

HALFWORD PARALLEL ADD 7-57

HALFWORD PARALLEL AVERAGE 7-58

HALFWORD PARALLEL SHIFT LEFT 7-59

HALFWORD PARALLEL SHIFT LEFT AND ADD
7-60

HALFWORD PARALLEL SHIFT RIGHT 7-61

HALFWORD PARALLEL SHIFT RIGHT AND ADD
7-59, 7-62

HALFWORD PARALLEL SUBTRACT 7-63

HAVG (seeHALFWORD PARALLEL AVERAGE)

higher-privilege transfer trap5-13

high-priority machine check5-5

HSHL(seeHALFWORD PARALLEL SHIFT LEFT)

HSHLADD (see HALFWORD PARALLEL SHIFT
LEFT AND ADD)

HSHR(eeHALFWORD PARALLEL SHIFT RIGHT)

HSHRADD (see HALFWORD PARALLEL SHIFT
RIGHT AND ADD)

HSUB (seeHALFWORD PARALLEL SUBTRACT)

I/O (seeinput/output)

IAOQ (seelnstruction Address Offset Queue)

IAQs (seelnstruction Address Queues)

IASQ (seelnstruction Address Space Queue)

Icache_flush() E-3

Icache_flush_entries()E-4

IDENTIFY COPROCESSOR 6-227-30

IDENTIFY SFU 6-21 7-125

IDTLBT (seelNSERT DATA TLB TRANSLATION)

IEEE 754 8-1

ignored

bits 2-17

[IAOQ (seelnterruption Instruction Address Off-
set Queue)

IAQs (see Interruption
Queues)

IASQ (see Interruption
Space Queue)

IIR (seelnterruption Instruction Register)

IITLBT (seeINSERT INSTRUCTION TLB TRANS-
LATION)

illegal instruction 6-24

Instruction Address

Instruction Address
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illegal instruction trap 5-8
INCLUSIVE OR 7-101
INDIRECT CALL 7-20
input/output 1-12
INSERT DATA TLB TRANSLATION 7-64
INSERT INSTRUCTION TLB TRANSLATION 7-66
Instruction Address Offset Queu@-4
Instruction Address Queue-4
Instruction Address Space Queuz4
instruction memory protection trafs-7
instruction TLB miss fault/instruction page fault
5-7
instructions
immediate 6-12
integer data type 2-18
interrupt 5-1
Interruption Instruction Address Offset Quelke
13
Interruption Instruction Address Queues-13
Interruption Instruction Address Space QueRe
13
Interruption Instruction Register2-15
Interruption Offset Register2-15
Interruption Parameter Registerg-15
Interruption Processor Status Worg-16
Interruption Space Registep-15
Interruption Vector Address2-13
interruptions
disabling 5-4
floating-point 10-4
group 1 55
group 2 4-7,5-6
group 3 4-8, 5-7
group 4 4-9, 5-13
masking 5-4
performance monitor11-1
priorities 5-4
Interval Timer 2-5
IO_EIR 2-17
IOR (seelnterruption Offset Register)
IPRs Eeelnterruption Parameter Registers)
IPSW eelnterruption Processor Status Word)
ISR (seelnterruption Space Register)
ITLB_alloc() E-4
ITLB_purge_broadcast()E-4
ITLB_purge_entries() E-4
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ITLB_purge_local() E-4
ITLB_search() E-4
IVA (seelnterruption Vector Address)

LCI (seeLOAD COHERENCE INDEX)
LDB (seeLOAD BYTE)

LDCD (seeLOAD AND CLEAR DOUBLEWORD)

LDCW (seeLOAD AND CLEAR WORD)
LDD (seeLOAD DOUBLEWORD)

LDDA (seeLOAD DOUBLEWORD ABSOLUTE)

LDH (seeLOAD HALFWORD)

LDI (seeLOAD IMMEDIATE)

