



PA-RISC 64-Bit Runtime
Architecture Supplement

Version 3.3
October 1, 1997

ii PA-64 Runtime Supplement for HP-UX, Version 3.3

Legal Notices

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential
damages in connection with furnishing, performance, or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that
is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are
reserved. No part of this document may be photocopied, reproduced, or translated to another
language without the prior written consent of Hewlett-Packard Company.

Copyright © 1997 by HEWLETT-PACKARD COMPANY

Introduction

PA-64 Runtime Supplement

Version 3.3
October 1, 1997

This document describes the specialized software conventions for the HP-UX operating system and
the PA-RISC 2.0 architecture. The HP-UX 64-bit application programming model conforms to the
common 64-bit software conventions for the PA-RISC 2.0 architecture, and the material presented
here is supplementary to the common conventions, which are described in the separate document, 64-
Bit Runtime Architecture for PA-RISC 2.0.

While the document just mentioned covers the runtime architecture that is common to all operating
environments on the PA-RISC 2.0 architecture, the chapters in this document cover material that is
specific to the HP-UX operating system. Some of this material combines with the common
conventions in contributing to the ABI, while other material describes implementation details below
the level of the ABI.

The following topics are covered in this document:

❏ Program startup

❏ Kernel and embedded systems conventions

❏ Profiling
 Introduction, Version 3.3 1

2 Introduction, Version 3.3

Program Startup

PA-64 Runtime Supplement

Version 3.3
October 1, 1997

This document covers the processor- and OS-specific details of program startup for 64-bit programs
running under HP-UX on PA-RISC 2.0 processors. Program startup includes the following topics:

❏ Interface between the kernel loader (exec) and dld (for dynamically-bound programs) or crt0
(for statically-bound programs).

❏ Language-independent initializations performed by dld or crt0.

❏ Language-dependent initializations.

❏ Interface between dld or crt0 and the main program.

❏ Program termination.

❏ Symbols and variables defined by dld and crt0.

❏ Interface between the compiler drivers and the linker.

1. Background

Programs on HP-UX are always launched within an existing process by calling the exec system call.
This call invokes the kernel loader, overlaying the running program with the new program. Typically,
exec is called from another program immediately after spawning a new process with the fork system
call.

The kernel loader recognizes three kinds of executable files:

❏ PA-32 SOM-format executables, whether statically-bound or “incomplete”. These programs
are loaded as they always have been, and are not discussed further in this document.

❏ Statically-bound PA-64 ELF-format executables. These programs are loaded completely by
the kernel loader, and control is transferred to the startup code linked in from the crt0 object
module.

❏ Dynamically-bound PA-64 ELF-format executables. These programs are distinguished by the
presence of a PT_INTERP record in the program header table. They are loaded by the kernel
loader, but the “interpreter” designated by the PT_INTERP record is also loaded, and control is
transferred to the interpreter. Typically, the interpreter is the dynamic loader, dld, although
any statically-bound PA-64 ELF-format executable may be designated as an interpreter.
Programs with an interpreter other than dld are not discussed further in this document
(although the interface between exec and the interpreter remain as specified here).
 Program Startup, Version 3.3 1

Interface between the kernel loader and dld/crt0

The crt0 object file contains startup code that must be linked in to every statically-bound PA-64
program. This startup code contains the program entry point to which control is transferred from the
kernel loader. The address of the startup code is recorded in the e_entry field of the ELF file header,
and the kernel loader transfers control to this address after loading the program.

In a dynamically-bound program, the crt0 object file is not used, and all actions normally associated
with crt0 are instead done by the dynamic loader, dld. The dynamic loader transfers control directly to
the program’s main program, function, or outer block, whose address is recorded in the e_entry field of
the ELF file header.

2. Interface between the kernel loader and dld/crt0

When the kernel loader transfers control to either the crt0 startup code (for statically-bound
programs) or the dynamic loader (for dynamically-bound programs), it sets up an initial stack and
effectively makes a function call, passing certain information to the new program. The effective
function prototype for the initial call from the kernel loader to the startup code (here called $START$)
is as follows:

int $START$(
int argc, /* number of command-line arguments */
char **argv, /* pointers to command-line arguments */
char **envp, /* pointers to environment strings */
keybit_info_t *keybits, /* CPU information */
load_info_t *load_info /* load information */

);

The structure keybit_info_t contains information about the processor currently executing the program.
It has the following structure:

typedef struct keybit_info {
int cpu_version; /* holds copy of cpu_version */
int fpu_info; /* holds result of copr,0,0 */
int keycnt; /* number of words of key bit info */
unsigned int key_bits[]; /* key bits returned from PDC */

} keybit_info_t;

