
The 32-bit PA-RISC Run-
time Architecture
Document

HP-UX 10.20 Version 3.0

(c) Copyright 1985-1997 HEWLETT-PACKARD COMPANY.

The information contained in this document is subject to change
without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OFMERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Hewlett-Packard shall not be liable for errors contained herein or
for incidental or consequential damages in connection with
furnishing, performance, or use of this material. Hewlett-Packard
assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is
protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to
another language without the prior written consent of Hewlett-
Packard Company.

CSO/STG/STD/CLO
Hewlett-Packard Company
11000 Wolfe Road
Cupertino, California 95014

By

The Run-time Architecture
Team

CHAPTER 1 Introduction
ther

pile,
nsure
nto a

vi-

PI),
ng the

ared

tion
f an

t

This document describes the runtime architecture for PA-RISC systems running ei
the HP-UX or the MPE/iX operating system. Other operating systems running on
PA-RISC may also use this runtime architecture or a variant of it.

The runtime architecture defines all the conventions and formats necessary to com
link, and execute a program on one of these operating systems. Its purpose is to e
that object modules produced by many different compilers can be linked together i
single application, and to specify the interfaces between compilers and linker, and
between linker and operating system.

The runtime architecture applies only to hardware platforms based on PA-RISC Re
sion 1.0 , 1.1, or 2.0.

The runtime architecture does not specify the application programming interface (A
the set of services provided by the operating system to the program. Thus, observi
runtime architecture does not automatically lead to a program that will run on all
PA-RISC platforms. It does, however, allow many of the development tools to be sh
to a large extent among the various operating systems.

When combined with a particular API, this runtime architecture leads to an applica
binary interface (ABI). In other words, an ABI can be regarded as the composition o
API, a hardware description, and a runtime architecture for that hardware.

1.1 Target Audiences

This document is intended for a variety of readers.

If you are a systems programmer, you will find information in this document describing
the format of an executable object file, the memory model and startup environmen
The 32-bit PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 3

Introduct ion

 the
st.

or-
 pro-
ters

-
ode,
e

of
g and

 the

cover
hap-

e HP

m-

g

assumed by a valid program, and the architected interface between a program and
services provided by your operating system. Chapters 5–7 will be of primary intere

If you develop compilers or other development tools, you will find information in this
document about calling conventions and other coding conventions, the object file f
mat, interfaces to the linker, symbolic debug format, and other details important to
gram translation. Chapters 2–4 and 8–10 will be of primary interest; the other chap
may also contain relevant information.

If you are an application programmer, this document can help you learn about the low
level details of how programs execute on PA-RISC. If you need to write assembly c
process object files, examine the stack, or perform dynamic linking, you will find th
necessary information in this document. Chapters 2, 5, 9, and 11 will be of primary
interest.

1.2 Overview of the PA-RISC Runtime Architecture
Document

Chapter 2 describes the coding conventions used by compilers and by assembly-
language programmers. This includes details of the virtual memory model, usage
processor registers, external name conventions, addressing data, procedure callin
parameter passing, and the program startup environment.

Chapter 3 describes the format of relocatable object files, and Chapter 4 describes
format of relocatable libraries.

Chapter 5 describes the format of program files in general, while Chapters 6 and 7
details specific to the HP-UX and MPE/iX operating systems, respectively. These c
ters also cover shared libraries and executable libraries.

Chapter 8 describes the format of the symbolic debug information generated by th
compilers and used by thexdb debugger.

Chapter 9 describes the details of stack unwinding, and the interfaces to the stack
unwind library provided by HP.

Chapter 10 describes the library of millicode routines provided for the use of HP co
pilers.

Chapter 11 describes the principles of dynamic linking—that is, dynamically loadin
relocatable objects into the address space of a running process.
4 HP PROPRIETARY

CHAPTER 2 Common Coding
Conventions
s (2

m low

bly be

ister 4
 exe-
not

. The

 register
e data
The
 the
2.1 Memory Model

The PA-RISC virtual memory is a set of linear spaces. Each space is four gigabyte32

bytes) in size and is divided into four equal portions of one gigabyte (230 bytes each),
known as quadrants. The four quadrants in a space are numbered 0,1,2, and 3, fro
memory to high memory. An application can address 216 spaces. Each application has
its own short address space composed of these four distinct quadrants (can possi
four distinct spaces).

2.1.1 Text Segment

The first quadrant (quadrant 0) of the short address space is mapped by space reg
to the first quadrant of a space containing the shared text.The text is readable and
cutable, but not writable and must begin at a page boundary. An application must
change the contents of space register 4.

This area of memory is used to store code (machine instructions), and literals only
text address begins at 0x00000000 and ends at 0x3FFFFFFF.

2.1.2 Initialized and Unitialized Data Segments

The second quadrant (quadrant 1) of the short address space is mapped by space
5 to the second quadrant of a space containing the private data of applications. Th
section is readable, writable, and executable and must begin at a page boundary.
private data includes the initialized data, the uninitialized data (BSS), the heap and
user stack.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 5

Common Coding Convent ions

pped
 of the
mory

adrant

gical
ecuta-
 quad-

dress

e
gn

hared

llo-

 is

rectly.
fer-
g the
 is
Data segments start at 0x40000000 and end at 0x7FFFFFFF.

2.1.3 Shared Memory

The third and fourth quadrant (quadrant 2 and 3) of the short address space is ma
by space register 6 and 7 to quadrants containing shared memory. Those portions
shared memory that have been legally attached to the process via shared data me
system calls are readable and writable. The upper 256 megabytes of the fourth qu
is not readable, writable, or executable by applications. The first page of the fourth
quadrant is the Gateway page.

Shared memory starts at 0x80000000 and ends at 0xFFFFFFFF.

2.1.4 Subspaces

While a space is a fundamental concept of the architecture, a subspace is just a lo
subdivision of a space. The linker groups subspaces into spaces as it builds an ex
bles program file. On HP-UX systems, all subspaces in the code space must be in
rant 0, and all subspaces in the data space must be in quadrant 1.

2.2 Register Usage

2.2.1 Data Pointer (GR 27)

By software convention, general register GR 27 is used to point to the beginning ad
of global data in the data segment ($PRIVATE space).

The start up code for each process sets up this address which is also known as th
address of symbol $global$. Compilers and the linker then use this symbol to assi
global data or to relocate data addresses.

2.2.2 Linkage Table Register (GR 19)

The general purpose caller-saves register GR 19 has a special meaning in HP-UX s
library. In an HP-UX shared library, register GR 19 is used for theData Linkage Table.

Each shared library and incomplete executable contains a linkage table, which is a
cated in the DATA space for the file. The linkage table is divided into two parts, the
Data Linkage Table (DLT), and the Procedure Linkage Table (PLT). The PLT contains
an entry for each unresolved procedure symbol referenced within the object and it
placed immediately following the DLT (if one exists).

The DLT contains an entry for each data or procedure symbol that is accessed indi
Each DLT entry is a single word which contains a pointer to the actual data item re
enced indirectly; this pointer value is assigned by the dynamic loader, after mappin
shared library. All references to data items go directly through the DLT and GR 19
6 HP PROPRIETARY

Version 3.0

sets

ture,
n,

e

cated
lized
incre-

e

d

ster.
reserved to point to the middle of this table. The linker allocates GR 19-relative off
for each DLT entry, and uses those offsets when applying fixups.

2.2.3 Stack Pointer (GR 30)

Because no explicit procedure call stack exists in the PA-RISC processor architec
the stack is defined and manipulated entirely by software convention. By conventio
GR 30 is used for the stack pointer.

The stack pointer always points to the first unused byte of data segment beyond th
stack frame marker, and is 64-byte aligned.

When a process is initiated by the operating system, a virtual address range is allo
for that process to be used for the call stack, and the stack pointer (GR 30) is initia
to point to the low end of this range. As procedures are called, the stack pointer is
mented to allow the called procedure frame to exist at the address below the stack
pointer. When procedures are exited, the stack pointer is decremented by the sam
amount.

2.2.4 Space Registers

The following table (table 1) summarizes the PA-RISC available space registers an
their usage.

2.2.5 User-Readable Control Registers (CR 26 and CR 27)

2.2.6 General Registers Summary

The following table (table 2) summarizes general register usage:

TABLE 1 Space Register Usage

Register
 Name

Other
Names Usage Convention

SR 0 Caller-saves space register or millicode return space register.

SR 1 sarg sret Space argument and return register or caller-saves space regi

SR 2 Caller-saves space register.

SR 3 Callee-saves space register.

SR 4 Code space register (stubs save and restore on inter-module
calls).

SR 5 Data space register, modified only by privileged code.

SR 6 System space register, modified only by privileged code.

SR 7 System space register, modified only by privileged code.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 7

Common Coding Convent ions

ng

 of a

r.

r.

r.

r.

g-
2.3 External Naming Conventions

The external naming conventions (commonly known asname space pollution solution,
or secondary definitions) are designed to allow ANSI C, POSIX users to define their
own versions of reserved symbols, while still allowing users to access the underlyi
system symbols if they want to.

The external naming conventions provide a secondary definition for special names
(code or data) that would be specified from within the library source code by means
pragma, for example:

#pragma _HP_SECONDARY_DEF _open open

{
/* code for open */

}

open = secondary symbol
_open = primary symbol

TABLE 2 General Register Usage

Register Name
Other
Names Usage Convention

GR 0 Zero value register. (Writing to this register does not affect its
contents.)

GR 1 Scratch register (caller-saves). (can be destroyed by call
mechanism).

GR 2 RP Return pointer and scratch register.

GR 3 - GR 18 General purpose callee-saves registers.

GR 19 Shared Library linkage register.

GR 19 - GR 22 General purpose caller-saves registers.

GR 23 arg3 Argument register 3 or general purpose caller-saves registe

GR 24 arg2 Argument register 2 or general purpose caller-saves registe

GR 25 arg1 Argument register 1 or general purpose caller-saves registe

GR 26 arg0 Argument register 0 or general purpose caller-saves registe

GR 27 DP Global data pointer; may not be used to hold other values.
(Stubs save and restore on inter-module calls)

GR 28 ret0 Function return register on exit or function result address on
entry. May also be used as a general purpose caller-saves re
ister.

GR 29 SL ret1 Static link register (on entry), millicode function return or
function return register for upper part of a 33 to 64 bit func-
tion result. May also be used as a general purpose caller-
saves register.

GR 30 SP Stack pointer, may not be used to hold other values.

GR 31 Millicode return pointer, Scratch register (caller-saves).
8 HP PROPRIETARY

Version 3.0

ro-
on-

ions:

.

hat

ces

nces

emory

ey
e to
SP)

l

.

 in
Since open is only a secondary definition within libc, a primary definition of open p
vided by the user can override it. Within libc itself, _open is called directly to avoid c
flicts with the user version’s of open.

In implementing the secondary definitions, the linker makes the following assumpt

• Secondary definitions would be used only by internal developers of libc and libm

• The reference to a secondary definition must be seen before any definition of t
symbol.

• No modules within libc or libm will make references to secondary definitions.

• Secondary symbol definitions will be ignored if there are no outstanding referen
to them. Secondary symbols that are not used to resolve references will not be
placed to the output file, and secondary symbols that are used to resolve refere
will have thesecondary_def flag cleared in the resultant output file.

2.4 Conventions for Accessing Data

This section describes the various classes of data, how they are mapped into the m
model, and how the program should address that data.

2.4.1 Static Variables

Static variables can be initialized or uninitialized, they can be small or large, and th
can be local or global scope. In general, compilers allocate global variables relativ
Data Pointer (DP) or GR 27, and allocate local variables relative to Stack Pointer (
or GR 30. Static variables are allocated in the DATA subspace of PRIVATE space.
Please refer to “Symbol Table” on page 75 for details of symbol scopes and symbo
types.

Local variables are managed by the compilers and are not visible in the object files

Initialized global data are defined by symbols whose scope areuniversal.

The following code segments are used to make references to common,NOT position
independent globals:

• To form the address of global X into register RR:

ADDIL LR’X-$global$, DP
LDO RR’X-$global$ (r1), RR

• To load the global X into register RR

ADDIL LR’X-$global$, DP
 LDW RR’X-$global$ (0, r1), RR

LR’ and RR’ are representing fixups of type R_DP_RELATIVE emitted for global X
the above code segments.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 9

Common Coding Convent ions

 com-
e
e

orted
l is

 the
m-

er
bol.
compi-
ed to

t, or
be
me sup-
l ref-
r
nce

fixed
 and
Three aspects must be described: (1) the coding conventions to be followed by the
piler or in assembly code, (2) allocating the data to the correct segment, and (3) th
responsibilities of the linker in relocating or transforming the code and allocating th
data

2.4.2 C-Style Common

Uninitialized external-scope variables in C, without theextern keyword, are normally
implemented similarly to Fortran Common blocks. The variables are treated as imp
symbols, but are allocated automatically by the linker if no definition for the symbo
found in the program

2.4.3 Fortran-Style Common

Fortran Common blocks differ from C-style common only because the linker needs
ability to extend an initialized common block if an uninitialized declaration for the co
mon block is larger than the initialized definition.

2.4.4 COBOL-Style Common

2.4.5 Pascal Outer Block Globals

Pascal has two methods for allocating global variables. In one method, the compil
allocates the global variables and assigns fixed dp-relative addresses to each sym
Since the compiler sees the entire set of outer block declarations in each separate
lation, no link-time allocation is necessary, and the global variable names do not ne
be externally visible.

In the second method, Pascal global variables are treated as in C.

2.4.6 Constants and Literals

Constant data and compiler-generated literals can be allocated in the text segmen
they can be allocated as static variables. Data allocated in the text segment must
accessed in a different fashion than data in the data segment, so there must be so
port for determining which form of code generation to use when making an externa
erence to data whose allocation is unknown at compile time. Currently, the compile
assumes that constant data items are declared consistently at definition and refere
sites.

2.4.7 Automatic Variables

Most local variables are allocated in the procedure stack frame, and are assigned
sp-relative offsets at compile time. These variables are not visible in the object files
no link time relocation (fixups) are needed.

Example assembly code uses to access local integer X:

LDW -offset(0, R30), tmp1; to load X into register tmp1.
offset is assigned by the compiler.

STW tmp1, -offset(0, R30); to store X back to memory.
10 HP PROPRIETARY

Version 3.0

ill
r long

e
f a

p on

er-

ror
 +Z

.

roce-
oes

ack
onal
 stack
2.4.8 Position-Independence

In position independentcompilation, the data linkage register (GR 19) and T’ fixup w
be used to access global variables. Depending on the size of the DLT table, short o
form code sequences will be generated.

• If the size of the DLT table is less than or equal to 16K bytes, the following cod
sequence will be used to form the address of a variable or to load the content o
variable, respectively:

LDW T’ X(0,R19), tmp1
LDO offset(tmp1), RR; Omit if offset = 0, RR is used instead of tmp1.

and

LDW T’ X(0,R19), tmp1
LDW offset(0,tmp1), RR

Note that the 16K bytes restriction on the DLT size are imposed because the T’ fixu
the LDW allows for a 14-bit signed offset only.

The T’ fixup specifier should generate a DLT_REL fixup proceeded by an FSEL ov
ride fixup.

• If the DLT table size is greater than the 16K bytes limit, the linker will emit an er
indicating to users that this program must be recompiled with the +Z option. The
option produces the following long form code sequence:

To form the address of a variable:

ADDIL LT’ X, R19
LDW RT’ X(0, R1), tmp1
LDO offset (tmp1), RR; Omit if offset = 0 and RR is used instead of tmp1

To load the content of a variable:

ADDIL LT’ X, R19
LDW RT’ X(0, R1), tmp1
LDW offset (0, tmp1), RR;

2.5 Conventions for Calling Procedures

2.5.1 Stack Frame Layout and Marker

All procedures can be classified in one of two categories: leaf or non-leaf. A leaf p
dure is one that makes no additional calls, while a non-leaf procedure is one that d
make additional calls. Although simple, the distinction is essential because the two
cases entail considerably different requirements regarding (among other things) st
allocation and usage. Every non-leaf procedure requires the allocation of an additi
stack frame in order to preserve the necessary execution values and arguments. A
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 11

Common Coding Convent ions

 as fit-
y
state
age.

g to
frame is not always necessary for a leaf procedure. The recognition of a procedure
ting into either the leaf or non-leaf category and the determination of the necessar
frame size is done at compile time. It is often the case that much of a procedure’s
information is saved in the caller’s frame. This helps to avoid unnecessary stack us

A general picture of the top of the stack for one call, including the frames belongin
the caller (previous) and callee (new) is shown below:

Formal Arguments

Frame Marker (inc.
RP)

Register Save Area

Local Variables

Actual Arguments

Frame Marker

Frame One
(previous)

Frame Two (new)

SP

The return address
from the callee
(Frame 2) to the
caller (Frame 1), if
stored to memory
will be stored here.

(Stack pointer always points to the first
unused byte of memory, and is always kept
64-byte aligned.)

addresses increasing
12 HP PROPRIETARY

Version 3.0

call to
s from
 bytes

ointer
t 64

n the
The elements of a single stack frame that must be present in order for a procedure
occur are shown below in Table 3. The stack addresses are all given as byte offset
the actual SP (stack pointer) value; for example, ‘SP-36’ designates the address 36
below the current SP value.

The size of a stack frame is required to be a multiple of 64 bytes so that the stack p
is always kept 64-byte aligned. Since cache-lines on PA-RISC can be no larger tha
bytes, this requirement allows compilers to know when data structures allocated o

TABLE 3 Elements of Single Stack Frame Necessary for a Procedure Call

Offset Contents

Variable Arguments (optional; any number may be allocated)

SP-(4*(N+9)) arg word N

: :

: :

SP-56 arg word 5

SP-52 arg word 4

Fixed Arguments (must be allocated; may be unused)

SP-48 arg word 3

SP-44 arg word 2

SP-40 arg word 1

SP-36 arg word 0

Frame Marker

SP-32 External Data/LT Pointer (LPT) (set before Call)

SP-28 External SR4/LT Pointer (LPT’) (set after Call)

SP-24 External/stub RP (RP’) (set after Call)

SP-20 Current RP (set after Entry)

SP-16 Static Link (set before Call)

SP-12 Clean Up (set before Call)

SP- 8 Relocation Stub RP (RP’’) (set after Call)

SP- 4 Previous SP (set before Call)

Top of Frame

SP- 0 Stack Pointer (points to next available address)

< top of frame >
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 13

Common Coding Convent ions

se

size
m the
 and
ill
ious

us

e, but

any
nor-

ces-
ass a

urn

e

 wish
ed
used.

four
ere

in the
stack are cache-line aligned. Knowledge of this alignment allows the compiler to u
cache hints on memory references to those structures.

Frame Marker Area

This eight-word area is allocated by any non-leaf routine prior to a call. The exact
of this area is defined because the caller uses it to locate the formal arguments fro
previous frame. (Any standard procedure can identify the bottom of its own frame,
can therefore identify the formal arguments in the previous frame, because they w
always reside in the region beginning with the ninth word below the top of the prev
frame.)

Previous SP: Contains the old (procedure entry) value of the Stack Pointer. It is only
required that this word be set if the current frame is noncontiguous with the previo
frame, has a variable size or is used with the static-link.

Relocation Stub RP (RP’’): Reserved for use by a relocation stub that must store a
Return Pointer (RP) value, so the stub can be executed after the exit from the calle
before return to the caller.

Clean Up: Area reserved for use by language processors; possibly for a pointer to
extra information (i.e. on the heap) that may otherwise be lost in the event of an ab
mal interrupt.

Static Link: Used to communicate static scoping information to the callee that is ne
sary for data access. It may also be used in conjunction with the SL register, or to p
display pointer rather than a static link, or it may remain unused.

Current RP: Reserved for use by the called procedure; this is where the current ret
address must be stored if the procedure uses RP (GR2) for any other purpose.

External/Stub RP (RP’), External SR4/LTP’, and External DP/LTP: All three of thes
words are reserved for use by the inter-modular (external) calling mechanism.

Fixed Arguments Area

These four words are reserved for holding the argument registers, should the callee
to store them back to memory so that they will be contiguous with the memory-bas
parameters. All four words must be allocated for a non-leaf routine, but may be un

Variable Arguments Area

These words are reserved to hold any arguments that can not be contained in the
argument registers. Although only a few words are shown in this area in table 3, th
may actually be an unlimited number of arguments stored on the stack, continuing
downward in succession (with addresses that correspond to the expression given
diagram). Any necessary allocation in this area must be made by the caller.
14 HP PROPRIETARY

Version 3.0

n to

e
 that
e:
2.5.2 Stack frame after dynamic memory allocation

This section describes the extension of the PA-RISC Procedure Calling Conventio
allow C routines to allocate memory on the stack using the built-in alloca() routine.
Alloca() is a routine that works like malloc() except that it allocates storage from th
stack instead of the heap. The storage will be freed automatically when the routine
called alloca() exits or returns. The following is the declaration of the alloca() routin

char *alloca(int Size)
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 15

Common Coding Convent ions

d
the
hat
Here is what the stack looks like as it allocates dynamic memory:

Since the stack pointer, SP, is modified for each call to alloca(), the existing unwin
mechanism needs to be enhanced. Refer to the unwind chapter for details of how
entry and exit code are changed to support the variable frame size. Also, refer to t
chapter for details of how alloca() works on PA-RISC.

Initially:

Frame Marker

Actual Arguments

Local Variables

Register Save Area

After first alloca():

Register Save Area

Local Variables

Actual Arguments

Frame Marker
sliding sp (R30)

pseudo-sp

frame extension:
(actual arguments
and frame marker
move)

pseudo-sp <- sp (R30)

Dynamic

Memory allocated
16 HP PROPRIETARY

Version 3.0

 reg-
tead,
eter

, the
des-
hich
ll is

ts of
 exit.
oss pro-

n
 pre-
ister, it

ll.
2.5.3 Parameter Passing and Return Values

The PA-RISC processor architecture does not have instructions which specify how
isters should be used or how parameter lists should be built for procedure calls. Ins
the software procedure calling convention prescribes the register usage and param
passing guidelines.

Register Partitioning

In order to reduce the number of register saves required for typical procedure calls
PA-RISC general and floating-point register files have been divided into partitions
ignated as callee-saves and caller-saves. The names of these partitions indicate w
procedure takes responsibility for preserving the contents of the register when a ca
made.

If a procedure uses a register in the callee-saves partition, it must save the conten
that register immediately after procedure entry and restore the contents before the
Thus, the contents of all callee-saves registers are guaranteed to be preserved acr
cedure calls.

A procedure is free to use the caller-saves registers without saving their contents o
entry. However, the contents of the caller-saves registers are not guaranteed to be
served across calls. If a procedure has placed a needed value in a caller-saves reg
must be stored to memory or copied to a callee-saves register before making a ca
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 17

Common Coding Convent ions
Other Register Conventions

Figure 2-2: Register Partitioning

GR0

GR1

GR2

GR3

GR18

GR19

GR22

GR31

:

:

:

GR23

GR26

GR27

GR28

GR29

GR30

:

Value (zero)

Scratch *

RP (Return Pointer/Address)

Callee Saves

Caller Saves

Arguments *

DP (Global Data Pointer)

Return Values *

SP (Stack Pointer)

MRP (Millicode Ret. Ptr)/Scratch *

* May also be considered part of the caller-saves partition
18 HP PROPRIETARY

Version 3.0

 the
The following are guaranteed to be preserved across calls:

• The procedure entry value of SP.

• The value of DP.

• Space registers SR3, SR4, SR5, SR6, and SR7.

• The Processor Status Word (PSW).

• The state, including internal registers, of any special function units accessed by
architected SPOP operations.

The following is not guaranteed to be preserved across calls:

Figure 2-3: Floating-Point Registers

FR0

FR3

FR4

FR7

FR31

:

:

FR11

FR12

FR21

FR22

:

:

:

:

FR8

Floating-Point Status and Exception

Arguments

Caller Saves

: Callee Saves *

Caller Saves*

*FR16-31 only available on PA-RISC processors version 1.1 or later
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 19

Common Coding Convent ions

g
 pre-
 is
n

 trap

ive
ich
ed to
 and
ign-
-63-

m col-
y)

t

ed
• The shift (cr11) or any control registers that are modified by privileged software
(e.g. Protection IDs).

The Floating-Point Coprocessor Status Register

Within the floating-point coprocessor status register (FR0), the state of the roundin
mode (bits 21-22) and exception trap enable bits (bits 27-31) are guaranteed to be
served across calls. An exception to this convention is made for any routine which
defined to explicitly modify the state of the rounding mode or the trap enable bits o
behalf of the caller.

The states of the compare bit (bit 5), the delayed trap bit (bit 25), and the exception
flags (bits 0-4) are not guaranteed to be preserved across calls.

Value Parameters

Value parameters are mapped to a sequential list of argument words with success
parameters mapping to successive argument words, except 64-bit parameters, wh
must be aligned on 64-bit boundaries. Irregularly sized data items should be extend
32 or 64 bits. (The practice that has been adopted is to right-justify the value itself,
then left-extend it.) Non-standard length parameters that are signed integers are s
extended to the left to 32 or 64 bits. This convention does not specify how 1-31, 33
bit data items are passed by value (except single ASCII characters).

Table 4 lists the sizes for recognized inter-language parameter data types. The for
umn indicates which of the forms (space ID, nonfloating-point, floating-point, or an
the data type is considered to be.

☞

Note

If the routine in question is a non-leaf routine,return pointer GR2 mus
be stored because subsequent calls will modify it. Once stored, it is
available to be used as a scratch register by the code generators.

Although common, it is not absolutely necessary that GR2 be restor
before exit; a branch (BV) using another caller-saves register is
allowed.
20 HP PROPRIETARY

Version 3.0

D.

 in
ister

lid

h

f the
 are
oat-

yte
 must
 any
is

es
ch
Inter-Language Parameter Data Types and Sizes
• Space Identifier (SID) (32 Bits): One arg word, callee cannot assume a valid SI

• Non-Floating-Point (32 Bits): One arg word.

• Non-Floating-Point (64 Bits): Two words, double word aligned, high order word
an odd arg word. This may create a void in the argument list (i.e. an unused reg
and/or an unused word on the stack.)

• Floating-Point (32 Bits, single-precision): One word, callee cannot assume a va
floating-point number.

• Floating-Point (64 Bits, double-precision): Two words, double word aligned (hig
order word in odd arg word). This may create a void in the argument list. 64-bit
floating-point value parameters mapped to the first and second double-words o
argument list should be passed in farg1 and farg3, respectively. farg0 and farg2
never used for 64-bit floating-point parameters. Callee cannot assume a valid fl
ing-point number.

• Any Larger Than 64 Bits: A short pointer (using SR5 - SR7) to the high-order b
of the value is passed as a nonfloating-point 32-bit value parameter. The callee
copy the accessed portion of the value parameter into a temporary area before
modification can be made to the (caller's) data. The callee may assume that th

TABLE 4 Parameter Data Types and Sizes.

Type Size (bits) Form

ASCII character (in low order 8 bits) 32 Nonfloating-Pt.

Integer 32 Nonfloating-Pt. or
Space ID

Short Pointer 32 Nonfloating-Pt.

Long Pointer 64 Nonfloating-Pt.

Routine Reference (see below for details of Rou-
tine Reference)

32 or 64 Routine Reference

Long Integer 64 Nonfloating-Pt.

Real (single-precision) 32 Floating-Pt.

Long Real (double-precision) 64 Floating-Pt.

Quad Precision 128 Any

☞

Note The point is made that the callee “cannot assume a valid” value in these cas
because no specifications are made in this convention that would ensure su
validity.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 21

Common Coding Convent ions

r's
truc-
 copy
oten-

ating-
 the
can
R4.

eter
ument

on

 a rou-
 sepa-

imize
er
-bit val-

es.

de,
sage

stack
ly that
e for

e
an-
address will be aligned to the natural boundary for a data item of the paramete
type. It should be noted that some compilers support options which allow data s
tures to be aligned on non-natural boundaries. The instruction sequence used to
the value should be consistent with the data alignment assumptions made by p
tial callers of that routine.

Reference Parameters

A short pointer to the referenced data item (using SR4-SR7) is passed as a nonflo
point 32-bit value parameter. The alignment requirements for the short pointer are
same as those mentioned for value parameters larger than 64 bits. Note that SR4
only be used if the call is known to be local, because an external call will modify S

Value-Result and Result Parameters

It is intended that language processors can use either the reference or value param
mechanisms for value-result and result parameters. In particular, Ada uses the arg
registers/parameters as output registers/parameters.

Routine References

This convention requires that routine references (i.e. procedure parameters, functi
pointers, external subroutines) be passed as 32-bit nonfloating-point values.

It is expected that language processors that require a static link to be passed with
tine reference (i.e. Pascal passing level 2 procedures) will pass that static link as a
rate 32-bit nonfloating-point value parameter. A language processor is free to max
the efficiency of static scope linking within the requirements, without impacting oth
language processors. (Pascal passes routine references as either two separate 32
ues or as one 64-bit value.) See Chapter 5 for further details on Routine Referenc

Argument Register Usage Conventions

Parameters to routines are logically located in the argument list. When a call is ma
the first four words of the argument list are passed in registers, depending on the u
and number of the argument. The first four words of the actual argument list on the
are reserved as spill locations for the argument registers. These requirement simp
the minimum argument list size is 16 bytes; this space must be allocated in the fram
non-leaf procedures, but it may remain unused.

☞
Note The natural boundaries for data types on PA-RISC are documented in th

Programmer’s Guide that is available for each supported programming l
guage.
22 HP PROPRIETARY

Version 3.0

e
(The
d it.)
 the

hort
 the
f the
ral
s sup-
he
ata

for-
ted.
The standard argument register use conventions are shown in Table 5.

Function Return Values

Function result values are placed in registers as described in Table 6. As with valu
parameters, irregularly sized function results should be extended to 32 or 64 bits.
practice that has been adopted is to right-justify the value itself, and then left-exten
Non-standard length function results that are signed integers are sign-extended to
left to 32 or 64 bits. This convention does not specify how 1 - 31 or 33 - 63-bit data
items are returned (except single ASCII characters).

When calling functions that return results larger than 64 bits, the caller passes a s
pointer (using SR5 - SR7) in GR28 (ret0) which describes the memory location for
function result. The address given should be the address for the high-order byte o
result. The function may assume that the result address will be aligned to the natu
boundary for a data item of the result's type. It should be noted that some compiler
port options which allow data structures to be aligned on non-natural boundaries. T
instruction sequence used to store a function result should be consistent with the d
alignment assumptions made by potential callers of that function.

2.5.4 Type Checking and Floating-Point Parameter Relocation

Parameter Type Checking

Some compilers may place argument descriptors in the object file which contain in
mation about the type of each parameter passed and each formal argument expec

TABLE 5 Argument Register Use

void SID nonFP FP32 FP64

arg word 0 no reg sarg arg0 farg0 farg1 {32..63}

arg word 1 no reg arg1 arg1 farg1 farg1 {0..31}

arg word 2 no reg arg2 arg2 farg2 farg3 {32..63}

arg word 3 no reg arg3 arg3 farg3 farg3 {0..31}

definitions :

void - arg word not used in this call

SID - space identifier value

nonFP - any 32-bit or 64-bit nonfloating-point

FP32 - 32-bit floating-point (single-precision)

FP64 - 64-bit floating-point (double-precision)
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 23

Common Coding Convent ions

tch,

t list

n-
here
uch as
eter

short
the
ted

alling

f the
 To
defi-
d of

ral
 set

turn
These descriptors are then checked by the linker for compatibility. If they do not ma
a warning is generated. There is currently no mechanism available in the PA-RISC
assembler to generate these argument descriptors.

Parameter Relocation

The procedure calling convention specifies that the first four words of the argumen
and the function return value will be passed in registers: floating-point registers for
floating-point values, general registers otherwise. However, some programming la
guages do not require type checking of parameters, which can lead to situations w
the caller and the callee do not agree on the location of the parameters. Problems s
this occur frequently in the C language where, for example, formal and actual param
types may be unmatched, due to the fact that no type checking occurs.

A parameter relocation mechanism alleviates this problem. The solution involves a
code sequence, called a relocation stub, which is inserted between the caller and
callee by the linker. When executed, the relocation stub moves any incorrectly loca
parameters to their expected location. If a procedure is called with more than one c
sequence, a relocation stub is needed for each non-matching calling sequence.

The compiler or assembler must communicate the location of the first four words o
parameter list and the location of the function return value to the linker and loader.
accomplish this, ten bits of argument location information have been added to the
nitions of a symbol and a fix-up request. The following diagram shows the first wor
a symbol definition record in the object file.

a. Although not common, it is possible to return floating-point values in gene
registers, as long as the argument relocation bits in the symbol record are
correctly. (Refer to Parameter Relocation for more details.)

b. The caller may not assume that the result's address is still in GR28 on re
from the function.

TABLE 6 Return Values.

Type of Return Value Return Register

ASCII character ret0 (GR28) - low order 8 bits

Nonfloating-Pt. (32-bit) ret0 (GR28)

Nonfloating-Pt. (64-bit) ret0 (GR28) - high order word

ret1 (GR29) - low order word

Floating-Pt. (32-bit) fret (FR4)a

Floating-Pt. (64-bit) fret (FR4)1

Space Identifier (32-bit) sret (SR1)

Any Larger Than 64-bit result is stored to memory at location described
by a short pointer passed by caller in GR28b
24 HP PROPRIETARY

Version 3.0

 cor-
n

rgu-
e
ot
he
 sym-
loca-
ue

 path.
,
ow

 and
uted,

nd link
The argument location information is further broken down into five location values,
responding to the first four argument words and the function return value, as show
below:

The value of an argument location is interpreted as follows:

When the linker resolves a procedure call, it will generate a relocation stub if the a
ment location bits of the fixup request do not exactly match the relocation bits of th
exported symbol. One exception is where either the caller or callee specifies “do n
relocate”. The relocation stub will essentially be part of the called procedure, and t
linker can optionally add a symbol record for the stub so that it can be reused. The
bol record will be the same as the original export symbol record, except that the re
tion bits will reflect the input of the stub. The type will be STUB and the symbol val
will be the location of the relocation stub.

The execution of a relocation stub can be separated into the call path and the return
During the call path, only the first four words of the parameter list will be relocated
while only the function return will be relocated during the return path. The control fl
is shown in Figure 2-5.

If the function return does not need to be relocated, the return path can be omitted
the branch and link will be changed to a branch. The call path must always be exec
but if the first four words of the parameter list do not need to be relocated, it can be
reduced to the code required to establish the return path (i.e save RP and branch a
to the callee).

a. For return values, '10' means a single precision floating-point value, and '11'
means double precision floating-point value.

Figure 2-4: Layout of Symbol Definition Record

Bits 22-23: define the location of parameter list word 0

Bits 24-25: define the location of parameter list word 1

Bits 26-27: define the location of parameter list word 2

Bits 28-29: define the location of parameter list word 3

Bits 30-31: define the location of the function value return

00 Do not relocate

01 arg Argument register

10 FR Floating-point register (bits 0..31)a

11 frupper Floating-point register (bits 32..63)1

symbol type scope check XL Q N M R argument location

bits 8 24 1 1 1 14 10
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 25

Common Coding Convent ions

b),
P''

oad
le

 exter-
nd
eneral

 argu-
ill
so, a
ime
When multiple stubs occur during a single call (e.g. calling stub and relocation stu
the stubs can be cascaded (i.e. used sequentially); in such a case, both RP' and R
would be used. (The relocation stub uses RP''.)

The linker will generate stubs for each procedure that can be called from another l
module (i.e. called dynamically). In addition, a stub will be required for each possib
calling sequence. Each of these stubs will contain the code for both relocation and
nal return, and will be required to contain a symbol definition record. Both calling a
called stubs use a standard interface: calling stubs always relocate arguments to g
registers, and called stubs always assume general registers.

In order to optimize stub generation, the compilers should maximize the use of the
ment location value 00 (do not relocate). A linker option may be provided, which w
allow the user to turn stub generation on or off, depending on known conditions. Al
linker option is provided to allow the user to inhibit the generation of stubs for run-t

Figure 2-5: Parameter Relocation Stub.

E
n
t
r
y

.

.

.

E
n
t
r
y

.

.

.

Caller Callee

Parameter
Relocation Stub

Relocate
Arguments

Branch & Link

Relocate
Return Value
26 HP PROPRIETARY

Version 3.0

eck-

''

er the
ro-
ce
s out-
ng
r any
-

ner-
 guar-
at
each
d by
f
nstead
ist-

hared
 librar-
 the
ed
is

iled
ssing
 must
linking. In this case, if a mismatch occurs, it will be treated as a parameter type ch
ing error (which is totally independent of parameter relocation).

Assembly programmers can specify argument relocation information in the “.CALL
and “.EXPORT'' assembler directives.

2.5.5 Standard Procedure Calls

The code generated by the compiler to perform a procedure call is the same wheth
call is external or local. If the linker locates the procedure being called within the p
gram file, it will make the call local by patching the BL instruction to directly referen
the entry point of the procedure. If the linker determines that the called procedure i
side of the program file, it makes the call external by inserting an import stub (calli
stub) into the calling code, and patching the BL instruction to branch to the stub. Fo
routine in the program file which the linker detects is called from outside of that pro
gram file, an export stub (called stub) is inserted into the program file's code.

Long Calls

Normally, the compilers generate a single-instruction call sequence using the BL
instruction to perform a procedure call. However, the compilers can be forced to ge
ate a long call sequence when the module is so large that the BL instruction is not
anteed to reach the beginning of the subspace. For example, COBOL compilers th
typically compile large applications need to make sure that the BL instruction can r
to the beginning of suspace (including an estimation of stubs that will be generate
the linker, currently HP compilers allocate 2K bytes for stubs) is within the ranch o
256K bytes. Otherwise, a long call sequence as show below should be generated i
of the BL branch instruction. At link phase, the linker can then insert a stub. The ex
ing long call sequence is three instructions, using an absolute target address:

LDIL L’target,%r1

BLE R’target(%sr4,%r1)

COPY %r1,%rp

External Calls
External calls occur in both shared libraries and the programs which use them. A s
library contains subroutines that are shared by all programs that use them. Shared
ies are attached to the program at run time rather than copied into the program by
linker. Since the shared library code is not copied into the program file and is shar
among several programs as a separate load module, an external call mechanism
needed.

In order for the object code in a shared library to be fully sharable, it must be comp
and linked in such a way that it does not depend on its position in the virtual addre
space of any particular process. In other words, the same physical copy of the code
work correctly in each process.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 27

Common Coding Convent ions

ing is
ta.
esses

ace,

 shared
nt

ces to
ected

ing a
te
er
ween

 must
. The
nter
ter.

code.
 is
e

r all
w

ure
n

e.
Position independence is achieved by two mechanisms. First, PC-relative address
used wherever possible for branches within modules and for accesses to literal da
Second, indirect addressing through a per-process linkage table is used for all acc
to global variables, for inter-module procedure calls and other branches and literal
accesses where PC-relative addressing cannot be used. Global variables must be
accessed indirectly since they may be allocated in the main program's address sp
and even the relative position of the global variables may vary from one process to
another.

Position-independent code (PIC) implies that the object code contains no absolute
addresses. Such code can be loaded at any address without relocation, and can be
by several processes whose data segments are allocated uniquely. This requireme
extends to DP-relative references to data. In position-independent code all referen
code and data must be either PC-relative or indirect. All indirect references are coll
in a single linkage table that can be initialized on a per-process basis.

The Linkage Table (LT) itself is addressed in a position-independent manner by us
dedicated register, gr19, as a pointer to the Linkage Table. The linker must genera
import (calling) and export (called) stubs which set gr19 to the Linkage Table point
value for the target routine, and handle the inter-space calls needed to branch bet
shared libraries.

The code in the program file itself does not need to be position independent, but it
access all external procedures through its own linkage table by using import stubs
Linkage Table in shared libraries is accessed using a dedicated Linkage Table poi
(LTP), whereas the program file accesses the Linkage Table through the DP regis

Code which is used in a shared library must be compiled as position independent
Refer to compiler documentation for specific instructions. Code in the program file
not PIC and the linker places the import/export stubs into the program file to handl
external calls.

When building a shared library, the linker must generate import and export stubs fo
procedures which can be called from outside of the shared library. Figure 2-6 belo
shows the control flow of an external call.

Calling Code

The calling code in program files is responsible for performing the standard proced
call steps regardless of whether the call is external or local. The linker generates a
import stub to perform the additional steps required for external calls.

The import stub (calling stub) of an external call performs the following steps:

• Loads the target (export stub) address of the procedure from the Linkage Table

• Loads into gr19 the LTP (Linkage Table Pointer) value of the target load modul

• Saves the return pointer (RP'), since the export stub will overwrite RP with the
return address into the export stub itself.

• Performs the interspace branch to the target export stub.
28 HP PROPRIETARY

Version 3.0

kage
DP in

elow:

roce-
The code sequence of the import stub used in the program file is shown below:

;Import Stub (Program file)

LDW disp(0, dp), r21
LDW disp+4(0, dp), r19
BVE 0(r21)
STW rp, -24(0, sp)

The difference between a shared library and program file import stub is that the Lin
Table is accessed using gr19 (the LTP) in a shared library, and is accessed using
the program file.

The code sequence of the import (calling) stub used in a shared library is shown b

;Import Stub (Shared Library)

X': LDW disp(0, r19), r21
LDW disp+4(0, r19), r19
BVE 0(r21)
STW rp, -24(0, sp)

Called Code

The called code in shared library files is responsible for performing the standard p
dure call steps regardless of whether the call is external or local.

Figure 2-6: Flow of an External Procedure Call

Program File Shared Library

Caller Callee

Import Stub
Export Stub

1

2

3

4

5

PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 29

Common Coding Convent ions

ared
 and

g

urn

dure
be
ry.
r19 is
sed
n-
 gr19
r19
gr19

 of
 the
dure
The linker generates an export stub to perform the additional steps required for sh
library external calls. The export stub is used to trap the return from the procedure
perform the steps necessary for an inter-space branch.

The export stub (called stub) of a shared library external call performs the followin
steps:

• Branches to the target procedure. The value stored in RP at this point is the ret
point into the export stub.

• Upon return from the procedure, restores the return pointer (RP').

• Performs an interspace branch to return to the caller.