LDIL (seeLOAD IMMEDIATE LEFT)
LDO (seeLOAD OFFSET)

LDSID (seeLOAD SPACE IDENTIFIER)
LDW (seeLOAD WORD)

LDWA (seeLOAD WORD ABSOLUTE)
LOAD AND CLEAR DOUBLEWORD 7-71
LOAD AND CLEAR WORD 7-73
LOAD BYTE 7-69

LOAD COHERENCE INDEX 7-68
LOAD DOUBLEWORD 7-75

LOAD DOUBLEWORD ABSOLUTE 7-77
LOAD HALFWORD 7-79

LOAD IMMEDIATE 7-82

LOAD IMMEDIATE LEFT 7-81

LOAD OFFSET 7-82

LOAD PHYSICAL ADDRESS 7-88
LOAD SPACE IDENTIFIER 7-83
LOAD WORD 7-84

LOAD WORD ABSOLUTE 7-86
low_sign_ext() E-1

lower-privilege transfer trap5-13
low-priority machine check 5-7

LPA (seeLOAD PHYSICAL ADDRESS)
Ishift() E-1

M

many-reader/one-writer aliasingr-6
mask

system 2-7
measurement_enabledt-4
mem_load() 6-7
mem_store() 6-7

Index
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memory-mapped input/ouputl-12

MFCTL (seeMOVE FROM CONTROL REGISTER)

MFIA (see MOVE FROM INSTRUCTION AD-
DRESS)

MFSP 6eeMOVE FROM SPACE REGISTER)

MIX HALFWORDS 7-92

MIX WORDS 7-93

MIXH(seeMIX HALFWORDS)

MIXW(seeMIX WORDS)

MOVB (seeMOVE AND BRANCH)

MOVE AND BRANCH 7-94

MOVE FROM CONTROL REGISTER 7-89

MOVE FROM INSTRUCTION ADDRESS 7-90

MOVE FROM SPACE REGISTER 7-91

MOVE IMMEDIATE AND BRANCH 7-95

MOVE TO CONTROL REGISTER 7-96

MOVE TO SHIFT AMOUNT REGISTER 7-96

MOVE TO SPACE REGISTER 7-100

MOVE TO SYSTEM MASK 7-99

move-in

data cache F-8
instruction cache F-9

MOVIB (seeMOVE IMMEDIATE AND BRANCH)

MTCTL (seeMOVE TO CONTROL REGISTER)

MTSAR (seeMOVE TO SHIFT AMOUNT REGIS-
TER)

MTSARCM (seeMOVE TO SHIFT AMOUNT REG-
ISTER COMPLEMENT)

MTSM (seeMOVE TO SYSTEM MASK)

MTSP eeMOVE TO SPACE REGISTER)