The structure load_info_t contains load information. It has the following structure:

typedef struct load_info {
uint64_t li_version; /* version number */
uint64_t li_length; /* size of this structure */
uint64_t li_sysvec; /* pointer to the sysvec table */
uint64_t li_aout_path; /* pointer to a copy of a.out's path name */
uint64_t li_aout_hdr; /* pointer to copy of a.out's ELF file header */
uint64_t li_aout_prog_hdr; /* address of a.out's program header table */
uint64_t li_dld_taddr; /* address of dld's text segment */
uint64_t li_dld_daddr; /* address of dld's data segment */

} load_info_t;

The version and length fields are used to assure forward compatibility of executables on future
releases of the operating system. Compatibility concerns dictate that existing fields of this structure
cannot be moved or deleted; the structure may only be extended in such a manner that old
executables may safely ignore the extra fields.

The sysvec table pointer is used by the program for making system calls. Its use is described below
and in the separate chapter on system calls.
2 Program Startup, Version 3.3

Language-independent initializations

The kernel loader should copy the full path name of the original executable program (not the
interpreter) to some location in the stack segment, and place a pointer to this (null-terminated) string
in the li_aout_path field.

The final four fields of the load information structure are used only by dynamically-bound programs,
and are for use by the dynamic loader.

The kernel loader must copy the ELF file header structure from the original executable program to
some location in the stack segment, and place a pointer to it in the li_aout_header field.

The field li_aout_prog_hdr contains the virtual address of the original executable’s program header
table as it is mapped in memory. The program header table is identified by a separate PT_PHDR
record in the program header table, but is always part of a loadable (PT_LOAD) segment. The kernel
loader should provide the relocated value of the p_vaddr field from the PT_PHDR record.

The remaining two fields, li_dld_taddr and li_dld_daddr, provide the dynamic loader’s own text and
data segment addresses so dld can relocate itself.

3. Language-independent initializations

Both crt0 and the dynamic loader are responsible for the following initializations:

❏ Ensure correct alignment of the stack pointer

❏ Initializing the gp register

❏ Initializing the floating-point status register

❏ Initializing the pointer to the system call vector table

❏ Initializing the signal mechanism (if required)

❏ Initializing predefined system symbols

❏ Enabling profiling

❏ Initializing threads

❏ Invoking general initialization routines from .init sections

❏ Arranging for termination routines from .fini sections to be called at exit

These initializations should be performed in the order listed.

Stack pointer

The stack pointer must always be aligned to a 16-byte boundary, and the startup code should ensure
this. (It’s probably reasonable to make this a requirement of the kernel loader/startup code interface,
so all the startup code needs to do is preserve the alignment.)

The gp register

The gp register needs to be initialized to its correct runtime value. In a statically-bound program, this
value is determined at link time, and the linker sets the value of the __gp symbol. Thus, the startup
code in crt0 simply needs to initialize the gp register with this constant value. In a dynamically-bound
program, dynamic loader determines the gp values for each load module, and initializes all plabel
descriptors with the proper values. The gp value for the main program is set automatically upon
transfer of control to the main program, when dld makes a normal indirect call through the main
program’s plabel.
 Program Startup, Version 3.3 3

Language-independent initializations

Floating-point status register

The floating-point status register may be set to an arbitrary initial value through the use of the +FP
linker option when the main program is linked. The selected value is recorded in the executable file as
the value of the symbol _FPU_STATUS. This should be an absolute symbol, with a type of
STT_NOTYPE and a scope of STB_GLOBAL.

In a statically-bound program, crt0 will initialize the FP status register with the value of this symbol.

In a dynamically-bound program, dld will find the value of this symbol in the main program’s symbol
table, and initialize the FP status register.

System call vector table

The system call vector table is a table of pointers to kernel entry points, indexed by system call
number.

In a statically-bound program, the system call stubs load the value of the variable __systab to get a
pointer to this table. The startup code in crt0 must copy the value of the li_sysvec field in the load
information structure to this variable.

In a dynamically-bound program, the system call stubs refer to the system call vector table directly, as
the symbol __sysvec. The dynamic loader must define the value of this symbol, using the address in
the li_sysvec field in the load information structure. The dynamic loader should also initialize the
value of the variable __systab to ensure that references using the statically-bound technique also
work correctly.

The system call mechanism is described in more detail in a separate chapter.

Signal mechanism

Currently, no special initialization is required for the signal mechanism.

Predefined system symbols

The linker, crt0, and dld all participate in the definition of a number of predefined system symbols
available for application use. These symbols are described in Section 6, below.

Profiling

Profiling initializations are all done through entries in the .init section (described below). For more
details, see the separate document, Profiling 64-Bit Programs.

Threads

Thread initializations to be performed depend on whether the program is linked with the pthreads
library. If the program is linked with the pthreads library, an initialization routine in that library
must be called to allocate thread-local storage for the main thread and to initialize its data structures.
Otherwise, the program must still allocate thread-local storage for the main thread, but this storage
does not need to include the extra data structures used by the pthreads library.