The code sequence of the export stub is shown below:

X': <optional parameter relocation code>
BLL <entry>
NOP
<optional return relocation code>
LDW -24(0,sp),rp ; restore the original RP
BVE,N 0(rp) ; inter-space return

PIC Requirements for Compilers and Assembly Code

Any code which is PIC or which makes calls to PIC must follow the standard proce
call mechanism. In addition, register gr19 (the linkage table pointer register) must
stored at sp-32 by all PIC routines. This should be done once upon procedure ent
Register gr19 must also be restored upon return from each procedure call, even if g
not referenced explicitly before the next procedure call. The LTP register, gr19, is u
by the import stubs and must be valid at all procedure call points in position indepe
dent code. If the PIC routine makes several procedure calls, it may be wise to copy
into a callee-saves register as well, to avoid a memory reference when restoring g
upon return from each procedure call. As with gr27 (DP), the compilers must treat
as a reserved register whenever position-independent code is being generated.

2.5.6 Indirect Procedure Calls

Procedure Labels and Dynamic Calls

PA-RISC compilers must generate the code sequence required for proper handling
procedure labels and dynamic procedure calls. Assembler programmers must use
same code sequence, described below, in order to insure proper handling of proce
labels and dynamic procedure calls.
30 HP PROPRIETARY

Version 3.0

ce-

 used
e

m-
m-
l

PLT
ress;
 a
el to
o
cedure

form

com-
taken
o gen-
A procedure label is a specially-formatted variable that is used to link dynamic pro
dure calls. The format of a procedure label is shown below in Figure 2-7.

The X field in the address section of the procedure label is reserved. The L field is
to flag whether the procedure label is a pointer to an LT entry (L-field is on) or to th
entry point of the procedure.

The plabel calculation produced by the compilers in both shared libraries and inco
plete executables is modified by the linker, when building shared libraries and inco
plete executables, to load the contents of an LT entry which is built for each symbo
associated with a CODE_PLABEL fixup.

In shared libraries and incomplete executables, a plabel value is the address of a
(Procedure Linkage Table) entry for the target routine, rather than a procedure add
therefore a utility routine named $$dyncall must be used when calling a routine via
procedure label. The linker sets the L field (second-to-last bit) in the procedure lab
flag this as a special PLT procedure label. The $$dyncall routine checks this field t
determine which type of procedure label has been passed, and calls the target pro
accordingly. The $$dyncall routine assumes that the X field is always 0.

The following pseudo-code sequence shows the process used by $$dyncall to per
dynamic calls:

IF (L-field in Plabel) = 0 THEN
Perform interspace branch using Plabel as target address;
ELSE BEGIN
 Clear L-field;
 Load new LTP value into gr19;
 Load address of target;
 Save RP';
 Perform interspace branch to target address;
 END.

In order to generate a procedure label that can be used for shared libraries and in
plete executables, assembly code must specify that a procedure address is being
(and that a plabel is wanted) by using the P' assembler fixup mode. For example, t
erate an assembly plabel, the following sequence must be used:

Figure 2-7: Procedure Label Layout

SID Address Part L X

bits 2 28 1 1
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 31

Common Coding Convent ions

ds in
b/
s

g of

ed
While
archi-
 in
 of
 case

but
on
e and
y of
by

tly

cep-
; Take the address of a function

LDIL LP'function,r1
LDO RP'function(r1), r22

This code sequence will generate the necessary PLABEL fixups that the linker nee
order to generate the proper procedure label. The $$dyncall millicode routine in /li
milli.a (linked in automatically by linker) must be used to call a procedure using thi
type of procedure label (i.e. a BL/BV will not work). For example:

; Now to call the routine using a plabel

BL $$dyncall, 31 ; r22 is the input register for $$dyncall
COPY r31, r2

The compilers generate the necessary code sequence required for proper handlin
procedure labels.

2.5.7 Millicode Procedure Calls

Millicode is PA-RISC’s simulation of complex microcoded instructions, accomplish
through the creation of assembly-level subroutines that perform the desired tasks.
these subroutines perform comparably to their microcoded counterparts, they are
tecturally similar to any other standard library routines, differing only in the manner
which they are accessed. As a result, millicode is portable across the entire family
PA-RISC machines, rather than being unique to a single machine (as is usually the
with traditional microcode).

Millicode routines are accessed through a mechanism similar to a procedure call,
with several significant differences. In general terms, the millicode calling conventi
stresses simplicity and speed, utilizing registers for all temporary argument storag
eliminating the need for the creation of excess stack frames. Thus, a great majorit
the overhead expense associated with a standard procedure call is avoided, there
reducing the cost of execution.

Making a Millicode Call

A call to a millicode routine can only be made from the assembly level. It is curren
not possible to directly call a millicode function from high-level programming lan-
guages.

It is intended that the standard register usage conventions be followed, with two ex
tions:

• The return address (MRP) is passed in gr31; and

• Function results are returned in gr29.
32 HP PROPRIETARY

Version 3.0

ge.

ation

ler,

e

ith a

ts,
bols
fined
There are, however, many non-standard practices regarding millicode register usa

Local millicode can be accessed with three different methods, depending on its loc
relative to currently executing code. These three methods are:

• A standard Branch and Link (BL), if the millicode is within 256K bytes of the cal

• A BLE instruction, if the millicode is within 256K bytes of a predefined code bas
register, and

• The two-instruction sequence (LDIL,BLE) that can reach any address or a BL w
linker-generated stub.

2.6 Program Startup

All programs must include the start-up routine crt0.o. This code defines entry poin
initializes program variables such as DP, and checks for dynamic libraries. The sym
defined by crt0.o are listed in Table 7, and the value of processor’s registers are de
in Table 8.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 33

Common Coding Convent ions

l
d

ds
a. The symbols __text_start and __data_start are defined by the linker.

TABLE 7 Symbols Defined By crt0.o

Symbol Description

__argc_value A variable of type int containing the number of arguments.

__argv_value An array of character pointers to the arguments themselves.

_environ An array of character pointers to the environment in which the program
will run. This array is terminated by a null pointer.

_SYSTEM_ID A variable of type int containing the system id value for an executable
program.

$START$ Execution start address.

_start A secondary start-up routine for C programs, called from $START$,
which in turn calls main. This routine is contained in the C library rather
than in the crt0.o file. For Pascal and FORTRAN programs, this symbo
labels the beginning of the outer block (main program) and is generate
by the compilers.

$global$ The initial address of the program’s data pointer. The start-up code loa
this address into GR 27.

$UNWIND_START The beginning of the stack unwind table.

$UNWIND_END The end of the stack unwind table.

$RECOVER_START The beginning of the try/recover table.

$RECOVER_END The end of the try/recover table.

__text_start The beginning address of the program’s text area.a

__data_start The beginning address of the program’s data area.a
34 HP PROPRIETARY

Version 3.0

-

r

a. Space register 4 is unprivileged, but it must not be modified by a conforming applica-
tion.

b. Space registers 5 and 7 are privileged and cannot be modified by a conforming applica
tion.

c. C=Code Addr. Translation Enable,

D=Data Addr. Translation Enable

P=Protection ID Validation Enable

Q=Interruption State Collection Enable

B=Taken Branch bit

M=High-priority machine check mask

N=Nullify bit

TABLE 8 Register Definition at Process Initialization

Register
C Source
Definition Value

GR 24 char ** envp array of pointers to environment strings

GR 25 char ** argv array of pointers to arguments

GR 26 int argc argument count

GR 30 stack pointer, set by O.S.

All Other GR’s Undefined

SR 4 address of first quadrant of virtual address spacea

SR 5 address of second quadrant of virtual address spaceb

SR 7 address of fourth quadrant of virtual address space

SR0-SR3 Undefined

SAR (Shift Amount
Register)

Undefined

All Co-processors’

Registers

Undefined

CCR (Co-processor

Config.. Register)

If any bits are set then the corresponding co-processo
must be present and functional

PSW (Processor

Status Word)

cBits C,D,P,Q =1; Bits B, M, N =0
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 35

Common Coding Convent ions
36 HP PROPRIETARY

CHAPTER 3 Relocatable Object Files
om-
RISC
r, and

other
ther

te off-
er of

agic'
or a
mpo-

tion.
The SOM common object file format defined in this document is intended to be a c
mon representation of code and data for all compilers which generate code for PA-
based systems. A SOM is the smallest unit which may be generated by a compile
it may exist as a single entity or as part of a collection.

The SOM consists of a main header record, an exec auxiliary header record, and
optional components. The location and size of the auxiliary header record and all o
components are defined in the main header record. Each location is given by a by
set (relative to the first byte of the header), and the size is given either by the numb
entries (records) of the component, or the total number of bytes in the component.

The first byte of the header record is also the first byte of the SOM. It contains a 'm
number which distinguishes the SOM from any other entity, such as a Library File
random access archive. In addition to defining the size and location of the other co
nents of the SOM, the header contains a time stamp and other identifying informa

Figure 3-1 below shows the general block diagram of a SOM.

Table 9 shows a suggested layout of records in a SOM.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 37

Relocatable Object Fi les
Figure 3-8: Block Diagram of the SOM

Header
Record

Compilation
 Unit

Dictionary

Space
Dictionary

Subspace
Dictionary

Symbol
Dictionary

Fixup
Request
Array

Space/
Subspace

String Area

Comp. Unit
Symbol Dict.
String Area

Auxiliary
Header
Area
38 HP PROPRIETARY

Version 3.0

e tar-

will
 cre-

.
 a par-

ted
1
.

l for-
 PA-
3.1 Object File Header

The first halfword of the header record contains a 'system id' number, identifying th
get architecture of the SOM. The second halfword of the header record contains a
'magic number', identifying the type of this SOM. Following this, a character array
contain the version ID of the SOM format, and a time stamp specifying the time of
ation of the particular SOM.

The remaining fields in the header record define the other components of the SOM
These fields provide a means to do bounds checking when there is a reference to
ticular component.

The SOM header is required in any executable or relocatable object.

The C language definition of the SOM header is shown in Figure 3-9

system_id

This 2-byte field is used to identify the architecture that this object module is targe
for. The system ID for PA-RISC 1.0 systems is 20b (hexadecimal) , for PA-RISC 1.
systems is 210 (hexadecimal), and for PA-RISC 2.0 systems is 214 (hexadecimal)

a_magic

This 2-byte field is a number that indicates certain characteristics about the interna
mat of the object module. The magic numbers that are currently defined for use on
RISC systems are listed in Table 10.

TABLE 9 Record Layout of a SOM

Header Record

Auxiliary Header Record

Space Records

Subspace Records

Loader Fixup Records

Space Strings

Symbol Records

Fixup Records

Symbol Strings

Compiler Records

Data for Loadable Spaces

Data for Unloadable Spaces
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 39

Relocatable Object Fi les
Figure 3-9: Definition of SOM Header Fields

struct header {

short int system_id; /* magic number - system */

short int a_magic; /* magic number - file type */

unsigned int version_id; /* version id; format=YYMMDDHH */

struct sys_clock file_time; /* system clock- zero if unused */

unsigned int entry_space; /* index of space containing

entry point */

unsigned int entry_subspace; /* index of subspace for

entry point */

unsigned int entry_offset; /* offset of entry point */

unsigned int aux_header_location; /* auxiliary header location */

unsigned int aux_header_size; /* auxiliary header size */

unsigned int som_length; /* length in bytes of entire som*/

unsigned int presumed_dp; /* DP value assumed during

compilation */

unsigned int space_location; /* location in file of space

dictionary */

unsigned int space_total; /* number of space entries */

unsigned int subspace_location; /* location of subspace entries */

unsigned int subspace_total; /* number of subspace entries */

unsigned int loader_fixup_location; /* MPE/iX loader fixup */

unsigned int loader_fixup_total; /* number of loader fixup records */

unsigned int space_strings_location; /* file location of string area

for space and subspace names */

unsigned int space_strings_size; /* size of string area for space

and subspace names */

unsigned int init_array_location; /* reserved for use by system */

unsigned int init_array_total; /* reserved for use by system */

unsigned int compiler_location; /* location in file of module

dictionary */

unsigned int compiler_total; /* number of modules */

unsigned int symbol_location; /* location in file of symbol

dictionary */

unsigned int symbol_total; /* number of symbol records */

unsigned intfixup_request_location; /* location in file of fix_up

requests */

unsigned int fixup_request_total; /* number of fixup requests */

unsigned int symbol_strings_location; /* file location of string area

for module and symbol names */
40 HP PROPRIETARY

Version 3.0

 that

inter-
 ver-

into
he
Note that the magic numbers for executable and relocatable SOM libraries indicate
the header is an LST header rather than a SOM header.

version_id

This is a number that is used to associate the SOM with the correct definition of its
nal organization. The value of the number will be an encoding of the date the SOM
sion was defined.

The version ID can be interpreted by viewing it in its decimal form and separating it
character packets of YYMMDDHH, where YY is the year, MM is the month, DD is t
day, and HH is the hour.

The version_id that are currently defined for use by conforming applications are
85082112 for old version ID and 87102412 for new versoin ID with new fixups.

file_time

unsigned int symbol_strings_size; /* size of string area for

module and symbol names */

unsigned int unloadable_sp_location; /* byte offset of first byte of

data for unloadable spaces */

unsigned int unloadable_sp_size; /* byte length of data for

unloadable spaces */

unsigned int checksum;

};

TABLE 10 Magic Number Values

Magic Number
(in hexadecimal) SOM Type

0104 Executable SOM Library

0106 Relocatable SOM

0107 Non-sharable, executable SOM

0108 Sharable, executable SOM

010B Sharable, demand-loadable executable SOM

010D Dynamic Load Library

010E Shared Library

0619 Relocatable SOM Library

Figure 3-9: Definition of SOM Header Fields (Continued)
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 41

Relocatable Object Fi les

e file
ber
d 32

s
t to

his

int of

 the

rst

es is
e a
The file time is a 64 bit value that represents the time the file was last modified. Th
time is actually composed of two 32 bit quantities where the first 32 bits is the num
of seconds that have elapsed since January 1, 1970 (at 0:00 GMT), and the secon
bits is the nano second of the second (which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystem
(e.g. the file system). The use of this field is optional, but if it is not used it will be se
zero.

entry_space

This is the space dictionary index of the space containing the main entry point of t
particular SOM.

entry_subspace

This is the subspace dictionary index of the subspace containing the main entry po
this particular SOM.

entry_offset

This is the byte offset of the main entry point of the SOM relative to the first byte of
space.

aux_header_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the auxiliary header area. Setting all bits to zero indicates that the auxiliary
header record is not defined in a SOM. The auxiliary header must start on a word
boundary.Aux_header_locationmust have a value in the range 0 to 231-1. See “Auxil-
iary Headers” on page 109. for restrictions on auxiliary headers.

aux_header_size

This field contains the byte length of the auxiliary header area. If the number of byt
zero it indicates that no auxiliary headers are defined in the SOM. The size must b
multiple of 4 bytes. The fieldaux_header_size must have a value in the range 0 to 231-1.

som_length

This field contains the length in bytes of the entire SOM. The fieldsom_length must be
in the range 0 to 231-1.

presumed_dp
42 HP PROPRIETARY

Version 3.0

ter

ze

rst
t the
rd

its to

rst

t start

tting
 in

rst
ad

ary

ting
in
This field is only specified for shared libraries. It contains the value of the data poin
(DP) assumed during compilation or linking of this SOM. In a shared library,
presumed_dpis the value of the data pointer that the linker used as a base to initiali
data. The dynamic loader will subtract this value to get the offset of the data.

space_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the space dictionary. Setting all bits to zero in space_location indicates tha
space dictionary is not defined in a SOM. The space dictionary must start on a wo
boundary.Space_location must have a value in the range 0 to 231-1.

space_total

This field contains the number of space records in the space dictionary. Setting all b
zero inspace_total means that the space dictionary is not defined in a SOM.Space_total
must have value in the range 0 to 231-1.

subspace_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the subspace dictionary. Setting all bits to zero insubspace_location indicates
that the subspace dictionary is not defined in a SOM. The subspace dictionary mus
on a word boundary.Subspace_location must have a value in the range 0 to 231-1.

subspace_total

This field contains the number of subspace records in the subspace dictionary. Se
all the bits to zero insubspace_total means that the subspace dictionary is not defined
a SOM.Subspace_total must have a value in the range 0 to 231-1.

loader_fixup_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the loader fixup array. Loader fixup is used only in MPE/iX for relocation at lo
time. Setting all bits to zero inloader_fixup_location indicates that the loader fixup
array is not defined in the SOM. The loader fixup array must start on a word bound
and theloader_fixup_location must have a value in the range 0 to 231-1.

loader_fixup_total

This field contains the number of loader fixup records in the loader fixup array. Set
all bits to zero inloader_fixup_total indicates that the loader fixup array is not defined
the SOM.loader_fixup_total must have a value in the range 0 to 231-1.

space_strings_location
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 43

Relocatable Object Fi les

e
s to
pace

ts to

rst

n

rst

unit

ic-

rst

 a
Space_strings_location points to a string area that contains both space and subspac
names. It is a byte offset relative to the first byte of the SOM header. Setting all bit
zero indicates that the space subspace string area is not defined in a SOM. The s
subspace string area must start on a word boundary. Space_strings_location must have a
value in the range 0 to 231-1.

space_strings_size

This field contains the byte length of the space subspace string area. Setting all bi
zero inspace_strings_size indicates that the string area is not defined in a SOM.
Space_strings_sizemust be a multiple of 4 bytes and be in the range 0 to 231-1.

init_array_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the initialization pointer array Setting all bits to zero ininit_array_location indi-
cates that the initialization pointer array is not defined in the SOM. The initializatio
pointer array must start on a word boundary and theinit_array_location must have a
value in the range 0 to 231-1.

init_array_total

This field contains the number of initialization pointer records in the initialization
pointer array. Setting all bits to zero ininit_array_total indicates that the initialization
pointer array is not defined in the SOM.init_array_total must have a value in the range
0 to 231-1

compiler_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the compilation unit dictionary. Setting all bits to zero incompiler_location indi-
cates that the compilation unit dictionary is not defined in a SOM. The compilation
dictionary must start on a word boundary.Compiler_location must have a value in the
range 0 to 231-1.

compiler_total

This field contains the number of compilation unit records in the compilation unit d
tionary. Setting all bits to zero in compiler_total means that the compilation unit dictio-
nary is not defined in a SOM.Compiler_total must have a value in the range 0 to 231-1.

symbol_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the symbol dictionary. Setting all bits to zero insymbol_location indicates that
the symbol dictionary is not defined in a SOM. The symbol dictionary must start on
word boundary.Symbol_location must have a value in the range 0 to 231-1.
44 HP PROPRIETARY

Version 3.0

g

rst

ray

ry.

pi-
tting
a-

ts to

rst

adable

s to
d in
symbol_total

This field contains the number of symbol records in the symbol dictionary (includin
symbol and argument extension records). Setting all bits to zero in symbol_total means
that the symbol dictionary is not defined in a SOM.Symbol_total must have a value in
the range 0 to 231-1.

fixup_request_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the fixup request dictionary. Setting all bits to zero infixup_request_location
indicates that the fixup request array is not defined in a SOM. The fixup request ar
must start on a word boundary.Fixup_request_location must have a value in the range 0
to 231-1.

fixup_request_total

This field contains the number of fixup request records in the fixup request dictiona
Setting all bits to zero infixup_request_total means that the fixup request dictionary is
not defined in a SOM.fixup_request_total must have a value in the range 0 to 231-1.

symbol_strings_location

Symbol_strings_location is a pointer to an area that contains symbol names and com
lation unit names. It is a byte offset relative to the first byte of the SOM header. Se
all bits to zero insymbol_strings_location indicates that there are no symbol or compil
tion unit names in a SOM. The symbol string area must start on a word boundary.
Symbol_strings_location must have a value in the range 0 to 231-1.

symbol_strings_size

This field contains the byte length of the symbol dictionary string area. Setting all bi
zero insymbol_strings_size indicates that the symbol string area is not defined in a
SOM.Symbol_strings_size must be a multiple of 4 bytes and be in the range 0 to 231-1.

unloadable_sp_location

This is a byte offset relative to the first byte of the SOM header that points to the fi
byte of the data for unloadable spaces. Setting all bits to zero inunloadable_sp_location
indicates that there are no unloadable spaces defined in a SOM. The data for unlo
spaces must be double-word aligned.Unloadable_sp_location must have a value in the
range 0 to 231-1.

unloadable_sp_size

This field contains the byte length of the data for unloadable spaces. Setting all bit
zero inunloadable_sp_sizeindicates that the data for unloadable spaces is not define
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 45

Relocatable Object Fi les

n of
 cre-
tion
try
 lan-
d.
 the

e
he

st
a SOM.Unloadable_sp_size must be a multiple of 8 bytes and be in the range 0 to 231-
1.

checksum

This field is the exclusive OR of all the words, excluding the checksum field, of the
SOM header. It will be used to quickly evaluate valid SOM headers.

3.2 Compilation Unit Records

A compilation unit is defined as the set of procedures compiled by a single invocatio
a given compiler. The compilation unit dictionary contains one entry for each SOM
ated by an invocation of a compiler. The Compilation Unit Record contains informa
for version identification of the compiler which generated the given SOM. Each en
contains information which may be used to identify the source name, the compiler
guage, the compiler product number, and the particular version of the compiler use
Lastly, each entry contains time stamps which identify the last modification made to
(main) source file and the time of compilation.

name

This field contains a byte offset relative to the symbol string area which points to th
first character of the string defining the entry name. The compilers should supply t
name of the source file that produced the SOM.

language_name

This field contains a 32-bit index into the symbol string area, which points to the fir
character of the name of the language used when creating this SOM.

struct compilation_unit {

union name_p name;

union name_pt language_name;

union name_pt product_id;

union name_pt version_id;

unsigned int reserved : 31;

unsigned int chunk_flag : 1;

struct sys_clock compile_time;

 struct sys_clock source_time;
} ;

Figure 3-10: Definition of Compilation Unit Dictionary Record
46 HP PROPRIETARY

Version 3.0

rst

rst

e file
ber
d 32

s
t to

 time

s
t to

in the
pond
e used
product_id

This field contains a 32-bit index into the symbol strings area which points to the fi
character of the identification number of the compiler.

version_id

This field contains a 32-bit index into the symbol strings area which points to the fi
character of the version id of the compiler.

reserved

These bits are reserved for future expansion.

chunk_flag

This field indicates that the compilation unit is not the first SOM in a multiple chunk
compilation.

compile_time

compile time is a 64 bit value that represents the time the file was last compiled. Th
time is actually composed of two 32 bit quantities where the first 32 bits is the num
of seconds that have elapsed since January 1, 1970 (at 0:00 GMT), and the secon
bits is the nano second of the second (which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystem
(e.g. the file system). The use of this field is optional, but if it is not used it will be se
zero.

source_time

The file time is a 64 bit value that represents the time the file was last modified. The
is represented in the same format ascompile_time.

This value is independent of any modification time maintained by other subsystem
(e.g. the file system). The use of this field is optional, but if it is not used it will be se
zero.

3.3 Space Dictionary

The space dictionary consists of a collection of space records in contiguous bytes
file. A space record is a template which defines attributes of a space (which corres
to the address spaces defined in the PA-RISC Architecture). Spaces, in general, ar
as logical divisions of virtual memory. Current implementations may allow only one
code and one data space. Theaccess_control_bits field of a subspace record indicate
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 47

Relocatable Object Fi les

me, a
nitial-

rac-
 to the

/

/

 */
whether a subspace is code or data. Each space record will indicate the space na
pointer to the start of the subspace list, and a pointer to the start of the list of data i
ization pointers that are to be applied to a space.

name_pt

The fieldname_pt is an index into the space string area which points to the first cha
ter of the ascii representation of the space name. The index is a byte offset relative
space_strings_location field of the SOM header. See the section on string areas for
more details on the format of a name.name_pt is a byte offset relative to the field
space_strings_location in the SOM header.name_pt can be converted to a file byte off-
set by:

offset =name_pt

+ space_strings_location (found in the SOM header)

+ address of the first byte of the SOM header.

If name_pt is greater than the fieldspace_strings_size in the SOM header it is an error.
Setting all bits to zero inname_pt indicates a null name pointer.name_pt must have a
value in the range 0 to 231-1.

struct space_dictionary_record {

union name_pt name; /* index to subspace name */

unsigned int is_loadable : 1; /* space is loadable */

unsigned int is_defined : 1; /* space is defined within file */

unsigned int is_private : 1; /* space is not sharable */

unsigned int has_intermediate_code: 1; /* contain intermediate code */

unsigned int is_tspecific : 1; /* contain intermediate code */

unsigned int reserved : 11; /* reserved for future expansion *

unsigned int sort_key : 8; /* sort key for space */

unsigned int reserved2 : 8; /* reserved for future expansion *

int space_number; /* space index */

int subspace_index; /* index into subspace dictionary*/

unsigned int subspace_quantity; /* number of subspaces in space

int loader_fix_index; /* loader usage*/

unsigned int loader_fix_quantity; /* loader usage*/

int init_pointer_index; /* index into data(initialization)

pointer array */

unsigned int init_pointer_quantity; /* number of data (init) pointers*/
};

Figure 3-11: Space Dictionary Record Definition
48 HP PROPRIETARY

Version 3.0

t to

ne. If
set to

 will
 com-

in the
is_loadable

Bit 0

If a space is loadable this flag is set to one. If a space is not loadable this flag is se
zero. Code and data for a load module will be the typical loadable spaces.

is_defined

Bit 1

If a space is defined in the file in which the space record resides the flag is set to o
a space is not defined in the file in which the space record resides then the flag is
zero.

is_private

Bit 2

If this flag is set then the space is non-sharable.

has__intermediate_code

Bit 3

This bit indicates that the space has only intermediate code in it (ISOM). The space
also be marked unloadable at the same time. The symbol dictionary information is
plete but not meaningful since the $TEXT$ and $PRIVATE$ spaces are empty.

sort_key

Bits 16-23

This field specifies a sort key which may be used by the linker for ordering spaces
output file.

reserved1

Bits 4-15, 24-31

These bits are reserved for future expansion.

space_number
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 49

Relocatable Object Fi les

ay

 par-

hat

rs
.

This field specifies the number assigned to this space. Current implementations m
default the space number values. Current implementations may ignore this field.

subspace_index

This field is an index into the subspace dictionary. All of the subspace records for a
ticular space will be in contiguous records in the subspace dictionary.subspace_index
can be converted to a file byte offset by:

offset =subspace_index * size of (subspace record) +

subspace_dictionary_location (found in the SOM header)

+ address of the first byte of the SOM header.

If subspace_index is greater than the fieldsubspace_dictionary_total in the SOM header
it is an error. Ifsubspace_index is negative then there are no subspaces defined for t
space.Subspace_index must have a value in the range -231 to 231-1.

subspace_quantity

Subspace_quantity is a number indicating how many subspaces are in a space. If
subspace_index + subspace_quantity is greater than the fieldsubspace_dictionary_total
in the SOM header it is an error. Ifsubspace_quantity is zero then there are no sub-
spaces in that space.Subspace_quantity must have a value in the range 0 to 231-1.

reserved2

This field is reserved for system use

reserved3

This field is reserved for system use.

init_pointer_index

This field is an index into the initialization pointer array. All of the initialization pointe
for a particular space will be in contiguous records in the initialization pointer array
init_pointer_index can be converted to a file byte offset by:

offset =init_pointer_index * sizeof (initialization pointer record)

+ init_array_location (found in the SOM header)

+ address of the first byte of the SOM header.
50 HP PROPRIETARY

Version 3.0

e

-

 record
 con-
ace
ation,
a sub-

any
nce.

f their

tig-

it is

.

If init_pointer_index is greater than the fieldinit_array_total in the SOM header it is an
error. If init_pointer_index is negative then there are no initialization pointers for that
space.Init_pointer_index must have a value in the range -231 to 231-1.

init_pointer_quantity
Init_pointer_quantity is a number indicating how many initialization pointers are in th
space. Ifinit_pointer_index + init_pointer_quantity is greater thaninit_array_total in
the SOM header it is an error. Ifinit_pointer_quantity is zero then there are no initializa
tion pointers for that space.Init_pointer_quantity must have a value in the range 0 to
231-1.

3.4 Subspace Dictionary

A subspace corresponds to a logical subdivision of an address space. A subspace
is a template used to define the attributes of a subspace. The subspace dictionary
sists of a collection of subspace records in contiguous bytes in the file. The subsp
records are grouped by space. They contain information that can be used for reloc
setting of access rights of pages, determining how to build data areas, requesting
space to be locked in memory, and alignment requests.

Subspaces cannot be broken up into smaller entities, therefore there must not be
inter-subspace references generated without also generating a fixup for that refere
Compilers are responsible for insuring that all branches can reach the beginning o
subspace.

space_index

This field is a index into the space dictionary. All of the space records will be in con
uous records in the space dictionary. space_index can be converted to a file byte offset
by:

offset =space_index * size of (space record)

+ space_dictionary_location (found in the SOM header)

+ address of the first byte of the SOM header.

If a space_index is greater than the field space_quantity in the SOM header record
an error. Ifspace_index is negative it is an error.Space_index must have a value in the
range 0 to 231-1.

access_control_bits

Theaccess_control bits specify the access rights and privilege level of the subspace
They also specify whether the subspace contains code or data. Bits 0-7 of the
access_control_bits are defined in Table 11.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 51

Relocatable Object Fi les

 the

/

memory_resident

If this flag is set to one then the subspace is to be locked in physical memory once
subspace goes into execution.

struct subspace_dictionary_record {

int space_index;

unsigned int access_control_bits :7; /* access for PDIR entries */

unsigned int memory_resident :1; /* lock in memory during

execution */

unsigned int dup_common :1; /* data name clashes allowed *

unsigned int is_common :1; /* subspace is a common
block*/

unsigned int is_loadable :1;

unsigned int quadrant :2; /* quadrant request */

unsigned int initially_frozen :1; /* must be locked into memory

when OS is booted */

unsigned int is_first :1; /* must be first subspace */

unsigned int code_only :1; /* must contain only code */

unsigned int sort_key :8; /* subspace sort key */

unsigned int replicate_init :1; /* init values replicated to

fill subspace_length */

unsigned int continuation :1; /* subspace is a continuation*/

unsigned int is_tspecific :1; /* Is thread specific ?*/

unsigned int reserved :5;

int file_loc_init_value; /* file location or

initialization value */

unsigned int initialization_length;

unsigned int subspace_start; /* starting offset */

unsigned int subspace_length; /* number of bytes defined

by this subspace */

unsigned int reserved2 :5;

unsigned int alignment :27; /* alignment required for the

subspace (largest alignment

requested for any item in

the subspace) */

union name_pt name; /* index of subspace name */

int fixup_request_index; /* index into fixup array */

unsigned int fixup_request_quantity; /* number of fixup requests */

};

Figure 3-12: Subspace Dictionary Record Definition
52 HP PROPRIETARY

Version 3.0

me
d to

. For
itial-

load-
dup_common

Bit 8

If this flag is set, then there may be more than one universal data symbol of the sa
name and the linker will not give a duplicate definition type of error. This field is use
facilitate implementation of Fortran initialized common and Cobol common.

is_common

Bit 9

This flag is set to one if the subspace is to define an initialized common data block
example, Fortran initialized common, and Cobol common data blocks. Only one in
ized data block is allowed per is_common subspace.

is_loadable

Bit 10

This flag is set to 1 if a subspace is loadable. Loadable subspaces must reside in
able spaces. Unloadable subspaces must reside in unloadable spaces.

quadrant

Bits 11-12

TABLE 11 Subspace Access Control Bits

Type (3 bits) Read/Write/Execute/Gateway (4 bits)

1st Field (PL1) 2nd Field (PL2) Usage

0 Read Not Used Read only data page

1 Read Write Normal data page

2 Read/Xleast Xmost Normal code page

3 Read/Xleast Write/Xmost Dynamic code page

4 Xleast Xmost Gateway to PL0

5 Xleast Xmost Gateway to PL1

6 Xleast Xmost Gateway to PL2

7 Xleast Xmost Gateway to PL3
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 53

Relocatable Object Fi les

e is
pace

n the

.

an
g to
ut it
 linker
This is to specify which of the four possible quadrants of a space that this subspac
going to reside. Current implementations may ignore this field, and place the subs
in a pre-determined quadrant.

initially_frozen

Bit 13

If this flag is set to one then the subspace is to be locked in physical memory whe
operating system is being booted.

is_first

Bit 14

If this flag is set then the subspace must be the first subspace.

code_only

Bit 15

If set, this flag specifies that this subspace must only contain code (no literal data)

sort_key

Bits 16-23

This field contains the primary sort key by which the linker arranges subspaces in
output file. Subspaces are first ordered by the sort key, then are arranged accordin
the subspace name. Within sort keys, the linker groups subspaces by their name b
does not sort by name. Instead, the subspaces are output in the order in which the
first encounters each name.

replicate_init

Bit 24

TABLE 12 Quadrant Values

Bits Meaning

00 Quadrant 0

01 Quadrant 1

10 Quadrant 2

11 Quadrant 3
54 HP PROPRIETARY

Version 3.0

 it to

) sub-

-
 file

 as

.

f a
e in
-

If the initialization contained in the file is shorter than the subspace length, replicate
fill the length of the subspace.

continuation

Bit 25

If set, the subspace is a continuation of a previous subspace and the two (or more
spaces should be treated as a single unit.

reserved

Bits 26-31

These bits are reserved for future use.

file_loc_init_value

If initialization_length field is non-zero, the subspace is initialized, and this field con
tains a byte offset relative to the first byte of the SOM header. In other words, it is a
location of the initialization image.

If initialization_length is zero then this field contains a 32 bit quantity which is used
an initialization pattern for the entire subspace. The total length of the subspace is
defined by the subspace_length field. This is how BSS subspaces are represented

initialization_length

This field contains the size in bytes of the initialization area in the file. If this field is
zero then the value contained in the fieldfile_loc_init_value is used as the initialization
pattern for the subspace.

The initialization_lengthfield can also be non-zero, but less than thesubspace_length
field. In this case, the length of the initialization image is given byinitialization_length,
and the remainder of the subspace, up tosubspace_length, is initialized with zeros.

subspace_start

This is a byte address of where the subspace is to start relative to the beginning o
space. It is a virtual address that indicates the assumed beginning of that subspac
memory. This value in conjunction withsubspace_length will be used to insure that sub
spaces do not overlap.Subspace_start must have a value in the range 0 to 232-1.

subspace_length
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 55

Relocatable Object Fi les

 if the

ent
lign-

 rela-
areas
:

t-

r a
This is the length in bytes of a subspace. A total length of a space will be kept, and
addition of all of thesubspace_length fields in a space is greater than 232-1 then it is an
error.

reserved2

Bits 0-15

These bits are reserved for future expansion.

alignment

Bits 16-31

This 2-byte field specifies what alignment is required for the subspace. The alignm
request is in bytes. The subspace will start on the alignment byte boundary. The a
ment value must be greater than zero.

name

The fieldname is an index into the space/subspace string area. The index is a byte
tive offset which points to the first character of the string. See the chapter on string
for more details on the format of a name.name can be converted to a file byte offset by

offset =name + space_strings_location (found in the SOM header)

+ address of the first byte of the SOM header.

If name is greater than the fieldspace_strings_size in the SOM header it is an error. Se
ting the field name to zero means that it is a null name pointer.

fixup_request_index

This field is an index into the fixup request array. All of the fixup request records fo
particular subspace will be in contiguous records in the fixup request array.
fixup_request_index can be converted to a file byte offset by:

offset =fixup_request_index * size of (fixup record)

+ fixup_request_location (found in the SOM header)

+ address of the first byte of the SOM header.

If fixup_request_index is greater than the fieldfixup_request_total in the SOM header
record it is an error. Iffixup_request_index is negative then there are no fixup requests
for that subspace.Fixup_request_index must have a value in the range -231 to 231-1.
56 HP PROPRIETARY

Version 3.0

r a

space
 two
lation

he
r).

p

h

inker
 cate-

b-
fixup_request_quantity

Fixup_request_quantity is a number indicating how many fixup requests there are fo
subspace. Iffixup_request_index + fixup_request_quantity is greater than the field
fixup_request_total in the SOM header record it is an error.Fixup_request_quantity
must have a value in the range 0 to 231-1. If fixup_request_quantity is zero then there are
no fixup requests for that subspace.

3.5 String Areas

The string area contains all symbols used in the SOM, including space names, sub
names, export names, import requests, and compilation unit names. There will be
string areas; one for space and subspace names, and one for symbols and compi
unit names.

The first word of each string contains the total number of characters in the string. T
byte immediately following the last byte of the string will be zero (the null characte
Successive strings will begin on the next word boundary.

string header

This field contains the total number of characters contained in the string (does not
include the terminating null character).

string data

Bits 0-??

The string is defined by the character data given here.

3.6 Fixup Requests

In the object files, relocation entries consist of a stream of bytes. The
fixup_request_index field in the subspace dictionary entry is a byte offset into the fixu
dictionary defined by the file header, and thefixup_request_quantity field defines the
length of the fixup request stream, in bytes, for that subspace. The first byte of eac
fixup request (the opcode) identifies the request and determines the length of the
request.

In general, the fixup stream is a series of linker instructions that governs how the l
places data in the a.out file. Fixups requests can be grouped into the following five
gories:

• fixup requests that cause the linker to copy one or more bytes from the input su
space to the output subspace without change. For example, the
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 57

Relocatable Object Fi les

ub-

r
out-
 data

, the

to

 out-
 for
,
ta

g
nstant
192
ce
on.
n be

eral

round(coun-
R_NO_RELOCATION fixup that cause the linker to copy n bytes to the output s
space with no relocation.

• fixups that direct the linker to relocate words or resolve external references. Fo
example, the R_DP_RELATIVE fixup used to relocate the target symbol in the
put subspace. The address is calculated based on the offset from $global$, the
pointer (r27).

• fixups that direct the linker to insert zeroes in the output subspace. For example
R_REPEATED_INIT to replicate the data to fill n bytes of initialized value in the
output subspace.

• fixups that direct the linker to leave areas uninitialized without copying any data
from the input subspace. For example, the R_UNINIT fixup that tells the linker
skip bytes in the output subspace.

• fixups that describe points in the code without contributing any new data to the
put file. These fixups DO indirectly affect the output, they are considered fixups
changing the environment. For example, the rouding mode fixups (R_N_MODE
R_D_MODE and the R_ENTRY and R_EXIT fixups). They do affect how the da
are to be interpreted for the output file.

The linker dissambles instructions so it can determine which part of the instruction
needs to be relocated. It switches on the opcode field (the high-order six bits of the
instruction) which is sufficient to identify the instruction format and the appropriate
field selector (i.e. L’ vs R’ field selector).

3.6.1 Fixup Rounding Modes

All direct and dp-relative effective address calculations use the LR and RR roundin
modes. In these rounding modes, the left part is computed based on a rounded co
instead of the actual constant. The constant is rounded to the nearest multiple of 8
prior to computing the effective address. The right part is computed as the differen
between the full value of the expression and the value used in the left-part relocati
Because the difference between the original constant and the rounded constant ca
no larger than 4K, this result will always fit in a signed 14-bit field. This permits sev

TABLE 13 R and L-Class Fixups

L’ Set bits 21-31 to 0 (set the rightmost 11 bits to 0)

R’ Set bits 0-20 to 0

LD’ Add 0x800, set bits 21-31 to 0

RD’ Set bits 0-20 to 1

LR’ Round constant before evaluating expression, set bits 21-31 to 0

RR’ Round constant before evaluating expression, set bits 0-20 to 0, add (constant -
stant)) round(constant) = (constant + 0x1000) & ~0x1FFF

LS’ If (bit 21) then add 0x800 and set bits 21-31 to 0

RS’ Sign extend from bit 21
58 HP PROPRIETARY

Version 3.0

, as

xpres-

ND

 con-

ins

 large
DE

s
n, the
nd the
load and store instructions to reuse the result of a single ADDIL or LDIL instruction
long as the symbol index and the rounded value of the constant are identical.

For pc-relative relocations, the standard L and R rounding modes are used. The e
sion is computed based on the actual effective address.

The following C language functions define the operation of the LR, RR,L, R, and R
functions:

unsigned long LR(unsigned long x, unsigned long constant)

{

return L(x + RND(constant));

}

unsigned long RR(unsigned long x, unsigned long constant)

{

return R(x + RND(constant)) + (constant - RND(constant));

}

unsigned long L(unsigned long x)

{

return (x & 0xffff f800);

}

unsigned long R(unsigned long x)

{

return (x & 0x000007ff);

}

unsigned long RND(unsigned long x)

{

return ((x + 0x1000) & 0xffffe000);

}

3.6.2 Interpretation of rounding mode and field selector

In a relocatable object file, the immediate fields of the instructions contain only the
stant part of the expression. For a “symbol+constant” expression, the
R_CODE_ONE_SYMBOL fixup identifies the symbol and the immediate field conta
the constant. Whether the instruction is forming the left part or the right part of an
address, the immediate field still contains the entire constant. If the constant is too
for the immediate field, the compilers precede the fixup with an R_DATA_OVERRI
fixup that supplies the full 32 bits.

For a “symbol-$global$+constant” expression, the R_DP_RELATIVE fixup identifie
the symbol, and the constant is in the immediate field. For other kinds of expressio
linker resort to the more general stack-based expression evaluation mechanism, a
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 59

Relocatable Object Fi les

ode

fsets
F%
e

 dis-

ction
ector
, if
st be

 fix-
ng
er-

uction

e

rst

K
t
gher
ter-
s).
 mode
R_CODE_EXPR fixup would be used. For example, “symbol1-symbol2+constant”
would be represented by the fixup stream:

R_PUSH_SYM symbol1

R_PUSH_SYM symbol2

R_COMP1 R_SUB

R_CODE_EXPR

Again, the constant part of the expression is in the instruction itself.

The field selector in the assembly syntax really consists of two parts: the rounding m
(normal, D, R, S), and the field selector itself (F, L, or R).

The field selector is normally implied by the opcode. ADDIL and LDIL instructions
only imply the L% field selector. Most other opcodes that take displacements or of
imply the R% field selector, with the exception of the BL opcode, which implies the
field selector, since it is most often used for a single-instruction procedure call. If th
full 32-bit displacement for a BL instruction is too large (computed by the
R_PCREL_CALL fixup), the linker creates a long branch stub. In all other cases, a
placement that does not fit in the instruction causes a link-time error.

Note that the default field selector in assembly syntax is F%. If an assembly instru
is coded with F% or with no field selector, the assembler must generate a field sel
override fixup immediately preceding the regular fixup for that instruction. Likewise
an assembly instruction with a field selector other than the default, an override mu
generated.

The particular rounding mode selected in the assembly instruction affects only the
ups generated. If the rounding mode selected is different from the “current” roundi
mode, a fixup is generated to change the current mode. Unlike the field selector ov
ride, the rounding mode is persistent, and must be changed back for the next instr
that uses a different mode.