Multimedia Instructions 6-3

multiprocessor systems~=-12

N

NaN (seefloating-point,Not a Number)
NO OPERATION 7-101

non-access data TLB miss fault/non-access data

page fault 5-10

non-access instruction TLB miss fauls-9
non-equivalent aliasesr-6
nonexistent

bits 2-17
NOP eeNO OPERATION)
null instructions 6-25
nullification 4-7

IN-6 Index

observed G-1
operation

undefined 6-24
OR (seelNCLUSIVE OR)
ordered G-1
ordering G-1
overflow

signed D-2

unsigned D-2
overflow trap 5-9

P

page
cacheable 3-17
uncacheable 3-17
page reference trapp-12
page table 3-15
PDC eePURGE DATA CACHE)
PDTLB (seePURGE DATA TLB)
PDTLBE (seePURGE DATA TLB ENTRY)
performance monitor
interruptions 11-1
PERFORMANCE MONITOR DISABLE 11-3
PERFORMANCE MONITOR ENABLE 11-4
performance monitor interrupts-7
performed G-1
PERMH(@EeePERMUTE HALFWORDS)
PERMUTE HALFWORDS 7-106
phys_mem_load() E-4
phys_mem_store()E-5
PIDs eeProtection Identifiers)
PITLB (seePURGE INSTRUCTION TLB)
PITLBE (seePURGE INSTRUCTION TLB ENTRY)
PMDIS (see PERFORMANCE MONITOR DIS-
ABLE)
PMENB (see PERFORMANCE MONITOR EN-
ABLE)
POP BRANCH TARGET STACK 7-110
POPBTS $§eePOP BRANCH TARGET STACK)
power failure interrupt 5-6
Priveleged Software-Accessible Registeps7?
privilege level 3-12
changing 4-5, I-1
privileged operation trap5-8
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privileged register trap 5-8
PROBE ACCESS 7-111
PROBE ACCESS IMMEDIATE 7-112
PROBE6eePROBE ACCESS)
PROBEI 6eePROBE ACCESS IMMEDIATE)
Processor 2-7
Processor Status Wor@-7

B-bit 2-8, 4-7, 4-9

C/B bits 2-9

C-bit 2-8

D-bit 2-9

E-bit 2-8, 2-19, 5-2

F-bit 2-9

H-bit 2-8, 4-9

I-bit 2-9

L-bit 2-8, 4-9

M-bit 2-8, 4-7, 5-3

N-bit 2-8, 4-7, 4-9

O-bit 2-9

P-bit 2-9

Q-bit 2-9

R-bit 2-9, 2-11, 4-9

S-bit 2-8

T-bit 2-8

V-bit 2-8

W-bit 5-2

X-bit 2-8, 4-7, 4-9
Protection Identifiers 2-12, 3-12
PSW éeeProcessor Status Word)
PURGE DATA CACHE 7-102
PURGE DATA TLB 7-104
PURGE DATA TLB ENTRY 7-105
PURGE INSTRUCTION TLB ENTRY 7-109
PUSH BRANCH TARGET STACK 7-113
PUSH NOMINATED 7-114

PUSHBTS $§eePUSH BRANCH TARGET STACK)

PUSHNOM geePUSH NOMINATED)

R

read_access_allowed(E-5
read-only aliasing F-6
read-only translation F-6
Recovery Counter 2-11, 4-9
recovery counter trap5-6
registers

control 2-10

PA-RISC 2.0 Architecture

floating-point 8-2
floating-point exception 10-1
general 2-2
reserved 2-17
shadow 2-9
space 2-3
relied-upon translationF-2
reserved
bits 2-17
instruction field values 6-25
instruction fields 6-24
registers 2-17
RESET SYSTEM MASK  7-117
RET (seeRETURN)
RETURN 7-20
RETURN FROM INTERRUPTION 5-47-115
RFI (seeRETURN FROM INTERRUPTION)
rounding,floating-point 8-22
rshift() E-2
RSM (seeRESET SYSTEM MASK)

S

SAR (seeShift Amount Register)
SCR 6eeSFU Configuration Register)
send_to_copr() E-2

SET SYSTEM MASK 7-128

SFU Configuration Register2-12, 6-21
SFU Registers 2-6

sfu_condition0() E-5
sfu_condition1() E-5
sfu_condition2() E-5
sfu_condition3() E-5
sfu_operation0() E-5
sfu_operationl() E-5
sfu_operation2() E-5
sfu_operation3() E-5

shadow registers2-9, 7-115

Shift Amount Register 2-5

SHIFT LEFT AND ADD 7-118

SHIFT LEFT DOUBLEWORD 7-38
SHIFT LEFT WORD 7-42

SHIFT RIGHT DOUBLEWORD 7-48
SHIFT RIGHT PAIR DOUBLEWORD 7-120
SHIFT RIGHT PAIR WORD 7-122
SHIFT RIGHT WORD 7-50

SHLADD (seeSHIFT LEFT AND ADD)
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SHLD (seeSHIFT LEFT DOUBLEWORD)
SHLW (seeSHIFT LEFT WORD)