These initializations are done through the C library’s initializer (using the .init section, described
below). The C library initializer will check the global variable __thread_init, which will contain a
function pointer referring to the thread initialization routine. Both the pthreads library and the C
library will have definitions of this variable. If the program is linked with the pthreads library, the
copy in the pthreads library will have precedence over that in the C library, and it point to a routine
that performs the full pthreads initializations. Otherwise, the copy in the C library will be called,
which points to a routine that performs only the basic initializations.
4 Program Startup, Version 3.3

Language-independent initializations

In statically-bound programs, the size of the thread-local storage segment is computed by the linker
and stored in the global variable __tls_size, one of the predefined system symbols described in
Section 6, below. In dynamically-bound programs, the dynamic loader computes the total amount of
thread-local storage required by all load modules, and stores the sum in the __tls_size variable. This
global variable is used by the thread initializer routine when it allocates the thread-local storage for
the main thread, and by the thread creation routine to allocate storage for each new thread.

General initialization routines from .init sections

Each load module may contain a .init section that specifies initialization routine that must be called
when the module is loaded. The .init section contains simply an array of function pointers, where each
function pointer points to an initializer routine. When an application starts, the initializer routines
for the main program and any startup DLLs must be called. When a DLL is loaded, the initializer
routines for that DLL and any dependent DLLs loaded as a result must be called.

The .init sections may be constructed in three ways:

❏ Source code may contain a pragma that identifies a particular procedure as an initializer; the
compiler will then add a function pointer to the .init section that refers to that procedure. This
.init section will combine with others at link time, producing a single .init section with
contributions from many different inputs.

❏ A compiler may generate an entry in the .init section automatically. For example, a C++
compiler is expected to create one function per translation unit with static constructors. It will
place a pointer to this function in the .init section of that translation unit. This function will
invoke the static constructors in the proper order during program startup.

❏ The linker’s +I option (upper-case ‘i’) can be used to specify one or more procedures as
initializers. The linker will add function pointers to the end of any existing .init section for
each procedure specified in this manner, creating a .init section if necessary.

In a statically-bound program, the startup code in crt0 processes the single .init section in reverse
order, using the predefined symbols __init_start and __init_end to identify the beginning and ending
addresses of the section.

In a dynamically-bound program, the dynamic loader processes each load module in reverse order,
checking for a .init section, which is identified by a DT_INIT record in the dynamic table. For each .init
section found, it invokes the initializers in reverse order.

Initializers are invoked in reverse order so that dependent libraries are initialized before the libraries
that depend on them. This allows the initializers for a library to invoke routines in dependent
libraries with assurance that the dependent libraries have already been initialized. This property is
used to ensure that the thread initialization routine, in the system threads library, is called before
any application or user library initializers.

Initializers are parameterless functions with no return value.

Special initialization routines for the C library

In order to guarantee that the C library’s initializers always run before any other library’s initializers,
the C library contains a single function pointer in a section named .preinit. The linker will construct a
DT_PREINIT record in the dynamic table for any load module containing this section, and the
dynamic loader will invoke the initializer(s) specified in this section prior to invoking initializers
specified in .init sections.

Pre-initializers are parameterless functions with no return value.

There is no compiler support for building the .preinit section; it must be built in assembly language.
 Program Startup, Version 3.3 5

Language-dependent initializations
To ensure predictable behavior, there should be exactly one .preinit section in the C library, with a
single function pointer. All of the C library’s initializations should be invoked from this single
initializer function.

Termination routines from .fini sections

Each load module may also contain a .fini section, with an array of function pointers referring to
termination routines that are to be called when the program terminates via the exit routine. In a
statically-bound program, the .fini section is delimited by the predefined symbols __fini_start and
__fini_end; in a dynamically-bound program, it is identified by a DT_FINI record in the dynamic table.
The startup code in crt0 and the dynamic loader arrange, via atexit, for these termination routines to
be called when a program terminates. (The use of atexit for this purpose should not affect any
implementation-imposed limit on the number of atexit routines that the application is allowed to
register.)

Termination routines are invoked in forward order.

When a DLL is unloaded, its termination routines are also invoked at that time.

4. Language-dependent initializations

All language-dependent initializations are handled through the general initialization mechanism
provided by the .init section, as described in the previous section. This assures that a program may
contain a mixture of code from different compilers, and all appropriate initializations will be done for
each language’s runtime support library.

For Fortran, this means that the generated code for the main program should no longer include a call
to the runtime library initialization routine. Instead, this routine should be made an initializer in the
Fortran runtime library.

For C++, this means that the compiler should no longer generate an _main routine when it compiles
main. Instead, the compiler should generate an initializer routine for each translation unit that has
static constructors.