The field selectors come in pairs, and an LDIL or ADDIL instruction must always b
paired with an LDO/LDW/STW that uses the same rounding mode. The relations

L%expr + R%expr = expr

LD%expr + RD%expr = expr

LS%expr + RS%expr = expr

LR%expr + RR%expr = expr

always hold. R%expr is always positive, which implies that L%expr is always the fi
2K boundary less than or equal to expr. This is the most straightforward definition.

RD%expr, however, is always negative, implying that LD%expr is always the first 2
boundary greater than expr. This mode is useful when the code is near a quadran
boundary, and the base register formed by LDIL and used by the LDW is on the hi
quadrant. The space register used in an LDW instruction when the s field is 0 is de
mined solely by the upper two bits of the base register (not by the effective addres
Therefore, if code is generated to access a non-zero based array, for example, this
60 HP PROPRIETARY

Version 3.0

en the

1023,
ond
s
ate is

rately
e
ed
K,
c-
IL

ame
 as the
t
re

to

efore
e

00
res-

nt

 is
can be used to ensure that the intermediate address is not down in quadrant 0 wh
data to be accessed is in quadrant 1.

The next mode, LS%/RS%, is defined such that RS%expr is between -1024 and +
inclusive. This implies that LS%expr is the nearest 2K boundary to expr. If the sec
instruction of a pair is an ADDI instruction (or SUBI, COMICLR, ..etc.), this mode i
essential, since there are only 11 bits of immediate field available, and the immedi
sign-extended.

The last mode, LR%/RR%, is the only one where the constant field is treated sepa
from the rest of the expression. This pair is defined like L% and R%, except that th
lower bits of the constant do not participate in the LR% determination; they get add
back in to the R% value. This allows the final value of RR%expr to be larger than 2
but never too large to fit in the 14-bit signed immediate field of an LDW-class instru
tion.This mode is conveniently defined so that the compiler can share a single ADD
instruction among several LDW-class instructions where the expressions are the s
except for the constant part of the expression. Note that they can be shared as long
constants are all equal in their upper bits. In other words, if the compiler knows tha
LR%symbol+con1 will evaluate to the same thing as LR%symbol+con2, it can sha
one ADDIL instruction with both corresponding LDW/STW instructions using
RR%symbol+con1 and RR%symbol+con2. This is efficient when generating code
access structures and static data where several adjacent memory locations are all
addressed by a single symbol.

3.6.3 Examples of applying the rounding mode

The following is an example of how the rounding modes are applied:

symbol 4 = 0x4000fff0

ADDIL 0x1000000,27 /* immediate is 8192 in decimal */
LDO 4104 (1), 25 /* immediate is in decimal as is */

For the LR% and RR% modes, the constant is rounded to the nearest 8K multiple b
splitting the value in half. Then, after splitting, the difference is added back in to th
right half. The following is the pseudo code for this algorithm:

#define FIXUP_ROUND(c) (((c) + 0x1000) & ~0x1fff)

expr = symbol_value + FIXUP_ROUND(constant);
left = expr & 0xFFFFF800;
right = (expr & 0x7FF) + (constant - FIXUP_ROUND(constant));

In this example, the ADDIL gets a “rounded” expression value of 0x4000fff0 + 0x10
= 0x40010ff0, which gets truncated to 0x40010800. The LDO gets a “rounded” exp
sion value of 0x4000fff0 + 0x1000 = 0x40010ff0, which gets truncated to 0x7f0, to
which we add the difference between the constant 0x1008 and the rounded consta
(0x1000), resulting in 0x07f8.

Thus, the ADDIL/LDO form the address 0x40010800 + 0x07f8 = 0x40010ff8, which
the same as 0x4000fff0 + 0x1008 (symbol #4 plus 4104).
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 61

Relocatable Object Fi les

 that
ich
me
rks
ent

dis-
de

n by
g

/
E

that
ffec-
 too
 two

ve
 the

ctual
ts:

y the
lass

rame-
As mentioned briefly in the previous section, the reason that this is done this way is
a single ADDIL can be accessed with many LDO/LDW/STW instruction, each of wh
may have a slightly different constant. As long as the constants all round to the sa
value, we can use a common ADDIL instruction for all of them. In practice, this wo
for accesses to the fields of a structure, where we use the same symbol with differ
displacements in several loads or stores.

3.6.4 Apply Fixups on instructions

The linker apply fixups to instructions in the following three steps:

1. Calculate the effective address. This depends on the fixup type. This usually
involves checking the opcode and extracting a constant from the immediate or
placement field. Step one is where the linker actually looks at the opcode, deci
what the default field selector should for step two, and identify which of the six
instruction formats to use in step three.

2. Apply the field selector. This can be implied by the opcode, or can be overridde
a field selector override fixup (R_xSEL). It also depends on the current roundin
mode. The default field selector is L% for LDIL and ADDIL, F% for BL, COMB,
ADDB, and BB family of opcodes, and R% for everything else. For example, BE
BLE instructions have an implicit R% field selector. If one were to code a BE/BL
in assembler without the R%, an F% field selector override fixup (R_FSEL) for
instruction is needed. This tells the linker not to chop off the top 21 bits of the e
tive address, and try to fit the address into the instruction as is. If the address is
large, the linker would issue a diagnostic such as “displacement too large”. Step
is where the expression gets converted from an absolute address to a pc-relati
address. If the instruction format is i_rel12 or i_rel17, (pc+8) is subtracted from
effective address to obtain the proper pc-relative displacement.

3. Apply the resulting value to the target instruction. The opcode determines the a
disposition of the various bits. There are really only six different instruction forma
i_exp11 (ADDI), i_exp14 (LDW), i_exp21 (LDIL), i_rel12 (ADDIB), i_rel17 (BL)
and i_abs17 (BE). These names are in <reloc.h>. i_rel17 and i_abs17 are reall
same instruction format, but the linker adjust the space register field in the BE-c
instructions based on where the target is.

3.6.5 List of fixup requests

The meaning of each fixup request is described below. The opcode ranges and pa
ters for each fixup are described in the table further below.

TABLE 14 Fixup Requests

R_NO_RELOCATION Copy L bytes with no relocation.

R_ZEROES Insert L zero bytes into the output subspace.

R_UNINIT Skip L bytes in the output subspace.
62 HP PROPRIETARY

Version 3.0

o con-
 a
tains
. The

mbol

 the
tatic

st is not

to fill

med
).
meter

med
E).
meter

med
IL,

e
 and

f
 have
R_RELOCATION Copy one data word with relocation. The word is assumed t
tain a 32-bit pointer relative to its own subspace. It describes
single word whose value must be relocated, assuming it con
an address constant of a location within the same subspace
word to be relocated comes from the initialization image, not
from the fixup stream.

R_DATA_ONE_SYMBOL Copy one data word with relocation relative to an external sy
whose symbol index is S.

R_DATA_PLABEL Copy one data word as a 32-bit procedure label, referring to
symbol S. The original contents of the word should be 0 (no s
link) or 2 (static link required).

R_SPACE_REF Copy one data word as a space reference. This fixup reque
currently supported.

R_REPEATED_INIT Copy L bytes from the input subspace, replicating the data
M bytes in the output subspace.

R_PCREL_CALL Copy one instruction word with relocation. The word is assu
to be a pc-relative procedure call instruction for example, BL
The target procedure is identified by symbol S, and the para
relocation bits are R.

R_SHORT_PCREL_MODE this specifies that any following R_PCREL_CALL
fixup (with the default field selector) is applied to a
BL instruction with a maximum 17-bit signed dis-
placement. It is a single-byte mode change fixup,
and is the initial default mode.

R_LONG_PCREL_MODE this specifies that any following R_PCREL_CALL
fixup (with the default field selector) is applied to a
BL instruction with a maximum 22-bit signed dis-
placement (i.e., a BLL instruction). It is a single-
byte mode change fixup.

R_ABS_CALL Copy one instruction word with relocation. The word is assu
to be an absolute procedure call instruction (for example, BL
The target procedure is identified by symbol S, and the para
relocation bits are R.

R_DP_RELATIVE Copy one instruction word with relocation. The word is assu
to be a dp-relative load or store instruction (for example, ADD
LDW, STW). The target symbol is identified by symbol S. Th
linker forms the difference between the value of the symbol S
the value of the symbol $global$. By convention, the value o
$global$ is always contained in register 27. Instructions may
a small constant in the displacement field of the instruction.

R_PLT_REL this is analogous to R_DLT_REL; it requests the
displacement field of the instruction to be filled
with the value <linkage table pointer address - PLT
slot for symbol>. It is used for instructions in
inlined import stubs. It is only available in a 4-byte
form, in which the symbol index is encoded in the
last 3 bytes of the fixup.

TABLE 14 Fixup Requests
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 63

Relocatable Object Fi les

med
e,
 S.
 19

med
,

ed
e
mbol
 con-

e
ld of

med

c-

er

d the
ied to
R_INDIRECT_CALL This specifies that the targeted instruction is an
indirect call through $$dyncall. It is used to opti-
mize indirect calls, and is a single-byte fixup.

R_DLT_REL Copy one instruction word with relocation. The word is assu
to a register r19-relative load or store instruction (for exampl
LDW, LDO, STW). The target symbol is identified by symbol
The linker computes a linkage table offset relative to register
(reserved for a linkage table pointer in position-independent-
code) for the symbol S.

R_CODE_ONE_SYMBOL Copy one instruction word with relocation. The word is assu
to be an instruction referring to symbol S (for example, LDIL
LDW, BE).

R_MILLI_REL Copy one instruction word with relocation. The word is assum
to be a short millicode call instruction (for example, BLE). Th
linker forms the difference between the value of the target sy
S and the value of symbol 1 in the module’s symbol table. By
vention, the value of symbol 1 should have been previously
loaded into the base register used in the BLE instruction. Th
instruction may have a small constant in the displacement fie
the instruction.

R_CODE_PLABEL Copy one instruction word with relocation. The word is assu
to be part of a code sequence forming a procedure label (for
example, LDIL, LDO), referring to symbol S. The LDO instru
tion should contain the value 0 (no static link) or 2 (static link
required) in its displacement field.

R_BREAKPOINT Copy one instruction word conditionally. On HP-UX, the link
always replaces the word with a NOP instruction.

R_ENTRY Define a procedure entry point. The stack unwind bits, U, an
frame size, F, are recorded in a stack unwind descriptor (cop
words 3 and 4 for the unwind region).

R_ALT_ENTRY Define an alternate procedure entry point.

R_EXIT Define a procedure exit point.

TABLE 14 Fixup Requests
64 HP PROPRIETARY

Version 3.0

uch as
 is
cover

gion.

r

he
 and

he fix-
egion
RY.

The

so it is
o the

k that
k is

d

elf-
e

uar-
ow a

the
 of

 word

ruction
g the
R_BEGIN_TRY Define the beginning of a try/recover region.

The try/recover mechanism is designed to support features s
try/recover in Pascal and try/catch in C++. The recover table
constructed by the linker and consists of some number of re
descriptors. A recover descriptor consists of three words:

word 1: the starting address of the “try” region.
word 2: the ending address of the “try” region.
word 3: an address pointing at language-dependent re

 For example:
Pascal: the address of the exception handle
Ada: the address of a descriptor block
C++: a pointer to a C++ data structure

The linker builds try/recover descriptors based on the
R_BEGIN_TRY/R_END_TRY fixups. The first two words of t
try/recover descriptor are just the addresses of the beginning
end of the guarded region as indicated by the placement of t
ups. The third word is the address of the end of the guarded r
(the second word) plus four times the argument of R_END_T
This region is sometimes referred to as the “recover block”.
END_TRY fixup contains a pc-relative offset to the recover
block. The actual meaning of the recover block is language
dependent. In Pascal, it is just a pointer to the recover code,
often the address immediately following the guarded region s
constant in the END_TRY fixup is often 0.

The C++ exception handling mechanism uses a recover bloc
points to other information. The first word of this recover bloc
a pointer to the code in the catch block. Like the Pascal case
above, the catch block often immediately follows the guarde
region, so this pointer often points back to the first instruction
beyond the END_TRY fixup. Since this pointer is actually a s
relative offset, it often is the same number as was found in th
END_TRY fixup. This may be a frequent case, but it is not g
anteed, for example, nested try/catch blocks will probably sh
difference.

R_END_TRY Define the end of a try/recover region. The offset R defines
distance in words from the end of the region to the beginning
the recover block.

R_BEGIN_BRTAB Define the beginning of a branch table.

R_END_BRTAB Define the end of a branch table.

R_STATEMENT Define the beginning of statement number N.

R_DATA_EXPR Pop one word from the expression stack and copy one data
from the input subspace to the output subspace, adding the
popped value to it.

R_CODE_EXPR Pop one word from the expression stack, and copy one inst
word from the input subspace to the output subspace, addin
popped value to the displacement field of the instruction.

TABLE 14 Fixup Requests
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 65

Relocatable Object Fi les

the
otes

 or L-

ad of
 cur-

ad of
 cur-

 the
ntil

e

ect

the

 con-
.

nly
 that
.

g
e

tains a
top of
 on
R_FSEL Use an F’ field selector for the next fixup request instead of
default appropriate for the instruction. An F field selector den
“no change”. The “default” modes can be any of the R-class
class field selectors.

R_LSEL Use an L’-class field selector for the next fixup request inste
the default appropriate for the instruction. Depending on the
rent rounding mode, L’, LS’, LD’, or LR’ may be used.

R_RSEL Use an R-class field selector for the next fixup request inste
the default appropriate for the instruction. Depending on the
rent rounding mode, R’., RS’, RD’, or RR’ may be used.

R_N_MODE Select round-down mode (L’/R’). This is the default mode at
beginning of each subspace. This setting remains in effect u
explicitly changed or until the end of the subspace.

R_S_MODE Select round-to-nearest-page mode (LS’/RS’). This setting
remains in effect until explicitly changed or until the end of th
subspace.

R_D_MODE Select round-up mode (LD’/RD’). This setting remains in eff
until explicitly changed or until the end of the subspace.

R_R_MODE Select round-down-with-adjusted-constant mode (LR’/RR’).
This setting remains in effect until explicitly changed or until
end of the subspace.

R_DATA_OVERRIDE Use the constant V for the next fixup request in place of the
stant from the data word or instruction in the input subspace

R_TRANSLATED Toggle ‘‘translated’’ mode. This fixup request is generated o
by the linker during a relocatable link to indicate a subspace
was originally read from an old-format relocatable object file

R_AUX_UNWIND Define an auxiliary unwind table. CN is a symbol index of the
symbol that labels the beginning of the compilation unit strin
table. SN is the offset, relative to the CN symbol, of the scop
name string. SK is an integer specifying the scope kind.

R_COMP1 Stack operations. The second byte of this fixup request con
secondary opcode. In the descriptions below, A refers to the
the stack and B refers to the next item on the stack. All items
the stack are considered signed 32-bit integers.

TABLE 14 Fixup Requests
66 HP PROPRIETARY

Version 3.0

fixup
o one
 X = 0
t, the

ree-
ilers to
R_PUSH_PCON1 Push the (positive) constant V.
R_PUSH_DOT Push the current virtual address.
R_MAX Pop A and B, then push max(A, B).
R_MIN Pop A and B, then push min(A, B).
R_ADD Pop A and B, then push A + B.
R_SUB Pop A and B, then push B - A.
R_MULT Pop A and B, then push A * B.
R_DIV Pop A and B, then push B / A.
R_MOD Pop A and B, then push B % A.
R_AND Pop A and B, then push A & B.
R_OR Pop A and B, then push A | B.
R_XOR Pop A and B, then push A XOR B.
R_NOT Replace A with its complement.
R_LSHIFT If C = 0, pop A and B, then push B \<< A. Otherwise,

replace A with A \<< C.
R_ARITH_RSHIFT If C = 0, pop A and B, then push B \>> A. Otherwise,

replace A with A \>> C. The shifting is done with sign
extension.

R_LOGIC_RSHIFT If C = 0, pop A and B, then push B \>> A. Otherwise,
replace A with A \>> C. The shifting is done with zero
fill.

R_PUSH_NCON1 Push the (negative) constant V.

R_COMP2 More stack operations.

R_PUSH_PCON2 Push the (positive) constant V.
R_PUSH_SYM Push the value of the symbol S.
R_PUSH_PLABEL Push the value of a procedure label for symbol S. The

static link bit is L.
R_PUSH_NCON2 Push the (negative) constant V.

R_COMP3 More stack operations.

R_PUSH_PROC Push the value of the procedure entry point S. The
parameter relocation bits are R.

R_PUSH_CONST Push the constant V.

R_PREV_FIXUP The linker keeps a queue of the last four unique multi-byte
requests; this is an abbreviation for a fixup request identical t
on the queue. The queue index X references one of the four;
refers to the most recent. As a side effect of this fixup reques
referenced fixup is moved to the front of the queue.

R_SEC_STMT Secondary statement number.

R_N0SEL Indicates that the following fixup is applied to the first of a th
instruction sequence to access data, generated by the comp
enable the importing of shared library data.

TABLE 14 Fixup Requests
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 67

Relocatable Object Fi les

tes
ruc-
s to

opti-
 a 1-
or-
ond
he
ith

 fix-
NT
 state-
igned
rs, is

 the

 are
 are
ine
r, the
eed to
h are
 a
x-

to
-

o the
ur-
l be in

ng
pre-

e pre-
s will
 to

this

al
R_N1SEL Uses a N field selector for the next fixup request; this indica
that zero bits are to be used for the displacement on the inst
tion. This fixup is used to identify three-instruction sequence
access data (for importing shared library data).

R_LINETAB The compilers generate this fixup to request that debugging
mized code (DOC) line tables be built. The first parameter is
byte version number which identifies the line table version (f
mat). The actual value is not important to the linker. The sec
parameter is a symbol index to be used in conjunction with t
third parameter, an offset, as a location which is to be filled w
the offset (relative to the $LINES$ subspace) of the line table
about to be built.

The line number information is passed to the linker via the
R_STATEMENT fixup request, which is embedded within the
ups for the code at statement boundaries. The R_STATEME
fixup has three variants to handle one-, two-, and three-byte
ment or line numbers as necessary. The actual meaning ass
to the number, whether it be statement number or line numbe
irrelevant to the linker, and needs to be agreed upon only by
compiler and the end user of the line table information.

R_LINETAB_ESC Fixup used to place escape entries into the line table. There
several escape entries defined in the line table format which
used by the debugger and other tools when processing the l
table. Some of these escapes must be generated by the line
others are generated by the compiler and the liner does not n
know the details of these escapes. The escapes entries whic
not generated by the linker are entered into the line table via
combination of the R_LINETAB_ESC and R_STATEMENT fi
ups.

The second parm specifies how many of the following
R_STATEMENT entries contain data to be entered directly in
the line table (these statement fixups will not contain line num
bers. Instead, they hold data which is to be placed directly int
line number table as part of an escape sequence. With the c
rently defined escapes the value of the second parameter wil
the range [0,4].

R_LTP_OVERRIDE Override the following fixup which is expected to be an
R_DATA_ONE_SYMBOL fixup. If the linker encounters an
R_DATA_ONE_SYMBOL with the override set and it is buildi
a shared library then it will convert the relocatable address re
senting the data item into a absolute offset by subtracting th
sumed link time R19 value from the relocatable address. Thi
eventually require a run time relocation before it can be used
access the data item. There is currently no way to generate
fixup through the assembler interface.

If the linker is not building a shared library, the absolute virtu
address is placed in the target subspace.

TABLE 14 Fixup Requests
68 HP PROPRIETARY

Version 3.0

uests

ation
iffer-
ntry;
ur

o the
and

pilers
3.6.6 Fixup opcodes, lengths and parameters

The include file <reloc.h> defines constants for each major opcode. Many fixup req
use a range of opcodes; only a constant for the beginning of the range is defined.

Table 15 shows the mnemonic fixup request type and length and parameter inform
for each range of opcodes. In the parameters column, the symbol D refers to the d
ence between the opcode and the beginning of the range described by that table e
the symbols B1, B2, B3, and B4 refer to the value of the next one, two, three, or fo
bytes of the fixup request, respectively.

R_COMMENT Fixup used to pass comment information from the compiler t
linker. This fixup has a 5 byte argument that can be skipped
ignored by most applications.

R_RESERVED Fixups in this range are reserved for internal use by the com
and linker.

TABLE 15 Fixup Request Opcodes and Parameters

mnemonic opcodes length parameters

R_NO_RELOCATION 0-23 1 L = (D+1) * 4

24-27 2 L = (D<<8 + B1 + 1) * 4

28-30 3 L = (D<<16 + B2 + 1) * 4

31 4 L = B3 + 1

R_ZEROES 32 2 L = (B1 + 1) * 4

33 4 L = B3 + 1

R_UNINIT 34 2 L = (B1 + 1) * 4

35 4 L = B3 + 1

R_RELOCATION 36 1 none

R_DATA_ONE_SYMBOL 37 2 S = B1

38 4 S = B3

R_DATA_PLABEL 39 2 S = B1

40 4 S = B3

R_SPACE_REF 41 1 none

R_REPEATED_INIT 42 2 L = 4; M = (B1 + 1) * 4

43 3 L = (B1 +1)* 4; M = (B1 + 1) * L

44 5 L = (B1 +1) *4; M = (B3 + 1) * 4

45 8 L = B3 + 1; M = B4 + 1

R_PCREL_CALL 48-57 2 R = rbits1(D); S = B1

TABLE 14 Fixup Requests
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 69

Relocatable Object Fi les

)

58-59 3 R = rbits2(D<<8 + B1); S = B1

60-61 5 R = rbits2(D<<8 + B1); S = B3

R_ABS_CALL 64-73 2 R = rbits1(D); S = B1

74-75 3 R = rbits2(D<<8 + B1); S = B1

76-77 5 R = rbits2(D<<8 + B1); S = B3

R_DP_RELATIVE 80-111 1 S = D

112 2 S = B1

113 4 S = B3

R_DLT_REL 120 2 S = B1

121 4 S = B3

R_CODE_ONE_SYMBOL 128-159 1 S = D

160 2 S = B1

161 4 S = B3

R_MILLI_REL 174 2 S = B1

175 4 S = B3

R_CODE_PLABEL 176 2 S = B1

177 4 S = B3

R_BREAKPOINT 178 1 none

R_ENTRY 179 9 U,F = B8 (U is 37 bits; F is 27 bits

180 6 U = B5 >> 3; F = pop A

R_ALT_ENTRY 181 1 none

R_EXIT 182 1 none

R_BEGIN_TRY 183 1 none

R_END_TRY 184 1 R = 0

185 2 R = B1 * 4

186 4 R = sign-extend(B3) * 4

R_BEGI_BRTAB 187 1 none

R_END_BRTAB 188 1 none

R_STATEMENT 189 2 N = B1

190 3 N = B2

191 4 N = B3

R_DATA_EXPR 192 1 none

R_CODE_EXPR 193 1 none

R_FSEL 194 1 none

R_LSEL 195 1 none

R_RSEL 196 1 none

TABLE 15 Fixup Request Opcodes and Parameters

mnemonic opcodes length parameters
70 HP PROPRIETARY

Version 3.0

N is 32)

 & 0x1f

elative

location

T fix-
R_N_MODE 197 1 none

R_S_MODE 198 1 none

R_D_MODE 199 1 none

R_R_MODE 200 1 none

R_DATA_OVERRIDE 201 1 V = 0

202 2 V = sign-extend(B1)

203 3 V = sign-extend(B2)

204 4 V = sign-extend(B3)

205 5 V = B4

R_TRANSLATED 206 1 none

R_AUX_UNWIND 207 12 CU,SN,SK = B11 (CU is 24 bits;S

R_COMP1 208 2 OP = B1; V = OP & 0x3f; C = OP

R_COMP2 209 5 OP = B1; S = B3; L = OP & 1;

V = ((OP & 0x7f) << 24) | S

R_COMP3 210 6 OP = B1; V = B4;

R = ((OP & 1) << 8) | (V >> 16);

S = V & 0xffffff

R_PREV_FIXUP 211-214 1 X = D

R_SEC_STMT 215 1 none

R_N0SEL 216 1 none

R_N1SEL 217 1 none

R_LINETAB 218 10 version number = B1

symbol index = B2 to B5 (symbol-r
loc to patch w/ line table offset)

offset = B6 to B9 (symbol + offset,
to patch w/line table offset)

R_LINETAB_ESC 219 3 escape code = B1

number of following R_STATEMEN
ups containing escape data in B2

R_LTP_OVERRIDE 220 1 none

R_COMMENT 221 6 OP=B1

V = B2 to B6

R_RESERVED 222-255 - reserved

TABLE 15 Fixup Request Opcodes and Parameters

mnemonic opcodes length parameters
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 71

Relocatable Object Fi les

rbits1
dure

to 4),

ing a
t reg-
 “diff”
turn

re is

nt
ions.
 pair
he
t is 3
i-

s.
ree
3.6.7 Parameter Relocation Bits (rbits1, rbits2)

Parameter relocation bits are encoded in the fixup requests in two ways, noted as
and rbits2 in Table 15. The first encoding recognizes that the most common proce
calls have only general register arguments with no holes in the parameter list. The
encoding for such calls is simply the number of parameters in general registers (0
plus 5 if there is a return value in a general register.

Here is how “rbits1” decodes its parameter. The “diff” is the difference between the
actual opcode and the first opcode of the range. When “rbits1” is used, it is describ
function call with 0 to 4 general register parameters (no holes, and no floating poin
ister parameters), and either a general register return value or no return value. The
can be from 0 to 9; if it is between 0 and 4, it indicates 0 to 4 parameters with no re
value; if it’s between 5 and 9, it indicates 0 to 4 parameters with a return value. He
some code that turns this into the 10-bit parameter relocation field:

if (diff >= 5)
j = diff -5;

else
j = diff;

for (i = 0; i < 4; i++)
arg = (arg << 2) + (i<j);

arg = (arg << 2) + (diff >=5);

The second encoding is more complex (presumably less common); the 10 argume
relocation bits are compressed into 9 bits by eliminating some impossible combinat
The encoding is the combination of three contributions. The first contribution is the
of bits for the return value, which are not modified. The second contribution is 9 if t
first two parameter words together form a double-precision parameter; otherwise, i
times the pair of bits for the first word plus the pair of bits for the second word. Sim
larly, the third contribution is formed based on the third and fourth parameter word
The second contribution is multiplied by 40, the third is multiplied by 4, then the th
are added together. Here is some code to decode the “rbits” encoding:

i = ((diff &1) <<8) + next_fixup_byte;

arg = decode_arg_reloc(i);

where:

int decode_arg_reloc(i)
int i;

{
int j, k, ret_val;
ret_val = i &03;
i >>= 2;
j = i / 10;
i -= 10*j;
if (j == 9)

ret_val += (03 << 6); /* FARGU */
else {

k = j / 3;
j -= 3*k;
ret_val += (k << 8) + (j << 6);
72 HP PROPRIETARY

Version 3.0

g
tive
}
if (i ==9)

ret_val += (03 << 2); /* FARGU */
else {

k = i /3;
i -= 3*k;
ret_val += (k << 4) + (i << 2);
}

return (ret_val);
}

3.7 Symbol Table

The symbol table or symbol dictionary for a SOM consists of symbol records strun
together in contiguous space within the SOM. The byte offset of the dictionary, rela
to the SOM header, is contained in the variablesymbol_dictionary_location in the SOM
header and the number of entries is contained in the variablesymbol_dictionary_total,
also in the SOM header.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 73

Relocatable Object Fi les

ry
it

mbol

ent

ry.
A particular symbol in the dictionary can be located either by scanning the dictiona
until it is found, or the symbol’s index can be used to index into the dictionary as if
were an array of five word elements.

An entry in the dictionary consists of the symbol dictionary record and an optional
extension record and 0 to 61 descriptor array records as shown in Figure 3-13. Sy
records do not need to be sorted.

struct symbol_dictionary_record {

unsigned int hidden : 1;

unsigned int secondary_def : 1;

unsigned int symbol_type : 6;

unsigned int symbol_scope : 4;

unsigned int check_level : 3;

unsigned int must_qualify : 1;

unsigned int initially_frozen : 1;

unsigned int memory_resident : 1;

unsigned int is_common : 1;

unsigned int dup_common : 1;

unsigned int xleast : 2;

unsigned int arg_reloc :10;

union name_pt name;

union name_pt qualifier_name;

unsigned int has_long_return :1;

unsigned int no_relocation :1;

unsigned int reserved :6;

unsigned int symbol_info :24;

unsigned int symbol_value;

};

Figure 3-13: Symbol Dictionary Record Definition

☞
Note A symbol’s index is NOT its relative entry number in the symbol

dictionary since some entries use extension records and argum
descriptor arrays. But all entries are a multiple of 5-words in
length so the index can be used to index into the symbol dictiona
74 HP PROPRIETARY

Version 3.0

ord is
llow-

h

n-
Whether an extension record and argument descriptor arrays follow the symbol rec
dependent upon the check level and the number of parameters according to the fo
ing algorithm:

IF CHECK_LEVEL >= 1
THEN
An extension record will be present.

IF num_args > 3 AND check_level >= 3
THEN
In addition to the extension record there will be enough
argument descriptor arrays to contain one descriptor for eac
argument except the first 3.

i.e. NUM_DESCS = round_up ((NUM_ARGS-3)/4)

Two symbol types, SYM_EXT and ARG_EXT, are defined to mark the symbol exte
sion and argument descriptor array records respectively.

hidden

Figure 3-14: Structure of a Dictionary Entry

Symbol
Record

Symbol
Extension

Record

Descriptor
Array

Records

Symbol Name
Qualifier Name
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 75

Relocatable Object Fi les

 for
g.
gh it

name
ary

of
 be

 (it is

d
ata

RN
 be

elevant

ints.
lls.

iven. If
ified
at stor-

nd the
Bit 0

If this flag is set to one, it indicates that the symbol is to be hidden from the loader
the purpose of resolving external (inter-SOM) references. It has no effect on linkin
This flag allows a procedure to be made private to its own executable SOM, althou
has universal scope within that SOM.

secondary_def

Bit 1

If this flag is set to one, the symbol is a secondary definition and has an additional
that is preceded by “_”. The linker will ignore duplicate definitions involving second
definitions.

symbol_type

Bits 2-7

This field defines what type of information this symbol represents. A complete list
the defined symbol types is presented in Table 16, however only certain ones may
valid depending on the use (e.g. import/export, relocatable/executable, etc.).

TABLE 16 symbol_type Definition

Symbol Description

0 NULL Invalid symbol record. The contents of the entire record is undefined
5 words long).

1 ABSOLUTE Absolute constant.

2 DATA Normal initialized data. Initialized data symbols including Fortran an
Cobol initialized common data blocks, as well as C initialized data. D
can be either imported or exported. For example C construct “EXTE
INT I” would be imported data. And the C construct “INT I = 1” would
exported data.

3 CODE Unspecified code. For example, code labels. Code labels are only r
up to link time, and they cannot be the target of interspace calls.

4 PRI_PROG Primary program entry point.

5 SEC_PROG Secondary Program entry point.

6 ENTRY Any code entry point. Includes both primary and secondary entry po
Code entry point symbols may be used as targets of inter-space ca

7 STORAGE The value of the symbol is not known, but the length of the area is g
a matching definition is not found, storage is allocated within a spec
subspace and the symbol’s value becomes the virtual address of th
age.

For example, Fortran and Cobol uninitialized common data blocks, a
C construct “INT I” would be storage requests with no initial value.
76 HP PROPRIETARY

Version 3.0

r the
er-

 the

NAL
ay cre-
 would
 allo-

nary is
 in the

nary is
 in the

edure
e pro-

gment
only.

. It
symbol_scope

Bits 8-11

The scope of a symbol defines the range over which an exported symbol is valid,o
range of the binding used to import the symbol. In addition, this field is used to det
mine whether the requested symbol record is a import or export request.

The scope of a symbol will be one of the following:

Imports

0: UNSAT Import request that has not been satisfied.

1: EXTERNAL Import request linked to a symbol in another SOM. This symbol will
require additional linking when it is loaded.

Internal

2: LOCAL This symbol is not exported for use outside the SOM. It may be used as
target for fixups, but the linker does not use this symbol for resolving
symbol references.

8 STUB This symbol marks an import (outbound) external call stub (EXTER
scope) or a parameter relocation stub (LOCAL scope). The linker m
ate an import stub for any unsatisfied code symbols, and the loader
be responsible for satisfying the reference by filling in the XRT entry
cated for this stub.

9 MODULE This symbol is a source module name.

10 SYM_EXT This type is used to indicate that an entry in the SOM symbol dictio
an extension record of the current entry (previous valid symbol entry
list).

11 ARG_EXT This type is used to indicate that an entry in the SOM symbol dictio
an extension record of the current entry (previous valid symbol entry
list.

12 MILLICODE This is the name of the millicode routine.

13 PLABEL This symbol defines an export stub for a procedure for which a proc
label has been generated. The loader must build an XRT entry for th
cedure at the offset allocated by the linker.

14 OCT_DIS This type is used to indicate that the pointer to a translated code se
exists, but has been disabled. Used by the Object Code Translator

15 MILLI_EXT This symbol defines the address of an external millicode subroutine
should be treated as an constant.

15 ST_TDATA Thread specific data.

TABLE 16 symbol_type Definition

Symbol Description
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 77

Relocatable Object Fi les

y

n
ng to

 the
n

ode
Exports

3: UNIVERSAL This symbol is exported for use outside the SOM.

Table 17 shows the valid values of the scope field given the type of the symbol.An
square that does not contain an “X” is an invalid value for that type.

check_level

Bits 12-14

This value indicates how closely an import definition must match an export definitio
during linking. This checking can be applied to both code and data linkage accordi
the following checking levels:

0 No checking.
1 Check the symbol type descriptor only.
2 Level 1, plus check the number of arguments passed by

import with the minimum and maximum range declared i
the export (code types only).

3 Level 2, plus check the type of each argument passed (c
types only).

must_qualify

Bit 15

TABLE 17 Valid symbol_scope Values

TYPE UNSAT EXTERNAL LOCAL UNIV

PRI_PROG X

SEC_PROG X

ENTRY X X

STUB X X

MODULE X X

ABSOLUTE X X X

CODE X X X

DATA X X X

STORAGE X

PLABEL X
78 HP PROPRIETARY

Version 3.0

irec-
 data or

e if

is to

sym-
roce-

mon
 dec-

r
m-
his
will
ment
If this bit is set to one, it indicates that there is more than one entry in the symbol d
tory that has the same name as this entry, and is the same generic type (i.e. code,
stub). Therefore, the qualifier name must be used to fully qualify the symbol.

If this flag is not set, the qualifier name will only be used to qualify the symbol nam
the name it is being compared with is also fully qualified.

The flag is used for both import and export requests.

initially_frozen

Bit 16

If this flag is set to one it indicates that the code importing or exporting this symbol
be locked in physical memory when the operating system is being booted.

memory_resident

Bit 17

If this field is set to one it indicates that the code that is importing or exporting this
bol is frozen in memory. This flag is used so that links between memory resident p
dures can also be frozen in memory.

is_common

Bit 18

Specifies that this symbol is an initialized common data block. Each initialized com
data block resides in its own subspace. For example, a Fortran initialized common
laration would produce a symbol of type data with theis_common flag set to one. Refer
to the Language Requirements Document for implementation details.

dup_common

Bit 19

If this flag is set to one, it specifies that this symbol name may conflict with anothe
symbol of the same name if both are of type data. This is to facilitate the Cobol “co
mon” feature, since Cobol allows duplicate initialization of “common” data blocks. T
flag would be set to one if the language allows duplicate initialization, otherwise it
be set to zero for symbols of type data. Refer to the Language Requirements Docu
for implementation details.

xleast

Bits 20-21
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 79

Relocatable Object Fi les

l is
d

the
r

ter
is

gu-
, it

M

s of

tains
This is the execution level that is required to call this entry point. This XLEAST leve
placed in any XRT entry linked to this entry point. The XLEAST level will be checke
by the Spectrum external procedure call primitive during execution.

This field is not used if (i.e. its content is meaningless):

1) the symbol is an import.

2) the symbol is not one of the code types.

XLEAST must be a value in the range of 0 to 3. Furthermore, if the value is not in
range of XLEAST to XMOST of the page containing the entry point a run time erro
can occur.

arg_reloc

Bits 22-31

This field is used to communicate the location of the first four words of the parame
list, and the location of the function return value to the linker and loader. This field
meaningful only for exported ENTRY, PRI_PROG, and SEC_PROG symbols.

The linker matches the argument relocation bits of an exported symbol with the ar
ment relocation bits in each fixup that references the symbol. If it finds a mismatch
builds an argument relocation stub and redirects the call to that stub.

The ten bits of this field are broken down as follows:
bits 22-23 define the location of parameter list word 0
bits 24-25 define the location of parameter list word 1
bits 26-27 define the location of parameter list word 2
bits 28-29 define the location of parameter list word 3
bits 30-31 define the location of the function return

For MPE/iX, this field can contain new values if the shared_data bit in the LST SO
Auxiliary header is set:

For Storage requests and Data Universals, this field is set to the access right
the subspace the data is defined in.

For Data Unsats, this field is set to the access rights of the subspace that con
the reference.
80 HP PROPRIETARY

Version 3.0

unc-
r 3,
oint

ng
ble,
ord
ers in
uded

iable

qual-

space;
The argument location value is defined as follows:

The FARGupper tag can be used only for parameter list words 0 and 2, or for the f
tion return. If it is used for parameter list words 0 or 2, then parameter list word 1 o
respectively, must be tagged as FARG; this indicates a double-precision floating-p
number in a single floating point coprocessor register. If it is used for the function
return, it indicates a double-precision floating point return value in a single floating
point coprocessor register.

name

This variable is used to locate the name of the symbol in the symbol dictionary stri
table of the SOM. Its value is the byte offset, relative to the beginning of the string ta
to the first character (not the length) of the symbol name. The name begins on a w
boundary and is preceded by a 32 bit number that contains the number of charact
the name. The symbol is terminated with an 8 bit zero, but the terminator is not incl
as part of the length.

The size of the symbol dictionary string area can be used to bounds check this var
such that it is a value in the range of 0 to the value of the variablesymbol_strings_size
found in the SOM header.

qualifier_name

This field contains a byte offset relative to the beginning of the symbol strings area
which points to the first character of a symbol name which may be used to further
ify the current symbol.

If there is no qualifier, this field should be set to 0.

has_long_return

this bit is set for an Entry Universal symbol means its return sequence can cross a
setting it for a Code Unsat asserts that the called entry point will have a long return
sequence.

no_relocation

Value Mnemonic Location

0 Do not relocate - Mismatch is not an error.

1 ARG Argument Register

2 FARG Floating point coprocessor register, bits 0 to 31.

3 FARGupper Floating point coprocessor register, bits 32 to 64.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 81

Relocatable Object Fi les

one
nsat

fol-

M

e ref-

ning.
a-

d.

-

Setting the no_relocation bit for an Entry Universal is unnecessary, but should be d
for any such symbol record whose arg_reloc field is 0. Setting the bit for a Code U
asserts that the called entry point will not require any parameter relocation.

symbol_info

This field contains variant information depending on the scope of the symbol. The
lowing list shows the interpretation of this field:

For MPE/iX, this field can contain new values if the shared_data bit in the LST SO
Auxiliary header is set:

For Storage Requests, this field is set to the size of the storage request.

For Data Unsats, this field is set to the index of the subspace that contained th
erence.

symbol_value

This field contains the 32 bit value of this particular symbol.

Depending on the type and scope of the symbol this field may have a different mea
The following matrix shows the meaning of the symbol value for each valid combin
tion of type and scope. Invalid combinations will be denoted as a blank cell in the
matrix. Immediately following the matrix are the definitions for the mnemonics use

Scope Meaning

UNSAT Contains the index of the subspace that imported this symbol. If
STORAGE_REQUEST then it is the index of the subspace which may
contain this symbol.

EXTERNAL Contains the XRT offset allocated by the linker for the import stub.

LOCAL Index of the subspace containing this symbol. For export stubs (proce
dure labels), this field contains the XRT offset instead.

UNIVERSAL Index of the subspace containing this symbol.

TABLE 18 Valid symbol_value Mnemonics

TYPE UNSAT EXTRN LOCAL UNIV

PRI_PROG SOFF

SEC_PROG SOFF

ENTRY SOFF SOFF

STUB SOFF SOFF

MODULE UNUSED UNUSED
82 HP PROPRIETARY

Version 3.0

t is
 For
ure

ST

s of a

M

f the

eg-
SOFF - This stands for space offset and it is the byte offset within a space (when i
loaded in virtual memory) to an entry point (i.e. the first instruction to be executed).
code symbols, bits 30-31 of the offset will contain the privilege level that the proced
will execute at (subject to privilege level checking at load time and XLEAST / XMO
level checking during execution).

CONST - This stands for a numeric constant or its value may be the virtual addres
location within a subspace defined by this SOM.

LEN - This is the length of the storage request in bytes.

UNUSED- The content of this field is meaningless.

For MPE/iX, this field can contain new values if the shared_data bit in the LST SO
Auxiliary header is set:

For Data and Storage Universals, this field is set to the DP-positive address o
symbol.

For Data Unsats, this field is set to the DXRT offset for the symbol (will be a n
ative offset).

Symbol Dictionary Extension Record

Symbol Dictionary Extension Record Fields

ABSOLUTE UNUSED CONST CONST

CODE UNUSED SOFF SOFF

DATA UNUSED SOFF SOFF

STORAGE LEN

PLABEL SOFF

struct symbol_extension_record {

unsigned int type :8;

unsigned int max_num_args :8;

unsigned int min_num_args :8;

unsigned int num_args :8;

union arg_descriptorsymbol_desc;

union arg_descriptorargument_desc[3];

};

Figure 3-15:

TABLE 18 Valid symbol_value Mnemonics

TYPE UNSAT EXTRN LOCAL UNIV
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 83

Relocatable Object Fi les

n to
of

ked,
t be

ked,
t be

turn

 or
ow-
 may

 upon
type

Bits 0-7

This field will be set to SYM_EXT (i.e. 12) so that it can be identified as an extensio
the symbol definition of the previous entry in the symbol list (see SYMBOL_TYPE
symbol dictionary record fields).

max_num_args

Bits 8-15

If CHECK_LEVEL indicates that the number of arguments passed should be chec
the num_args field of the imported symbol (this field is in the exported symbol) mus
less than or equal to this value.

This field is not used if (i.e. its content is meaningless) if the symbol is an import.

The range of this variable ismin_num_args to 255.

min_num_args

Bits 16-23

If CHECK_LEVEL indicates that the number of arguments passed should be chec
the num_args field of the imported symbol (this field is in the exported symbol) mus
greater than or equal to this value.

This field is not used if (i.e. its content is meaningless) if the symbol is an import.

The range of this variable is 0 to max_num_args".

num_args

Bits 24-31

This value is the number of arguments associated with the symbol. A procedure re
value is NOT counted as an argument.