SHRD 6eeSHIFT RIGHT DOUBLEWORD)
SHRPD §eeSHIFT RIGHT PAIR DOUBLEWORD)
SHRPW §éeeSHIFT RIGHT PAIR WORD)
SHRs éeeshadow registers)

SHRW ceeSHIFT RIGHT WORD)

sign_ext() E-2

sign_ext_16() E-2

signed halfword data type2-18

signed overflow D-2

signed word data type2-18
single-precision floating-point data type-19
space registers2-3

space_select()E-6

Spacial Locality cache control hin6-10
special function unit 1-13, 6-20

SPECIAL OPERATION ONE 7-125
SPECIAL OPERATION THREE 7-127
SPECIAL OPERATION TWO 7-126
SPECIAL OPERATION ZERO 7-124
SPOPO0 ¢eeSPECIAL OPERATION ZERO)
SPOP1 ¢eeSPECIAL OPERATION ONE)
SPOP1,sfu,0seelDENTIFY SFU)

SPOP2 ¢eeSPECIAL OPERATION TWO)
SPOP3 ¢eeSPECIAL OPERATION THREE)
SRs 6eespace registers)

SSM eeSET SYSTEM MASK)

STB (seeSTORE BYTE)

STBY (seeSTORE BYTES)

STD (seeSTORE DOUBLEWORD)

STDA (seeSTORE DOUBLEWORD ABSOLUTE)
STDBY (seeSTORE DOUBLEWORD BYTES)
STH (seeSTORE HALFWORD)

STORE BYTE 7-129

STORE BYTES 7-131

STORE BYTES SHORT 6-12G-1, H-6
STORE DOUBLEWORD 7-134

STORE DOUBLEWORD ABSOLUTE 7-136
STORE DOUBLEWORD BYTES 7-137
STORE HALFWORD 7-140

STORE WORD 7-142

STORE WORD ABSOLUTE 7-144
store_in_memory() E-2

strongly ordered G-1

STW (seeSTORE WORD)

IN-8 Index

STWA (seeSTORE WORD ABSOLUTE)
SUB (seeSUBTRACT)

SUBI (seeSUBTRACT FROM IMMEDIATE)
SUBTRACT 7-146

SUBTRACT FROM IMMEDIATE 7-148
SYNC (seeSYNCHRONIZE CACHES)
SYNCDMA (seeSYNCHRONIZE DMA)
SYNCHRONIZE CACHES 7-149
SYNCHRONIZE DMA 7-150

system mask 2-7

T

taken branch trap5-13
temporary registers2-17
TLB (seeTranslation Lookaside Buffer)
TLB dirty bit trap 5-12
translation
read-only F-6
write-capable F-6
Translation Lookaside Buffer3-9
access identifier (ID) 3-13
access rights 3-13
B-bit 3-10
combined 3-9
D-bit 3-10
entry F-1
hardware miss hndlingF-3
O-bit 3-10
relied-upon translationF-2
slot F-1
software miss handlingF-2
T-bit 3-10
U-bit 3-10
trap 5-1
TRs (Eeetemporary registers)

U

UADDCM (seeUNIT ADD COMPLEMENT)
unaligned data reference trap-11
undefined

bits 2-17

instruction 6-24
undefined operation6-24
UNIT ADD COMPLEMENT 7-151
UNIT XOR 7-153
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unsigned halfword data type2-18
unsigned overflow D-2
unsigned word data type2-19
UXOR (seeUNIT XOR)

V

virt_mem_load() E-6
virt_mem_store() E-7
virtual accesses3-1

W

WD bit 2-12

weakly ordered G-1
write_access_allowed()E-7
write-capable translationF-6

X

XMPYU (see FIXED-POINT MULTIPLY UN-

SIGNED)
XOR (seeEXCLUSIVE OR)
xor() E-2

Z

zero_ext() E-2
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