5. Interface between dld/crt0 and the main program

After all initializations have been performed, the startup code in crt0 or the dynamic loader will
transfer control to the program’s entry point, by making a call to the main program or outer block.
The effective function prototype for this call is as follows:

int _start(
int argc, /* number of command-line arguments */
char **argv, /* pointers to command-line arguments */
char **envp, /* pointers to environment strings */

);

In a statically-bound program, the program entry point is the startup code in crt0, and is named
$START$. The linker sets the e_entry field of the ELF file header to the address of the startup code
(unless the program is linked with the –e option, which specifies an alternate entry point). The main
program or outer block is always named _start, and the startup code contains a direct reference to this
symbol. The Fortran compiler should use this as the name of the main program. For C and C++,
whose main program is always named main, the archive version of the C library contains a routine
named _start, whose only action is to call main with the same three parameters as shown above.
6 Program Startup, Version 3.3

Predefined system symbols
In a dynamically-bound program, the address of the main program or outer block is recorded in the
e_entry field of the ELF file header, and the dynamic loader transfers control to this address. The
linker will set this field as follows:

❏ If the program is linked with the –e option, the named symbol will be recorded as the
program’s entry point.

❏ Otherwise, the linker will search for a symbol named _start. If this symbol is found, it is
recorded as the program’s entry point. This identifies a Fortran main program.

❏ Next, the linker will search for a symbol named main. If this symbol is found, it is recorded as
the program’s entry point. This identifies a C or C++ main program.

❏ Finally, if none of the above yield an entry point, the first address in the text segment is used
as the program’s entry point.

The program’s entry point may reside in a DLL instead of the main program. If so, the linker will
create an import stub in the main program for the entry point symbol (if one does not already exist),
and set the entry point address to the address of that import stub.

There is no need for the _start routine in the DLL version of the C library.

The program may terminate either by calling exit directly, or by returning from the main program. In
the latter case, the startup code will call exit, using the return value from the main program as the
exit status.

6. Predefined system symbols

The standard programming environment provides a number of predefined system symbols for use by
the application and communication between various components of the development environment.
This section discusses the use of these symbols and how they are defined.

The linker defines the absolute symbols listed in Table 1. These symbols are defined when building a
statically-bound or dynamically-bound executable, but not when building a DLL. The value of an
absolute symbol may be obtained directly in a C program with the address-of operator (e.g.,
“&__SYSTEM_ID”).

The C library defines the global variables listed in Table 2. An application may examine these
variables to get information about the execution environment.

All of the symbols in Table 2 are statically initialized to the corresponding absolute symbols listed in
Table 3, which are defined by the dynamic loader.For statically-bound programs, the linker will
provide definitions of 0 for those symbols that do not also appear in Table 1; these symbols are then
re-initialized by the startup code in crt0, which copies information passed from the kernel loader, as
described in Section 2, into these variables. In dynamically-bound programs, the dynamic loader

Table 1. Linker-defined absolute symbols

Symbol Name Meaning

__SYSTEM_ID_D Largest architecture revision level used by any
compilation unit

_FPU_STATUS Initial value of FPU status register

_end Address of first byte following end of the main
program’s data segment; identifies the beginning of
the heap segment

__TLS_SIZE_D Size of TLS segment required by program
 Program Startup, Version 3.3 7

Predefined system symbols
calculates the values of the symbols __SYSTEM_ID_D and __TLS_SIZE_D based on the DLLs loaded;
it obtains the values of the remaining symbols from the information passed in from the kernel loader,
as described in Section 2.

The initializations in the C library should each be in the form shown below:

extern char *__CPU_REVISION;
int _CPU_REVISION = &__CPU_REVISION;

This places an import record for the absolute symbol in the C library, and a dynamic relocation will
direct the dynamic loader to write the load-time value of the absolute symbol into the global variable.

The dynamic loader should resolve references to these absolute symbols as if they were defined in a
DLL at the end of the binding order.

In addition to the symbols listed in Table 1, the linker defines the symbols listed in Table 4, primarily
for statically-bound programs. Their use in dynamically-bound programs is discouraged. Instead, the
dlmodinfo routine in the dynamic loader library may be used to obtain similar information about each
of the program’s load modules.