The range of this variable is 0 to 255. Since this variable is not essential for linking
loading, compilers are not constrained to limit the number of parameters to 255. H
ever, if this limit is exceeded, functions that use this field (e.g. parameter checking)
produce unpredictable results.

symbol_desc

This is an argument descriptor for the procedure's type or the data type depending
the type of the symbol (see argument descriptor definition, section 9.5).
84 HP PROPRIETARY

Version 3.0

an 3

an 3

 list.

an 3
This field is not used (i.e. its content is meaningless) if the checking level is 0.

argument_desc [1]

This is the argument descriptor for the first argument in the procedure's

argument list.

This field is not used (i.e. its content is meaningless) if the checking level is less th
or the number of arguments is 0.

argument_desc [2]

This is the argument descriptor for the second argument in the procedure's

argument list.

This field is not used (i.e. its content is meaningless) if the checking level is less th
or the number of arguments is less than 2.

argument_desc [3]

This is the argument descriptor for the third argument in the procedures argument

This field is not used (i.e. its content is meaningless) if the checking level is less th
or the number of arguments is less than 3.

Argument Descriptor

struct argument_desc_array {

unsigned int type : 8;

unsigned int reserved : 24;

union arg_descriptor argument_desc[4];

};
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 85

Relocatable Object Fi les

e
ata

. The

e:
Argument Descriptor Fields

reserved

Bits 0-2

These bits are reserved for future use, and must be set to zero.

packing

Bit 3

This field specifies the packing algorithm used in calculating the storage layout, th
alignment of, and the data representation of the particular item. The real number d
representation on Spectrum is different from that of the HP 3000. This field may be
increased in size to allow more packing possibilities, such as 9000 or 1000 packing
valid values for this field are:

0 Spectrum packing and IEEE real numbers

1 3000 mode packing and real numbers alignment

Bits 4-7

This field specifies the alignment of the descriptor. The valid values for this field ar

0 Byte aligned

1 Half-word aligned

2 Word aligned

3 Double-word aligned

union arg_descriptor {

struct {

unsigned int reserved :3;

unsigned int packing :1;

unsigned int alignment :4;

unsigned int mode :4;

unsigned int structure :4;

unsigned int hash :1;

int arg_type :15;

} arg_desc;

unsigned int word;

};

Figure 3-16: Argument Descriptor Definition
86 HP PROPRIETARY

Version 3.0

ld is
4 Cache line (24 byte, 16-byte) aligned

5 Cache line (25 byte, 32-byte) aligned

.. ..

n Cache line (2n byte) aligned

.. ..

12 Page (212byte, 4096-byte) aligned

mode

Bits 8-11

This field specifies the type of the descriptor and its use. A value of zero for this fie
used to match with any other value. The valid values for this field are:

0 Wild card

1 Parameter, passed by value

2 Parameter, passed by reference

3 Parameter, passed by value-result

4 Parameter, passed by name

5 Global/External/Module variable

6 Function return

7 Procedure

8 Parameter, passed by long reference

structure

Bits 12-15

This field specifies the structure for a particular item.

A value of zero for this field will match any other value.

The valid values for this field are:

0 Wild card

1 Simple variable

2 Array

3 Record or composite

4 Short pointer

5 Long pointer

6 String, zero terminated

7 String, with length word

8 Procedure

9 Function

10 Label
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 87

Relocatable Object Fi les

an a

ord,

 to
hash

Bit 16

This bit, when set, specifies that the arg_type field contains a hash value, rather th
predefined type.

arg_type

Bits 17-31

This field specifies the basic machine type for the particular item. If the item is a rec
string, or procedure (structure field 3, 6, 7, or 8), the the type will be void. Type 17
(structure or array) is allowed only when the structure field is type 2 (array), which
describes an array or structure within an array. A value of zero for this field is used
match with any other valid value. The valid values for this field are:

0 Wild card

1 Void

2 Signed byte(8 bits)

3 Unsigned byte(8 bits)

4 Signed half-word(16 bits)

5 Unsigned half-word(16 bits)

6 Signed word(32 bits)

7 Unsigned word(32 bits)

8 Signed double-word(64 bits)

9 Unsigned double-word(64 bits)

10 Short real(32 bits)

11 Real(64 bits)

12 Long real(128 bits)

13 Short complex(64 bits)

14 Complex(128 bits)

15 Long complex(256 bits)

16 Packed decimal

17 Structure or array
88 HP PROPRIETARY

CHAPTER 4 Relocatable
Libraries
 to
)

truc-
ec-
list.
A relocatable library is a file of one or more SOMs and the data structures needed
efficiently manage the SOMs. At the front of the file is a Library Symbol Table (LST
header. The header is used to identify the file structure and locate the major sub-s
tures of the library. In particular, the header contains the location of the symbol dir
tory, the SOM directory, an optional area for auxiliary headers and the free space
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 89

Relocatable Librar ies

ach

gin-

T in

e the
Figure 4-17 on page 90 shows a general layout of a relocatable library. Note that e

relocatable library is identifiable by the following 8-byte magic characters at the be
ning of the file:

!<arch>\n

where\n is the new line, or the line feed character (hex 0A).

4.1 Archive Header

The archive header appears in front of every SOM in a library, and in front of the LS
a relocatable library. It defines the name of the SOM that follows and its length (in
bytes), as well as several other fields that are used by the HP-UX archiver utility. Se
HP-UX Users' Manual for further details.

8-byte magic characters| 60-byte archive header for this library

LST header record

Symbol Dictionary

SOM Dictionary

String Table

60-byte archive header for SOM #1

SOM #1

. . .

60-byte archive header for SOM #2

SOM #2

. . .

Figure 4-17: General Layout of a Relocatable Library

struct ar_hdr { /* archive file member header - printable ascii */

char ar_name[16]; /* file member name - ‘/' terminated */

char ar_date[12]; /* file member date - decimal */

char ar_uid[6]; /* file member user id - decimal */

char ar_gid[6]; /* file member group id - decimal */

char ar_mode[8]; /* file member mode - octal */

char ar_size[10]; /* file member size - decimal */

char ar_fmag[2]; /* ARFMAG - string to end header */

};

Figure 4-18: Definition of Archive Header Record
90 HP PROPRIETARY

Version 3.0

hat
by a

e

he
tring
e[0]

th a
ber

ffset

nto the

ld

onds
 with
ar_name

This field contains the name of the following SOM. The name is that of the “.o” file t
was copied into the library. The name must be left justified in the field, terminated
slash (“/”), and padded on the right with blanks.

For the archive header that precedes the LST, this field should contain a blank nam
(i.e., a single slash padded with 15 blanks).

If a member with a file name greater than 15 bytes exists within the archive, then t
archive will also contain an additional special member to store the long file name s
table. The special string table member also has a zero length name where ar_nam
== ‘/’ and ar_name[1] == ‘/’.

If a special string table exists, it will precede all non-special archive members. If bo
symbol table member and a string table member exist then the symbol table mem
will always precede the string table member.

Each entry in the string table is followed by a slash and a new-line character. The o
of the table begins at zero. If an archive member name exceeds 15 bytes, then the
ar_name entry in the members header does not hold a name, but holds the offset i
string table preceded by a slash.

For example, the member name thisverylongfilename.o contains /0 for the ar_name
value. This value represents the offset into the string table. The member nameyetan-
otherfilename.ocontains /27 for the ar_namevalue. The long name string table wou
have the following format:

ar_date

This field contains the modification date and time of the following SOM or LST. It
should be a decimal number (in ASCII characters) representing the number of sec
since January 1, 1970. The number should be left adjusted in the field and padded
blanks.

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 t h i s i s a v e r

10 y l o n g f i l e n

20 a m e . o / \n y e t

30 a n o t h e r l o n

40 g f i l e n a m e .

50 o / \n
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 91

Relocatable Librar ies

e a

 be

r,

i-

ex

ble
g”

i.e., “/

s a
 the
ader

ce list.

 PA-
ar_uid

This field contains the user id of the owner of the following SOM or LST. It should b
decimal number (in ASCII), left adjusted and blank padded.

ar_gid

This field contains the group id of the owner of the following SOM or LST. It should
a decimal number (in ASCII), left adjusted and blank padded.

ar_mode

This field contains the mode bits for the following SOM or LST. It is an octal numbe
left adjusted and blank padded.

ar_size

This field contains the size of the following SOM or LST in bytes. It is an ASCII dec
mal number, left adjusted and blank padded. The size does not include the archive
header.

ar_fmag

This field always contains the two ASCII characters “‘” and newline (or line feed, h
0A).

4.2 Library Symbol Table Header Record

The Library Symbol Table always begins with a LST header record. For a relocata
library, the LST header begins immediately following the 8-byte archive “magic strin
and the 60-byte archive header; the file name field in the archive header is empty (
” followed by 15 blanks).

The first four bytes of the LST header will contain a number that identifies the file a
library format file (actually it has a sub-structure of two 16 bit numbers). In addition,
header is used to locate the major sub-structures of the library. In particular, the he
contains the locations of the symbol directory, the SOM directory, the import table
which is always set to zero, an optional area for auxiliary headers and the free spa

system_id

Bits 0-15

This field is used to identify the architecture that this object file is targeted for. The
RISC 1.1 architecturesystem_id is 210 (hexadecimal).
92 HP PROPRIETARY

Version 3.0

rary

inter-
ver-

to
he
a_magic

Bits 16-31

This is a number that indicates the format and function of the file.

The magic number for a relocatable library is 0619 (hex), and for an executable lib
is 0104 (hex).

version_id

This is a number that is used to associate the LST with the correct definition of its
nal organization. The value of the number will be an encoding of the date the LST
sion was defined.

The version ID can be interpreted by viewing it in decimal form and separating it in
character packets of YYMMDDHH, where YY is the year, MM is the month, DD is t
day, and HH is the hour.

The only version_id that is currently defined for use by conforming applications is
85082112.

struct lst_header {

short int system_id;

short int a_magic;

unsigned int version_id;

struct sys_clockfile_time;

unsigned int hash_loc;

unsigned int hash_size;

unsigned int module_count;

unsigned int module_limit;

unsigned int dir_loc;

unsigned int export_loc;

unsigned int export_count;

unsigned int 0 (import_loc);

unsigned int aux_loc;

unsigned int aux_size;

unsigned int string_loc;

unsigned int string_size;

unsigned int free_list;

unsigned int file_end;

unsigned int checksum;

};

Figure 4-19: LST Header Definition
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 93

Relocatable Librar ies

f sec-
its is

s
t to

the
f the

e.g.

the
rt

refer-
file_time

file_time is a 64 bit value that represents the time the file was last modified.file_time
is actually composed of two 32 bit quantities where the first 32 bits is the number o
onds that have elapsed since January 1, 1970 (at 0:00 GMT), and the second 32 b
the nano second of the second (which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystem
(e.g. the file system). The use of this field is optional, but if it is not used it will be se
zero.

hash_loc

This is the LST relative byte offset to the LST directory hash table.

hash_size

This is the number of entries in the LST directory hash table.

Since the number of entries in the hash table is also the number of symbol lists in
directory, changing this value can affect the length of the symbol lists. The length o
symbol lists in turn, affects the overhead required to locate a symbol.

This value must be a number between 1 and 231-1. The maximum size of the hash table
is not constrained by the range of this variable, but by other resource constraints (
file size).

module_count

This contains the index beyond the last used SOM directory entry.

module_limit

This is the maximum number of SOMs that can be in this file. Therefore, it is also
number of entries in the SOM directory table and the number of entries in the impo
table.

This value must be a number between 1 and 231-1. The maximum value of this variable
will be constrained by external resource constraints (e.g. system tables with SOM
ence counts may use fixed length arrays).

dir_loc

This is the LST relative byte offset to the SOM directory.

export_loc
94 HP PROPRIETARY

Version 3.0

 nec-

 the

ver-
t the

le

ers

sent
This is the LST relative byte offset to the export table. Not all exported symbols are
essarily contained within the bounds defined byexport_loc andexport_count, but
most symbols should be. These fields are provided to allow programs that process
export table to read in the majority of the symbol table efficiently.

export_count

This is the number of symbols contained in the main portion of the export table. O
flow symbols (symbols allocated after this table is full) may be scattered throughou
LST.

import_loc

This is the LST relative byte offset to the import table. It is set to zero for relocatab
library.

aux_loc

This is the LST relative byte offset to the auxiliary header area. If no auxiliary head
are present this variable will be set to zero.

aux_size

This is the size of the auxiliary header area in bytes. If no auxiliary headers are pre
this variable will be set to zero.

string_loc

This is the LST relative byte offset to the string area of the LST.

string_size

This is the size of the LST string area in bytes.

free_list

This is the LST relative byte offset to the first free area in the file.

file_end

This is the LST relative offset to the first byte past the end of the file.

checksum
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 95

Relocatable Librar ies

o that

in the
es
t
 seen
n the
This field contains the value of all the other fields (i.e. not including this field) in the
LST header record after they have been exclusive ORed together.

If (in the future) there is are undefined bits in this record they must be set to zero s
they do not affect the value ofchecksum.

4.3 Library Symbol Table Format

Data structures in relocatable library are designed to efficiently manage the SOMs
library. The LST header record contains addresses and ranges of the sub-structur
inside the library. Symbol dictionary and SOM dictionary are the two most importan
data structures of a relocatable library. describes a relocatable as a block diagram
from the LST header record, the rest of this section describes the data structures i
relocatable library.

Figure 4-20: Block Diagram of a Relocatable Library

LST
Header

String
Table

Auxiliary

Symbol

Free

SOM
96 HP PROPRIETARY

Version 3.0

m-

e
 sym-

t to a
cket
 of

e
 byte
 the
acter
 as the

the
4.3.1 Symbol Directory

The symbol directory provides direct access to the definitions of all the exported sy
bols in the library. Each symbol definition, in turn, contains the index number of the
SOM that exported the symbol. The SOM index can be used to index into the SOM
directory or the import table (to locate the SOM or its import list).

The LST directory search algorithm will support more than one entry with the sam
name provided it can be qualified by its module name or by the general type of the
bol (i.e. code, data or stub).

The symbol directory is implemented as a hash table. Each entry contains an offse
“hash bucket” which is a chained list of symbols that hash to the same index. If a bu
is empty, its hash table entry will be zero and the bucket will not exist. The number
entries in the hash table is contained in the variablehash_size in the LST header and
the hash table location is contained in the variablehash_loc.

The hash function that is used for indexing the symbol directory ishash_key modulo
hash_size. The hash key is a 4 byte variable where the first byte is the length of th
symbol, the second byte of the key is the second character in the symbol, the third
of the key is the next to last character in the symbol, and the last byte of the key is
last character in the symbol. If the symbol is only one character long, then that char
is used as the second byte of the key and the last two bytes of the key are the same
first two bytes. The result of the hash function is the hash table entry number, not
offset into the hash table.

.

☞

Note If a symbol is greater than 128 characters the first byte of the key will
be the symbol length modulo 128 (256 is not used to eliminate any
affect the sign bit may have on the modulo operation).
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 97

Relocatable Librar ies
Figure 4-21: Block Diagram of Symbol Directory

Figure 4-22: hash_key Format (symbol length > 1 byte)

Figure 4-23:hash_key Format (symbol length = 1 byte)

Hash

 Table

Symbol

hash_loc

hash_index

End of List

Symbol

Symbol

0 8 16 3124

len chr(2) chr(len-1) chr(len)

0 8 16 3124

len (=1) chr(1) len (=1) chr(1)
98 HP PROPRIETARY

Version 3.0

iptors

nd

hen
d by a
llow-

key,

 for
g.
gh it

name
ary
A symbol record consists of a symbol header record and 0 to 255 argument descr
constructed as shown in Figure 4-24.

Symbol records are used for the symbol entries in both the LST symbol directory a
the import list symbol entries.

The symbol header contains the information needed to import or export a symbol w
the file is loaded. The presence and number of argument descriptors is determine
combination of the checking level and the number of arguments according to the fo
ing algorithm:

IF CHECKING_LEVEL < 3

THEN

No argument descriptors present (except the symbol descriptor

 in the header).

ELSE

There will be one descriptor for every argument passed.

The lst_symbol_record structure

In general, the lst_symbol_record structure is very similar to the
symbol_dictionary_record of the SOM with the addition of the som_index, symbol_
and next_entry fields to support symbol searching.

hidden

Bit 0

If this flag is set to one, it indicates that the symbol is to be hidden from the loader
the purpose of resolving external (inter-SOM) references. It has no effect on linkin
This flag allows a procedure to be made private to its own executable SOM, althou
has universal scope within that SOM.

secondary_def

Bit 1

If this flag is set to one, the symbol is a secondary definition and has an additional
that is preceded by “_”. The linker will ignore duplicate definitions involving second
definitions. This field is implemented to support the external naming convention.

symbol_type

Bits 2-7

This field defines what type of information this symbol represents.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 99

Relocatable Librar ies

r the
er-
See “symbol_type” on page 76.

symbol_scope

Bits 8-11

The scope of a symbol defines the range over which an exported symbol is valid, o
range of the binding used to import the symbol. In addition, this field is used to det
mine whether the symbol record is a import or export request.

See “symbol_scope” on page 77.

check_level

Bits 12-14

struct lst_symbol_record {

unsigned int hidden : 1;

unsigned int secondary_def : 1;

unsigned int symbol_type : 6;

unsigned int symbol_scope : 4;

unsigned int check_level : 3;

unsigned int must_qualify : 1;

unsigned int initially_frozen : 1;

unsigned int memory_resident : 1;

unsigned int is_common : 1;

unsigned int dup_common : 1;

unsigned int xleast : 2;

unsigned int arg_reloc :10;

union name_pt name;

union name_pt qualifier_name;

unsigned int symbol_info;

unsigned int symbol_value;

unsigned int symbol_descriptor;

unsigned int reserved : 8;

unsigned int max_num_args : 8;

unsigned int min_num_args : 8;

unsigned int num_args : 8;

unsigned int som_index;

unsigned int symbol_key;

unsigned int next_entry;

};

Figure 4-24:LST Symbol Record Definition
100 HP PROPRIETARY

Version 3.0

n

irec-
data, or

e if

is to

sym-
roce-

mon
 dec-

r
m-
This value indicates how closely an import definition must match an export definitio
during linking.

See “check_level” on page 78.

must_qualify

Bit 15

If this bit is set to one, it indicates that there is more than one entry in the symbol d
tory that has the same name as this entry, and is the same generic type (i.e. code,
stub). Therefore, the qualifier name must be used to fully qualify the symbol.

If this flag is not set, the qualifier name will only be used to qualify the symbol nam
the name it is being compared with is also fully qualified.

must_qualify is used for both import and export requests.

initially_frozen

Bit 16

If this flag is set to one it indicates that the code importing or exporting this symbol
be locked in physical memory when the operating system is being booted.

memory_resident

Bit 17

If this field is set to one it indicates that the code that is importing or exporting this
bol is frozen in memory. This flag is used so that links between memory resident p
dures can also be frozen in memory.

is_common

Bit 18

Specifies that this symbol is an initialized common data block. Each initialized com
data block resides in its own subspace. For example, a Fortran initialized common
laration would produce a symbol of type data with theis_common flag set to one.

duplicate_common

Bit 19

If this flag is set to one, it specifies that this symbol name may conflict with anothe
symbol of the same name if both are of type data. This is to facilitate the Cobol “co
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 101

Relocatable Librar ies

his
will

ter
is

. Its
acter
d

ol is
h.

ys
ring
ary.
ader

ust
mon” feature, since Cobol allows duplicate initialization of “common” data blocks. T
flag would be set to one if the language allows duplicate initialization, otherwise it
be set to zero for symbols of type data.

xleast

Bits 20-21

This is the execution level that is required to call this entry point. Thisxleast level is
placed in any XRT entry linked to this entry point. Thexleast level will be checked by
the Spectrum external procedure call primitive during execution.

See “xleast” on page 79.

arg_reloc

Bits 22-31

This field is used to communicate the location of the first four words of the parame
list, and the location of the function return value to the linker and loader. This field
meaningful only for exported ENTRY, PRI_PROG, and SEC_PROG symbols.

See “arg_reloc” on page 80.

name

This variable is used to locate the name of the symbol in the string table of the LST
value is the byte offset, relative to the beginning of the string table, to the first char
(not the length) of the symbol name.name begins on a word boundary and is precede
by a 32 bit number that contains the number of characters in the name. The symb
terminated with an 8 bit zero, but the terminator is not included as part of the lengt

This variable may point to any location within the library file (although it must alwa
be relative to the beginning of the LST string table). In particular, it may point to a st
within a symbol string table belonging to one of the SOMs contained within the libr
Although this may save space in the library file, it may have a negative impact on lo
performance.

If this field is not used, this symbol will be treated as unnamed common data and m
be of typestorage_request. In this case, this field will be set to 0.

☞

Note
Zero is not a legal string table offset since the first name
in the string will be at offset 4.
102 HP PROPRIETARY

Version 3.0

alify
ble,
ord

ers in
ded

ys
ring

act

M

is

eg-

 and

M

f the

 refer-
qualifier_name

This variable is used to locate the name of a qualifier that may be user to further qu
this symbol. Its value is the byte offset, relative to the beginning of the LST string ta
to the first character (not the length) of the qualifier name. The name begins on a w
boundary and is preceded by a 32 bit number that contains the number of charact
the name. The name is terminated with an 8 bit zero, but the terminator is not inclu
as part of the length.

This variable may point to any location within the library file (although it must alwa
be relative to the beginning of the LST string table). In particular, it may point to a st
within the symbol string table belonging to one of the SOMs contained within the
library. Although this may save space in the library file, it may have a negative imp
on loader performance.

If there is no qualifier, this field should be set to 0.

symbol_info

This field contains variant information depending on the scope of the symbol.

See “symbol_info” on page 82.

For MPE/iX, this field can contain new values if the shared_data bit in the LST SO
Auxiliary header is set:

For Data Universals, this field is set to the index of the subspace the symbol
defined in.

For Storage Universals, this field is set to the size of the storage request.

For Data Unsats, this field is set to the DXRT offset for the symbol (will be a n
ative offset).

symbol_value

This field contains the 32 bit value of this particular symbol. Depending on the type
scope of the symbol this field may have a different meaning.

See “symbol_type” on page 76.

For MPE/iX, this field can contain new values if the shared_data bit in the LST SO
Auxiliary header is set:

For Data and Storage Universals, this field is set to the DP-positive address o
symbol.

For Data Unsats, this field is set to the index of the subspace the symbol was
enced in.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 103

Relocatable Librar ies

 upon

, the
 less

, the
e

symbol_descriptor

This is an argument descriptor for the procedure's type or the data type depending
the type of the symbol (see argument descriptor definition, section 9.5).

See “symbol_desc” on page 84.

reserved

Bits 0-7

These bits are reserved for future expansion.

max_num_args

Bits 8-15

If check_level indicates that the number of arguments passed should be checked
num_args field of the imported symbol (this field is in the exported symbol) must be
than or equal to this value.

See “max_num_args” on page 84.

min_num_args

Bits 16-23

If check_level indicates that the number of arguments passed should be checked
num_args field of the imported symbol (this field is in the exported symbol) must b
greater than or equal to this value.

See “min_num_args” on page 84.

num_args

Bits 24-31
104 HP PROPRIETARY

Version 3.0

n be
l-

heck
l.

is

y
e to

r. The
This value is the number of arguments associated with the symbol.

som_index

This value is an index that identifies the SOM that defines this symbol. The index ca
used (when multiplied by the entry size) to index into the SOM pointer table that fo
lows LST header and thereby, be used to locate the SOM.

The SOM index must be a number between 0 and value of the variablemodule_limit-
1 in the LST header.

This field is not used if the symbol is an import.

symbol_key

This is the 4 byte hash key for this symbol. The key is supplied to provide a quick c
before comparing each byte of the symbol to determine if this is the correct symbo
Refer to “Symbol Directory” on page 97 for the hash algorithm to get this key.

next_entry

This value is the LST relative byte offset to the next entry in the list that contains th
symbol. If this symbol is the last entry in the list, this field is set to zero.

Argument Descriptor Fields

See “Argument Descriptor” on page 85.

4.3.2 SOM Directory

The SOM directory is a table of entries that contain the location and length of ever
SOM within the file. Both the location and length are in bytes. The location is relativ
the start of the file (not to the LST header), and points to the first byte of the SOM
header (not to the archive header). The length does not include the archive heade
index of a SOM is used to index into the SOM directory.

☞

Note A procedure return value is NOT counted as an argument. The range of
this variable is 0 to 255. Since this variable is not essential for linking or
loading, compilers are not constrained to limit the number of parameters
to 255. However, if this limit is exceeded, functions that use this field (e.g.
parameter checking) may produce unpredictable results.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 105

Relocatable Librar ies

to

h of

ions

ept

 the
the
Since each SOM will require a SOM directory entry, the variablemodule_limit in the
LST header will contain the number of entries in the SOM directory. The table is
pointed to by the variabledir_loc, which contains the LST header relative byte offset
the beginning of the SOM directory.

If a SOM does not exist, its entry in the SOM directory table will be set with a lengt
zero and the location set so that all bits are one.

Figure 4-25 shows the structure of the SOM directory.

4.3.3 Free Space List

A linked list of free areas within the file is maintained to support additions and delet
to an existing library file.The first free area is located by the variablefree_list, which
contains the LST header relative byte offset to the first free area. Free areas are k
track of by linking each area with a free link.

A free link is a three word link stored at the front of each free area. The first word is
LST header relative byte offset to the previous entry in the list, the second word is

Figure 4-25:Structure of the SOM directory

SOM
Directory

Symbol
Directory

dir_loc

Archive Header

SOM

Symbol

SOM Index
106 HP PROPRIETARY

Version 3.0

 size

ill
 no

n a 4
 lost
LST header relative byte offset to the next entry in the list, and the third word is the
of the current entry in bytes.

The previous link field in the first free link and the next link field in the last free link w
be set to zero in order to mark the corresponding end of the free list. If the file has
free space, the free list pointer in the LST header will be set to zero.

Free space is always allocated from the free list in multiples of 4 bytes, beginning o
byte boundary. If a free area is smaller than a free link it will be ignored and become
space.

0 32

4

8

previous_free_linkprevious_free_link

free_area_size

next_free_link

Figure 4-26: FREE_LINK Format
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 107

Relocatable Librar ies
108 HP PROPRIETARY

CHAPTER 5 Executable Files
able
only
ader

The

ade
d

5.1 Object File Header

The object file header must be present, and must be at the beginning of an execut
file. Magic numbers reserve for executable file are 0x107, 0x108, and most comm
0x10B. Refer to Section 3.1 on page 39 for a detail description of the object file he
and Table 10 on page 41 for more information regarding the magic numbers.

5.2 Auxiliary Headers

If the auxiliary area is present it will contain one or more auxiliary header records.
first two words of every auxiliary header record (also known asauxiliary header identi-
fier) will identify the type and length of the auxiliary header. A provision has been m
to allow user defined auxiliary header records, however, there will be no centralize
control over the assignment of user defined auxiliary header types.

The structure of the auxiliary header id defined below in Figure 5-27.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 109

Executable Fi les

 that
r

out
he

e

f its
mandatory

Bits 0

If this bit flag is set to one it indicates that this auxiliary header contains information
the linker must understand. If the type field is undefined for the version of the linke
being used, it is an error.

copy

Bits 1

If this bit flag is set to one it indicates that this auxiliary header is to be copied with
modification to any new SOM created from this SOM. Two auxiliary headers with t
same type field should not be merged together but left as separate entries.

append

Bits 2

This bit flag is the same as thecopy flag above except that multiple entries with the sam
type and append set of “action flags” (i.e.,mandatory, copy, append, ignore) should be
merged (concatenation of the data portion). The order of merging is not important.

ignore

Bits 3

If this bit flag is set to one it indicates that this auxiliary header should be ignored i
type field is unknown (i.e., do not copy, do not merge).

struct aux_id {

unsigned int mandatory : 1;

unsigned int copy : 1;

unsigned int append : 1;

unsigned int ignore : 1;

unsigned int reserved : 12;

unsigned int type : 16;

unsigned int length;

};

Figure 5-27: Definition of the Auxiliary Header
110 HP PROPRIETARY

Version 3.0

r
2767

111.

 two

 If it
 will
 aux-

n the
reserved

Bits 4-15

These bits are reserved for future use.

type

Bits 16-31

This field is a numeric value that defines the contents of the auxiliary header.

This field has a range of 0 to 65535. TYPE values less than 32767 are reserved fo
Hewlett-Packard defined auxiliary header record types. TYPE values greater that 3
are user definable.

The currently defined auxiliary header type values are defined in Table 19 on page

length

This is the length of the auxiliary header in bytes. This value does NOT include the
word identifier at the front of the header.

An auxiliary header is not constrained to be an integral number of words in length.
is not word aligned, the next auxiliary header or the end of the auxiliary header area
be placed at the next word boundary. The value of pad bytes are not defined. If two
iliary headers are merged and the first is not word aligned, the next one will start o
very next byte.

TABLE 19 Auxiliary Header Types

Value Usage

0 NULL

1 Linker footprint

2 Obsolete (used to be MEP/iX program)

3 Debugger footprint

4 Exec Auxiliary Header

5 IPL auxiliary header

6 Version string

7 MPE/iX program

8 MPE/iX SOM

9 Copyright

10 Shared Library version information

11 Product specifics

12 NetWare Loadable Module
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 111

Executable Fi les

d
OM.

e

e
 util-
esti-
the
nch-

e

5.2.1 Loader Auxiliary Headers

Currently there are three type of loader auxiliary headers:

• HP-UX auxiliary header: This auxiliary header contains run-time information use
by the HP-UX loader to do a fast and efficient program load of an executable S
See Section 6.1 on page 117 for the detail structure of this auxiliary header.

• MPE/iX program and SOM auxiliary headers: These are auxiliary headers used by
the MPE/iX loader to load program (executable SOM) or executable library. Se
Section 7.1 on page 149 for descriptions of these auxiliary headers.

• IPL auxiliary header: This auxiliary header is used to provide information that is
needed for loading bootable utilities. All bootable utilities accessible through th
LIF directory must have enough of a common format for IPL to load and launch
ities through a standard method. IPL may need to know the intended physical d
nation address for which the module was linked, as well as the entry point and
length of the image. This auxiliary header meets IPL’s needs for loading and lau
ing bootable utilities.

Following is the IPL auxiliary header definition and its fields description:

header_id

struct ipl_aux_hdr {

struct aux_id header_id;

unsigned int file_length;

unsigned int address_dest;

unsigned int entry_offset;

unsigned int bss_size;

unsigned int checksum;

};

Figure 5-28: Definition of the Auxiliary Header

☞
Note

The mandatory, copy, append and ignore bits fields in the auxiliary
header are not used consistently. Thus, users should consider thes
fields meaningless and unreliable.
112 HP PROPRIETARY

Version 3.0

those
it at

le.

ader
oes.

he
s,

ed
al.
This is the auxiliary header id for an IPL SOM. The type field of this id must be 5.

file_length

This field contains the length of the entire SOM including all headers.

address_dest

This field specifies the destination address at which the file should be loaded. For
utilities which are position independent, this field can be set to -1 and IPL will load
the first available memory after IPL.

entry_offset

This field contains the file offset of the entry point relative to the beginning of the fi

bss_size

This field specifies the length of the un-initialized data area for the program. The lo
must allocate this area immediately following the initialized data and fills it with zer

checksum

This field contains the checksum of the entire file. The checksum is computed as t
negated arithmetic sum of every word in the file (not including itself). In other word
the arithmetic sum of all the words in a valid file, including the checksum would be
zero.

5.2.2 Other Auxiliary Headers

a. Linker footprint

The linker footprint auxiliary header is used to record the last time the linker modifi
this SOM or LST (whichever applies). The presence of the linker footprint is option
Following is the linker footprint auxiliary header definition and its fields description:

header_id

struct linker_footprint {

struct aux_id header_id;

char product_id[12];

char version_id[8];

struct sys_clock htime;

};

Figure 5-29: Definition of the Linker Footprint Auxiliary Header
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 113

Executable Fi les

e 1.

ker

odi-

e
ts is
s to
s 30

s
t to

er
print
lds

ust
This is the auxiliary header id for the linker footprint. The type field of this id must b

product_id

bits 0--95

This twelve character array contains the HP product identification number of the lin
that last modified this SOM or LST.

version_id

This twelve character array contains the HP version number of the linker that last m
fied this SOM or LST.

htime

The htime is a 64 bit value that represents the time the file was last modified by th
linker. The htime is actually composed of two 32 bit quantities where the first 32 bi
the second of the century (maximum value is 3162240000-1, which requires 32 bit
represent) and the second 32 bits is the nano second of the second (which require
bits to represent).

This value is independent of any modification time maintained by other subsystem
(e.g. the file system). The use of this field is optional, but if it is not used it will be se
zero.

b. Debugger_footprint

The debugger footprint auxiliary header is used to record the last time the debugg
modified this SOM or LST (whichever applies). The presence of the debugger foot
is optional. Following is the debugger footprint auxiliary header definition and its fie
description:

header_id

This is the auxiliary header id for the debugger footprint. The type field of this id m
be 3.

struct debugger_footprint {

struct aux_id header_id;

char debugger_product_id[12];

char debugger_version_id[8];

struct sys_clock debug_time;

};

Figure 5-30: Definition of the Debugger Footprint Auxiliary Header
114 HP PROPRIETARY

Version 3.0

ebug

odi-

 by
e the

ond

s
t to

ength

g

he
debugger_product_id

bits 0--95

This twelve character array contains the HP product identification number of the d
program that last modified this SOM or LST.

debugger_version_id

This eight character array contains the HP version number of the linker that last m
fied this SOM or LST.

debug_time

The debug_time is a 64 bit value that represents the time the file was last modified
the debugger . The debug_time is actually composed of two 32 bit quantities wher
first 32 bits is the second of the century (maximum value is 3162240000-1, which
requires 32 bits to represent) and the second 32 bits is the nano second of the sec
(which requires 30 bits to represent).

This value is independent of any modification time maintained by other subsystem
(e.g. the file system). The use of this field is optional, but if it is not used it will be se
zero.

c. Version String Auxiliary Header

The Version_String auxiliary header can be used for any user-defined string. The l
of the string is essentially unbounded. The string must be null-terminated. The
string_length field contains the length of the user-defined version string, not includin
the null () terminator. (Note that the length field inaux_header_id includes both the
string_length field and the padding bytes of the string.)

Additional auxiliary header types for other kinds of user strings may be added in t
future, rather than reserving one auxiliary header type for all such user strings.

Following is the version string auxiliary header definition. Note that the type of the
header_id field must be 6:

struct version_string_aux_hdr {

struct aux_id header_id;

unsigned int string_length;

char user_string[1];

};

Figure 5-31: Definition of the Version String Auxiliary Header
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 115

Executable Fi les

mbol
l

code,
 an
at
 the

.

k

ech-
ords
e type
r for
5.3 Symbol Table

The symbol table (also known as symbol dictionary) has the same format as the sy
table in the relocatable object file. Please refer to Section 3.7 on page 73 for detai
descriptions of the symbol table.

5.4 Stack Unwind Table

Each entry in the unwind table contains two addresses which describe a region of
typically the starting and ending address of a procedure. Each entry also contains
unwind descriptorwhich holds information about the frame and register usage of th
region. When an unwind operation is required, the unwind table is searched to find
region containing the instruction where the exception or interrupt occurred.

Please refer to the “Stack Unwind Library” chapter for more information on unwind

5.5 Recover Table

The recover table has three words entries that contains the beginning and the end
addresses of the unwind region and the resume address. Please refer to the “Stac
Unwind Library” chapter for more information on unwind and recover.

5.6 Auxiliary Unwind Table

The auxiliary unwind table is implemented to mainly support the Ada trace back m
anism. The auxiliary unwind table parallels to the unwind table and contains four w
entries that describe information on the compilation unit, the scope name, the scop
and the address of the line table.. Please refer to the “Stack Unwind Library” chapte
more information on Ada procedure trace back tables and mechanism.
116 HP PROPRIETARY

CHAPTER 6 HP-UX Specifics
lett-
n-

ker
ow
 by
. All

le
6.1 HP-UX Auxiliary Header

The exec auxiliary header (also known as the 'HP-UX' auxiliary header within Hew
Packard) is used to contain run-time information for executable SOM files which co
form to the notion of a 32-bit local address space. This header is filled in by the lin
and is used by the system loader. The exec auxiliary header must immediately foll
the SOM header record. This auxiliary header contains all the information needed
the system loader to perform fast and efficient program load of an executable SOM
fields are mandatory and are expected to be filled in by the linker.

The Exec Auxiliary Header is required in all incomplete executables and relocatab
objects. Figure 6-32 on page 117 defines the Exec Auxiliary Header.

struct som_exec_auxhdr {

struct aux_id som_auxhdr; /* som auxiliary header */

long exec_tsize; /* text size in bytes */

long exec_tmem; /* offset of text in memory */

long exec_tfile; /* location of text in file */

long exec_dsize; /* initialized data */

long exec_dmem; /* offset of data in memory */

long exec_dfile; /* location of data in file */

long exec_bsize; /* uninitialized data (bss) */

long exec_entry; /* offset of entrypoint */

long exec_flags; /* loader flags */

long exec_bfill; /* bss initialization value */

};

Figure 6-32: Definition of Exec Auxiliary Header
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 117

HP-UX Specifics

f

 and

ress

 off-

ltiple

ust be

e to

.

ould
ill be
som_auxhdr
This field contains the auxiliary header identifier for a program file. The type field o
this header id must be 4.

exec_tsize
This field specifies the text (code) size in bytes (does not have to be a multiple of 4
Kbytes). The actual size of the text section in the file must be a multiple of 4 Kbytes
can be padded with zeroes to make it a multiple of 4 Kbytes.

exec_tmem
This field specifies the space-relative byte offset of text (code) in memory. The add
must be page aligned.

exec_tfile
This field contains the location of the text (code) in the file. The value will be a byte
set relative to the first byte of the SOM.

exec_dsize
This field specifies the size in bytes of the initialized data (does not have to be a mu
of 4 Kbytes). The actual size of the data section in the file must be a multiple of 4
Kbytes and can be padded with zeroes to make it a multiple of 4 Kbytes.

exec_dmem
This field specifies the space-relative byte offset of data in memory. The address m
4 Kbyte aligned.

exec_dfile
This field contains a location of the data in the file. The value is a byte offset relativ
the beginning of the SOM.

exec_bsize
This field contains the size in bytes of the uninitialized data in the file.

exec_entry
This field contains the space-relative byte offset of the main entry point for this file

exec_flags
This field contains a series of one-bit flags for use by the loader.

The low-order bit (bit 31) is defined to indicate whether nil-pointer dereferences sh
be trapped by the operating system. If the bit is set, dereferences of nil pointers w
trapped; if the bit is not set, dereferences of nil pointers will return 0.
118 HP PROPRIETARY

Version 3.0

.

ut-

.

, and

okes
 all
oking

 fully
e first
ker.

sizes
em-
eld
 func-

 start-
rogram
ation.

%r30
d, the
ari-

zero
Bit 30 indicates that external millicode (if implemented) is used by this program file

Bit 29 indicates dynamically linked (incomplete) executables (for example, an exec
able linked with shared libraries).

Bit 28 indicates executable built with the aid of profile information.

The remaining bits are reserved for future use.

exec_bfill
This field specifies the value to which uninitialized data (BSS) should be initialized

6.2 Program Startup

All programs must be linked with the relocatable startup objectcrt0.o.This object code
defines entry points, sets up data pointer register (DP), initializes program variables
checks for dynamic (shared) libraries.

Table 7 on page 34 summaries program variables that are defined bycrto, and Table 8
on page 35 lists the register definition at process initialization.

Here is how shared libraries work at run time: Startup code in /usr/ccs/lib/crt0.o inv
the dynamic loader, /usr/lib/dld.sl, which in turn maps all the shared libraries, binds
the symbols, and applies all the dynamic relocations, then branches back to the inv
executable file.

The magic numbers and aux headers are the same between an incomplete and a
bound executable. To decide whether to invoke the dynamic loader, crt0 looks at th
word in the TEXT space, found by looking at __text_start symbol created by the lin
If this matches the value of the DL_HEADER_VERSION_ID or
DL_HEADER_VERSION_ID2 in <shl.h>, then the executable is an incompletely
bound program file.

crt0 will then map dld.sl. First it opens the file; then it reads the text, data, and bss
from the HP-UX aux header; then it calls mmap(2) to map all three sections into m
ory. Finally, it invokes the entry point for dld.sl indirectly, by adding the exec_entry fi
of the aux header to the mapped address of dld’s text start, and makes an indirect
tion call to this point.

Several parameters are sent to dld’s main entry point in this call. These include the
ing and ending addresses of dld’s text, data, and bss, as well as the name of the p
file, its starting and ending addresses, and a value that dld will use as its stack loc

Since dld runs before the program file itself, and it uses the stack as pointed to by
for local variables just as any code, by the time the program file routines are entere
stack is likely to be non-zero -- that is, dirty. This has caused no small concern to v
ous (poorly-written) applications that expect their local variables to start out with a
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 119

HP-UX Specifics

 by

s the
an
cifi-
ca-
initial value. In order to prevent a dirty stack on program entry, dld bumps the stack
8K bytes on entry, and uses this value as its starting stack address.

Actually, crt0 bumps the stack by this new value before it invokes dld, then restore
original SP value upon dld’s return. But this stack location is sent to dld so that it c
use the same minimum address when it is invoked during program execution: spe
cally, when deferred binding is on and a procedure call must be bound at first invo
tion.

6.2.1 Sample Assembly Listing of crt0 code

#define etext _etext
#define monitor _monitor

;;; these constants come from /usr/include/shl.h
DL_HDR_VERSION_ID .equ 89060912
DL_HDR_VERSION_ID2 .equ 93092112

#include <machine/break.h>

.space$TEXT$

.subspa$UNWIND_START$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=56

.subspa$UNWIND$MILLICODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=62

.subspa$CODE$
 .import __text_start, data
.proc
.callinfo SAVE_SP,FRAME=128
.export$START$,entry
.entry

$START$
ldil L’$global$,dp ;Initialize the global data
ldo R’$global$(dp),dp ; pointer
ldo 128(sp),sp ;Allocate frame, marker, and argument
depi 0,31,3,sp ; list and doubleword align sp
ldw 0(arg1),r3 ;Get argv[0]...
addil L’$ARGV-$global$,dp
stw r3,R’$ARGV-$global$(r1) ; and stash it away

addilL’_environ-$global$,dp ; Initialize _environ
stwarg2,R’_environ-$global$(r1) ; so getenv(3) works

; Floating point status register initialization.
; We use the dld ltptr location at dp-4 as a scratch area

fstws fr0,-4(0,dp)
ldil LR’_fp_status,r5 ;symbol value set by ld +FP option
ldo RR’_fp_status(r5),r5 ;default value is 0
ldw -4(dp),r4
orr4,r5,r5 ;we OR into the current status
stwr5,-4(dp) ;store result into scratch area

addil L’ DL_HDR_VERSION_ID2, %r0 ; load constant here to avoid
ldo R’ DL_HDR_VERSION_ID2 (%r1), %r19 ; interlock from store

fldws-4(dp),fr0; load the fp status register from the
; scratch area we saved it in
120 HP PROPRIETARY

Version 3.0
; This is the documentation of the structure pointed to by
; %arg3. Learn it, know it, live it. Its definition lives in
; /usr/include/machine/cpu.h, the structure name is keybit_info.
; +------------------------------+
; | cpu_version |
; +------------------------------+
; | FP status reg after copr 0,0 |
; +------------------------------+
; | number of words of keybits |
; +------------------------------+
; | Keybits_1 |
; +------------------------------+
; | addtional opt. keybits |
; | . |
; | . |
; | . |
; +------------------------------+
; | -1 |
; +------------------------------+
; The -1 marks the end of the list. This way, we can extend this
; structure in the future, and add fields besides keybits if we want.
.import _is_89_0
copy %r26, %r4 ; save arvc, argv and envp
copy %r25, %r5
copy %r24, %r6
copy %r23, %r7 ; save keybits pointer
ldil L’_is_89_0,r31 ; Make sure we are not on a 8.0 or 9.0 system
ble R’_is_89_0(sr4,r31) ; before we de-reference the keybits pointer
copy r31,rp
copy %r4, %r26 ; restore arvc, argv and envp
copy %r5, %r25
copy %r6, %r24
copy %r7, %r23 ; restore keybits pointer

comb,<>,n %ret0, %r0, L$0002 ; If return value is non-zero, we are
; on a 9.0 system, and should not
; de-reference the keybits pointer.

; Even though we check to make sure we are not on 8.0 or 9.0
; above, still validate pointer in case we are running on a pre-8.0
; system.
; The pointer validation assumes that exec will always place
; the CPU_INFO structure higher on the stack than envp.
comb,>>,n %arg3,%sp,L$0002 ; If passed_ptr > sp, it must be a

; bogus pointer.
comb,<<,n %arg3,%arg2,L$0002 ; If passed_ptr < envp, it must be a

; bogus pointer.

; We have a valid pointer
ldw (%arg3),%r5 ; Get first word of structure (cpu_version)
addil L’_CPU_REVISION-$global$,dp ; Store _CPU_REVISION info
stw %r5,R’_CPU_REVISION-$global$(r1) ; passed in from the kernel

ldw 12(%arg3),%r5 ; Get first word of keybits (key_bits[0])
addil L’_CPU_KEYBITS_1-$global$,dp ; Store key bits loaded from stack
stw %r5,R’_CPU_KEYBITS_1-$global$(r1) ; into _CPU_KEYBITS_1

; Now we set up the _FPU_MODEL and _FPU_REVISION globals with
; the data from the fpu_info field of the keybit_info structure
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 121

HP-UX Specifics
ldil L’_FPU_MODEL,%r4 ; put the address of _FPU_MODEL
ldo R’_FPU_MODEL(%r4),%r4 ; in %r4
ldw 4(%arg3),%r5 ; put copr 0,0 results into %r5
extru %r5,15,6,%r6 ; put the fpu model into %r6
sth %r6,(%r4) ; store the fpu model in _FPU_MODEL
extru %r5,20,5,%r6 ; put the fpu revision into %r6
sth %r6,2(%r4) ; store the revision _FPU_REVISION

L$0002

; Shared Library support -- mapping dld.sl
; check a.out file for dl_header
; dl_header is the first thing in the text space.

ldil L’__text_start,r1 ; dl_header.hdr_version
ldw R’__text_start(r1),r31
addil L’DL_HDR_VERSION_ID,%r0 ; start loading old version number
combt,=,n %r19,%r31,L$0004 ; if new version, go map dld now
ldo R’DL_HDR_VERSION_ID (%r1), %r19
combf,=,n %r19,%r31,L$0001 ; if not old version, skip mapping

L$0004

.import __map_dld

.import ___stack_zero, absolute
; map_dld
; set sp to skip nominal 8K to maintain clean stack (dld uses sp+8k
; for sp) - actually linker-set value of “___stack_zero”, setable
; with ld -FS <val>, where val is in decimal bytes.
copy sp, %r7 ; save sp
addil LR’___stack_zero, sp
ldo RR’___stack_zero(%r1),sp
copy %r26, %r4 ; save arvc, argv and envp
copy %r25, %r5
copy %r24, %r6
copy sp, arg1 ;pass dld’s sp as 2nd arg
;envp is already in place for 3rd arg
copy %r7, arg3 ;pass in orig user sp (saved in gr7) as 4th
arg
copy r3, arg0 ;pass in program file name as 1st arg
ldil L’__map_dld,r31
ble R’__map_dld(sr4,r31)
copy r31,rp

copy %r4, %r26 ; restore arvc, argv and envp
copy %r5, %r25
copy %r6, %r24
copy %r7, sp ; restore original sp.

L$0001

.import _start

.call
stw r0,-4(sp) ;Mark last stack frame (null
fm_psp)

addil L’_environ-$global$,dp ; Pass in the (possibly)
ldw R’_environ-$global$(r1),arg2 ; updated value of _environ
ldil L’_start,r31
ble R’_start(sr4,r31)
copy r31,rp

$START_RTN$
122 HP PROPRIETARY

Version 3.0
break BI1_AZURE,BI2_AZURE_CRT0 ;Should never get here
.procend

.proc ; so a profiling SOM will load with this.

.callinfo ;

.export _mcount,entry ;

.entry
_mcount

.exit
bv,n(rp)
nop
.procend

.proc

.callinfo

.export _clear_counters,entry

.entry
_clear_counters

.exit
 bv,n (rp)
 nop
 .procend

.proc ; _sr4export serves as target of calls

.callinfo export_stub ; from dynamically-loaded code to the

.export _sr4export,code ; basis code.
_sr4export

ble 0(sr4,r22) ; branch to real entry point
copy r31,rp ; ...return link in rp
ldw -24(sp),rp ; restore return link from stack
ldsid (rp),r1; get space id for return
mtsp r1,sr0
be,n 0(sr0,rp); return
nop
.procend

.proc ; __d_trap is used by HP/PAK

.callinfo

.export __d_trap,entry

.entry
__d_trap

.exit
bv,n(rp) ; just return
nop
.procend

.subspa $UNWIND_START$;Declare subspace start symbols

.export $UNWIND_START, data
$UNWIND_START

.subspa $UNWIND_END$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=72

.export $UNWIND_END, data
$UNWIND_END

.subspa $RECOVER_START$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=73

.export $RECOVER_START, data
$RECOVER_START

.subspa $RECOVER$MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=78

.subspa $RECOVER$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=80

.subspa $RECOVER_END$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=88

.export $RECOVER_END, data
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 123

HP-UX Specifics
$RECOVER_END

.space $PRIVATE$

.subspa $GLOBAL$

.export $global$

.export __dld_flags, data

.export __dld_hook, data

.export __dld_list, data

; NOTE: We must always make sure that $global$ is double-word aligned

__dld_list
.WORD 0 ; holds address of pointer to dld library handle list

; provided to support core file debugging.
__dld_hook

.WORD 0 ; word to hold plabel of routine for dld to call back
; into the a.out so xdb can hit known breakpoint.

__dld_flags
.WORD 4 ; Bit vector for xdb or other external process to

; pass flags to crt0.o/dld.sl. All writes to
; this flag must OR in the previous contents.
;
; Meaning of bits
; 0 - if set -> dld should map libraries private
; 1 - if set -> dld should call hook routine
; 2 - if set -> dld allowed to store address
; of pointer to dld library handle list at
; location __dld_list
; 3 - if set and hook routine valid, dld should call
; hook routine during BOR (bind on reference).
; Dynamically changed.

 ;
; All other bits must be zero until defined later.

.WORD 0 ; leave word at dp-4 to hold LT-pointer of dld.sl
; This location is also used as a scratch area
; by startup code in crt0

 ;
$global$;Contents of dp for HP-UX

;DO NOT PUT ANY DATA ON THIS SIDE OF $global$ - YOU WILL FOUL UP PASCAL’s
;SCHEME FOR ALLOCATING THEIR MAIN PROGRAM GLOBALS HERE INSTEAD OF ON THE
;STACK

; Define data sym to hold the system id of final executable
; __SYSTEM_ID will be defined by ld(1)

.subspa $DATA$

.import __SYSTEM_ID,ABSOLUTE

.align 8
_SYSTEM_ID

.word __SYSTEM_ID

.export _SYSTEM_ID

_FPU_MODEL
.half 0

; YOU MUST KEEP _FPU_REVISION IMMEDIATELY AFTER _FPU_MODEL, SINCE THE
; CODE IN CRT0.S RELIES ON THIS!!!!!!!!!!!
_FPU_REVISION
124 HP PROPRIETARY

Version 3.0

 at
th
ory

am
 a

 entry
t. The
.half 0

.export _FPU_MODEL,data

.export _FPU_REVISION,data

_CPU_REVISION
.word 0
.export _CPU_REVISION,data

_CPU_KEYBITS_1
.word 0
.export _CPU_KEYBITS_1,data

_environ
environ

.word 0

.export _environ,data

.export environ,data,sec_def

.import _fp_status,ABSOLUTE

__d_trap_fptr
.word P’__d_trap
.export __d_trap_fptr,data

.subspa $PFA_COUNTER$,QUAD=1,ALIGN=4,ACCESS=0x1f,SORT=8

.export $ARGV
$ARGV .word 0;Copy of argv[0]

.align8

.export $PFA_C_START
$PFA_C_START

.subspa $PFA_COUNTER_END$,QUAD=1,ALIGN=4,ACCESS=0x1f,SORT=10

.export $PFA_C_END
$PFA_C_END

.end

6.3 Shared Libraries

6.3.1 Shared Library Memory Model

The HP-UX shared memory starts at hexadecimal address 0x80000000 and ends
0xFFFFFFFF (third and fourth quadrant) with the upper 256 megabytes of the four
quadrant reserved for system use. The above address range is mapped into mem
using space register SR6 and SR7.

6.3.2 Linkage Table

The Linkage Table is located in the $DATA$ space of a shared library and/or progr
file. It is divided into two parts: a Data Linkage Table (DLT) for data references and
Procedure Linkage Table (PLT) for procedure calls. The linkage table is used as a
branch table to handle indirect procedure and data references.The DLT contains an
for each data or procedure symbol that is accessed via the DLT_REL fixup reques
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 125

HP-UX Specifics

fer-
ping
ther
e

e
s data

plete
y is
es an
rt stub
. In
 entry
9 (as
is not
 the

Each
roce-
y the

export
the
 first

bol.
 this
PLT contains an entry for each unresolved procedure symbol referenced within the
object.

6.3.2.1 Data Linkage Table

Each DLT entry is a single word which contains a pointer to the actual data item re
enced via a T’ fixup; this pointer value is assigned by the dynamic loader, after map
the shared library. Since T’ references to data items go directly through the DLT (ra
than a stub), the register r19 is reserved to point to the middle of the DLT, to provid
maximum addressability for short load instructions. The linker allocates r19-relativ
offsets for each DLT entry, and uses those offsets when rewriting code that accesse
with the DLT_REL fixup.

6.3.2.2 Procedure Linkage Table
The Procedure Linkage Table (PLT) is created for both shared libraries and incom
executables, and is placed immediately following the DLT (if one exists). A PLT entr
created for each unique procedure symbol imported by the object. The linker creat
import stub for each unresolved procedure and redirects the reference to the impo
created, which uses the address in the PLT entry to branch to the actual procedure
PIC code (shared libraries), import stubs use a long r19-relative offset to access an
in the PLT; therefore, PLT entries are not constrained to be a fixed distance from r1
the DLT references are). For non-PIC code (incomplete executables), register r19
reserved, and import stubs will be able to access the PLT entries directly (because
executable program knows where its Linkage Table is allocated: right before DP).
PLT entry consists of two words: the first word contains the address of the target p
dure, and the second word contains the r19 (linkage table pointer) value required b
procedure being called.

proc_addr
This field contains the address of the procedure to be branched to, taken from the
table of a shared library or program file. It can also be initialized to the address of
bind on reference (BOR) dynamic loader routine that will bind the procedure upon
reference.

ltptr_value
If proc_addr points to the BOR routine, this holds the import index of the code sym
Once the actual destination address has been calculated and stored in proc_addr,
field holds the Linkage Table pointer value for the callee routine.

struct PLT_entry {

int proc_addr; /* address of procedure */

int ltptr_value; /* value of r19 required for this procedure */

};

Figure 6-33: PLT Entry Definition
126 HP PROPRIETARY

Version 3.0

gram
tis-
T$
ttach-
n of
s of

lds

 the

he
tries

 and

 a
red
e

the
6.3.3 The DL Header and Other Tables

The DL header appears in every shared library and in incomplete executables (pro
files linked with shared libraries--may contain unsatisfied symbols which will be sa
fied at run time by the dynamic loader). It is assumed to be at offset 0 in the $TEX
space. It defines fields used by the dynamic loader and various other tools when a
ing the shared libraries at run time. The header contains information on the locatio
the export and import lists, the module table, the linkage tables, as well as the size
the tables.

Figure 6-34 on page 128 defines the dl_header structure. The followings are its fie
description:

hdr_version
This field is used to denote the version of the DL header. The old value was set to
decimal number “89060912” prior to 10.0. The new value is “93092112”.

ltptr_value
This field is the data-relative offset of the Linkage Table pointer (GR 19 for shared
libraries, GR 27 for incomplete executables). The linkage table pointer is used by t
dynamic loader to access the Data Linkage Table and Procedure Linkage Table en
at load time so it can bind symbols and attach shared libraries. All data references
PIC code in a shared library must go indirectly though the linkage pointer.

shlib_list_loc
This field is the text-relative offset of the shared library list. The shared library list is
list of shared libraries that the given file depends on for symbol bindings. If the sha
library list in a shared library is present, the shared library is said to “depend” on th
libraries in the shared library list.

shlib_list_count
This field is the number of entries in the shared library list.

import_list_loc
This field is the text-relative offset of the import list. The dynamic loader searches
import list and binds each entry in the list at load time.

import_list_count
This field is the number of entries in the import list.

hash_table_loc
This field is the text-relative offset of the hash table.

hash_table_size
This field is the number of slots used in the hash table.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 127

HP-UX Specifics

/

r

export_list_loc

struct dl_header {

int hdr_version; /* header version number */

int ltptr_value; /* data offset of LT pointer (R19) */

int shlib_list_loc; /* text offset of shlib list */

int shlib_list_count; /* count of items in shlib list */

int import_list_loc; /* text offset of import list */

int import_list_count; /* count of items in import list */

int hash_table_loc; /* text offset of export hash table */

int hash_table_size; /* count of slots in export hash table *

int export_list_loc; /* text offset of export list */

int export_list_count; /* count of items in export list */

int string_table_loc; /* text offset of string table */

int string_table_size; /* length in bytes of string table */

int dreloc_loc; /* text offset of dynamic reloc records
*/

int dreloc_count; /* number of dynamic relocation
records */

int dlt_loc; /* data offset of data linkage table */

int plt_loc; /* data offset of procedure linkage
table */

int dlt_count; /* number of dlt entries in linkage table
*/

int plt_count; /* number of plt entries in linkage table
*/

short highwater_mark; /* highest version number seen in lib o
in shlib list*/

short flags; /* various flags */

int export_ext_loc; /* text offset of export extension tbl */

int module_loc; /* text offset of module table*/

int module_count; /* number of module entries */

int elaborator; /* import index of elaborator */

int initializer; /* import index of initializer */

int embedded_path; /* index into string table for search
path */

/* index must be > 0 to be valid */

int initializer_count; /* number of initializers declared*/

int reserved3; /* currently initialized to 0 */

int reserved4; /* currently initialized to 0 */

};

Figure 6-34: Definition of DL Header
128 HP PROPRIETARY

Version 3.0

ca-
n or

ink-
by

roce-
d
dure

et of
, a

l is to
This field is the text-relative offset of the export list.

export_list_count
This field is the number of export entries.

string_table_loc
This field is the text-relative offset of the string table.

string_table_size
This field is the length of the string table.

dreloc_loc
This field is the text-relative offset of the dynamic relocation records. Dynamic relo
tion records are built for each data location initialized with the address of a functio
data item.

dreloc_count
This field is the number of dynamic relocation records generated.

dlt_loc
This field is the offset in the $DATA$ space of the Data Linkage Table. The Data L
age Table consists of one word entries for each static data item that is referenced
Position Independent Code (PIC).

plt_loc
This field is the offset in the $DATA$ space of the Procedure Linkage Table. The P
dure Linkage Table contains entries for each unresolved procedure call in a share
library or for calls to exported procedure symbols. The dynamic loader binds proce
symbols at run time.

dlt_count
This field is the number of entries in the DLT.

plt_count
This field is the number of entries in the PLT.

highwater_mark
Bits 0-15

The highest version number of any symbol defined in the shared library or in the s
highwater marks of the shared libraries in the shared library list. For a program file
highwater version of each library linked with the program is recorded.highwater_mark
is used by the dynamic loader at run time to determine which shared library symbo
be used for binding the program file's symbol reference.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 129

HP-UX Specifics

labo-

/

l

ion
t, and

ture
for-

er
 will
flags
Bits 16-31

This field is used to specify the dl_header flags, such as to denote if initializers or e
rators have been seen in the libraries. The valid values for this field are:

#define ELAB_DEFINED 1 /* an elaborator has been defined for this library */

#define INIT_DEFINED 2 /* an initializer has been defined for this library */

#define SHLIB_PATH_ENABLE 4 /* allow search of SHLIB_PATH at runtime */

#define EMBED_PATH_ENABLE 8 /*allow search of embed path at runtime*/

#define SHLIB_PATH_FIRST 16 /* search SHLIB_PATH first */

#define SEARCH_ALL_STORS 32 /* search all shlibs to satisfy STOR import *

#define SHLIB_INTERNAL_NAME 64 /*shlib has an internal name, for library-leve
versioning support*/

See “Library-Level Versioning” on page 144 for details about the usage of
SHLIB_INTERNAL_NAME for library level versioning support.

export_ext_loc
This field is the text-relative offset of the export extension table. The export extens
table contains information about a symbol such as its size, the start of the dreloc lis
a list of exports with the same value.

module_loc
This field is the text-relative offset of the module table. The module table is a struc
containing information on the modules used to build the shared library. It has the in
mation on defined and referenced symbols for each module in the table.

module_count
This field is the number of modules in the module table.

elaborator
This field holds an index into the import table if theelab_ref bit in the flags field is set.

initializer
This field holds an index into the import table if theinit_ref bit in the flags field is set
and theinitializer_countfield is set 0. Ifinitializer_count is non-zero, then theinitializer
field will no longer contain an import index. Instead it will be an offset of the initializ
import list relative to the beginning of the $TEXT$ space. The contents of the table
be import indexes of the specified initializers.

embedded_path
This field is an index into the shared library string table.

initializer_count
130 HP PROPRIETARY

Version 3.0

f the
ader
ater

 rep-

bol
ust
mbol
This field holds the number of initializers declared.

reserved3
This field is reserved for future use (currently set to 0).

reserved4
This field is reserved for future use (currently set to 0).

6.3.4 Version Auxiliary Header

The shared library version auxiliary header is used to record the version number o
object module. This auxiliary header is optional. The linker can use this auxiliary he
to determine the version of the exported symbols within the module plus the high w
mark for a shared library or incomplete executable.

aux_header_id
Bits 0-63

This field contains the auxiliary header identifier for the object module.

version
Bits 0-15

This field contains the version number of the object module. The version number is
resented as the number of months since January, 1990.

6.3.5 Import List

An import list is created for both incomplete executables and shared libraries. The
import list is allocated in the TEXT space of the object, and consists of an array of
import entries. Each import entry contains information about the symbol name, sym
type, and the shared library which defined the symbol at link time. The import list m
maintain a one-to-one correspondence with the linkage table. There is an import sy
for each DLT entry in the linkage table, followed by an import symbol for each PLT
entry in the linkage table.

The following is the import_entry data structure, which makes up the import list in
incomplete executables and shared libraries.

name
Bits 0-31

struct shlib_version_aux_hdr {

struct aux_id header_id;

short version;

};

Figure 6-35: Shared Library Version Auxiliary Header Definition
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 131

HP-UX Specifics

ress
e
ed
rary

ared
table
port
d on
st
l off-
mbol.
This field contains an offset into the string table denoting the symbol name.

reserved2
Bits 0-15

Unused. Initialized to -1 if a shared library, 0 if an incomplete executable.

type
Bits 16-23

This field specifies the symbol type (text, data, or bss).

bypassable

Bits 24

This bit is set (1) in shared libraries for code imports which do NOT have their add
taken in that shared library. Otherwise, it is 0. The bypassable bit controls a runtim
optimization performed by dld.sl. This optimization bypasses export stubs for shar
library imports that are satisfied by exports from a shared library (either the same lib
or a different library).

reserved1
Bits 25-31

These bits are reserved for future expansion (currently initialized to 0).

6.3.6 Export Table

The export table is allocated in the TEXT space of the object and is built for both sh
library and incomplete executables files. The export table has an associated hash
for fast lookup; each one-word entry in the hash table contains an index into the ex
entry list. The next field of the export record holds the index of the next export recor
the hash chain. A NIL (-1) next value terminates the list. Each entry in the export li
contains information about the symbol name, symbol type, symbol address (symbo
set), and symbol version number. There is a separate entry for each version of a sy
Parameter relocation information is not currently used.

struct import_entry {

int name; /* offset in string table */

short reserved2; /* unused */

unsigned char type; /* symbol type */

unsigned int bypassable : 1; /* address of code symbol
not taken in shlib */

unsigned int reserved1 : 7; /* unused, init to 0 */

};

Figure 6-36: Import entry structure
132 HP PROPRIETARY

Version 3.0

age
bol
struct misc_info {

short version; /* months since January, 1990 */

unsigned int reserved2: 6;

unsigned int arg_reloc: 10; /* parameter relocation bits (5*2) */

}

struct export_entry {

int next; /* index of next export entry in hash chain */

int name; /* offset within string table */

int value; /* offset of symbol (subject to relocation) */

union {

int size; /* storage request area size in bytes */

struct misc_info misc; /* version, etc. N/A to storage requests */

} info;

unsigned char type; /* symbol type */

char reserved1; /* currently unused */

short module_index; /* index of module defining this symbol */

};

next
Bits 0-31

This field contains an index to the next export record in the hash chain.

name
Bits 0-31

This field contains an offset into the string table denoting the symbol name.

value
Bits 0-31

This field specifies the symbol address (subject to relocation).

info
Bits 0-63

If the exported symbol is of type STORAGE, this field specifies the size of the stor
request area in bytes. Otherwise, this field contains the version of the exported sym
along with argument relocation information.

type
Bits 0-7

This field specifies the symbol type. Valid symbol types are:

ST_CODE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 133

HP-UX Specifics

pears
n
rma-
i-
ust be
e
s
tion in
 link
t

pe
ST_DATA

ST_STORAGE

ST_PLABEL

reserved1
Bits 8-15

These bits are reserved for future expansion.

module_index
Bits 16-31

This field contains the index into the module table of the module defining this
symbol.

6.3.7 Export Table Extension

The export table extension is allocated in the TEXT space of the object and only ap
in shared libraries. It runs parallel to the export table and provides extra informatio
about each export record. Currently, the information in this extension contains info
tion needed to perform data copying from a shared library to the program file. It ind
cates the size in bytes of each data item as well as any dynamic relocations that m
applied. A same list field is included to ensure that all data symbols that refer to th
same physical location within the shared library are copied to the program file. Thi
ensures that all alias names, common with secondary defs, refer to the same loca
the resulting program. The information in the export extension table is only used at
time, in order to correctly apply DR_PROPAGATE dreloc records; it currently is no
accessed by the dynamic loader anywhere.

struct export_entry_ext {

int size; /*export symbol size, data only */

int dreloc; /* start of dreloc list for this symbol */

int same_list; /* circular list of exports that have the same value */

int reserved2;

int reserved3;

};

size
Bits 0-31

This field is the size in bytes of the export symbol and is only valid for exports of ty
ST_DATA. For other export types, this field is initialized to -1.

dreloc
Bits 0-31
134 HP PROPRIETARY

Version 3.0

 the
on in

 This
peci-
for-

,
 link

ing

/

the
This field is the start of the dreloc records for the exported symbol. If no relocation
records exist for this symbol, this field is initialized to -1.

same_list
Bits 0-31

This field is a circular list of exports that have the same value (physical location) in
library. This is to ensure that all data symbols that refer to the same physical locati
the library are copied to the program file.

reserved2
Bits 0-31

This field is reserved for future expansion (currently initialized to 0).

reserved3
Bits 0-31

This field is reserved for future expansion (currently initialized to 0).

6.3.8 Shared Library List

The shared library list is built for both shared libraries and incomplete executables.
list is allocated in the TEXT space, and contains an entry for each shared library s
fied at static link time. The shared library list is an array of entries which contain in
mation about the library name, whether the library was specified with “-lc” or as an
absolute path name, and whether the library was specified with an immediate or
deferred binding attribute. The shared library name, as placed into the string table
should be the fully qualified path name of the shared library as determined at static
time. Please see Section 6.3.15 on page 144 for details of handling library version
when the internal_name bit is set.

struct shlib_list_entry {

int shlib_name; /* offset within string table */

unsigned char reserved1:6;

unsigned char internal_name:1; /* shlib entry is an internal name */

unsigned char dash_l_reference:1; /*referenced with -lc or absolute path *

unsigned char bind; /* BIND_IMMEDIATE, BIND_DEFERRED or

BIND_REFERENCE */

short highwater_mark; /* highwater mark of the library */

}

shlib_name
Bits 0-31

This field contains an index into the string table of the fully qualified path name of
shared library specified at static link time.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 135

HP-UX Specifics

the -
le
e

ram

iate

 only

aries.
.sl.
 mod-
t
 very
cts
ese

we
ol
plied
dules
ule
reserved1
Bits 0-5

This field is reserved for future use.

internal_name
Bits 6

This field is a flag to indicate if shared library entry is an internal name. Please see
Section 6.3.15 on page 144 for details of handling library versioning for specifying
internal name with the +h linker option.

dash_l_reference
Bits 7

This field is a flag to denote if the shared library was specified on the link line with
l option or not. If specified with -l, this flag is set to true. If the incomplete executab
was linked with either the +b or +s options, the dynamic loader will search for thos
libraries specified with -l at link time using the path(s) given. This allows a different
path to be searched at run time than what was specified at link time.

bind
Bits 8-15

This field describes the binding-time preference specified at link time when the prog
is built. Valid binding modes are bind-deferred and bind-immediate. Bind-deferred
means the symbols are bound upon reference by the dynamic loader. Bind-immed
means the symbols are bound at program start-up.

highwater_mark
Bits 16-31

This field contains the highwater_mark seen in the shared library at link time and is
valid for shared library lists located in program files.

6.3.9 Module Table

The module table is allocated in the TEXT space and is only present in shared libr
This table was implemented to support the smart-bind binding algorithm within dld
The table consists of records that describe the symbols that are imported from the
ules (object files) that comprise the library. These records allow the loader to selec
which imports need to be resolved based on which modules are reachable. This is
similar to the way the linker deals with archive libraries at link time. The linker sele
modules based on their ability to resolve current unsats of the main program. As th
modules are selected, they introduce new unsatisfied symbols that must then be
resolved. Eventually, imports are resolved without the need of more modules and
have closure for a correct program. If closure cannot be reached, unsatisfied symb
errors will result. The drelocs field indicates the relocation records that must be ap
if this module is used. The module_dependencies field indicates the number of mo
that this module directly depends on. Direct dependency can result when one mod
136 HP PROPRIETARY

Version 3.0

is no
l
ncies.
e

.

le.
ym-

ing

e all
calls a routine in another module and these symbols are then hidden. Since there
symbolic trace of the call, the loader cannot detect the dependency through symbo
records. The imports field points to an array of integers used to determine depende
Module dependencies appear first on this list followed by import_count import tabl
indices.

struct module_entry {

int drelocs; /* text offset into module dynamic relocation array. */

int imports; /* text offset into module import array */

int import_count; /* number of entries into module import array */

char flags; /* currently flags defined: ELAB_REF */

char reserved1;

unsigned short module_dependencies;

int reserved2;

}

drelocs
Bits 0-31

This field is a text address (subject to relocation) into the dynamic relocation table

imports
Bits 0-31

This field contains a text address (subject to relocation) into the module import tab
This table is a list of import symbols and module table indices. The modules and s
bols in this list must be resolved before the module can be used.

import_count
Bits 0-31

This field is the number of import symbol entries in the module import table belong
to this module.

flags
Bits 0-7

This field denotes if an elaborator was referenced in the module

module_dependencies
Bits 8-15

This field is the number of modules the current module needs to have bound befor
of its own import symbols can be bound.

reserved2
Bits 0-31

This field is reserved for future expansion (currently initialized to 0).
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 137

HP-UX Specifics

ion
s the
cess
e

resses
st

kage
red
bol-

fol-

int
art,
rre-

elds
tart
s.

olds
rts
6.3.10 Shared Library Unwind Info

The shlib_unwind_info structure is used to provide the necessary unwind informat
for debugging shared library code. The debuggers (adb, xdb) need a way to acces
unwind tables for shared libraries. The dynamic loader will also use this table to ac
stack unwind, try/recover and line table information. Currently, in a program file, th
unwind information is accessed symbolically, using the $UNWIND_START$,
$UNWIND_END$, $RECOVER_START$, and $RECOVER_END$ symbols. For
shared libraries, there will be separate unwind tables for each shared library at add
which are unknown at static link time; therefore the shlib_unwind_info structure mu
be accessed through a known offset off of r19 (which is reserved to point to the Lin
Table for a shared library). The shlib_unwind_info structure is only placed into sha
library files, since program files can continue to access the unwind information sym
ically. One DLT entry at r19 + 0, is reserved to contain an r19-relative offset to the
lowing structure:

struct shlib_unwind_info {

int magic; /* magic number for unwind detection */

int shlib_name; /* index into string table */

int text_start; /* virtual address of the start of text */

int data_start; /* virtual address of the start of data */

int unwind_start; /* text-relative offset of unwind table */

int unwind_end; /* text-relative offset of stub unwind table */

int recover_start; /* text-relative offset of recover table */

int recover_end; /* text-relative offset of the line table */

};

This structure is initialized by the static linker which sets the shlib_name field to po
to the shared name of the shared library in the string table and sets the unwind_st
unwind_end, recover_start, and recover_end fields to text-relative offsets for the co
sponding tables. The dynamic loader will then fill in the text_start and data_start fi
when the library is mapped into memory, and the unwind_start, unwind, recover_s
and recover_end fields will be patched with the virtual address for the unwind table

magic
Bits 0-31

This field identifies the header as a shared library unwind header.

shlib_name
Bits 0-31

This field is the name of the shared library. Within the shared library file, this field h
an offset into the shared library string table. At run time, the dynamic loader conve
this offset into the actual unwind address of the string.

text_start
Bits 0-31
138 HP PROPRIETARY

Version 3.0

is

is

, this

, this

t run

d is

plete
ent

eci-
 in

 time
ic relo-
ss of
ce
d
e
 using
This field specifies the presumed virtual address of the start of data. At run time, th
field is relocated to hold the true address at which data is mapped.

data_start
Bits 0-31

This field specifies the presumed virtual address of the start of data. At run time, th
field is relocated to hold the true address at which data is mapped.

unwind_start
Bits 0-31

This field denotes the presumed text address of the stack unwind table. At run time
field is relocated to hold the true unwind address of the stack unwind table.

unwind_end
Bits 0-31

This field denotes the presumed text address of the stub unwind table. At run time
field is relocated to hold the true address of the stub unwind table.

recover_start
Bits 0-31

This field denotes the presumed text address of the start of the try-recover table. A
time, this field is relocated to hold the true address of the try-recover table.

recover_end
Bits 0-31

This field denotes the presumed text address of the line table. At run time, this fiel
relocated to hold the true address of the line table.

6.3.11 String Table

The string table is allocated in the TEXT space for both shared libraries and incom
executables. This table consists of a series of null-terminated strings, which repres
the names of all symbols exported or imported in this file, and all library names sp
fied at static link time. Note: this string table is distinct from the “normal” string table
a SOM.

6.3.12 Dynamic Relocation Records

Dynamic relocation, or dreloc records are used by the dynamic loader to apply run
patches to the data area of shared libraries and incomplete executables. A dynam
cation record is built in an object each time it has a data item initialized to the addre
a shared library’s function or variable. The dynamic relocation record is needed sin
the linker does not know the actual address for code and data items within a share
library; the final address of library code and data is only known at run time, after th
shared library has been mapped into memory. When the executable imports data,
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 139

HP-UX Specifics

a
ted in
that
y to
e exe-
e

n

the
itted
rrent
 of

.

data copying, that is affected by that library’s relocation record (i.e. it imports a dat
item that needs relocation) a special DR_PROPAGATE relocation record is genera
the program file that allows the loader to first determine the original shared library
supplied the data item and then use the relocation records within the shared librar
update the data item that has been copied to the program file. When an incomplet
cutable imports data from a shared library, only the data item itself is copied into th
executable, with the size of the data item being determined by the export extensio
record.

With HP-UX 9.0, run time data copying has been implemented as well as copying
data statically at link time. This causes a DR_PROPAGATE dreloc record to be em
for each data copied object between a shared library and the program file. (The cu
plan is to eliminate data copying entirely for HP-UX 10.0; this will obsolete the use
the DR_PROPAGATE dreloc record altogether.)

struct dreloc_record {

int shlib; /* Reserved */

int symbol; /* index into import table of shlib if *_EXT type

low-order 16 bits used for module index if *_INT type*/

int location; /* offset of location to patch data-relative */

int value; /* text for data-relative offset to use for patch if

 internal-type fixup */

unsigned char type; /* type of dreloc record */

char reserved; /* currently unused */

short module_index; /* Reserved */

}

shlib
Bits 0-31

Reserved.

symbol
Bits 0-31

This field is an index into the import table if the relocation is an external type.

location

Bits 0-31

This field is the data-relative offset of the data item the dreloc record refers to

value
Bits 0-31

This is the text or data-relative offset to use for a patch if it is an internal fixup type
140 HP PROPRIETARY

Version 3.0

e:

/

l
tor is
ol

 slot.

ne
PLT
l one.
here
nd
pares
type
Bits 0-7

The field represents the of the dynamic relocation record. Valid relocation types ar

#define DR_PLABEL_EXT 1 /* initialized to a external code plabel (PLT)*/

#define DR_PLABEL_INT 2 /* initialized to internal (local code plabel (PLT)*/

#define DR_DATA_EXT 3 /* initialized to external data symbol */

#define DR_DATA_INT 4 /* initialized to internal data offset;

data-relative “value” field */

#define DR_PROPAGATE 5 /* data item copied from shared library into a.out*

#define DR_INVOKE 6 /* invoke elaborator function */

#define DR_TEXT_INT 7 /* initialized to internal text offset; text-relative

“value” field */

Note that DR_INVOKE is for C++ shared libraries with static constructors. A C++
shared library is built with a procedure called an “elaborator”, identified by a symbo
index in the dl_header. For each DR_INVOKE relocation record seen, the elabora
called with three arguments, the location field from the relocation record, the symb
index from the relocation record, and the shared library handle. DR_INVOKE are
applied after all other fixups.

The PLABEL_EXT relocation record is the result of an initialized function pointer in
the data segment. It points to the code import list entry, which corresponds to a PLT
The dynamic loader will fixup the initialized function pointer with the address of the
“canonical” PLT entry for the referenced procedure, which may or may not be the o
provided by the importing module. Every module that creates a plabel allocates a
slot for the imported procedure, and the loader picks one to serve as the canonica
This ensures that plabels for the same routine will compare equal. Unfortunately, t
are still cases where this cannot work, like when libraries are dynamically loaded a
unloaded. For this reason, we have a plabel comparison millicode routine that com
the contents of plabels rather than their addresses.

reserved
Bits 8-15

These bits are reserved for future expansion (currently initialized to 0)

module_index
Bits 16-31

Reserved.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 141

HP-UX Specifics

s that

d

on

ry
uali-

ared
o

’:’,

tory

ami-

n
 will
t

m

 via
6.3.13 Loading Shared Libraries

6.3.13.1 Loading Libraries

When a program begins execution, the first thing it does is attach all shared librarie
were searched at link time. This activity is performed by the startup code in crt0.o,
which maps in thedynamic loader which then scans a list (built at link time and store
in the program file) of shared libraries that were searched by the linker.

This list of libraries in the program file contains the paths of the libraries specified
the linker command line. Library names referred to with the-l option will be expanded
by the linker to the fully qualified pathname for the library, as found at link time.

If a library is listed explicitly, without the-l option, the library name in the list will be
exactly as specified on the command line.

The directories searched by the linker are by default,/usr/lib and/opt/langtools/lib , but
they may be overridden by the environment variableLPATH (see the ld(1) manual page
for details).

Note that theLPATH specified at link time will be used when creating the shared libra
list used by the dynamic loader, that is, the shared library names will be the fully q
fied path names of the libraries as found at link time. TheLPATH environment variable
will not be used during dynamic loading of the library.

6.3.13.2 Dynamic Library Path Support

On the Series 700/800, support has been added for the run-time path lookup of sh
libraries needed by a program file. Directory search information can come from tw
sources; the program file itself and an environment variable.

The program provides directory search information if it is linked with the+b path_list
option where path_list is a list of directories to search. If path_list is a single colon
the linker will construct a list of directories to search consisting of all the-L directories
followed by the directories specified by the LPATH environment variable. The direc
search list will be stored in the program file itself and will be made available to the
dynamic loader at run-time.

The environment variable SHLIB_PATH can be used by the dynamic loader to dyn
cally locate shared library files if the program file was linked with the+s option. If both
the+b and+s options are specified at link time, the relative order of these options o
the command line indicates which path list will be searched first. The environment
be scanned once at program start up for the value of the SHLIB_PATH environmen
variable. Future modifications to this environment variable by the executing progra
will not be picked up by the dynamic loader.

If dynamic path lookup is enabled either through+b or +s, only shared libraries speci-
fied on the link line via the -l option are subject to path lookup. For libraries loaded
the shl_load() call, the library will be subject to dynamic search only if the
DYNAMIC_PATH flag is passed to shl_load().
142 HP PROPRIETARY

Version 3.0

d
ich
ult

 rela-
ur-
r

d()
ared

nd
:”.

er-
 user
Since
y
on-

cts of

,

ath

n
or
ons.
ibrary
For both the SHLIB_PATH environment variable and the path list specified via the+b
option, a path list consists of a colon ’:’ separated list of directories with leading an
trailing colons ’:’ being optional. The directories will be searched in the order in wh
they appear in the path list. A null directory specification “::” indicates that the defa
library path stored by the linker in the program file or provided via a shl_load() call
should be used at that point in the search. If a directory specified in the path list is
tive (does not begin with a ’/’), the directory actually searched will depend on the c
rent working directory, not the directory where the program file actually resides. Fo
example, if SHLIB_PATH were set to the path list “/usr/lib/X11::../mylibs:/usr/lib/
Motif1.1” and the loader was presented with a shared library path list via a shl_loa
call or by searching the library list in the program file or the dependency list of a sh
library, the following locations would be probed in order:

input library path: /mnt/usr/local/thislib.sl

1) /usr/lib/X11/thislib.sl

2) /mnt/usr/local/thislib.sl

3) $PWD/../mylibs/thislib.sl

4) /usr/lib/Motif1.1/thislib.sl

If the loader has attempted to perform a dynamic path lookup for a shared library a
failed to find it using the supplied directories, it will search the default path list of “:

Note, no special provisions related to security issues are taken for programs that p
form chown(2) or chgrp(2). The builder of such a program file must ensure that the
cannot substitute his own library on a search path and gain undesirable privileges.
the default when building the program file is to not allow any dynamic shared librar
searching, this is not considered a security hole in the program development envir
ment, rather it is a responsibility of the program builder.

The chatr(1) command has been modified to allow the user to control several aspe
shared library behavior. The options include:

-B bind - Modify symbol binding modes, same as ld(1) -B

+b flag - Control whether the program directory path list can be used, flag =
enable or disable

+s flag - Control whether the environment variable SHLIB_PATH can be used
flag = enable or disable

-l library - Indicates that the specified shared library is subject to dynamic path
lookup.

+l library - Indicates that the specified shared library is not subject to dynamic p
lookup.

6.3.14 Intra-library Version Control

Prior to 10.0, all library versioning are done at the “intra-library” level in that versio
control is done at program object level. Please refer to “Programming on HP-UX” f
details on how to handle version control by using compiler directives and linker opti
Since code from a shared library is mapped in at run time from a separate shared l
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 143

HP-UX Specifics

. In
ontrol

the

rary

 of
 mark
le.

ds
hen

 is not
 that

.

-
tra-

iv-
at
ern

 on
rnal
n

le

on a
file, modifications to a shared library may alter the behavior of existing executables
some cases, this may cause programs to operate incorrectly. A means of version c
is provided to solve this problem.

Whenever an incompatible change is made to a library interface, both versions of
affected module or modules are included in the library. A mark indicating the date
(month/year) the change was made is recorded in the new module in a Shared Lib
Version Auxiliary Header (See “Version Auxiliary Header” on page 131.) This date
applies to all symbols defined within the module. A high water mark giving the date
the latest incompatible change is recorded in the shared library, and the high water
for each library linked with the program is recorded in the incomplete executable fi

At run time, the dynamic loader checks the high water mark of each library and loa
the library only if it is at least as new as the high water mark recorded at link time. W
binding symbolic references, the loader chooses the latest version of a symbol that
later than the high water mark recorded at link time. These two checks help ensure
the version of each library interface used at run time is the same as was expected

6.3.15 Library-Level Versioning

Starting at HP-UX 10.0, shared library versioning will now be provided on an entire
library. We will refer to this as “library-level versioning”, as distinguished from “intra
library” shared library versioning we provided prior to HP-UX 10.0. Note that the in
library versioning functionality will not be going away anytime soon, as some users
depend on this functionality; the library-level scheme will be an additional feature.