Table 2. Predefined global variables

Symbol Name Type Meaning

_CPU_REVISION long Processor version level

_CPU_KEYBITS_1 unsigned long Processor archictecture extension bits

_SYSTEM_ID long Highest architecture version required by program

_FPU_MODEL long FPU model

_FPU_REVISION long FPU version level

__argc long Copy of argument count

__argv char ** Copy of argument vector

__envp, _environ char ** Copy of environment vector

__tls_size long Total size of TLS segment

__load_info load_info_t * Pointer to load information structure

Table 3. Dynamic-loader-defined absolute symbols

Symbol Name Meaning

__CPU_REVISION Processor version level

__CPU_KEYBITS_1 Processor archictecture extension bits

__SYSTEM_ID_D Highest architecture version required by program

__FPU_MODEL FPU model

__FPU_REVISION FPU version level

__ARGC Argument count

__ARGV Argument vector

__ENVP Environment vector

__TLS_SIZE_D Total size of TLS segments from all load modules

__LOAD_INFO Address of load information structure
8 Program Startup, Version 3.3

Interface between the compiler drivers and the linker
7. Interface between the compiler drivers and the linker

Because the crt0 file is used only for statically-bound programs, the compiler drivers will need to
distinguish between static links and dynamic links. The compiler drivers should accept two new
options, –noshared and –dynamic. The compiler drivers will pass these options on to the linker, which
will use them to determine whether to link statically or dynamically. In addition, the compiler driver
will include the crt0 file (/usr/lib/crt0.o) automatically at the beginning of the list of files for static links
only. The default is to link dynamically, even if no DLLs are found at link time.

The C compiler driver should continue to pass the “–u main” option to the linker to ensure that a C
main program will be loaded from an application archive library.

Table 4. Predefined main program symbols

Symbol Name Meaning

__text_start Beginning of text segment

__text_start_f Beginning of text segment, declared as a function

_etext End of text segment

_etext_f End of text segment, declared as a function

__data_start Beginning of data segment

_edata End of initialized data

__gp Global pointer value

__init_start Beginning of .init section

__init_end End of .init section

__preinit_start Beginning of .preinit section

__preinit_end End of .preinit section

__fini_start Beginning of .fini section

__fini_end End of .fini section

__unwind_start Beginning of unwind table

__unwind_end End of unwind table
 Program Startup, Version 3.3 9

Interface between the compiler drivers and the linker
10 Program Startup, Version 3.3

Conventions for Kernel and Embedded Systems

PA-64 Runtime Supplement

Version 3.3
October 1, 1997

This supplement discusses special coding conventions used for kernel development (and for
development of other “embedded” applications and systems), and presents some example code
sequences for various tasks. The code sequences shown in this chapter are intended to serve as
guidelines and examples rather than as required coding conventions. These coding conventions may
be selected with the +DCemb compiler option.

The kernel runtime model is based on the application model described in the common conventions
document. The primary differences between the kernel model and the application model are:

❏ Embedded applications are standalone executables, and consists of a single load module.
Therefore, all data may be treated as “own” data and may be accessed directly rather than
through the linkage table.

❏ The gp register may be treated as a dedicated register that is never destroyed by a call; it does
not need to be saved or restored anywhere.

❏ Function pointers are represented as a simple pointer to the function’s entry point. Thus, the
code for materializing function pointers and for making indirect calls can be simplified to
avoid the second level of indirection.

❏ Unless requested to generate relocatable code, the compiler may use absolute addresses in
jump tables in the text segment.

❏ When programming for the kernel, the assembly-language programmer may have some
special knowledge about the memory allocation of the code and data, and may write code that
exploits this knowledge. For example, it may be known that the entire kernel is allocated
within the first 4 Gigabytes of the address space, so address constants may be formed with the
ADDIL/LDO pair familiar to 32-bit programmers.
 Conventions for Kernel and Embedded Systems, Version 3.3 1

Sample code sequences
1. Sample code sequences

1.1 Materializing function pointers

Function pointers may be obtained from the data segment, either as an initialized word or through
the linkage table, as shown in the following examples. The TP’ and P’ operators, which generate
pointers to function descriptors, are not used in the kernel model.

Function pointers may be obtained from the linkage table using the LT’ and RT’ operators:

ADDIL LT’function,gp ; LTOFF21L
LDD RT’function(r1), tgt ; LTOFF14DR

A function pointer may also be allocated explicitly in the data segment as a variable, and initialized
directly with the address of the function:

var: .dword function ; DIR64

1.2 Indirect procedure calls

In the kernel model, the extra level of indirection is removed from the indirect procedure call
sequence:

(assume function pointer is in register “fp”)
BVE,L 0(fp), r2
<delay slot>
2 Conventions for Kernel and Embedded Systems, Version 3.3

Profiling 64-Bit Programs

PA-64 Runtime Supplement

Version 3.3
October 1, 1997

This paper describes how prof- and gprof-style profiling work in the PA-64 runtime architecture.

Introduction

The HP-UX operating system provides two instrumentation techniques for profiling the execution of
programs: program counter sampling, and procedure call counting. Program counter sampling,
implemented within the OS at the clock interrupt level, provides statistical information about how
much time is spent at different points in the program, enabling a programmer to determine what
routines are responsible for most of the execution time. Procedure call counting, implemented by code
added to each procedure at compile time, provides an exact count of the number of times each
procedure was called.

These two techniques are usually employed together in conjunction with the prof and gprof tools. The
–p (prof) and –G (gprof) compiler options have two effects:

❏ When used at compile time, they cause the compiler to generate code in each procedure that
counts the calls;

❏ When used at link time, the compiler passes the options to the linker, which arranges for
appropriate program startup code to enable program counter sampling and to write the
profiling results to a data file when the program terminates.

An instrumented program accumulates the profiling information in a buffer while it is executing, then
writes the data to a file when it terminates. The prof or gprof tool can then correlate this data to the
symbol table of the a.out file and produce a profile report. These two tools differ in the amount of data
collected and the detail provided in the report; gprof collects call-graph information, and allocates
time spent in each procedure proportionally to the callers of that procedure (“chargeback”).

The support for profiling in the PA-32 runtime architecture involves the following components:

❏ The compilers. With the –p and –G options, the compilers instrument the compiled code by
inserting calls to the _mcount routine.

❏ The startup files crt0.o, mcrt0.o, and gcrt0.o. Depending on link-time options, an application is
linked with one of these startup files. If neither –p nor –G are specified, the application is
linked with crt0.o, which contains a null _mcount routine (just to satisfy references from any
code that was compiled with a profiling option). If –p is specified, the application is linked
with mcrt0.o, which contains code to start profiling, a real version of _mcount, and code to
 Profiling 64-Bit Programs, Version 3.3 1

Program counter sampling: the profil system call
write the accumulated profiling data to a file when the program terminates. If –G is specified,
the application is linked with gcrt0.o, which contains similar code, but accumulates more data
for use by gprof.

❏ The C library. It contains a prof-compatible version of the monitor routine. (The gprof-
compatible version of monitor is contained in gcrt0.o.)

❏ The prof and gprof applications. These analysis tools read the data files produced by an
instrumented applications, and generate the profile reports.

For the PA-64 runtime architecture, this new design eliminates the mcrt0.o and gcrt0.o startup files,
moves the profiling-related code from those files into two new libraries (libprof and libgprof), and
moves the standard version of monitor from the C library into libprof. In addition, it defines a new
data file format to accomodate the 64-bit address space.

1. Program counter sampling: the profil system call

The profil system call is used to request the OS to start sampling or to stop sampling. When sampling
is on, the OS samples the program counter (PC) at certain intervals (currently 100 times per second),
maps the program counter to a “bucket” in the sample buffer, and increments the counter in that
bucket. The parameters to profil control the location and size of the sample buffer, which is in user
space, the starting address of the code region being profiled, and a scale factor, ranging from 0.0 to 1.0,
that determines the mapping of PC values to the buckets. Larger scale factors provide greater
granularity in the sampling data.

The profil system call has the following prototype:

int profil(
unsigned short int *buff,
size_t bufsiz,
void *offset,
unsigned int scale

);

The first argument, buff, is a pointer to the base of the sample buffer, and the second argument, bufsiz,
is the size of this buffer, in bytes. The third argument, offset, is a pointer to the base of the text region
to be profiled, and the fourth argument, scale, specifies the scale factor to be used in mapping
locations in the text segment to buckets, which effectively defines the size of the text region.

The sample buffer is an array of 16-bit buckets, to which instructions in the text region are mapped
according to the scale factor. The scale factor is a fixed-point fraction between 0.0 and 1.0, with an
implied radix point 16 bits from the right. Thus, a pr_scale value of (1 << 16) specifies a scale factor of
1.0, where the size of the sample buffer is equal to the size of the text region. The largest meaningful
scale factor is 0.5, represented as (1 << 15), since each bucket is half the size of an instruction.

The smallest allowed value of pr_scale is 2, corresponding to a scale factor of 1/32768. This results in
one bucket for each 16,384 instructions.

For a given scale factor, the required size of the buffer is the size of the text region multiplied by the
scale factor, or (text_size * pr_scale / 65536).

If scale is 0 or 1, sampling is turned off.

The third argument, offset, is expected to be the actual address of the beginning of the region of code
to be profiled. This is different from a function pointer (which is expected by the monitor routine,
described below). The C compiler provides a built-in function or macro that will convert a function
2 Profiling 64-Bit Programs, Version 3.3

Procedure call counting: the _mcount routine
pointer to the address of the code for that function. The function __get_entry(fp) will return the
address of the code for the function represented by the function or function pointer fp.

2. Procedure call counting: the _mcount routine

When compiling code with the –p or –G option, the compiler instruments each procedure by inserting
a call to _mcount at the beginning of each procedure (following the procedure prologue). This
procedure has the following 64-bit interface:

void _mcount(
unsigned long rp,
unsigned long pc,
unsigned int **counter_ptr

);

The first argument, rp, is a copy of the return pointer—that is, a pointer to the caller of the
instrumented procedure. This gives gprof the call graph information it needs for chargeback.