Here is how library-level versioning works in general: The traditional name of a del
ered shared library will now be a symbolic link that points to the latest version of th
library on the file system. All the “real” shared libraries will be suffixed with the patt

lib_name.<digit>

instead of “lib_name.sl”; e.g., “libc.2”. Many versions of shared libraries may reside
the system at a given time, older versions will use lower numbered digits. The inte
name, e.g. “lib2.2” is recorded in the library when it is built. See Section 6.3.15.1 o
page 145 for details of building libraries with internal names.

When the user links an application against a shared library on the filesystem, the fi
specified will have a standard “.sl” suffix; normally this is done with a “-l<name>”
option to the linker, which searches for a shared library called “<path>/libname.sl”.

Since this library is a symlink to the latest version available, the linker will actually
open this latest shared library and link against it; it is the internal name ofthis library
that is recorded in the library list of the application. For example, if these files exist
system (Note: at HP-UX 10.0, the highest digit suffix will be “1”):

/usr/lib/libfoo.0
/usr/lib/libfoo.1
/usr/lib/libfoo.sl -> ./libfoo.1
144 HP PROPRIETARY

Version 3.0

le
f

uld

ill

gs
e lat-

li-
 not

le
/usr/
/usr/lib/libbar.0
/usr/lib/libbar.1
/usr/lib/libbar.2
/usr/lib/libbar.sl -> ./libbar.2

/usr/lib/libc.0
/usr/lib/libc.1
/usr/lib/libc.2
/usr/lib/libc.3
/usr/lib/libc.sl -> /usr/lib/libc.3

and the user links an application with this command line:

ld /usr/ccs/lib/crt0.o main.o -lfoo -lbar -lc -o prog

then these shared libraries will be recorded in the file “prog”:
/usr/lib/libfoo.1
/usr/lib/libbar.2
/usr/lib/libc.3

If then in subsequent releases all of these libraries were versioned with incompatib
changes (e.g.: if “libfoo.sl” now pointed to a new library, “libfoo.2”), the file “prog”, i
not relinked, would always bind against thesesame shared libraries, which would
remaincompletely unchanged for the life of the application.

Libraries loaded programmatically, dynamically loaded libraries (shl_load(3x)), sho
explicitly load thereal file. For example, loading /usr/lib/libfoo.1 explicitly rather than
the symlink /usr/lib/libfoo.sl. In this way, when the application is moved forward, it w
always use the correct version.

6.3.15.1 Building libraries

In order to use the “library-level” versioning scheme, libraries must be built with the
new linker option, “+h <internal-name>”. This “internal name” to be supplied on the
linker command line is usually the basename of the file where it will eventually be
installed. When the +h option is specified, the SHLIB_INTERNAL_NAME in the fla
field of the dl_header will be set to true. Using the same example in this section, th
est versions of the three libraries will be built as follow:

ld -b *.o ... +h libfoo.1 -o libfoo.1
ld -b *.o ... +h libbar.2 -o libbar.2
ld -b *.o ... +h libc.3 -o libc.3

This “internal name” will be used by the linker to write into the library list of any app
cation or shared library that is linked against the symbolic links of a shared library;
the name of the file itself. The linker will use thedirectorywhere it searches for the
library, concatenated with theinternal namein the library, to be recorded in the library
list. For example, if /usr/lib/libfoo.sl is the shared library used to link with, and this fi
has an internal name of “libfoo.1”, then the name recorded in the library list will be
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 145

HP-UX Specifics

ame.

ase

 /usr/
/

 the
g

en
uffix
red

se

re cre-
fer-

 inter-
lib/libfoo.1. Users must take extra caution when a path is specified in the internal n
If the internal name is an absolute path, i.e. file name that begins with “/”, then the
recorded dependency in the library list is the absolute path name. Otherwise, the b
name is appended to the recorded dependency path.
For example:

If /usr/lib/libfoo.sl
is a sym link to
/xxx/libfoo.1

internal name with +h recorded dependency
libfoo.1 /usr/lib/libfoo.1
/xxx/libfoo.1 /xxx/libfoo.1
../mylib/libfoo.1 /usr/lib/../mylib/libfoo.1

Please see “Programming on HP-UX” for details on how to build libraries with
“Library-Level Versioning”.

6.3.15.2 Pre-10.0 Applications

At 10.0, the dynamic loader has an enhancement to help migrate 9.0 applications
because of the filesystem changes. Any shared library in /lib will be searched for in
lib before the dynamic loader aborts, so /lib/libc.sl will be found correctly in /usr/lib
libc.sl.

6.3.15.3 Migrating to Library-Level Versioning

The dynamic loader has a special “compatibility enhancement” in place, strictly for
purposes of providing a suitable run-time environment for older applications movin
forward when applications are migrating to Library-Level versioning.

If the dynamic loader encounters an application with no internal name specified, th
when it attempts to bind a shared library to the process it will first change the “.sl” s
to “.0” in the filename before it makes the open(2) call. If it does not find a “.0” sha
library, it will use the library asspecified in the application.

For example, if there is no /usr/lib/libfoo.0 on the 10.0 system, it will look for and u
/usr/lib/libfoo.sl, just like it did for 9.0x systems.

6.3.16 Import and Export Stubs

All procedure calls from the shared library to entry points outside the library, or to
exported entry points in the library, are routed through import stubs. These stubs a
ated by the linker in the code space of the library, and manage both the indirect re
ence through the linkage table and the possibility of inter-space procedure calls.

In addition, each exported procedure (including non-exported procedures whose
addresses are taken) is assigned an export stub, which handles the return path of
space calls.

The stubs generated by the linker are defined as follows:

Import Stub (Incomplete Executable)
146 HP PROPRIETARY

Version 3.0

lls can
 can
le

h sys-
22
isters:
.When
s zero,
ot

 is in
X’: ADDIL L’lt_ptr+ltoff,dp ; get procedure entry point.
LDW R’lt_ptr+ltoff(1),21
LDW R’lt_ptr+ltoff+4(1),r19 ; get new r19 value.
LDSID (r21),r1
MTSP r1,sr0
BE 0(sr0,r21) ; branch to target.
STW rp,-24(sp) ; do this as a favor to the export stub.

Import Stub (Shared Library)

 X’: ADDIL L’ltoff,r19 ; get procedure entry point.
LDW R’ltoff(r1),r21;
LDW R’ltoff+4(r1),r19 ; get new r19 value.
LDSID (r21),r1
MTSP r1,sr0
BE 0(sr0,r21) ; branch to target.
STW rp,-24(sp) ; do this as a favor to the export stub.

Export Stub (Shared libs and Incomplete Executables)

 X’: BL,N X,rp ; trap the return.
NOP
LDW -24(sp),rp ; restore the original rp.
LDSID (rp),r1
MTSP r1,sr0
BE,N 0(sr0,rp) ; inter-space return.

6.4 System Calls

The HP-UX operating system defines a large set of system calls. These system ca
be made indirectly by calling the interface routines in the C run-time library, or they
be made directly from assembly code. All system calls are funneled through a sing
entry point in the system space, which is identified by space register 7 (SR7). Eac
tem call is assigned a unique number, which must be loaded into general register
(GR22). The arguments to the system routine should be loaded into argument reg
GR26, GR25, GR24, and GR23 (arg0, arg1, arg2, arg3 respectively) as necessary
the system call returns, a status code is also returned in GR22. If the status code i
the system call succeeded and the return value, if any, is in GR28. If the status is n
zero, the system call failed and the error number is found in GR28.

A list of system call numbers as well as the location of the system call entry points
the standard include file/usr/include/sys/syscall.h.

Following is an example of a code fragment shows a call to theread system call:

READCALL
or %r0, %r0, %arg0 ; file descriptor = 0
addil L%buf-$global$, %dp ; set up buffer address in arg1
ldo R%buf-$global$ (%r1), %arg1
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 147

HP-UX Specifics

nique
E

nter-
ldo 10, %arg2 ; length = 10 into arg2
ldil L%0xC0000004, %r1 ; load system call entry point and
ble R%0xC0000004(%sr7,%r1) ; branch to it
ldo 3, %r22 ;read system call number is 3

In the above code fragment, the last instruction loads the constant 3, which is the u
number for theread system call, into GR22, and executes in the delay slot of the BL
instruction.

The standard procedure calling convention should be used to call the system call i
face routines in the C library.
148 HP PROPRIETARY

CHAPTER 7 MPE/iX Specifics
 the
e

ains
 the
 pro-

rary
lso
This chapter covers items specific to the MPE/iX system. Included are sections on
program auxiliary header, initialization pointers, MPE loader fixups, and executabl
library format.

7.1 MPE Program Auxiliary Header

The MPE program auxiliary header (also known as the ‘HPE’ auxiliary header) cont
information that is used by the MPE operating system to load an executable file. If
fields specifying the default values for the RUN command are not needed, the MPE
gram auxiliary header may be omitted.

This auxiliary header must be contained within the LST portion of an executable lib
or program file, not as part of a SOM within an executable library. This header is a
known as the LST auxiliary header.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 149

MPE/iX Specifics

ri-
aux_header_id

Bits 0-63

This field contains the auxiliary header identifier for an MPE program file.

entry_name
This field contains a string index, into the symbol strings area, of the name of the p
mary entry point of the program.

struct mpe_prog_aux_hdr {

struct aux_id header_id;

unsigned int entry_name;

unsigned int unsat_name;

int search_list;

struct cap_list capabilities;

unsigned int max_stacksize;

unsigned int max_heap_size;

unsigned int reserved: 13;

unsigned int bind_mode : 1;

unsigned int allow_override : 1;

unsigned int posix : 1;

unsigned int max_priority : 8;

unsigned int priority : 8;

};

struct cap_list {

unsigned int reserved1 :23;

unsigned int batch_acc : 1; /* BA */

unsigned int inter_acc : 1; /* IA */

unsigned int priv_mode : 1; /* PM */

unsigned int reserved2 : 2;

unsigned int multiple_rins : 1; /* MR */

unsigned int reserved3 : 1;

unsigned int extra_data_seg : 1; /* DS */

unsigned int process_hand : 1; /* PH */

};

Figure 7-37: Definition of MPE Program Auxiliary Header
150 HP PROPRIETARY

Version 3.0

d is
field

an-

is set
his

g a
solve

ter

is set
 it

n.
 sys-

e

A.
rry-
This parameter is a default value for a run-time parameter. If it is not used, this fiel
set to zero and the entry point name will be taken from the RUN command. If this
is used it can be overridden when the program is loaded.

unsat_name
This field contains a string index, into the symbol strings area, of the name of the
UNSAT procedure. The UNSAT procedure is linked to all external references that c
not be resolved when the program is loaded.

This parameter is a default value for a run-time parameter. If it is not used this field
to zero and the UNSAT procedure name will be taken from the RUN command. If t
field is used it can be overridden when the program is loaded.

search_list
This field contains a string index, into the symbol strings area, to a string containin
list of library names. These libraries may be used when the program is loaded to re
any remaining external references.

The entire library list is a single string in the format defined for the LIBLIST parame
on the MPE RUN command.

This parameter is a default value for a run-time parameter. If it is not used this field
to zero and the library list will be taken from the RUN command. If this field is used
can be overridden when the program is loaded.

capabilities
This field contains the set of capabilities that the program will need during executio
This parameter is merely a request for capabilities which will be checked by the file
tem when the program is loaded.

Any capability may be assigned to a program; however, only certain capabilities ar
associated with a process executing the program. These are PH, PM, IA and BA.

If no capabilities are specified, the program’s capability set will default to IA, and B
Currently, this parameter cannot be overridden at load time. This restriction is a ca
over from MPE which checked the capabilities at both link and load time.

The format of the capability word is shown below..
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 151

MPE/iX Specifics

.

e
ages

ges
TABLE 20 Capability Word Format

Bit 0 (NULL) should never be set. Likewise, the undefined bits should never be set

max_stacksize
The maximum size to which the process stack will be allowed to grow in bytes. Th
maximum number of bytes in the stack will be rounded up to an even number of p
and will be forced to be in the range:

Minimum stack size Maximum stack size
configured by system <= MAX_STACKSIZE <= configured by system
manager. manager.

This parameter can be overridden when the program is loaded.

max_heap_size
The maximum size to which the process heap will be allowed to grow in bytes. The
maximum number of bytes in the heap will be rounded up to an even number of pa
and forced to be in the range:

 Maximum heap size
0 <= MAX_HEAP_SIZE <= configured by system
 manager.

This parameter can be overridden when the program is loaded.

0 1 2 3 4 5 6 7 8

NU

9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24 25 26

BA IA PM

27 28 29 30 31

MR DS PH

Cap Meaning

NU Null

PH Process Handling

PM Privilege Mode

IA Interactive Access

BA Local Batch Access

DS Extra Data Segments

MR Multiple RINs
152 HP PROPRIETARY

Version 3.0

s bit,
is to

s bit,
ith.
 the

IX

m
e. BS
 2.
reserved

Bits 0-12

These bits are reserved for future expansion.

bind_mode

This bit is not currently used. In the future, if the loader chooses to support this, thi
if set, will denote deferred binding of symbols at run time by the loader. The default
bind immediately.

allow_override

This bit is not currently used. In the future, if the loader chooses to support this, thi
if set, will denote runtime overrides of the shared library the executable was linked w
The loader will search the shared libraries specified at run time instead of the ones
program was linked with.

posix

Bit 15

If this flag is set to one, it indicates that this HPE program file was linked as a POS
program.

max_priority

Bits 16-23

The maximum execution priority that a program can have at run time. The maximu
priority has to be either BS, CS, DS, ES or a number between 100 and 255 inclusiv
has the highest priority, ES the lowest. The integer equivalents are shown in Table

TABLE 21 Priority Bits

priority

Bits 24-31

BS 16979

CS 17235

DS 17491

ES 17747
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 153

MPE/iX Specifics

ighest

The execution priority that the program will have at run time. The priority has to be
either BS, CS, DS, ES or a number between 100 and 255 inclusive. BS has the h
priority, ES the lowest. See the above table for the integer equivalents.

7.2 MPE SOM Auxiliary Header

header_id

Bits 0-63

This field contains the auxiliary header identifier for an MPE program file.

shared_data

struct mpe_som_aux_hdr {

struct aux_id header_id;

unsigned int reserved : 27;

unsigned int shared_data : 1;

unsigned int thread_private : 1;

unsigned int dumpworthy : 1;

unsigned int hpe_som : 1;

unsigned int system_som : 1;

unsigned int num_xrts;

unsigned int unwind_start;

unsigned int unwind_end;

unsigned int recover_start;

unsigned int recover_end;

unsigned int num_dxrts;

unsigned int data_imports;

unsigned int data_exports;

};

Figure 7-38: Definition of MPE SOM Auxiliary Header
154 HP PROPRIETARY

Version 3.0

d/or
If this flag is set to one, then the SOM is a shared global data SOM and imports an
exports data symbols; otherwise, it is an old-style SOM.

thread_private

If this flag is set to one, then this SOM is a thread-private SOM.

dumpworthy

If this flag is set to one, then this SOM is dumpable.

hpe_som

If this flag is set to one, then this SOM is part of the MPE bootable image.

system_som

If this flag is set to one, then this SOM is part of the MPE kernel.

num_xrts

This field contains the number of XRT entries.

unwind_start

This field contains the virtual address of start of unwind table.

unwind_end

This field contains the virtual address of end of the unwind table.

recover_start

This field contains the virtual address of start of the try-recover table.

recover_end

This field contains the virtual address of end of the try-recover table.

num_dxrts

This field contains the number of DXRT entries. This field will only be valid if the
shared_data bit is set.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 155

MPE/iX Specifics

e

e

hen
lds

more
r sub-
lers

a-
uous.
data_imports

This field contains the number of LST data imports. This field will only be valid if th
shared_data bit is set.

data_exports

This field contains the number of LST data exports. This field will only be valid if th
shared_data bit is set.

7.3 Initialization Pointers

The initialization pointer array is used to determine how to initialize virtual space w
a file is loaded. The fields in the initialization pointer record are very similar to the fie
in the subspace record, but the initialization pointer record can be used to initialize
than one subspace. The initialization pointer information is used by the loader afte
spaces have been relocated and are in their "final" position within a space. Compi
should use the fields provided in the subspace record to convey initialization inform
tion to the linker, since relocatable subspaces are not guaranteed to remain contig
156 HP PROPRIETARY

Version 3.0

tig-

it is

.

space_index

This field is a index into the space dictionary. All of the space records will be in con
uous records in the space dictionary. space_index can be converted to a file byte offset
by:

offset =space_index * size of (space record)

+ space_dictionary_location (found in the SOM header)

+ address of the first byte of the SOM header.

If a space_index is greater than the field space_quantity in the SOM header record
an error. Ifspace_index is negative it is an error.Space_index must have a value in the
range 0 to 231-1.

access_control_bits

Bits 0-6

Theaccess_control bits specify the access rights and privilege level of the subspace
They also specify whether the subspace contains code or data.

struct init_pointer_record {

unsigned int space_index; /* index of space entry */

unsigned int access_control_bits:7; /* access for PDIR */

unsigned int has_data:1; /* file pages exist for this area of

memory */

unsigned int memory_resident:1; /* lock in memory during execution */

unsigned int initially_frozen:1; /* must be locked into memory when OS

is booted */

unsigned int new_locality:1; /* init pointer begins a new locality */

unsigned int reserved:21;

unsigned int file_loc_init_value; /* starting location in file (page

aligned) */

unsigned int initialization_length; /* size of area to be initialized */

unsigned int space_offset; /* starting offset in space (page

aligned) */

};

Figure 7-39: Definition of Initialization Pointer Record
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 157

MPE/iX Specifics

 the

n the

er
t, so
has_data

Bit 7

If this flag is set to one then data is defined in the SOM for this subspace.

memory_resident

Bit 8

If this flag is set to one then the subspace is to be locked in physical memory once
subspace goes into execution.

initially_frozen

Bit 9

If this flag is set to one then the subspace is to be locked in physical memory whe
operating system is being booted.

new_locality

Bit 10

This flag indicates that this initialization pointer begins a new locality set. The load
can use this bit to determine which initialization pointers belong to each locality se
that it can swap entire locality sets for improved performance.

reserved

TABLE 22 Subspace Access Control Bits

Type (3 bits) Read/Write/Execute/Gateway (4 bits)

1st Field (PL1) 2nd Field (PL2) Usage

0 Read Not Used Read only data page

1 Read Write Normal data page

2 Read/Xleast Xmost Normal code page

3 Read/Xleast Write/Xmost Dynamic code page

4 Xleast Xmost Gateway to PL0

5 Xleast Xmost Gateway to PL1

6 Xleast Xmost Gateway to PL2

7 Xleast Xmost Gateway to PL3
158 HP PROPRIETARY

Version 3.0

 as

 of a

ds are
s for

pace to

ree
, and

refer-

dure
o the
s of

 refer-
nate
Bits 11-31

These bits are reserved for future use.

file_loc_init_value

If initialization_length field is non-zero, this field contains a byte offset relative to the
first byte of the SOM header. The fieldfile_loc_init_value points to the data used to ini-
tialize a subspace.

If initialization_length is zero then this field contains a 32 bit quantity which is used
an initialization pattern for the entire subspace.

initialization_length

This field contains the size in bytes of the initialization area in the file. If this field is
zero then the value contained in the fieldfile_loc_init_value is used as the initialization
pattern for the subspace.

space_offset

This is a byte address of where the initialization is to start relative to the beginning
space.

7.4 Loader Fixups

The loader fixup array is an array of fixup records, grouped by space. These recor
used to define fixups that are to be performed at load time. The loader fixup record
a particular space are contiguous and each record contains a back pointer to the s
which it refers.

The loader fixup records can be used only for data patches. Currently there are th
types of loader fixup records available: data reference fixups, XRT reference fixups
space reference fixups.

The data reference fixups contain information which is used by the loader to patch
ences to data which use absolute, rather than DP-relative addresses. The linker is
responsible for building this type of loader fixup from information given in the fixup
request records.

The XRT reference fixups indicate to the loader data which contains external proce
labels. The linker builds these procedure labels with XRT pointers that are relative t
beginning of the XRT segment for the SOM; the loader must add the actual addres
the beginning of the XRT segment.

The space reference fixup type is used to patch references to a named space. The
ence must be patched at load time with the real space ID. Fixups of this type elimi
expensive searches through the space/subspace dictionary.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 159

MPE/iX Specifics

r fix-
Figure 7-3 shows the C language definition of the loader fixup array.

fixup_type

This field is used to identify the type of loader fixup. There are three types of loade
ups currently defined.

TABLE 23 Loader Fixup Types

struct loader_fixup {

unsigned int fixup_type; /* type of loader fixup */

unsigned int space_index; /* index of space to fixup */

unsigned int space_offset; /* offset at which to patch */

unsigned int constant; /* constant used to patch the space */

};

Figure 7-40: Definition of Loader Fixups

Type Description

0 Space Reference Fixup. Used to patch references to a named space
without having to search through the symbol table dictionary for an
entry matching the space name. This fixup identifies the entries in the
space dictionary which pertain to a particular space reference.

1 Data Reference Fixup. Used by the loader to patch data references
which use absolute addresses rather than DP-relative addresses. Since
DP can change at run-time, this fixup is used to track locations that
may be affected by a change in DP. This loader fixup is generated by
the linker if the compiler generates a fixup request record with the
need_data_reference fkag set,

2 XRT Reference Fixup. Used by the loader to relocate external proce-
dure labels that are contained as constants in the data or literal areas of
a SOM. An external procedure label is a pointer to the XRT entry
(which must be on a word boundary) with the low-order bit set to indi-
cate that the procedure label is external. The loader allocates the XRT
space and must relocate procedure labels by adding the actual address
of the beginning of the XRT segment for the SOM. This loader fixup is
generated by the linker if the compiler generates a PLABEL fixup
request record with theneed_data_referenceflag set.

3 DXRT address fixup. The constant field is the DP-relative DXRT slot.

4 Multiple DXRT slot fixup. The space_index field is the constant field,
the space_offset is the DP-relative target DXRT slot, and the constant
field is the source DP-relative DXRT slot. Words 2 and 3 are changed
to int.
160 HP PROPRIETARY

Version 3.0

This
 in

 vari-
space_index

This field contains the index of a space definition element in the space dictionary.
element defines the space to which this fixup refers. The value of this field must be
the range 0 to 231.

space_offset

This field contains the space relative byte offset at which the patch must be made.

constant

This field’s value depends on the loader fixup type. See Table 5 below for validcon-
stantvalues.

TABLE 24 Constant Values

7.5 Program Startup

All programs must be linked with the relocatable startup objectNRT0. This object code
defines entry points, sets up the data pointer register (DP), and initializes program
ables. The Link Editor automatically links in this object file with everyLINK per-
formed.

The following shows an example assembly listing of a version ofNRT0code.

Type Meaning

0 The field contains the index of an element in the space dictionary. The
element defines the space to which the space defined byspace_index
refers. The value of this field must be in the range 0 to231.

1 The field contains the value of DP assumed when computing the abso-
lute address ofspace_offset. The value of this field must in the range 0
to 231.

2 The field is not used and should contain zero.

☞

Note
The MPE/iX Loader does not support space reference loader
fixups.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 161

MPE/iX Specifics
162 HP PROPRIETARY

Version 3.0

PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 163

.space $TEXT$, SPNUM=0,SORT=8

.subspa $MILLICODE$, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=8

.subspa $CODE$, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=24

.subspa LIT, QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=32

.subspa $UNWIND_START$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=56

.subspa $UNWIND$MILLICODE$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=62

.space $PRIVATE$, SPNUM=1,PRIVATE,SORT=16

.subspa $GLOBAL$, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=8

.import $global$

.subspa $SHORTDATA$,QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=16

.subspa $DATA$, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=24

.subspa $PFA_COUNTER$,QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=64

.subspa BSS, QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=80,ZERO

.subspa $CODE$

.export $START$,entry

.proc

.callinfo SAVE_SP,FRAME=128

.entry

 $START$
ldo 128(sp),sp ; Allocate frame, marker, & arg
depi 0,31,3,sp ; list and doubleword align sp
.import _start
ldil L’_start,r1
ldo R’_start(r1),r1 ; Get address of _start()
stw r0,-4(sp) ; mark last stack frame (null fm_psp)
.call
.blr r0,rp ; store return link
.bv,n r0(r1) ; call _start()
.break 0,0 ; should never return here

.procend

.subspa $UNWIND_START$; Declare subspace start symbols

.export $UNWIND_START$
 $UNWIND_START$

.subspa $UNWIND_END$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=72

.export $UNWIND_END$
 $UNWIND_END$

MPE/iX Specifics

nd
 SOM
ules

nary.

Pro-
 Each
 glo-
ave
 pro-
.subspa $RECOVER_START$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=73

.export $RECOVER_START
 $RECOVER_START

.subspa
 $RECOVER$MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=78

.subspa $RECOVER$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=80

.subspa $RECOVER_END$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=88

.export $RECOVER_END
 $RECOVER_END

.space $PRIVATE$

.subspa $GLOBAL$

.export dp
 dp ; Value of dp register

.export $global$
 $global$; Value of dp register

.subspa $PFA_COUNTER$

.export $PFA_C_START
 $PFA_C_START

.subspa $PFA_COUNTER_END$,QUAD=1,ALIGN=4,ACCESS=0x1f,SORT=72

.export $PFA_C_END
 $PFA_C_END

.end

7.5 Executable Libraries

Executable libraries (XLs) on MPE/iX contain an LST header, LST symbol table, a
can have multiple SOMs. Each XL has one LST export table and header, but each
or load module has its own LST import table. The limit on the number of load mod
per XL is currently set at 10000.

The LST import and export table uses the same structure as the LST symbol dictio
Currently, only external code procedures are allowed in the import table. The LST
import table is not created for relocatable files, only executable files.

XL modules are shared - only one copy of the code needs to exist on the system.
gram files that reference a module in an XL share the same physical copy of code.
module in an XL has its own global data area that is separate from a program file’s
bal data. Routines in XLs cannot share global data with program files and cannot h
outer blocks. External code references are allowed between modules in an XL and
gram files and are resolved at run time.

Figure 7-4: Example Implementation of NRT0
164 HP PROPRIETARY

Version 3.0

fer-
at

esides
stub

 the
e
ime,
the

RT
sses.
at a
 code
 entry

 Pri-
in the
Figure 7-5 below contains a general layout of an XL.

7.5.1 External Reference Table

Executable libraries and executable program files on MPE/iX have an External Re
ence Table (XRT) for external procedure calls. External procedure calls are calls th
transfer control from one executable module to another, and the called procedure r
in a module outside the calling one. There is one entry in the XRT for each import
created by the link editor for an external procedure call.

An XRT can be considered a transfer vector or table. The import stub will transfer to
procedure’s entry point. At link time this entry point is not known so the stub will us
the XRT entry to find the space identifier and offset of the target procedure. At run t
the loader will locate each external procedure referenced in the XRT and initialize
XRT entries with the appropriate values.

Another use of the XRT is to store the location of a load module’s DP value in the X
entry. This is necessary to enable sharing of load modules between multiple proce
All references to a load module’s data must be relative to DP since data is placed
process-dependent offset within the process’s private data space. A load module’s
area is assigned a unique space identifier. This space identifier is stored in the XRT
as well.

The XRT lives in the second quadrant of the space pointed to by SR5, the Process
vate Space. It is built by the loader at run time if there are external procedure calls
program file.

LST Header

Auxiliary Header

Hash Table

SOM Directory

LST Import List

LST Symbol Table

LST Symbol Strings

Unused

SOM Header for SOM #0

SOM 0

...

SOM Header for SOM #1

SOM 1

...

Figure 7-5: General XL Layout
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 165

MPE/iX Specifics

Each
 mod-

 mod-

 the
alue
oce-
d.
The XRT contains a sub-table for every load module referenced during execution.
sub-table for a load module contains entries for each procedure called by the load
ule. The layout of the XRT is shown in Figure 7-6 below.

The sub-table consists of an eight word header used to locate unwind tables for the
ule. The layout of the sub-table header is shown bel

The XRT entry for a procedure in the sub-table is also eight words long. It contains
space id of the module to which it belongs, the entry offset for the procedure, the v
of DP for the load module, the LP value of the module which contains the called pr
dure, the address of the CALLX routine, and three words that are not currently use

Sub-Table Header (module A)

entry for procedure B1

entry for procedure B2

entry for procedure B3

Sub-Table Header (module B)

entry for procedure A1

entry for procedure A2

Figure 7-6: XRT Layout

Reserved

Reserved

Reserved

Reserved

UNWIND_START

UNWIND_END

RECOVER_START

RECOVER_END

Figure 7-7: XRT Sub-Table Layout
166 HP PROPRIETARY

Version 3.0

 into
e. It

ze of
bs.

ce-
n to
 to the
7.5.2 Import and Export Stubs

Import stubs are created by the link editor for external calls. The import stub loads
a general register a pointer to the corresponding XRT entry for the called procedur
then branches to an external procedure call millicode sequence (CALLX). CALLX
locates and branches to the called procedure.

The code sequence for import stubs is shown below.

LDW -4(DP), gr1 ; Load LP
STW DP, -32(SP) ; Save DP
ADDIL * L’XRToff, gr1 ; Add XRT offset to LP
LDO * R’XRToff(gr1), gr1 ;
LDW 16(gr1), gr20 ; Load address of CALLX
STW RP, -24(SP) ; Save RP’
BE (sr7, gr20) ; Branch to CALLX
MFSP sr4, gr21 ; Move sr4 to gr21

* Can be eliminated in cases where they would be NOPs. If eliminated, the total si
the stub is padded to 8 words because unwind descriptors assume fixed-length stu

Export stubs are created by the link editor for external calls. When an external pro
dure is called, the export stub is entered first so the procedure return/exit will retur
the stub. When the stub is executed upon return, it restores DP and sr4 and returns
caller. The code sequence for export stubs is shown below.

SID of load module

Entry point offset for procedure

DP value for load modle

LP value of load module

Address of CALLX routine

Reserved

Reserved

Reserved

Figure 7-8: XRT Entry Layout
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 167

MPE/iX Specifics
BL disp, gr2 ; Branch to local entry point
DEP gr31, 31, 2, gr2 ; Deposit caller’s Exec. Level in link
LDW -28(SP), gr21 ; Restore sr4 (part 1)
LDW -24(SP), gr2 ; Restore return address (RP’)
MTSP gr21, sr4 ; Restore sr4 (part 2)
BE 0(sr4, gr2) ; Branch back to caller
LDW -32(SP), gr27 ; Restore DP
168 HP PROPRIETARY

CHAPTER 8 Symbolic Debug
Information
used
n

or-
l
t link
 of a
sub-
e, the

ent in
will
 the
re
r

 lim-
he
-end
), so
oth
 to
at the
con-
ddi-
zed
8.1 The Debug Information Organization

The debug information are generated by the compilers, fixed up by the linker, and
by various programs (primarily the symbolic debugger(s)) to reconstruct informatio
about the program.

On PA-RISC, a major goal was that the linker needs not know anything about the f
mat. To this end, it was decided that the debug information be composed of severa
unloadable subspaces within an unloadable space (named $DEBUG$), and that a
time, updates to the debug information be made through the standard mechanism
list of fixups. The linker will perform the required fixups for the debug spaces, and
spaces from separate compilation units will be concatenated. However, at exec tim
loader would know that the debug space is not to be loaded.

The debug information consists of up to eleven tables (though not all need be pres
any one executable file): a header table and ten special tables. The header table
contain one header record for each compilation unit. Each header record identifies
size (in bytes) of the tables generated by that compilation unit. Two of the tables a
very similar. The GNTT and LNTT both contain name and type information (NTT fo
Name and Type Table). The GNTT contains information about globals, and is thus
ited to variables, types, and constants. The LNTT is for information about locals. T
LNTT must therefore contain scoping information such as procedure nesting, begin
blocks, etc. The GNTT and LNTT are both DNTTs (Debug Name and Type Tables
the prefix DNTT is attached to objects (like a DNTTPOINTER) that are relevant to b
the GNTT and LNTT. The SLT contains information relating source (or listing) lines
code addresses. The SLT and LNTT contain pointers between the two tables, so th
scoping information contained in the LNTT can also be used with the SLT. The VT
tains ascii strings (such as variable names) and the values of named constants. A
tional tables have been added for cross reference information and debug of optimi
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 169

Symbol ic Debug Informat ion

ent,
llow

s
le

e

re
t

TT,
point-

er may
NTT
nd
by the
code. The LINES table contains DOC statement info. It is similar to the SLT in cont
but not in format. The RANGE table contains DOC range records. Range records a
the address of a variable to be tracked in optimized code. The CTXT table support
inlining. The EXPR table holds expressions which evaluate to the value of a variab
which has been optimized away. The tables are summarized below:

The pointers needed within the debug tables are in fact indexes into the tables. Th
GNTT, LNTT, and SLT each consist of a series of equal-sized entries. Some DNTT
entries begin a data structure and some are extension entries. Some SLT entries a
“special” (point back to the LNTT), others are “assist” (point forward in the SLT), bu
most are “normal” (point to code). There can be pointers from the LNTT to the GN
as it is common to have local variables of a global type. However, there are never
ers from the GNTT to the LNTT, as global variables are never of a local type.

The tables are defined to be as machine-independent as possible, but the debugg
need to “know” some facts about the system and language it is dealing with. The G
and LNTT are the only tables that require fixups to be generated by the compiler a
acted upon by the linker. There are other fixups to be done, but these are all done
pre-processor.

TABLE 25 Debug Table

Table Abbr. Contents Points to

Global symbols GNTT Global name-
and-type info.

GNTT, VT

Local symbols LNTT Local name-

and-type info.

GNTT,

LNTT, SLT, VT

Source lines SLT Source / listing
line info.

LNTT,

SLT

Value VT Names and con-
stants

Xref XT File offsets and
Attributes

XT, VT

Lines LINES DOC line info SRC_CTXT

lt_offset LT_OFFSETS offsets into
LINES table

LINES

context SRC_CTXT DOC inline info VT, SRC_CTXT

range RANGE DOC range
records

expr EXPR DOC expressions
170 HP PROPRIETARY

Version 3.0

pter:
8.2 Compilation Unit Headers

8.2.1 Basic typedef and structure definitions

The following basic typedefs and structure definition are used through out this cha

typedef long ADDRESS;

typedef unsigned long ADRT, *pADRT;

typedef unsigned int LANGTYPE;

typedef unsigned long STATTYPE; /* static-type location */

typedef long DYNTYPE; /* dynamic-type location */

typedef unsigned long REGTYPE; /* register-type location */

typedef unsigned int BASETYPE;

typedef unsigned int BITS;

DNTT pointer:

struct DNTTP_IMMEDIATE {

BITS extension: 1; /* always set to 1 */

BITS immediate: 1; /* always set to 1 */

BITS global: 1; /* always set to 0 */

BASETYPE type: 5; /* immediate basetype */

BITS bitlength: 24; /* immediate bitlength */

};

struct DNTTP_NONIMMED {

BITS extension: 1; /* always set to 1 */

BITS immediate: 1; / * always set to 0 */

BITS global: 1; /* 1 => GNTT, 0 => LNTT */

BITS index: 29; /* DNTT table index */

};

typedef union {

struct DNTTP_IMMEDIATE dntti;

struct DNTTP_NONIMMED dnttp;

long word; /* for generic access */

} DNTTPOINTER; /* one word */

A DNTTPOINTER of DNTTNIL means a nil pointer. In the DNTTimmediate case
there is always at least one zero bit (the globalbit) to distinguish that case from nil
pointer (-1). In thenon-immediate, non-nil case DNTTPOINTER is the block index,
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 171

Symbol ic Debug Informat ion

into,

n-

.,
nium

ter,

tes.
base zero, of another DNTT entry; the global bit indicates which table it is an index
the GNTT or LNTT. Each block is 12 bytes.

Extension bits really have nothing to do with DNTT pointers, but are needed for co
structing the DNTT. See the next section.

Bitlength is the MINIMUM (packed) size of the object. In lieu of other information (i.e
outside of a structure or array), the object is assumed to be right-justified in the mi
number of whole bytes required to hold the bit length.

An immediate DNTTPOINTER is only allowed if the type is a simple BASETYPE.
Otherwise, a separate DNTT entry must be used.

SLT pointer:

Signed entry index, base zero, into the source line table.Each entry is eight bytes.

typedef long SLTPOINTER;

VT pointer:

Unsigned byte offset into the value table. Note that VTNIL is not actually a nil poin
but rather a pointer to a nil string.

typedef long VTPOINTER;

Xref Pointer:

 Signed entry index, base zero, into the cross reference table.Each entry is four by

typedef long XREFPOINTER;

typedef int KINDTYPE;

LT pointer:

Unsigned byte offset into the line table.

typedef unsigned long LTPOINTER;

CTXT pointer:
172 HP PROPRIETARY

Version 3.0

unit,
 five

 time,

f the
 infor-
.

h
words
n of

n

ccu-
 set

re
e
ast-
Unsigned byte offset into the context table.

typedef unsigned long CTXTPOINTER;

8.2.2 XDB Header structure definition:

The header table is composed of five word header records. For each compilation
the compiler must generate a header record, indicating the length (in bytes) of the
tables (GNTT, LNTT, SLT, VT and XT) produced for that compilation unit.

The five tables are each contained in a separate subspace on PA-RISC and at link
the tables from different compilation units will be concatenated separately:

 GNTTs to GNTTS, SLTs to SLTs, etc.

struct XDB_header {

long gntt_length;

long lntt_length;

long slt_length;

long vt_length;

long xt_length;

};

The preprocessor requires the number of compilation units, and the size of each o
five tables produced by each compilation unit. The header records supply this size
mation, and the number of header records equals the number of compilation units

In PA-RISC, the header_extension flag (MSB) is set in the gntt_length word in eac
header-record by the compilers to indicate the header contains an xt_length and is
long. This bit is used to distinguish SOM's that were created with the earlier versio
compilers which do not have an XT subspace.

8.3 Name and Type Tables

The DNTT consists of a series of three-word blocks. Each starts with an "extensio
bit". Each structure in the union"dnttentry" begins in an "initial block" with a bit
which is always zero. If a structure is more than three words (one block) long, it o
pies one or more additional "extension blocks", each of which starts with a bit
to one to distinguish it from an initial block.

Note that every DNTTPOINTER has a high bit of one and that every DNTT structu
bigger than one block is carefully arranged so that a DNTTPOINTER resides in th
fourth and seventh words. (The extension bit is in the DNTTPOINTER to avoid w
ing space due to structure packing rules.)
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 173

Symbol ic Debug Informat ion

o

try
LT.

ded
 be
h file

d
sic
m-

 to
The second field in each structure is "kind", which acts like a Pascal variant tag t
denote the type of the structure. The "unused" fields are just included for clarity.

Followings are different classes of DNTT entries. The whole union "dnttentry" is
declared at the end of this section.

8.3.1 File-class ("File") DNTT Entries

• DNTT_SRCFILE structure definition:

struct DNTT_SRCFILE { /* 3 words */

BITS extension: 1;

KINDTYPE kind: 10;

LANGTYPE language: 4;

BITS unused: 17;

VTPOINTER name;

SLTPOINTER address;

};

Fields definition:

extension: Always zero.

kind: always K_SRCFILE type.

language: Language type.

unused: 17 bits filler to the end of 1st word.

name: Source/listing file name.

address: Code and text locations. "address" points to a special SLT en
(for the line number only), but the code location is known from context in the S

One SRCFILE is emitted for the start of each source file, the start of each inclu
file, and the return from each included file. Additional SRCFILE entries must also
output before each DNTT_FUNC entry. This guarantees the debuggers know whic
a function came from. Specifically, the definitions and rules are as follows:

Definitions

Source block: Contiguous block of one or more lines of text in a source-file, bounde
by beginning or end-of-file or include directives (conceptually identical to the "ba
block" in optimizer term). No distinction is made between blocks that contain co
pilable code and those that don't.

Code segment: Contiguous LINEAR bl/‘basoocock of DNTT (and associated SLT)
entries that are generated from the same "source block". "SLT_SRC" is used here
actually refer to an SLT_SPEC entry of type SLT_SRCFILE. Same goes for
SLT_FUNC.

Rules
174 HP PROPRIETARY

Version 3.0

 seg-

le
C
the

y

e
he

T

pe-

her-
e a
1. One DNTT_SRCFILE and SLT_SRC must be emitted at the head of each code
ment to facilitate reading backwards through the DNTT or SLT tables from any
point in the segment to determine the enclosing source file. If the source-fi
changes within the body of a function/subprogram, a DNTT_SRCFILE/SLT_SR
pair must be emitted prior to any additional DNTT or SLT entries generated by
remainder of that function/subprogram.

2. One DNTT_SRCFILE/SLT_SRC pair is always emitted *immediately* before an
DNTT_FUNC/SLT_FUNC. Exception: a DNTT_SA and associated
DNTT_XREF may appear between a DNTT_FUNC and it's preceding
DNTT_SRCFILE. There can be nothing between the SLT_SRC and the
SLT_FUNC. The DNTT_SRCFILE (preceding the DNTT_FUNC) must nam
the file containing the functions declaration. The SLT_FUNC must contain t
line number of the line in the function's declaration where the function's name
appears. This line number must match the line number that appears in the X
record denoting the function's declaration. The SLT_END associated with the
SLT_FUNC must contain the line number of the source line containing the sco
closing token (i.e. "}" or "end").

3. One DNTT_SRCFILE/SLT_SRC pair must be emitted for a source file that ot
wise would not be mentioned in the DNTT i.e. source files that do not generat
code segment. This is required for static analysis only.

Notes:
Listing files and listing file line numbers may be used in place of source files and source file line numbers. A special compiler option will
designate which is generated by the compiler
SRCFILE names are exactly as seen by the compiler, i.e. they may be relative, absolute, or whatever. C include file names must be
given as absolute paths if found "in the usual place", i.e., /usr/include/...

8.3.2 Code-class ("Scoping") DNTT Entries

• DNTT_MODULE structure definition:

struct DNTT_MODULE { /*5 words */

BITS extension: 1;

KINDTYPE kind: 10;

BITS unused: 21;

VTPOINTER name;

VTPOINTER alias;

DNTTPOINTER dummy;

SLTPOINTER address;

};

Fileds definition:

extension: Always zero.

kind: always K_MODULE type.

unused: 21 bits filler to the end of 1st word.

name: Module name.

alias: Alternate name, if any.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 175

Symbol ic Debug Informat ion

file
 entry,

w).

le.
that
the

 be a
e

dummy: 4th word must be DNTTPOINTER.

address: Code and text location.

 One MODULE is emitted for the start of each Pascal/Modcal module or C source
(C sources are considered a nameless module). "address" points to a special SLT
but the code location is known from context in the SLT.