The second argument, pc, is a pointer to an arbitrary instruction in the instrumented procedure itself.
(This allows _mcount to determine its caller without using assembly language.)

The third argument, counter_ptr, is a pointer to a statically-allocated doubleword in the .sbss section.
The compiler must allocate one of these doublewords for each instrumented procedure. When _mcount
is called from a procedure for the first time, it will find *counter_ptr initialized to zero. It will then
allocate a call counter in its own counter buffer, then store a pointer to that counter in *counter_ptr. On
successive calls from that procedure, _mcount will find the pointer to the previously-allocated counter.

The following is the ideal PA-64 calling sequence for _mcount (not including the save and restore of
the gp register):

copy rp, arg0 ; pass return pointer
addil LR’counter_ptr_1, gp ; form address of counter_ptr
ldo RR’counter_ptr_1(r1), arg2
b,l _mcount, rp ; call _mcount
copy rp, arg1 ; pass own pc

Note that the counter pointers must be 64-bit doublewords; in PA-32, they are 32-bit words.
Otherwise, the calling sequence is the same as PA-32.

Counters should be 32 bit unsigned integers.

There are three versions of the _mcount routine:

❏ The C library contains an empty version, to satisfy references from code instrumented at
compile time, but linked into a non-instrumented program.

❏ The prof library has a version that accumulates basic call counting information. For this
version, the rp argument is not used, since prof does not do chargeback. When compiling with
–p instead of –G, the compiler may choose to set this parameter to zero.

❏ The gprof library has a version that accumulates full call counting information.
 Profiling 64-Bit Programs, Version 3.3 3

The monitor library routine
3. The monitor library routine

The monitor routine is a higher-level interface to the profiling facility. It sets up program counter
sampling, allocates data structures for both sampling and call counting, turns off profiling, and writes
the profiling data to a disk file. It has the following interface:

void monitor(
void (*lowpc)(),
void (*highpc)(),
long *buffer,
int bufsize,
int nfunc

);

The first two arguments define the range of addresses that will be profiled. These two arguments
must be valid function pointers. For convenience in profiling the whole text segment in a statically-
bound program, the linker defines two symbols, __text_start_f and __etext_f, which are the beginning
and ending addresses, respectively, of the text segment. These symbols are declared in the header file
<crt0.h>, and may be used as parameters to monitor.

The third and fourth arguments define the starting address and length of a buffer for the sample
buckets, and the final argument is the total number of procedure call counters that should be
allocated.

The monitor routine will automatically calculate the proper scale factor and call the profil system call
to enable sampling. It will also allocate an array of procedure call counters and the data structures
necessary for _mcount to allocate counters from this array dynamically.

There are two versions of the monitor routine:

❏ The prof library has a version that allocates data structures for basic call counting
information and dumps the data in a prof-compatible format.

❏ The gprof library has a version that allocates data structures for full call counting information
and dumps the data in a gprof-compatible format.

4. Linking for use with prof and grof

When linking a program for use with prof, the compiler driver will pass the “–lprof” (lower-case ‘L’)
option to the linker. The –l option causes the linker to load the prof library before the C library, where
it will find prof versions of the monitor and _mcount routines.

When linking a program for use with gprof, the compiler driver will pass the “–lgprof” option to the
linker. The –l option causes the linker to load the gprof library before the C library, where it will find
gprof versions of the monitor and _mcount routines.

The prof and gprof libraries may be delivered in shared and archive forms. The shared forms are
normal DLLs, and will be loaded automatically when the program is executed. The archive forms will
not be actual archive libraries, but instead will be relocatable object files named with a “.a” suffix.
This allows them to be loaded with the -l linker option, but ensures that they will be loaded into the
program. If packaged as a real archive library, the linker would not load any members of the library
that are not directly referenced from the program.

When linking a program for either profiler tool, the compiler driver will also pass the “–L /usr/ccs/lib/
libp” option to the linker. This option adds an extra directory to the library search path, where
instrumented versions of selected system libraries may be found. These libraries will have been
compiled with the –p option, so that they are instrumented for procedure call counting.
4 Profiling 64-Bit Programs, Version 3.3

Running the instrumented program
Note that the linker does not support the –p and –G options for profiling. These options are
meaningful only to the compiler drivers, which in turn pass the appropriate options to the linker. To
invoke the linker directly, the linker options mentioned above must be used instead.

Note also that no separate crt0.o file is required.

5. Running the instrumented program

When an instrumented program starts execution, the initializer in the .init section of the profiling
library (libprof or libgprof) is called before control reaches main. The initializer will call monitor to
start profiling on the program’s text segment; allocate the data structures used for sampling and call
counting; and arrange, via atexit, to call monitor again to stop profiling at the end of the program.

As the program is running, program counter sampling data will be accumulated (by the OS) in the
buffer allocated for it. Any code compiled with instrumentation will call the _mcount routine each
time it is called to accumulate the call counting data.

When an instrumented program terminates, one of its atexit actions will be to call monitor to disable
profiling and to write the profiling data to a disk file.

6. Profile data file format

The existing data file formats used by prof and gprof are designed for a 32-bit address space, do not
provide for extensions, and do not identify themselves. The new 64-bit data file format described here
is a simple unified format that can support both prof and gprof, with enough header information to
identify the structure of the file. It can also support future extensions for larger sample buckets and
counters, and is capable of containing other types of profile data for profiling tools other than prof and
gprof.

The prof and gprof programs must be able to distinguish an old-format 32-bit data file from a 64-bit
data file. Since the old format does not contain any reliable identification, the utilities must assume
that a data file that does not contain a 64-bit file header is an old-format file. The utilities should also
ensure that a 32-bit data file is associated with a 32-bit program file (SOM format), and that a 64-bit
data file is associated with a 64-bit program file (ELF format).

A profile data file consists of a fixed file header followed by an arbitrary number of data sections. The
file header identifies the file as a profile data file. Each data section begins with a section header that
identifies the contents and structure of the data in that section.

The file header is eight bytes long. The first seven bytes contain the characters “<PROF1>”, and the
eighth byte contains a newline character. This header identifies the file as Version 1 of the profile data
file format.

Each section header contains, at a minimum, two doublewords. The first doubleword contains a
section type; section types used for prof and gprof are defined below. The second doubleword contains
the length of the section (including the section header). Depending on the section type, additional
fields may be defined.

The following three section types are defined for prof and gprof:

PROF_SECT_SAMPLES_64
This type of section contains a program counter sample buffer. The section header
contains additional fields defining the low and high pc values for the text segment,
the scale factor (as passed to the profil system call), and the size of each bucket
(currently, 2 bytes). This section type is used for both prof and gprof.
 Profiling 64-Bit Programs, Version 3.3 5

Profile data file format
PROF_SECT_CALL_COUNTS_64
This type of section contains call counters. The section header contains two
additional fields defining the number of counters and the size of each counter
(currently, 4 bytes). The data following the section header is in two parts: an array
of doublewords containing the pc values corresponding to each counter, followed
by the array of counters (whose size is identified in the section header). This
section type is used only by prof.

PROF_SECT_CALL_ARCS_64
This type of section contains call arc counters. The section header contains two
additional fields defining the number of arcs and the size of each counter
(currently, 4 bytes). The data following the section header is in two parts: an array
of 16-byte arc structures, followed by the array of counters (whose size is
identified in the section header). An arc structure contains two doublewords: a
from pc, and a to pc. This section type is used only by gprof.

C declarations for the section headers for these three section types are shown below.

#define PROF_SECT_SAMPLES_64 1
#define PROF_SECT_CALL_COUNTS_64 2
#define PROF_SECT_CALL_ARCS_64 3

struct prof_secthdr_samples {
long sect_type; /* PROF_SECT_SAMPLES_64 */
long sect_size; /* size of section, including header */
unsigned long lowpc; /* low pc for text region */
unsigned long highpc; /* high pc for text region */
int scale; /* scale factor */
int entry_size; /* size of each sample bucket = 2 */

};

struct prof_secthdr_call_counts {
long sect_type; /* PROF_SECT_CALL_COUNTS_64 */
long sect_size; /* size of section, including header */
int ncounters; /* number of counters */
int counter_size; /* size of each counter = 4 */

};

struct prof_secthdr_call_arcs {
long sect_type; /* PROF_SECT_CALL_ARCS_64 */
long sect_size; /* size of section, including header */
int narcs; /* number of arcs */
int counter_size; /* size of each counter = 4 */

};
6 Profiling 64-Bit Programs, Version 3.3

	PA-RISC 64-Bit Runtime Architecture Supplement
	Introduction
	Program Startup
	1.�� Background
	2.�� Interface between the kernel loader and dld/c...
	3.�� Language-independent initializations
	4.�� Language-dependent initializations
	5.�� Interface between dld/crt0 and the main progr...
	6.�� Predefined system symbols
	7.�� Interface between the compiler drivers and th...

	Conventions for Kernel and Embedded Systems
	1.�� Sample code sequences
	1.1�� Materializing function pointers
	1.2�� Indirect procedure calls

	Profiling 64-Bit Programs
	1.�� Program counter sampling: the profil system c...
	2.�� Procedure call counting: the _mcount routine
	3.�� The monitor library routine
	4.�� Linking for use with prof and grof
	5.�� Running the instrumented program
	6.�� Profile data file format