In the case of languages that do not support modules (such as FORTRAN) a
DNTT_MODULE and DNTT_END pair are not used. Every MODULE must have a
matching END (see below). If a Pascal/Modcal module has a module body (some
code), the latter must be represented by a FUNCTION-END pair as well (see belo

For items within a module, the public bit is true if that item is exported by the modu
If the public bit of an item is set, that item is visible within any module or procedure
imports the module containing the item. If the public bit of an item is not set, then
item is only visible within the module.

The "dummy" field exists only because the first word of each extension block must
DNTTPOINTER; it is important only that the extension bit of the DNTTPOINTER b
set.

The MODULE DNTT should be used only in the LNTT.

• DNTT_FUNC structure definition:

struct DNTT_FUNC {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* K_FUNCTION, K_ENTRY,

K_BLOCKDATA, or,

KMEMFUNC */

BITS public: 1; /* 1 => globally visible */

LANGTYPE language: 4; /* type of language */

BITS level: 5; /* nesting level (top level =0)*/

BITS optimize: 2; /* level of optimization */

BITS varargs: 1; /* ellipses. Pascal/800 later */

BITS info: 4; /* lang-specific stuff; F_xxxx*/

#ifdef CPLUSPLUS

BITS inlined: 1;

BITS localloc: 1; /* 0 at top, 1 at end of block */

#ifdef TEMPLATES

BITS expansion: 1; /* 1 = function expansion */

BITS unused: 1;

#else /* TEMPLATES */

BITS unused: 2;
176 HP PROPRIETARY

Version 3.0

for

s

y
.

ize of
ny-

y the

g
 nil

ired

ld
o"
nd
he
#endif /* TEMPLATES */

#else

BITS unused: 4;

#endif

/*1*/ VTPOINTER name; /* name of function */

/*2*/ VTPOINTER alias; /* alternate name, if any */

/*3*/ DNTTPOINTER firstparam; /* first FPARAM, if any */

/*4*/ SLTPOINTER address; /* code and text locations */

/*5*/ ADDRESS entryaddr; /* address of entry point */

/*6*/ DNTTPOINTER retval; /* return type, if any */

/*7*/ ADDRESS lowaddr; /* lowest address of function */

/*8*/ ADDRESS hiaddr; /* highest address of function */

}; /* nine words */

Struct DNTT_FUNC is used for dfunc and dentry, and dblockdata types.

One FUNCTION or ENTRY is emitted for each formal function declaration
(with a body) or secondary entry point, respectively. They are not emitted
bodyless declarations (FORWARD, EXTERNAL, "int x ();" etc.).

A dblockdata is emitted for Fortran BLOCK DATA constructs only. "address" alway
points to a special SLT entry.

For FUNCTION types, the "entryaddr" field is the code address of the primary entr
point of the function. The "lowaddr" field is the lowest code address of the function
The "hiaddr" field is the highest code address of the function. This both gives the s
the function and helps in mapping code locations to functions when there are ano
mous (non-debuggable) functions present. These three fields should be filled in b
generation of fixups.

 For ENTRY types, the "entryaddr" field points to the proper code location for callin
the function at the secondary entrypoint, and the "lowaddr" and "hiaddr" fields are
(zero). For a FORTRAN subroutine with alternate entries, DNTT_DVARs are requ
to represent the parameters, see the DNTT_FPARAM definition for the details.

For BLOCKDATA types, the "public" bit should be set to 1, the "optimize" field shou
be set to the optimized level when compiling with -O, the “level”, "varargs" and "inf
fields should all be 0. The "firstparam" field should be DNTTNIL. The "entryaddr" a
"lowaddr" fields should be 0, and the "highaddr" field should be FFFFFFFC (-4). T
"retval" field should be set to T_UNDEFINED, with length 0. An SLT_FUNCTION/
SNT_END pair should be emitted for each DNTT_FUNC (BLOCKDATA).

Every FUNCTION or BLOCKDATA must have a matching END (see below).
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 177

Symbol ic Debug Informat ion

 func-
 the

alue

le-

 of

: If

 all
For languages in which a functions return value is set by assigning the value to the
tion name (such as FORTRAN & Pascal), a DVAR entry should also be emitted for
function. The address of this DVAR for the function should be the address of the
answer spot for the function. This will allow the user to display the current return v
while the function is executing.

The "varargs" field indicates whether the function was declared as having a variab
length parameter list. This is currently possible only via ANSI/C function-prototype
"ellipses" (...). The "info" field provides additional language-specific characteristics
the function and/or its parameter-list.

The localloc (local variables location) is currently only used in the following context
the function language is LANG_CPLUSPLUS, then 0 means that locals are at the
beginning of the block, and 1 means that locals appears at the end of a block. For
other languages this bit is not used.

The FUNCTION DNTT should be used only in the LNTT.

 o DNTT_DOC_FUNC structure definition

struct DNTT_DOC_FUNC {

/*0*/ BITS extension: 1; /* always zero */

 KINDTYPE kind: 10; /* K_DOC_FUNCTION or */

 /* K_DOC_MEMFUNC */

 BITS public: 1; /* 1 => globally visible */

 LANGTYPE language: 4; /* type of language */

 BITS level: 5; /* nesting level (top level = 0)*/

 BITS optimize: 2; /* level of optimization */

 BITS varargs: 1; /* ellipses. Pascal/800 later */

 BITS info: 4; /* lang-specific stuff; F_xxxx */

 BITS inlined: 1;

 BITS localloc: 1; /* 0 at top, 1 at end of block */
178 HP PROPRIETARY

Version 3.0

ated
ed
 BITS expansion: 1; /* 1 = function expansion */

 BITS doc_clone: 1;

/*1*/ VTPOINTER name; /* name of function */

/*2*/ VTPOINTER alias; /* alternate name, if any */

/*3*/ DNTTPOINTER firstparam; /* first FPARAM, if any */

/*4*/ SLTPOINTER address; /* code and text locations */

/*5*/ ADDRESS entryaddr; /* address of entry point */

/*6*/ DNTTPOINTER retval; /* return type, if any */

/*7*/ ADDRESS lowaddr; /* lowest address of function */

/*8*/ ADDRESS hiaddr; /* highest address of function */

/*9*/ DNTTPOINTER inline_list; /* pointer to first inline */

/*10*/ LTPOINTER lt_offset; /* start of frag/cp line table */

/*11*/ CTXTPOINTER ctxt_offset; /* start of context table for this

 routine */

}; /* twelve words */

The DNTT_DOC_FUNC is an expanded version of the DNTT_FUNC, and is gener
for DOC code. It supplies additional information needed for DOC: a list of the inlin
instances, and the start of the lines table and context table for the routine.

• DNTT_BEGIN structure definition:

struct DNTT_BEGIN {
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 179

Symbol ic Debug Informat ion

riable

LT

ot
/*0*/ BITS extension: 1; /* always zero */

 KINDTYPE kind: 10; /* always K_BEGIN */

#ifdef CPLUSPLUS

 BITS classflag : 1; /* beginning of class def’n */

 BITS doc_bb_repos: 1; /* basic blocks repositioned */

#else

 BITS unused1 : 1;

 BITS doc_bb_repos: 1; /* basic blocks repositioned */

#endif

 BITS unused2 :19;

/*1*/ SLTPOINTER address; /* code and text locations */

/*2*/ DNTTPOINTER doc_extensionptr; /* ptr to extension block */

}; /* three words */

BEGINs are emitted as required to open a new (nested) scope for any type of va
or label, at any level within MODULE-END and FUNCTION-END pairs. Every
BEGIN must have a matching END (see below). "address" points to a special S
entry, but the code location is known from context in the SLT. Because a DNTT
BEGIN-END is used to indicate a new scope, the Pascal BEGIN- END pair does n
produce a DNTT BEGIN-END, while the C { } construct does.

The BEGIN DNTT should be used only in the LNTT.

 o DNTT_BEGIN_EXT structure definition

The DNTT_BEGIN_EXT record is used for blocks of code which have been

moved out of their original scope. This is to support frgamentation

of an originally contiguous block of code within a BEGIN/END range
180 HP PROPRIETARY

Version 3.0
caused by basic block repositioning. Each DNTT_BEGIN_EXT supports

upto 3 additional statement ranges for the block.

struct DNTT_BEGIN_EXT {

/*0*/ BITS extension: 1;

 KINDTYPE kind: 10; /* K_BEGIN_EXT */

 BITS unused: 21;

/*1*/ DNTTPOINTER begin_scope; /* back ptr to ntt begin */

/*2*/ SLTPOINTER address1; /* pointer to SLT begin */

/*3*/ DNTTPOINTER next_extension; /* next extension block if any */

/*4*/ SLTPOINTER address2;

/*5*/ SLTPOINTER address3;

}; /* six words */

 o DNTT_INLN structure definition

The DNTT_INLN record represents an inline expansion of a routine.

Each DNTT_INLN has a matching DNTT_END. Within the DNTT_INLN /

DNTT_END pair will be DNTT_FPARAMs and DNTT_DVARs representing any

parameters and locals of the inlined routine. There can also

be additional DNTT_INLN / DNTT_END pairs for routines that have

been inlined inside of the inlined routine.

struct DNTT_INLN {

/*0*/ BITS extension: 1; /* always zero */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 181

Symbol ic Debug Informat ion

FOR-
l-

ch
 KINDTYPE kind: 10; /* always K_INLN */

 BITS unused: 21;

/*1*/ SLTPOINTER address; /* code and text locations */

/*2*/ CTXTPOINTER ctxt_tag; /* inline context tag */

/*3*/ DNTTPOINTER next_inln; /* pointer to next DNTT_INLN */

 /* for this function (if any) */

/*4*/ ADDRESS lowaddr; /* address of first inst of inline */

/*5*/ ADDRESS hiaddr; /* address of last inst of inline */

}; /* six words */

• DNTT_COMMON structure definition:

struct DNTT_COMMON {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_COMMON */

BITS unused: 21;

/*1*/ VTPOINTER name; /* name of common block */

/*2*/ VTPOINTER alias; /* alternate name, if any */

}; /* three words */

COMMONs are used to indicate that a group of variables are members of a given
TRAN common block. For each common block, a DNTT_ COMMON is emitted, fo
lowed by a DNTT_SVAR for each member of the common block, and finally a
DNTT_END. If type information is required for a member of the common block (su
as an array), it may also be within the DNTT_COMMON, DNTT_END pair.

The COMMON DNTT should be used only in the LNTT.

• DNTT_WITH structure definition:

truct DNTT_WITH {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_WITH */
182 HP PROPRIETARY

Version 3.0

ing
ord
ach.

, and
.
ter,
ro
 trac-
nter
 use

e"
nta-

e

BITS addrtype: 2; /* 0 => STATTYPE */

/* 1 => DYNTYPE */

/* 2 => REGTYPE */

BITS indirect: 1; /* 1 => pointer to object */

BITS longaddr: 1; /* 1 => in long pointer space */

BITS nestlevel: 6; /* # of nesting levels back */

BITS unused: 11;

/*1*/ long location; /* where stored (allocated) */

/*2*/ SLTPOINTER address;

/*3*/ DNTTPOINTER type; /* type of with expression */

/*4*/ VTPOINTER name; /* name of with expression */

/*5*/ unsigned long offset; /* byte offset from location */

}; /* six words */

WITHs are emitted to open a with scope. Like a BEGIN, a WITH requires a match
END to close the scope. A single WITH statement possessing more than one rec
expression, should be handled as multiple nested withs with only one expression e

The "addrtype" field indicates the addressing mode used for the record expression
along with the "indirect" field, tells how to interpret the "location" and "offset" fields
Thus, depending upon the value of "addrtype", "location" may contain a short poin
an offset from the local frame pointer, or a register number. If "nestlevel" is non-ze
and "addrtype" is DYNTYPE, the address for the record expression is computed by
ing back "nestlevel" static links and using "location" as an offset from the frame poi
at that level. (This situation occurs only on the HP9000 FOCUS architecture.) The
of the "offset" field is the same as for the DNTT_SVAR entry (see below). The "typ
field is the type of the record expression. The "name" field is the symbolic represe
tion of the record expression (ex. "p[i]^"). "address" points to a special SLT, but th
code location is known from context in the SLT.

The WITH DNTT should be used only in the LNTT.

• DNTT_END structure definition:

struct DNTT_END {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_END */

KINDTYPE endkind: 10; /* DNTT kind closing scope for */

#ifdef CPLUSPLUS

BITS classflag: 1; /* end of class def'n */

BITS unused: 10;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 183

Symbol ic Debug Informat ion

ION,

hich

xt in

 or
as-

od-
#else

BITS unused: 11;

#endif

/*1*/ SLTPOINTER address; /* code and text locations */

/*2*/ DNTTPOINTER beginscope; /* start of scope */

}; /* three words */

ENDs are emitted as required to close a scope started by a MODULE, FUNCT
WITH, COMMON, or BEGIN (but not an ENTRY).

Each points back to the DNTT entry that opened the scope. "endkind" indicates w
kind of DNTT entry is associated with the END and is filled in by the preprocessor.
"address" points to a special SLT entry, but the code location is known from conte
the SLT.

The END DNTT should be used only in the LNTT.

• DNTT_IMPORT structure definition:

struct DNTT_IMPORT {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_IMPORT */

BITS explicit: 1; /* module directly imported */

BITS unused: 20;

/*1*/ VTPOINTER module; /* module imported from */

/*2*/ VTPOINTER item; /* name of item imported */

}; /* three words */

Within a module, there is one IMPORT entry for each imported module, function,
variable. The item field is nil when an entire module is imported. Used only by P
cal/Modcal. Note that exported functions and variables have their public bits set.

The "explicit" flag indicates the module was directly imported. When not set, the m
ule was imported by an imported module.

The IMPORT DNTT should be used only in the LNTT.

• DNTT_LABEL structure definition:

struct DNTT_LABEL {

/*0*/ BITS extension: 1; /* always zero */
184 HP PROPRIETARY

Version 3.0

line-
se of

l SLT

s,
 KINDTYPE kind: 10; /* always K_LABEL */

 BITS unused: 21;

/*1*/ VTPOINTER name; /* name of label */

/*2*/ SLTPOINTER address; /* code and text locations */

}; /* three words */

One LABEL is emitted for each source program statement label, referencing the
matching physical line (SLT entry). An SLT pointer is used, instead of just a
number, so a code location is known for setting a breakpoint. This is the only ca
SLTPOINTER that points to a normal (not special) SLT entry.

If a label appears at the very end of a function (after all executable code), a norma
entry must be emitted for it anyway. In this case the SLT entry points to an exit
(return) instruction.

Numeric labels are named as the equivalent character string with no leading zeroe
except in those languages where the leading zeroes are significant (i.e. COBOL).

The LABEL DNTT should be used only in the LNTT.

8.3.3 Storage-class ("Name") DNTT Entries

• DNTT_FPARAM structure definition:

struct DNTT_FPARAM {

 /*0*/ BITS extension: 1; /* always zero */

 KINDTYPE kind: 10; /* always K_FPARAM */

 BITS regparam: 1; /* 1 => REGTYPE, not DYNTYPE */

 BITS indirect: 1; /* 1 => pass by reference */

 BITS longaddr: 1; /* 1 => in long pointer space */

 BITS copyparam: 1; /* 1 => Copied to a local */

 /* only for fortran strings */

#ifdef CPLUSPLUS

 BITS dflt: 1; /* default parameter value? */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 185

Symbol ic Debug Informat ion

her

 stor-
the
en
e to a

aram-
in Pas-
ter.
n
ecu-
plies

e sp of
val-
eld
 BITS doc_ranges: 1; /* 1 => location is range list */

#else

 BITS unused1: 1;

 BITS doc_ranges: 1; /* 1 => location is range list */

#endif

 BITS misc_kind: 1; /* 1 => misc is a dntt_ptr */

 BITS unused2: 14;

 /*1*/ VTPOINTER name; /* name of parameter */

 /*2*/ DYNTYPE location; /* where stored */

 /*3*/ DNTTPOINTER type; /* type information */

 /*4*/ DNTTPOINTER nextparam; /* next FPARAM, if any */

 /*5*/ int misc; /* assorted uses */

 }; /* six words */

FPARAMs are chained together in parameter list order (left to right) from every
FUNCTION, ENTRY, or FUNCTYPE (see below), one for each parameter, whet
or not the type is explicitly declared.

For unnamed parameters, the FPARAM name is "*". "regparam" implies that the
age location given is to be interpreted as a REGTYPE, not a DYNTYPE, that is,
parameter was passed in a register. "indirect" implies that the storage location giv
contains a data pointer to the parameter described, not the parameter itself, du
call by reference (Pascal VAR, for instance). In the case where a call-by-value p
eter is too big to be passed in the parameter list (e.g., a copied-value parameter
cal), the "location" must be given as the actual (post-copy) location of the parame
"longaddr" is meaningful only for varparams, and indicates that the storage locatio
given contains a 64 bit Spectrum long pointer. The long pointer could be in 2 cons
tive words, or in the case of a regparam, two consecutive registers. "copyparam" im
that the parameter has been copied to a local, and thus the location is relative to th
the current procedure, not the sp of the previous procdeure. "misc" is for assorted
ues. Currently, if the parameter is of type T_FTN_STRING_S300 then the "misc" fi
contains the SP relative offset of the word containing the length of the string
186 HP PROPRIETARY

Version 3.0

be
e
n (ex.
pre-
rame-
y
d the
f the
In the case of a FORTRAN routine with alternate entries, DNTT DVARs also must
emited for each parameter. The reason is that with FORTRAN alternate entries, th
same parameter can be in two different entry's parameter lists, in a different locatio
the parameter "x" in "subroutine a(x,y,z)" and "entry b(v,w,x)") and yet they both re
sent the same parameter. Thus in order to insure a consistant address for such pa
ters, the compiler allocates a local temporary, and the prologue code for each entr
copies the parameters into the local temps. So, to insure that the debugger can fin
parameters, a DNTT DVAR must be generated for each temporary, with the name o
DVAR being the name of the FPARAM for which the temp. was allocated.

The FPARAM DNTT should be used only in the LNTT.

• DNTT SVAR and DVAR structures definition:

struct DNTT_SVAR {

/*0*/ BITS extension: 1; /* always zero */

 KINDTYPE kind: 10; /* always K_SVAR */

 BITS public: 1; /* 1 => globally visible */

 BITS indirect: 1; /* 1 => pointer to object */

 BITS longaddr: 1; /* 1 => in long pointer space */

#ifdef CPLUSPLUS

 BITS staticmem: 1; /* 1 => member of a class */

 BITS a_union: 1; /* 1 => anonymous union member */

 BITS doc_ranges: 1; /* 1 => location is range list */

#else

 BITS unused1: 2;

 BITS doc_ranges: 1; /* 1 => location is range list */

#endif

 BITS unused2: 15;

/*1*/ VTPOINTER name; /* name of object (variable) */

/*2*/ STATTYPE location; /* where stored (allocated) */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long offset; /* post indirection byte offset */

/*5*/ unsigned long displacement; /* pre indirection byte offset */

}; /* six words */

struct DNTT_DVAR {

/*0*/ BITS extension: 1; /* always zero */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 187

Symbol ic Debug Informat ion

Rs
ARs
ect

bal
 the

n
ld is

le
-

 KINDTYPE kind: 10; /* always K_DVAR */

 BITS public: 1; /* 1 => globally visible */

 BITS indirect: 1; /* 1 => pointer to object */

 BITS regvar: 1; /* 1 => REGTYPE, not DYNTYPE */

#ifdef CPLUSPLUS

 BITS a_union: 1; /* 1 => anonymous union member */

 BITS doc_ranges:1; /* 1 => location is range list */

#else

 BITS unused1: 1;

 BITS doc_ranges:1; /* 1 => location is range list */

#endif

 BITS unused2: 16;

/*1*/ VTPOINTER name; /* name of object (variable) */

/*2*/ DYNTYPE location; /* where stored (allocated) */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long offset; /* post indirection byte offset */

 /* for use in cobol structures */

/*5*/ unsigned long future; /* padding to 3-word block end */

}; /* six words */

SVARs describe static variables (with respect to storage, not visibility) and DVA
describe dynamic variables, and also describe register variables. Note that SV
have an extra word, "offset", not needed for the other types. This provides for dir
data which is indexed from a base, and indirect data which is accessed through a
pointer, then indexed.

The "location" field of an SVAR will require a fixup. An example of when the offset
field can be useful, is a FORTRAN common block. In a common block declaration
such as "common /marx/ groucho, harpo, chico", the symbol "marx" is the only glo
symbol. If "marx" is accessed indirectly, then the address of "harpo" would contain
address of "marx" in the location field (with the indirect bit on), and the offset of
"harpo" from "marx" in the offset field. If "marx" is not indirect, then location field ca
be filled in by a fixup of the form address(marx) + offset of harpo, and the offset fie
not needed.

If a variable is defined in a shared library and referenced by the main program, the
SVAR in the main program will have its “location” field point to the data-linkage tab
(DLT) entry for the variable. The SVAR consumer will know implicitly that the refer
ence is indirect because the “location” field address falls within the bounds of the

DLT.
188 HP PROPRIETARY

Version 3.0

bout

ame

 func-
 the

alue

ep-

a-
The compilers must emit SVARs even for data objects the linker does not know a
by name, such as variables in common blocks.

As in the FPARAM entry, the longaddr field indicates the use of a Spectrum long
pointer, and is valid only if the indirect flag is true. The "regvar" field also has the s
meaning as in the FPARAM case.

For languages in which a functions return value is set by assigning the value to the
tion name (such as FORTRAN & Pascal), a DVAR entry should also be emitted for
function. The address of this DVAR for the function should be the address of the
answer spot for the function. This will allow the user to display the current return v
while the function is executing.

For a FORTRAN subroutine with alternate entries, DNTT_DVARs are required to r
resent the parameters, see the DNTT_FPARAM definition for the details.

The SVAR can be used in both the GNTT and LNTT, while the DVAR is only applic
ble to the LNTT.

• DNTT_CONST structure definition:

struct DNTT_CONST {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_CONST */

BITS public:1; /* 1 => globally visible */

BITS indirect:1; /* 1 => pointer to object */

LOCDESCTYPE locdesc:3; /* meaning of location field */

#ifdef CPLUSPLUS

BITS classmem:1; /* 1 => member of a class */

BITS unused:15;

#else

BITS unused:16;

#endif

/*1*/ VTPOINTER name; /* name of object */

/*2*/ STATTYPE location; /* where stored */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long offset; /* post indirection byte offset */

/*5*/ unsigned long displacement; /* pre indirection byte offset */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 189

Symbol ic Debug Informat ion

to use
ro-
th
three
o a

 off-

way
tions,
,

o

nter-
s

}; /* six words */

The value of locdesc determines the meaning of location. Compilers are free
any of the three types (LOC_IMMED, LOC_PTR, LOC_VT) as feasible and app
priate. They might, for example, merely dump all CONST values into the VT, wi
some redundancy, if they could do no better. Ideally, each compiler would use all
types according to whether the constant is stored in an immediate instruction (s
copy is needed here), in code or data space, or nowhere else, respectively.

If locdesc == LOC_PTR, CONST is very much like an SVAR, and the indirect and
set values are relevant.

The CONST DNTT can be used in both the GNTT and LNTT.

8.3.4 Type-class ("Type") DNTT Entries

• DNTT_TYPE structure definition:

struct DNTT_TYPE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* either K_TYPEDEF or */

/* K_TAGDEF */

BITS public:1; /* 1 => globally visible */

BITS typeinfo:1; /* 1 => type info available */

BITS unused:19;

/*1*/ VTPOINTER name; /* name of type or tag */

/*2*/ DNTTPOINTER type; /* type information */

}; /* three words */

The DNTT_TYPE type is used for dtype and dtag entries. TYPEDEFs are just a
of remembering names associated with types declared in Pascal, via "type" sec
or in C, via "typedef"s. TAGDEFs are used for C "struct", "union", and "enum" tags
which may be named identically to "typedef"s in the same scope. TAGDEFs
always point at STRUCTs, UNIONs, or ENUMs (see below), and provide a way t
"hang" a name onto a subtree.

Note that named types point directly to the underlying structures, not to i
vening TYPEDEFs or TAGDEFs. Type information in TYPEDEFs and TAGDEF
point to the same structures independent of named instantiations of the types.
190 HP PROPRIETARY

Version 3.0
For example:

typedef struct S {...} *pS;

would generate something like this:

TYPEDEF “pS”

POINTER

TAG “S”

STRUCT

.......
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 191

Symbol ic Debug Informat ion
And:

typedef enum E { ... } EEE;

would generate something like this:

TYPEDEF “EEE”

TAG “E”

ENUM

....
192 HP PROPRIETARY

Version 3.0

G-
pli-

that
ared.
t

se,

set
Note also that variables (of a named non-base type) must point to TYPEDEF or TA
DEF dntt, and not the underlying structures. If this is not done, the removal of du
cate global information is impossible.

The "typeinfo" flag only applies to TAGDEFs. When not set, it is used to indicate
an underlying struct, union, or enum is named, but the actual type is not decl
In general, "typeinfo" will be set to 1. It will be set to a 0 if the type subtree is no
available. Consider the C file

*typedef struct s *Sptr;

*main(){}

which is a valid compilation unit with "struct s" defined in another file. For this ca
the "typeinfo" for TAGDEF "s" will be set to 0, and "type" points to a "nil"
DNTT_STRUCT (i.e. a DNTT_STRUCT entry with its "firstfield", "vartagfield",
and "varlist" fields set to DNTTNIL and its "declaration" and "bitlength" fields
to 0).

Graphically:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 193

Symbol ic Debug Informat ion
TYPEDEF “Sptr”

POINTER

<first field>-----> DNTTNIL

<vartagfield>-----> DNTTNIL

<varlistfield>-----> DNTTNIL

<.. otherfields>-----> all set to 0

TAG “s”

STRUCT
194 HP PROPRIETARY

Version 3.0

try
's,
Thus, whenever "typeinfo" is 0, "type" must point to an appropriate DNTT en
which has all its fields correctly NIL'ed. This applies to *named* DNTT_STRUCT
DNTT_UNION's, and DNTT_ENUM's.

The TYPEDEF and TAGDEF DNTTs may be used in both the GNTT and LNTT.

• DNTT_POINTER structure definition:

struct DNTT_POINTER {

/*0*/ BITS extension: 1; /* always zero */

#ifdef CPLUSPLUS

KINDTYPE kind: 10; /* K_POINTER or K_REFERENCE */

#else

KINDTYPE kind: 10; /* always K_POINTER */

#endif

BITS unused: 21;

/*1*/ DNTTPOINTER pointsto; /* type of object */

/*2*/ unsigned long bitlength; /* size of pointer, not object */

}; /* three words */

• DNTT ENUM and MEMENUM structures definition:

struct DNTT_ENUM {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_ENUM */

BITS unused: 21;

/*1*/ DNTTPOINTER firstmem; /* first MEMENUM (member) */

/*2*/ unsigned long bitlength; /* packed size */

}; /* three words */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 195

Symbol ic Debug Informat ion
struct DNTT_MEMENUM {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_MEMENUM */

#ifdef CPLUSPLUS

BITS classmem: 1; /* 1 => member of a class */

BITS unused: 20;

#else

BITS unused: 21;

#endif

/*1*/ VTPOINTER name; /* name of member */

/*2*/ unsigned long value; /* equivalent number */

/*3*/ DNTTPOINTER nextmem; /* next MEMENUM, else */

/* ENUM type */

}; /* four words */

Each ENUM begins a chain of (name, value) pairs. The nextmem field of the last
memenum, should be DNTT NIL. The POINTER, ENUM, and MEMENUM DNTTs
can all be used in both the GNTT and LNTT.

• DNTT SET, SUBRANGE, and ARRAY structures definition:

struct DNTT_SET {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_SET */

BITS declaration:2; /* normal, packed, or crunched */

BITS unused:19;

/*1*/ DNTTPOINTER subtype; /* type implies bounds of set */

/*2*/ unsigned long bitlength; /* packed size */

}; /* three words */

struct DNTT_SUBRANGE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_SUBRANGE */

BITS dyn_low:2; /* >0 => nonconstant low bound */
196 HP PROPRIETARY

Version 3.0

 is
low
 of

ro,
pe

d

ed
ower
 has
ram-
 the
 a
BITS dyn_high:2; /* >0 => nonconstant high bound */

BITS unused: 17;

/*1*/ long lowbound; /* meaning depends on subtype */

/*2*/ long highbound; /* meaning depends on subtype */

/*3*/ DNTTPOINTER subtype; /* immediate type or ENUM */

/*4*/ unsigned long bitlength; /* packed size */

}; /* five words */

struct DNTT_ARRAY {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_ARRAY */

BITS declaration: 2; /* normal, packed, or crunched */

BITS dyn_low: 2; /* >0 => nonconstant low bound */

BITS dyn_high: 2; /* >0 => nonconstant high bound */

BITS arrayisbytes:1; /* 1 => array size is in bytes */

BITS elemisbytes: 1; /* 1 => elem. size is in bytes */

BITS elemorder: 1; /* 0 => in increasing order */

BITS justified: 1; /* 0 => left justified */

BITS unused: 11;

/*1*/ unsigned long arraylength; /* size of whole array */

/*2*/ DNTTPOINTER indextype; /* how to index the array */

/*3*/ DNTTPOINTER elemtype; /* type of each array element */

/*4*/ unsigned long elemlength; /* size of one element */

}; /* five words */

The dyn_low and dyn_high fields are non-zero only if the DNTT_SUBRANGE
defining the range of an array index, otherwise they are always zero. The dyn_
and dyn_high bits are duplicated in the DNTT_SUBRANGE defining the range
the array index (so sllic can fix the pointers). "dyn_low" indicates whether the
lower bound for the subscript of the array is dynamic. If the dyn_low field is ze
then the lowbound field of the DNTT_SUBRANGE entry, pointed to by the indexty
field in the DNTT_ARRAY entry, is interpreted as a constant lower bound. If the
dyn_low field is 1, then the lowbound field of the DNTT SUBRANGE is interprete
as a DYNTYPE giving a local address where the lower bound can be found. If the
dyn_low field is 2, then the lowbound field of the DNTT_SUBRANGE is interpret
as a DNTTPOINTER to a variable whose value is the lower bound (needed if the l
bound is a static variable). The dyn_low value of 3 is not used. The "dyn_high" bit
a similar meaning relating to the upper bound. If an upper bound for an array pa
eter is not given (like assumed size arrays in FORTRAN, or "char foo[]" in C) then
upper bound in the DNTT_SUBRANGE should be the largest integer that fits in
long integer, so that any value the user can give is legal.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 197

Symbol ic Debug Informat ion

ther
s. A

tes
y
s any

 justi-
e

ol-
n the
, 3..4,
lara-

of
ier.
ge.

 "vart-
"arrayisbytes" indicates that the field "arraylength" contains the length in bytes ra
then bits. This is needed on Spectrum where an array could be up to 2**32 byte
value of zero for bitsize will be used to represent 2**32.

"elemisbytes" indicates that the field "elemlength" contains the elem. length in by
rather then bits. The "elemlength" field contains the not the "true" size of an arra
element, but the size allocated to each element within the array (the "true" size plu
wasted bits on the left or right). As an example for a

Pascal array of a 13 bit structure, the array element size might equal 16, with the
fied field equal to 0 to indicate the structure is left justified within the 16 bits. Th
"true" size of the structure would be found in the size field of the

DNTT_STRUCT pointed to by the "elemtype" field of the DNTT_ARRAY.

"indextype" typically points to a SUBRANGE for bounds.

"elemtype" may point to another ARRAY for multi-dimensional arrays. Row or c
umn precedence in the language is reflected in the order of the ARRAY entries o
chain. For example, in Pascal, which is row-precedent, an array declared [1..2
5..6] would result in "array 1..2 of array 3..4 of array 5..6 of ...". The same dec
tion in FORTRAN, which is column-precedent, would result in "array 5..6
array 3..4 of array 1..2 of ...". This makes index-to-address conversion much eas
Either way an expression handler must know the precedence for the langua

The SET, SUBRANGE, and ARRAY DNTTs can be used in both the GNTT and
LNTT.

• DNTT STRUCT structure definition:

struct DNTT_STRUCT {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_STRUCT */

BITS declaration:2; /* normal, packed, or crunched */

BITS unused:19;

/*1*/ DNTTPOINTER firstfield; /* first FIELD, if any */

/*2*/ DNTTPOINTER vartagfield; /* variant tag FIELD, or type */

/*3*/ DNTTPOINTER varlist; /* first VARIANT, if any */

/*4*/ unsigned long bitlength; /* total at this level */

}; /* five words */

The "declaration", "vartagfield", and "varlist" fields apply to Pascal/Modcal records
only and are nil for record structures in other languages. If there is a tag, then the
198 HP PROPRIETARY

Version 3.0

Es
ord-
agfield" points to the FIELD DNTT describing the tag. Otherwise, the "vartagfield"
points to the tag type.

The STRUCT DNTT may be used in both the GNTT and LNTT.

• DNTT UNION structure definition:

struct DNTT_UNION {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_UNION */

BITS unused: 21;

/*1*/ DNTTPOINTER firstfield; /* first FIELD entry */

/*2*/ unsigned long bitlength; /* total at this level */

}; /* three words */

This type of DNTT_UNION supports C unions only and is not used otherwise.

Since STRUCTUREs and UNIONs are not packable inside of outer STRUCTUR
and UNIONs, their bitlengths tell their actual (not necessarily packed) size, acc
ing only as to how they are internally packed.

The UNION DNTT may be used in both the GNTT and LNTT.

• DNTT FIELD structure definition:

struct DNTT_FIELD {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_FIELD */

#ifdef CPLUSPLUS

BITS visibility:2; /* pub = 0, prot = 1, priv = 2 */

BITS a_union:1; /* 1 => anonymous union member */

#ifdef TEMPLATES

BITS staticMem:1; /* 1 -> static member of a template */

BITS unused:17;

#else /* TEMPLATES */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 199

Symbol ic Debug Informat ion

. The
start
 be
erlap.

 be a
BITS unused:18;

#endif /* TEMPLATES */

#else /* normal code, not C++ support */

BITS unused:21;

#endif

/*1*/ VTPOINTER name; /* name of field, if any */

/*2*/ unsigned long bitoffset; /* of object itself in STRUCT */

/*3*/ DNTTPOINTER type; /* type information */

/*4*/ unsigned long bitlength; /* size at this level */

/*5*/ DNTTPOINTER nextfield; /* next FIELD in STRUCT, if any */

}; /* six words */

This type describes the fields in Pascal records and C structures and unions
bitoffset is from the start of the STRUCT or UNION that started the chain, to the
of the object itself, ignoring any padding. Note that bitoffset does not have to
on a byte boundary. For unions, each bitoffset should be zero since all fields ov

The bitlength field is the same as that of the type except for C bit fields, which may
different size than the base type.

The FIELD DNTT can be used in both the GNTT and LNTT.

• DNTT VARIANT structure definition:

struct DNTT_VARIANT {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_VARIANT */

BITS unused: 21;

/*1*/ long lowvarvalue; /* meaning depends on vartype */

/*2*/ long hivarvalue; /* meaning depends on vartype */

/*3*/ DNTTPOINTER varstruct; /* this variant STRUCT, if any */

/*4*/ unsigned long bitoffset; /* of variant, in outer STRUCT */

/*5*/ DNTTPOINTER nextvar; /* next VARIANT, if any */

}; /* six words */
200 HP PROPRIETARY

Version 3.0

iant.
to

;
,'q':).
d of

al/
ment
-
r,
"varstruct" points to the STRUCT which in turn describes the contents of the var
The latter might in turn point to VARIANTs of its own, and to FIELDs which point
other STRUCTs.

"lowvarvalue" and "hivarvalue" are the range of values for which this variant applys
more than one dntt VARIANT may be necessary to describe the range (e.g., 'a'..'n'
A type field is un necessary, as the type can be obtained from the "vartagfield" fiel
the STRUCT DNTT.

The VARIANT DNTT can be used in both the GNTT and LNTT.

• DNTT FILE structure definition:

struct DNTT_FILE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_FILE */

BITS ispacked: 1; /* 1 => file is packed */

BITS unused: 20;

/*1*/ unsigned long bitlength; /* of whole element buffer */

/*2*/ unsigned long bitoffset; /* of current element in buffer */

/*3*/ DNTTPOINTER elemtype; /* type and size of of element */

}; /* four words */

Pascal/Modcal is the only language of interest with built-in file buffering. For Pasc
Modcal files, the symbol table tells the file element type, the sizes of the current ele
(via "elemtype") and the whole buffer (via "bitlength"), and the locations of the ele
ment buffer (from the parent "NAME" entry) and the element itself within the buffe
following header information (from "bitoffset").

The FILE DNTT can be used in both the GNTT and LNTT.

• DNTT FUNCTTYPE structure definition:

struct DNTT_FUNCTYPE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_FUNCTYPE */

BITS varargs:1; /* func-proto ellipses. */

BITS info:4; /* lang-specific stuff; F_xxxx */

BITS unused:16;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 201

Symbol ic Debug Informat ion

r

/

/*1*/ unsigned long bitlength; /* size of function pointer */

/*2*/ DNTTPOINTER firstparam; /* first FPARAM, if any */

/*3*/ DNTTPOINTER retval; /* return type, if any */

}; /* four words */

This type supports function variables in a limited way, including the paramete
types (if any) and the return value type (if any).

See DNTT_FUNC for discussion of various fields.

The FUNCTYPE DNTT can be used in both the GNTT and LNTT.

• DNTT COBSTRUCT structure definition:

struct DNTT_COBSTRUCT {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_COBSTRUCT */

BITS hasoccurs:1; /* descendant has OCCURS clause *

BITS istable: 1; /* is a table item? */

BITS unused:19;

/*1*/ DNTTPOINTER parent; /* next higher data item */

/*2*/ DNTTPOINTER child; /* 1st descendant data item */

/*3*/ DNTTPOINTER sibling; /* next data item at this level */

/*4*/ DNTTPOINTER synonym; /* next data item w/ same name */

/*5*/ BITS catusage: 6; /* category or usage of item */

BITS pointloc:8; /* location of decimal point */

BITS numdigits:10; /* number of digits */

BITS unused2:8;

/*6*/ DNTTPOINTER table; /* array entry describing table */

/*7*/ VTPOINTER editpgm; /* name of edit subprogram */

/*8*/ unsigned long bitlength; /* size of item in bits */

}; /* nine words */

This entry is used to describe COBOL data items and table items.

A Cobol variable will begin with a DNTT_SVAR, DNTT_DVAR, or DNTT_ FPARAM
whose "type" field is a DNTTPOINTER to a DNTT_COBSTRUCT.
202 HP PROPRIETARY

Version 3.0

-

ild")

t to
"parent", "child", "sibling", and "synonym" are DNTTPOINTER to other
DNTT_SVAR, DNTT_DVAR, or DNTT_FPARAMs having these particular relation-
ships with the current DNTT_COBSTRUCT (or are set to DNTTNIL if no such rela
tionship exists).

"hasoccurs" is set to 1 if the descendent of this COBOL element (pointed to by "ch
has an OCCURS ... DEPENDING ON clause.

"istable" is set to 1 if this COBOL data item is a table. In this case, "table" will poin
a DNTT_ARRAY entry describing the table.

The COBSTRUCT DNTT can be used in both the GNTT and LNTT.

• DNTT MODIFIER structure definition:

struct DNTT_MODIFIER {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_MODIFIER */

BITS m_const:1; /* const */

BITS m_static:1; /* static */

BITS m_void:1; /* void */

BITS m_volatile: 1; /* volatile */

BITS m_duplicate:1; /* duplicate */

BITS unused:16;

/*1*/ DNTTPOINTER type; /* subtype */

}; /* 2 words */

• The following DNTTs :

DNTT_GENFIELD,

DNTT_MEMACCESS,

DNTT_VFUNC,

DNTT_CLASS_SCOPE,

DNTT_FRIEND_CLASS,

DNTT_FRIEND_FUNC,

DNTT_CLASS,

DNTT_TEMPLATE,

DNTT_TEMPL_ARG,

DNTT_PTRMEM,

DNTT_INHERITANCE,

DNTT_OBJECT_ID
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 203

Symbol ic Debug Informat ion
are defined to support C++ and template.

struct DNTT_GENFIELD {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_GENFIELD */

BITS visibility:2; /* pub = 0, prot = 1, priv = 2 */

BITS a_union:1; /* 1 => anonymous union member */

BITS unused:18;

/*1*/ DNTTPOINTER field; /* pointer to field or qualifier */

/*2*/ DNTTPOINTER nextfield; /* pointer to next field */

}; /* three words */

struct DNTT_MEMACCESS {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; / * always K_MEMACCESS */

BITS unused:21;

/*1*/ DNTTPOINTER classptr; /* pointer to base class */

/*2*/ DNTTPOINTER field; /* pointer field */

}; /* three words */

struct DNTT_VFUNC {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* always K_VFUNCTION */

BITS pure:1; /* pure virtual function ? */

BITS unused:20;

/*1*/ DNTTPOINTER funcptr; /* function name */

/*2*/ unsigned long vtbl_offset; /* offset into vtbl for virtual */

}; /* three words */

struct DNTT_CLASS_SCOPE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_CLASS_SCOPE */

BITS unused:21;

/*1*/ SLTPOINTER address; /* pointer to SLT entry */

/*2*/ DNTTPOINTER type; /* pointer to class type DNTT */

}; /* three words */
204 HP PROPRIETARY

Version 3.0
struct DNTT_FRIEND_CLASS {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind: 10; /* always K_FRIEND_CLASS */

BITS unused: 21;

/*1*/ DNTTPOINTER classptr; /* pointer to class DNTT */

/*2*/ DNTTPOINTER next; /* next DNTT_FRIEND */

}; /* three words */

struct DNTT_FRIEND_FUNC {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_FRIEND_FUNC */

BITS unused:21;

/*1*/ DNTTPOINTER funcptr; /* pointer to function */

/*2*/ DNTTPOINTER classptr; /* pointer to class DNTT */

/*3*/ DNTTPOINTER next; /* next DNTT_FRIEND */

}; /* four words */

struct DNTT_CLASS {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_CLASS */

BITS abstract:1; /* is this an abstract class? */

BITS class_decl:2; /* 0=class,1=union,2=struct */

#ifdef TEMPLATES

BITS expansion:1; /* 1=template expansion */

BITS unused:17;

#else /* TEMPLATES */

BITS unused:18;

#endif /* TEMPLATES */

/*1*/ DNTTPOINTER memberlist; /* ptr to chain of K_[GEN]FIELDs */

/*2*/ unsigned long vtbl_loc; /* offset in obj of ptr to vtbl */

/*3*/ DNTTPOINTER parentlist; /* ptr to K_INHERITANCE list */

/*4*/ unsigned long bitlength; /* total at this level */

/*5*/ DNTTPOINTER identlist; /* ptr to chain of class ident's */

/*6*/ DNTTPOINTER friendlist; /* ptr to K_FRIEND list */

#ifdef TEMPLATES
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 205

Symbol ic Debug Informat ion

nnot
/*7*/ DNTTPOINTER templateptr; /* ptr to template */

/*8*/ DNTTPOINTER nextexp; /* ptr to next expansion */

#else /* TEMPLATES */

/*7*/ unsigned long future2;

/*8*/ unsigned long future3;

#endif /* TEMPLATES */

}; /* nine words */

struct DNTT_TEMPLATE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* always K_TEMPLATE */

BITS abstract:1; /* is this an abstract class? */

BITS class_decl: 2; /* 0=class,1=union,2=struct */

BITS unused:18;

/*1*/ DNTTPOINTER memberlist; /* ptr to chain of K_[GEN]FIELDs */

/*2*/ long unused2; /* offset in obj of ptr to vtbl */

/*3*/ DNTTPOINTER parentlist; /* ptr to K_INHERITANCE list */

/*4*/ unsigned long bitlength; /* total at this level */

/*5*/ DNTTPOINTER identlist; /* ptr to chain of class ident's */

/*6*/ DNTTPOINTER friendlist; /* ptr to K_FRIEND list */

/*7*/ DNTTPOINTER arglist; /* ptr to argument list */

/*8*/ DNTTPOINTER expansions; /* ptr to expansion list */

}; /* 9 words */

DNTT_TEMPLATEs only appear in the GNTT. Functions and classes templates ca
be local. (Their instantiations may be).

struct DNTT_TEMPL_ARG {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* always K_TEMPL_ARG */

BITS usagetype:1; /* 0 type-name 1 expression */

BITS unused: 20;

/*1*/ VTPOINTER name; /* name of argument */

/*2*/ DNTTPOINTER type; /* for non type arguments */

/*3*/ DNTTPOINTER nextarg; /* Next argument if any */

/*4*/ long unused2[2];

}; /* 6 words */
206 HP PROPRIETARY

Version 3.0
Pxdb fills in the prevexp, and nextexp in the DNTT_CLASS. Pxdb also fills in the
expansions field in the DNTT_TEMPLATE.

struct DNTT_PTRMEM {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* K_PTRMEM or

/* K_PTRMEMFUNC */

BITS unused:21;

/*1*/ DNTTPOINTER pointsto; /* pointer to class DNTT */

/*2*/ DNTTPOINTER memtype; /* type of member */

}; /* three words */

struct DNTT_INHERITANCE {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* K_INHERITANCE */

BITS Virtual:1; /* virtual base class ? */

BITS visibility:2; /* pub = 0, prot = 1, priv = 2 */

BITS unused:18;

/*1*/ DNTTPOINTER classname; /* first parent class, if any */

/*2*/ unsigned long offset; /* offset to start of base class */

/*3*/ DNTTPOINTER next; /* pointer to next K_INHERITANCE */

}; /* four words */

struct DNTT_OBJECT_ID {

/*0*/ BITS extension:1; /* always zero */

KINDTYPE kind:10; /* K_OBJECT_ID */

BITS unused:21;

/*1*/ unsigned long object_ident; /* object identifier */

/*2*/ unsigned long offset; /* offset to start of base class */

/*3*/ DNTTPOINTER next; /* pointer to next K_OBJECT_ID */

/*4*/ unsigned long segoffset; /* for linker fixup */

}; /* five words */

8.3.5 General ("overall") DNTT Entry Format

• Generic Entry for Easy Access:

struct DNTT_GENERIC {
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 207

Symbol ic Debug Informat ion
unsigned long word [9]; /* rounded up to

}; /* whole number of blocks */

struct DNTT_BLOCK { /* easy way to deal with one block */

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* kind of dnttentry */

BITS unused:21;

/*1*/ unsigned long word [2];

};

• Overall DNTT entry:

union dnttentry {

 struct DNTT_SRCFILE dsfile;

 struct DNTT_MODULE dmodule;

 struct DNTT_FUNC dfunc;

 struct DNTT_FUNC dentry;

 struct DNTT_FUNC dblockdata;

 struct DNTT_DOC_FUNC doptfunc;

 struct DNTT_BEGIN dbegin;

 struct DNTT_BEGIN_EXT dbeginext;

 struct DNTT_END dend;

 struct DNTT_IMPORT dimport;

 struct DNTT_LABEL dlabel;

 struct DNTT_WITH dwith;

 struct DNTT_COMMON dcommon;

 struct DNTT_FPARAM dfparam;

 struct DNTT_SVAR dsvar;

 struct DNTT_DVAR ddvar;

 struct DNTT_CONST dconst;

 struct DNTT_TYPE dtype;

 struct DNTT_TYPE dtag;

 struct DNTT_POINTER dptr;

 struct DNTT_ENUM denum;

 struct DNTT_MEMENUM dmember;

 struct DNTT_SET dset;
208 HP PROPRIETARY

Version 3.0
 struct DNTT_SUBRANGE dsubr;

 struct DNTT_ARRAY darray;

 struct DNTT_STRUCT dstruct;

 struct DNTT_UNION dunion;

 struct DNTT_FIELD dfield;

 struct DNTT_VARIANT dvariant;

 struct DNTT_FILE dfile;

 struct DNTT_FUNCTYPE dfunctype;

 struct DNTT_COBSTRUCT dcobstruct;

 struct DNTT_MODIFIER dmodifier;

 struct DNTT_DYN_ARRAY_DESC darraydesc;

 struct DNTT_DESC_SUBRANGE ddescsubr;

#ifdef CPLUSPLUS

 struct DNTT_CLASS_SCOPE dclass_scope;

 struct DNTT_POINTER dreference;

 struct DNTT_PTRMEM dptrmem;

 struct DNTT_PTRMEM dptrmemfunc;

 struct DNTT_CLASS dclass;

 struct DNTT_GENFIELD dgenfield;

 struct DNTT_VFUNC dvfunc;

 struct DNTT_MEMACCESS dmemaccess;

 struct DNTT_INHERITANCE dinheritance;

 struct DNTT_FRIEND_CLASS dfriend_class;

 struct DNTT_FRIEND_FUNC dfriend_func;

 struct DNTT_OBJECT_ID dobject_id;

 struct DNTT_FUNC dmemfunc;

 struct DNTT_TEMPLATE dtemplate;

 struct DNTT_TEMPL_ARG dtempl_arg;

 struct DNTT_FUNC_TEMPLATE dfunctempl;

 struct DNTT_LINK dlink; /* generic */

 struct DNTT_TFUNC_LINK dtflink;

#endif /* CPLUSPLUS */

 struct DNTT_INLN dinln;

 struct DNTT_INLN_LIST dinlnlist;

 struct DNTT_ALIAS dalias;

 struct DNTT_XREF dxref;

 struct DNTT_SA dsa;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 209

Symbol ic Debug Informat ion

it. It
e

fer-

 sub-
ing
f the
 line
1

o a

 must
 to
 for

s a 0

It is
 struct DNTT_GENERIC dgeneric;

 struct DNTT_BLOCK dblock;

};

8.4 Static Analysis Information

8.4.1 XREF Table (XT) Entry Format

This table contains static information about each named object in a compilation un
consists of a collection of of lists, each list associated with a DNTT object via th
DNTT_XREF that follows the object. The DNTT_XREF contains an XREF-
POINTER which is an offset into the XT table, and denotes the beginning of the re
ence list.

Each list is actually one or more of linear sub-list that are linked together. Each
list begins with an XREFNAME entry, which names a (current) source file. Follow
the XREFNAME is one or more XREFINFO entries, one for each appearance o
object's name in the current file. These entries list what type of reference and the
no. within the file. Column numbers are currently unsupported. The XREFINFO
structure is normally used.

The XREFINFO2A/B structure pair is only used for compilers which support line
numbers greater than 16 bits long. An XREFLINK marks the end of a sublist, s
typical sequence looks like:

 XREFNAME, XREFINFO1, XREFINFO1, ... , XREFLINK

Note that all elements of a sublist must appear in sequence (linearly). If the list
be continued, the XREFLINK serves as a continuation pointer from one sublist
the next, and contains another offset into the XT where the next sublist is found
the same named object. If there is no additional sublist, the XREFLINK contain
index, denoting the end of the current list.

Lists for the same named object may appear in different compilation units.
the responsibility of PXDB to link these together.

struct XREFINFO1 {

BITS tag: 3; /* always XINFO1 */

BITS definition: 1; /* True => definition*/

BITS declaration:1; /* True => declaration*/
210 HP PROPRIETARY

Version 3.0

/

BITS modification:1; /* True => modification*/

BITS use:1; /* True => use*/

BITS call:1; /* True => call */

BITS column:8; /* Unsigned Byte for Column

/* within line */

BITS line:16; /* Unsigned 16-bits for line # relative *

/* to beginning of current inlude file. */

};

struct XREFINFO2A {

 /* first word */

BITS tag:3; /* always XINFO2A */

BITS definition:1; /* True => definition*/

BITS declaration: ; /* True => declaration*/

BITS modification:1; /* True => modification*/

BITS use:1; /* True => use */

BITS call:1; /* True => call */

BITS extra:16;

BITS column:8;

};

struct XREFINFO2B {

 /* second word */

BITS line:32; /* Unsigned 32-bits for line # relative */

/* to beginning of current file. */

};

struct XREFLINK {

BITS tag:3; /* always XLINK for XREFLINK */

BITS next:29; /* index of next list. If */

/* zero then this is the end of line. */

/* a.k.a. continuation pointer */

};

struct XREFNAME {

BITS tag:3; /* always XNAME for XREFNAME */

BITS filename:29; /* VTPOINTER to file name */

};

union xrefentry {

struct XREFINFO1 xrefshort;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 211

Symbol ic Debug Informat ion

). A

ous
ld
struct XREFINFO2A xreflong;

struct XREFINFO2B xrefline;

struct XREFLINK xlink;

struct XREFNAME xfname;

};

8.4.2 Static Analysis Support DNTT Entries

Static analysis support consists of two DNTT entries:

• DNTT XREF Entry:

struct DNTT_XREF {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind:10; /* always K_XREF */

BITS language:4; /* language of DNTT object */

BITS unused: 17;

/*1*/ XREFPOINTER xreflist; /* index into XREF subspace */

/*2*/ long extra; /* free */

}; /* three words */

This entry is used to retrieve cross-reference information from the XREF Table (XT
DNTT_XREF entry immediately follows the DNTT_SVAR, DNTT_DVAR,
DNTT_TYPE, etc. entry to which it pertains.

The XREFPOINTER points into the XT table where the information about the previ
DNTT entry is contained. If no entries are generated in the XT table, the xreflist fie
should contain XREFNIL. The language field contains the source language
(LANG_xxx) value of the DNTT object.

The XREF DNTT can be used in both the GNTT and LNTT.

• DNTT SA Entry:

struct DNTT_SA {

/*0*/ BITS extension: 1; /* always zero */

KINDTYPE kind: 10; /* always K_SA */

KINDTYPE base_kind:10; /* K_FUNCTION, K_LABEL, etc */
212 HP PROPRIETARY

Version 3.0

 spe-
c.

ly,
d of

, or
dress
e/list-

thing
r
if
ted

LNTT
 that
w
r
t-
BITS unused: 11;

/*1*/ VTPOINTER name;

/*2*/ long extra; /* free */

};

This entry is used with static analysis info. It supplies the name and kind for a few
cial cases not currently handled by a DNTT_SVAR, DNTT_DVAR, DNTT_TYPE, et
It is used for a local entity that has a global scope.

Example:

If a function, has a DNTT_FUNCTION entry in the LNTT; but it can be seen global
then a K_SA will be emitted in the GNTT, with the functions name and a base_kin
K_FUNCTION; the DNTT_XREF will follow the DNTT_SA, not the
DNTT_FUNCTION.

The DNTT_SA is also used for C macros.

The XREF DNTT can be used in both the GNTT and LNTT.

8.5 Source Line Table

8.5.1 SLT Entry Format

This table consists of a series of entries, each of which is either normal, special
assist according to the sltdesc field of the first word. Normal entries contain an ad
(actually a code offset relative to the beginning of the current function) and a sourc
ing line (by line number). Listing line numbers may be used in place of source line
numbers based upon a compiler option. This will also be reflected in the
DNTT_SRCFLE entries. Special entries also provide a line number (where some
was declared) and point back to the DNTT which references them. This is used fo
quick determination of scope, including source/listing file, after an interrupt. Even
there are multiple source/listing files, all source/listing line information is accumula
in this one table.

The SLT was originally designed to be unnested, even for those languages whose
must reflect their nesting. The debuggers depend upon this. For those languages
are nested the SLT must now be nested and an SLT_ASST must immediately follo
each SLT_SPEC of type FUNC. The "address" field will be filled in by the compile
back-ends to point forward to the first SLT_NORM in the FUNC's scope. The "firs
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 213

Symbol ic Debug Informat ion

or-

 is
se
ber

 for
re

ew

n

 the

pro-
e spe-
ore

ent,
 for
ing
te-

,

norm" is set to one if this SLT_NORM is the first SLT_NORM looking sequentially f
ward in the SLT.

The one exception to the normal/special/assist rule is the EXIT SLT. The EXIT SLT
used to identify exit points for a routine. The EXIT SLT is a special only in the sen
that the sltdesc field is not equal to SLT_NORMAL. However, it contains a line num
and address like a normal SLT. The EXIT SLT is used in place of a NORMAL SLT
all exit statements (such as "return" in C and FORTRAN, or the "end" of a procedu
body in Pascal).

The SLT_MARKER is for use in "Chunk-Per-Som". The address field contains a n
base address (replacing the current procedure's low-address field. This new base
address will be added to succeding SLT_NORMALs and SLT_EXITs to produce a
absolute address.

To distinguish prologue (function setup) code emitted at the END of a function from
last line (normal SLT) of the function, a normal SLT entry with a line number of
SLT_LN_PRLOGUE is used. Such SLT entries are only emitted if there is trailing
logue code, and they are always the last SLT emitted for the function except for th
cial SLT entry for the function END. For compilers that emit the prologue code bef
the main body, no special prologue SLT entry is required.

One SLT entry is emitted for (the FIRST physical line of) each executable statem
for each construct that generates a DNTT entry which points to an SLT entry, and
the prologue code, if any. The user cannot set a breakpoint without a correspond
SLT entry. Compilers must emit multiple SLT entries for parts of a composite sta
ment (such as FOR) and for multiple statements appearing on one source line.

For compatibility, the high bits of DNTTPOINTERs in SLT entries are also set to 1
even though they are not needed here.

The global bit on DNTTPOINTERs in SLT entries should always be 0, as the LNTT
contains all the scoping information.

8.5.2 SLT Types and Data Structure

 Sizeof SLTTYPE is 4 bits, for a maximum of 16 possible special slttypes.

Current available SLT types are:

#define SLT_NORMAL 0 /* note that the field is unsigned */

#define SLT_SRCFILE 1

#define SLT_MODULE 2

#define SLT_FUNCTION 3

#define SLT_ENTRY 4

#define SLT_BEGIN 5

#define SLT_END 6
214 HP PROPRIETARY

Version 3.0
#define SLT_WITH 7

#define SLT_EXIT 8

#define SLT_ASSIST 9

#define SLT_MARKER 10

#define SLT_CLASS_SCOPE 11 /* For C++ use only */

struct SLT_NORM {

 SLTTYPE sltdesc: 4; /* always zero */

 BITS line: 28; /* where in source text */

 ADDRESS address; /* where in function */

}; /* two words */

struct SLT_SPEC {

 SLTTYPE sltdesc: 4; /* special entry type */

 BITS line: 28; /* where in source text */

 DNTTPOINTER backptr; /* where in DNTT */

}; /* two words */

struct SLT_ASST {

 SLTTYPE sltdesc: 4; /* always nine */

 BITS unused: 28;

 SLTPOINTER address; /* first SLT normal */

}; /* two words */

struct SLT_GENERIC {

 unsigned long word[2];

}; /* two words */

union sltentry {

 struct SLT_NORM snorm;

 struct SLT_SPEC sspec;

 struct SLT_ASST sasst;

 struct SLT_GENERIC sgeneric;

}; /* two words */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 215

Symbol ic Debug Informat ion

e

actly

rced

ull

ossi-
per

f the
uage
h

od-

and
with
entries

 for

 is the
RY
 nor-

oint-
8.6 Value Table (VT)

This table contains symbol names plus values for DNTT_CONST entries of typ
LOC_VT. All strings are null-terminated, as in C. There are no restrictions on the
lengths of values nor the order in which they may appear. All symbol names are ex
as given by the user, e.g. there are no prepended underscores.

CONST values are not (and need not be) terminated in any way. They may be fo
to word boundaries if necessary, with resulting wasted bytes.

The first byte of the table must be zero (a null string terminator), so that the n
VTPOINTER results in a null name.

8.7 Ordering of Table Entries

LNTT and SLT entries must be emitted and kept in source file order wherever p
ble. As a minimum, named LNTT entries must be emitted and kept within the pro
scope, though some compilers may emit them at the end of a scope instead o
beginning. In general, the debugger must know the emission rules for the lang
it is dealing with, and search the LNTT accordingly, or else always search in bot
directions.

Items in the GNTT are all global, so the public bit must always be set. Within the
LNTT, the public bit indicates that the item is exported by the module in which it
resides, and is visible within a module or procedure that imports the containing m
ule.

Compilers and linkers are encouraged to make multiple references to DNTT, SLT,
VT entries (even chains of DNTT entries) where possible to reduce redundancy
no loss of data. They are also encouraged to emit entries grouped so that related
are physically close, as long as no scope rules are violated.

SLT entries must be emitted in sorted line number order within each file, except
special SLT entries for ENTRYs and FUNCTIONs only. They may be out of line
number order (due to nested functions, etc.) so long as the next normal SLT entry
proper place to breakpoint the entity. For example, there can be numerous ENT
types after a FUNCTION, all referring to the same code location. (If there are no
mal SLT entries before the next FUNCTION or MODULE entry and a SLT_ASST
does not immediately follow the SLT_SPEC for a FUNC, the entity has no breakp
able locations.)
216 HP PROPRIETARY

Version 3.0

OD-
 file
linked

s or
ulti-
he

ested

tart up

ble

d-
ct the
SLT entries must be sorted in ascending code address order WITHIN EACH M
ULE or FUNCTION body. It is impossible to require that they be sorted both by
line number and code address because function object code may be emitted or
out of source order in a segment.

It is reasonable to expect sequential SLT entries may have the same line number
code locations (but not both, as that would be redundant). This might be due to m
ple statements on one source line or several scope levels starting at one place in t
code.

Thus, for nested languages like Pascal and Modcal, the LNTT entries must be n
to reflect the program's scope. The SLT entries should also be nested with an
SLT_ASST entry following each SLT_SPEC of type FUNC.

8.8 Postprocessing

Linker postprocessing or XDB’s preprocessor (PXDB) must be run on the debug info in
the executable program file to massage the debug info so that the debugger may s
and run more efficiently.

Some of the tasks performed by PXDB are: remove duplicate global type and varia
information from the GNTT, append the GNTT onto the end of the LNTT and place
both back in the LNTT section, build quick look-up tables for files, procedures, mo
ules, and paragraphs (for Cobol), placing these in the GNTT section, and reconstru
header appearing in the header section to access this information.

• PXDB Header and Support Data Structures:

struct PXDB_header {

int pd_entries; /* # of entries in function look-up table */

int fd_entries; /* # of entries in file look-up table */

int md_entries; /* # of entries in module look-up table */

BITS pxdbed : 1; /* 1 => file has been preprocessed */

BITS bighdr : 1; /* 1 => this header contains 'time' word */

BITS sa_header : 1; /* 1 => created by SA version of pxdb */

/* used for version check in xdb */

#ifdef CPLUSPLUS

BITS inlined: 1; /* one or more functions have been inlined */

BITS spare:12;

short version; /* pxdb header version */

#else /* CPLUSPLUS */

BITS spare:29;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 217

Symbol ic Debug Informat ion

/

#endif /* CPLUSPLUS */

int globals; /* index into the DNTT where GNTT begins */

BITS time; /* modify time of file before being pxdbed */

int pg_entries; /* # of entries in label look-up table */

int functions; /* actual number of functions */

int files; /* actual number of files */

#ifdef CPLUSPLUS

int cd_entries; /* # of entries in class look-up table */

int aa_entries; /* # of entries in addr alias look-up table */

int oi_entries; /* # of entries in object id look-up table */

#endif

};

 Source File Descriptor:

 An element of the source file quick look-up table

typedef struct FDS {

long isym; /* first symbol for file */

ADRT adrStart; /* mem adr of start of file's code */

ADRT adrEnd; /* mem adr of end of file's code */

char *sbFile; /* name of source file */

BITS fHasDecl: 1; /* do we have a .d file? */

BITS fWarned: 1; /* have warned about age problems? *

unsigned short ilnMac; /* lines in file (0 if don't know) */

int ipd; /* first proc for file, in PD [] */

BITS *rgLn; /* line pointer array, if any */

} FDR, *pFDR;

Procedure Descriptor:

An element of the procedure quick look-up table

typedef struct PDS {

long isym; /* first symbol for proc*/

ADRT adrStart; /* memory adr of start of proc*/

ADRT adrEnd; /* memory adr of end of proc*/

char *sbAlias; /* alias name of procedure*/

char *sbProc; /* real name of procedure*/

ADRT adrBp; /* address of entry breakpoint */

ADRT adrExitBp; /* address of exit breakpoint */

#ifdef CPLUSPLUS
218 HP PROPRIETARY

Version 3.0
int icd; /* member of this class */

#else /* CPLUSPLUS */

BITS inst; /* instruction at entry */

#endif /* CPLUSPLUS */

#ifdef TEMPLATES

BITS ipd; /* index of template for this function */

#else /* TEMPLATES */

BITS instExit; /* instruction at exit */

#endif /* TEMPLATES */

#ifdef CPLUSPLUS

#ifdef TEMPLATES

BITS unused: 6;

BITS fTemplate: 1; /* function template*/

BITS fExpansion: 1; /* function expansion*/

BITS linked : 1; /* linked with other expansions*/

#else /* TEMPLATES */

BITS unused: 9;

#endif /* TEMPLATES */

BITS duplicate: 1; /* clone of another procedure */

BITS overloaded:1; /* overloaded function */

BITS member: 1; /* class member function */

BITS constructor:1; /* constructor function */

BITS destructor:1; /* destructor function */

BITS Static: 1; /* static function */

BITS Virtual: 1; /* virtual function */

BITS constant: 1; /* constant function */

BITS pure: 1; /* pure (virtual) function */

BITS language: 4; /* procedure's language */

BITS inlined: 1; /* function has been inlined */

BITS Operator: 1; /* operator function */

BITS stub: 1; /* bodyless function */

#else

BITS unused1: 18;

BITS language: 4; /* procedure's language */

BITS unused2: 3;

#endif

BITS optimize: 2; /* optimization level */

BITS level: 5; /* nesting level (top=0)*/

} PDR, *pPDR;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 219

Symbol ic Debug Informat ion
Module Descriptor:

An element of the module quick reference table

typedef struct MDS {

long isym; /* first symbol for module*/

ADRT adrStart; /* adr of start of mod.*/

ADRT adrEnd; /* adr of end of mod.*/

char *sbAlias; /* alias name of module */

char *sbMod; /* real name of module*/

BITS imports: 1; /* module have any imports? */

BITS vars_in_front: 1; /* module globals in front? */

BITS vars_in_gaps: 1; /* module globals in gaps? */

BITS unused : 29;

BITS unused2; /* space for future stuff*/

} MDR, *pMDR;

Paragraph Descriptor:

An element of the paragraph quick look-up table

typedef struct PGS {

long isym; /* first symbol for label */

ADRT adrStart; /* memory adr of start of label */

ADRT adrEnd; /* memory adr of end of label */

char *sbLab; /* name of label */

BITS inst; /* Used in xdb to store inst @ bp */

BITS sect: 1; /* true = section, false = parag. */

BITS unused: 31; /* future use */

} PGR, *pPGR;

Class Descriptor:

An element of the class quick look-up table for C++ support.

typedef struct CDS {

char *sbClass; /* name of class */

long isym; /* class symbol (tag) */

BITS type : 2; /* 0=class, 1=union, 2=struct */

#ifdef TEMPLATES

BITS fTemplate : 1; /* class template */
220 HP PROPRIETARY

Version 3.0

ary
paces.
ew
BITS expansion : 1; /* template expansion */

BITS unused :28;

#else /* TEMPLATES */

BITS unused : 30;

#endif /* TEMPLATES */

SLTPOINTER lowscope; /* beginning of defined scope */

SLTPOINTER hiscope; /* end of defined scope */

} CDR, *pCDR;

Address Alias Entry:

An element of the address alias quick look-up table for C++ support.

typedef struct AAS {

ADRT low;

ADRT high;

int index;

BITS unused : 31;

BITS alternate : 1; /* alternate unnamed aliases? */

} AAR, *pAAR;

Object Identification Entry

An element of the object identification quick look-up table for C++ support.

typedef struct OIS {

ADRT obj_ident; /* class identifie */

long isym; /* class symbol */

long offset; /* offset to object start */

} OIR, *pOIR;

8.9 Debug Format Changes for Debugging of
Optimized Code (DOC)

8.9.1 Debug Format Changes

The following describes the changes to the debug format for HP-UX 10.0. The prim
change to the debug format is the addition of a new debug space and debug subs
For code compiled with -g and -O, the debug information will be generated into a n
space named $PINFO$ (after processing with pxdb -- prior to pxdb processing the
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 221

Symbol ic Debug Informat ion

b-
ub-

prove

 a
of
$
ing

ts.
s
gen-
s sup-

uilt.
 a loca-
ilt.

n
 sym-
n
ble

. The
nt of
it be
debug information will be generated into the $DEBUG$ space). All the standard xd
format subspaces will be placed into the $PINFO$ space along with the two new s
spaces: $LINE$, and LT_OFFSET.

This document has now been updated to also describe those changes made to im
DOC support at the HP-UX 10.20 release.

8.9.2 Object File Format Details

When a file is compiled with debug and optimization specified, the compilers build
$DEBUG$ space and a LT_OFFSET subspace within the $DEBUG$ space. As
HP-UX 10.20, the LT_OFFSET subspace is obsolete. The linker builds the $LINES
subspace within the $DEBUG$ space when debug info is seen in any object file be
linked. When pxdb processes the executable file, the $DEBUG$ space is renamed
$PINFO$ if it detects DOC format debug info in the file.

The compilers supply line table information to the linker in the form of fixup reques
Two new fixup requests have been defined to signal the building of DOC line table
(which includes information to be included in the first entry of the line table) and to
erate special line table escape entries. The information for the line number tables i
plied by the fixup request, R_LINETAB.

The compilers generate the R_LINETAB fixup to request that DOC line tables be b
This fixup passes in a version number and subspace index and subspace offset of
tion which must be patched with the offset of the line table which is about to be bu
The R_LINETAB fixup request is a 9-byte with the following fields:

The first parameter is a 1-byte version number which identifies the line table versio
(format). The actual value is not important to the linker. The second parameter is a
bol index to be used in conjunction with the third parameter, an offset, as a locatio
which is to be filled with the offset (relative to the $LINES$ subspace) of the line ta
about to be built.

The line number information is passed to the linker via the R_STATEMENT fixup
request, which is embedded within the fixups for the code at statement boundaries
R_STATEMENT fixup has three variants to handle one, two and three byte stateme
line numbers as necessary. The actual meaning assigned to the number, whether

Offset Length Field

0 1 R_LINETAB

1 1 version number

2 3 symbol index (symbol-relative loc to patch w/line table
offset)

5 4 offset (symbol + offset = location to patch w/line table
offset)
222 HP PROPRIETARY

Version 3.0

eed

eral
 other
y the
w the

er are

-byte

e
 be
e cur-
].

 a
e and
xup

fixup is
sed in
 as
 pro-
en-
xup.

e (the
um-

er
hen
statement numbers of line numbers, is irrelevant to the linker, and needs to be agr
upon only by the compiler and the end user of the line table information.

The R_LINETAB_ESC fixup is a 3-byte fixup defined as follows:

This fixup request is used to place escape entries into the line table. There are sev
escape entries defined in the line table format which are used by the debugger and
tools when processing the line table. Some of these escapes must be generated b
linker, the others are generated by the compiler and the linker does not need to kno
details of these escapes. The escapes entries which are not generated by the link
entered into the line table via a combination of the R_LINETAB_ESC and
R_STATEMENT fixups.

The first parameter contains the actual escape code which is to be placed into a 1
entry in the line table. The second parameter specifies how many of the following
R_STATEMENT entries contain data to be entered directly into the line table (thes
statement fixups will not contain line numbers -- instead they hold data which is to
placed directly into the line number table as part of the escape sequence). With th
rently defined escapes, the value of the second parameter will be in the range [0,4

8.9.3 Building the Line Tables

All line tables will be placed into the $LINES$ subspace of the executable file. The
linker must create a new line table each time an R_LINETAB fixup is processed. If
line table is in progress then it must be completed by entering a dst_ln_end escap
the final pc delta entry. Each line table is terminated when 1) a new R_LINETAB fi
is seen or 2) when the end of the current code subspace is reached.

When a new line table is started the version number passed as a parameter to the
used as the first one-byte entry in the table. The symbol and offset parameters pas
the R_LINETAB fixup must be saved along with the corresponding line table offset
‘fixups’ to be applied to the symbol+offset location when that symbol’s subspace is
cessed. The first R_STATEMENT entry processed after an R_LINETAB fixup will g
erate a four-byte entry containing the absolute code address associated with the fi

The size of the next entry (in bytes) is determined by the absolute line number valu
value passed to the R_STATEMENT fixup). The linker must emit the absolute line n
ber into the table using the minimum number of bytes required by the line number
value. For example, if the line number is less that 256, then the absolute line numb
entry will be one byte; if the line number is greater than 255 and less that 65536, t

Offset Length Field

0 1 R_LINETAB_ESC (oxDB)

1 1 escape code

2 1 number of following R_STATEMENT fixups containing
escape data.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 223

Symbol ic Debug Informat ion

 will
le.

 for the

ine or
 must
r the
]

, if

T
te a
rgu-

.
 to
used
the line number entry will be 2 bytes, etc. Each subsequent R_STATEMENT entry
cause one entry (consisting of one or more bytes) to be generated into the line tab

 The linker needs to be aware of, and generate, some of the escape codes defined
DOC line table. These escape codes are as follows:

The linkers must use the multi-byte line delta and pc-delta escapes whenever the l
code delta values exceed the range that can be expressed in a 1-byte entry. There
be one line table entry to express each R_STATEMENT fixup. For example, if eithe
line number delta or code delta falls outside of the range [-8,7] (line delta) or [0,11
(code delta), but is less than the byte-range [-127,128] (line delta) or [0,255] (code
delta) then adst_ln_dpc1_dln1must be generated. Similarly, if the delta range for
either line or code delta cannot be described in the 1-byte format, then a
dst_ln_dpc2_dln2 (two-byte line and pc delta escape format) must be used. Finally
the code and line deltas exceed the 2-byte format, then adst_ln_pc4_ln4 absolute line
number and code address must be used.

The R_LINETAB_ESC fixup directs the linker to treat <n> following R_STATEMEN
fixups as absolute data entries. The R_LINETAB_ESC causes the linker to genera
one-byte entry into the table which contains the data value passed in as the first a
ment. The second R_LINETAB_ESC argument specifies the number of following
R_STATEMENT entries which contain data to be directly entered into the line-table
These R_STATEMENT entries will not cause the normal pc-delta/line-delta entries
be generated; Instead, the argument passed to the R_STATEMENT fixups will be
as absolute data for a one-byte entry in the line table.

Table entry
for ESC ESC Name Description

dst_ln_end end escape; final entry follows. The
final entry contains the code size of
the last statement in high 4 bits (i.e.
the last PC delta); the low 4 bits are
0

dst_ln_pad This byte is padding

dst_ln_dpc1_dln1 The next table entry is a one byte pc
delta followed by a one byte line
delta.

dst_ln_dpc2_dln2 The next table entry is a two byte pc
delta followed by a two byte line
delta.

dst_ln_pc4_ln4 The next table entry is a four byte
absolute pc followed by a 4-byte
absolute line number.

dst_ln_dpc0_dln1 The next table entry is a one byte
line delta; the pc delta is zero.
224 HP PROPRIETARY

Version 3.0

e
e
et

ace

 com-
for-

th

ed).
8.9.4 Debug Format Changes

The new subspace, LT_OFFSET, will be placed into the $DEBUG$ space by th
compilers when optimization is specified with debug (-g and -O). The format and th
LT_OFFSET table is a list of 1-word entries; each entry contains a line table offs
which corresponds to the beginning of each line table in the $LINES$ subspace (in
order). One line table will be emitted for each NTT_FUNC debug entry. This subsp
is temporary for UX10.0 xdb-DOC transition and will be obsoleted in post-UX10.0
releases.

As of HP-UX 10.20, the LT_OFFSET subspace is now obsolete. The
DNTT_DOC_FUNC for a routine includes an offset into the LINES table.

Xdb-style $GNTT$, $LNTT$, SLT and VT will be placed into the $DEBUG$
space by the compilers when optimization and debug are specified together on the
mand line. If no optimization is requested (plain -g) then the standard xdb debug in
mation will be generated into the $DEBUG$ debug space.

The xdb-style $HEADER$ subspace will be modified to include new fields when bo
debug and optimization are specified (the $DEBUG$ space and xdb format will be
unchanged when -g is used without optimization, or when static analysis (-y) is us

The DOC information header is defined as follows:

struct DOC_info_header {

 unsigned int xdb_header: 1; /* bit set if this is post-3.1 xdb */

 unsigned int doc_header: 1; /* bit set if this is doc-style header*/

 unsigned int version: 8; /* version of debug/header

 format. For 10.0 the value

 will be 1. For “Davis” the

 value is 2.

 */

 unsigned int reserved_for_flags: 18; /* for future use; -- must be

 set to zero

 */

 unsigned int has_range_table: 1; /* space contains a $RANGE$

 subspace for variable ranges.

 */

 unsigned int has_context_table: 1; /* space contains a $CTXT$

 subspace for context/inline

 table.

 */

 unsigned int has_lines_table: 1; /* space contains a $LINES$

 subspace for line tables.

 */
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 225

Symbol ic Debug Informat ion

d

 */
 unsigned int has_lt_offset_map: 1; /* space contains an lt_offset

 subspace for line table mapping

 */

 long gntt_length; /* same as old header */

 long lntt_length; /* same as old header */

 long slt_length; /* same as old header */

 long vt_length; /* same as old header */

 long xt_length; /* same as old header */

 long ctxt_length; /* present only if version >= 2 */

 long range_length; /* present only if version >= 2 */

 long expr_length; /* present only if version >= 2 */

 };

Similarly, the pxdb header must be modified to include the DOC fields when emitte
into the $PINFO$ space of an executable.

The DOC pxdb header is defined as follows:

struct DOC_info_PXDB_header {

 unsigned int xdb_header: 1; /* bit set if this is post-3.1 xdb */

 unsigned int doc_header: 1; /* bit set if this is doc-style header*/

 unsigned int version: 8; /* version of pxdb see defines

 * PXDB_VERSION_* in this file */

 unsigned int reserved_for_flags: 16;/* for future use; -- must be

 * set to zero

 */

 unsigned int has_aux_pd_table: 1; /* $GNTT$ has aux PD table */

 unsigned int has_expr_table: 1; /* space has $EXPR$ */

 unsigned int has_range_table: 1; /* space has $RANGE$ */

 unsigned int has_context_table: 1; /* space has SRC_CTXT */

 unsigned int has_lines_table: 1; /* space contains a $LINES$

 * subspace for line tables.

 */

 unsigned int has_lt_offset_map: 1; /* space contains an lt_offset

 * subspace for line table mapping

 */

 /* the following fields are the same as those in the PXDB_header in $DEBUG$

 int pd_entries; /* # of entries in function look-up table */

 int fd_entries; /* # of entries in file look-up table */

 int md_entries; /* # of entries in module look-up table */

 BITS pxdbed : 1; /* 1 => file has been preprocessed */
226 HP PROPRIETARY

Version 3.0

n -g

za-

s
isting
m of
mber
 BITS bighdr : 1; /* 1 => this header contains ‘time’ word */

 BITS sa_header : 1;/* 1 => created by SA version of pxdb */

 /* used for version check in xdb */

 BITS inlined: 1; /* one or more functions have been inlined */

 BITS spare : 28;

 int globals; /* index into the DNTT where GNTT begins */

 BITS time; /* modify time of file before being pxdbed */

 int pg_entries; /* # of entries in label look-up table */

 int functions; /* actual number of functions */

 int files; /* actual number of files */

 int cd_entries; /* # of entries in class look-up table */

 int aa_entries; /* # of entries in addr alias look-up table */

 int oi_entries; /* # of entries in object id look-up table */

 };

For example, the $PINFO$ debug space will contain the following subspaces whe
and -O are specified together on the command line:

$PINFO$

$HEADER$

$GNTT$

$LNTT$

SLT

VT

$LINES$

$LT_OFFSETS$

$RANGE$

$CTXT$

$EXPR$

Note: there will be no XT table for static analysis. Static analysis (-y) and optimi
tion is incompatible for UX10.0.

8.9.5 Line Number Table Definition

The line number definition is based on the DST (Domain DDE Symbol Table) .line
definition. Although there were changes to support additional escape codes, all ex
DST .lines escapes have been retained. The line table format is defined as a strea
nibble pairs, where the first nibble represents a PC delta, and the second a line nu
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 227

Symbol ic Debug Informat ion

re
ort-

6

ciate

fines
om
The
text

st
text
et up

 in the
y appli-
, the
mber
delta. The PC delta is unsigned, and runs from 0..15. The PC delta values 12..15 a
used for special escape handling. PC delta values 12 and 13 are used to signify sh
form context switches. PC delta values 14 and 15 are used to signify two sets of 1
escape codes in the line number delta field.

Note that it is possible to have entries with PC deltas of 0. This will be used to asso
multiple source lines to a single block of code.

The image table is a structure intended to be used in the presence of inlining. It de
the full source file context of inlined code. It also provides a starting line number fr
which subsequent line number deltas are applied, within the life of the run length.
code which interprets the delta stream will obtain the starting line number for a con
from the image table at the first encounter of it’s index number. The interpreter mu
then maintain a running count of the context’s current line number. Note that a con
switch does not signify creation of a line number table entry, but rather is used to s
the context to which subsequent deltas are applied.

The PC and line number bases to which subsequent deltas are applied are set forth
table via special escapes. This escape and starting bases must appear prior to an
cable delta pairs, and the bases may be reset at any time. Once the bases are set
interpreter will generate a line number table entry whenever it encounters a PC/nu
delta pair (which may take 1, 2, 5 or 9-byte forms).

PC Delta
Line Delta
or Bit # Interpretation

0..11 -8..7 interpreted as line delta

12 4 bits - rrcc interpreted as context switch:

rr (0..3) is run length in entries, interpreted as
1..4.

cc (0..3) is context index number.

13 4 bits - rrdd interpreted as context switch:

rr (0..3) is run length in entries, interpreted as
1..4.

dd (0..3) is context index number minus 4, so
is interpreted as contexts 4..7.

14 0..15 interpreted as new escape codes (set #2)

15 0..15 interpreted as DST escape codes (set #1).
228 HP PROPRIETARY

Version 3.0
Set #1 Escape codes (same as DST)

decimal name function

0 dst_ln_pad pad type

1 dst_ln_file pad byte fill escape

2 dst_ln_dpc1_dln1 1 byte pc delta, 1 byte line delta

3 dst_ln_dpc2_dln2 2 byte pc delta, 2 byte line delta

4 dst_ln_pc4_ln4 4 byte absolute pc number, 4 byte abs.
line

5 dst_ln_dpc0_dln1 pc delta = 0, 1 byte line delta

6 dst_ln_ln_ff_1 statement escape, stmt # = 1

7 dst_ln_ln_off statement escape, stmt # = next byte

8 dst_ln_entry entry escape, next byte is entry number

9 dst_ln_exi exit escape

10 dst_ln_stmt_end gap escape, 4 bytes pc delta

11 dst_ln_escape_11 reserved

12 dst_ln_escape_12 reserved

13 dst_ln_escape_13 reserved

14 dst_ln_nxt_byte next byte contains real escape code

15 dst_ln_end end escape, final entry follows
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 229

Symbol ic Debug Informat ion

FOR-
gnize
aries.
Set #2 Escape Codes (additional to DST ones)

8.9.6 Range Table(RANGE)

This information is HP proprietary and was removed from this document.

8.9.7 View/modify globals and arguments when safe

Globals may be set and viewed safely at procedure entry and exit for C, C++ and
TRAN code. For Pascal, however, the Pascal front end is intelligent enough to reco
some instances in which a global may be safely promoted across procedure bound

decimal name function

0 dst_ln_ctx_1 next byte describes context switch with
5-bit index into the image table and 3-bit
run length. If run length is 0, the context
is considered ative until context end
switch or new context switch are
encountered.

1 dst_ln_ctx_2 next 2 bytes describe context switch with
13-bit index and 3-bit run length. If run
length is 0, the context is considered
active until context and switch or new
context switch are encountered.

2 dst_ln_ctx_4 next 4 bytes describe context switch with
29-bit index and 3-bit run length. If run
length is 0, the context is considered
active until context and switch or new
context switch are encountered.

3 dst_ln_ctx_end end current context.

4 dst_ln_col_run_1 next byte is a column position marking
the beginning of the next statement, fol-
lowing byte is length of statement.

5 dst_ln_col_run_2 next 2 bytes are a column position mark-
ing the beginning of the next statement,
following two bytes are length of a state-
ment.

6 dst_ln_init_base1 next 4 bytes are an absolute PC base
address. Immediately following is a 1-
byte starting line number.

7 dst_ln_init_base2 next 4 bytes are an absolute PC base
address. Immediately following is a 2-
byte starting line number.

8 dst_ln_init_base3 next 4 bytes are an absolute PC base
address. Immediately following is a 3-
byte starting line number.

9-15 reserved for future use.
230 HP PROPRIETARY

Version 3.0

scal
R-
nd

se
arn-

raph
ill

ble
 ele-
e pre-
Thus, viewing and setting of globals must be considered unsafe at all times for Pa
code. Arguments may be viewed and set safely at procedure entry for C, C++, FO
TRAN and Pascal. The 10.0 functionality will permit setting and viewing of globals a
arguments at unsafe times, but DDE will generate a warning of unreliability for the
operations. Further, setting of locals will also be allowed, but will always cause a w
ing.

As of HP-UX 10.20, DDE now tracks scalar variables in the C language. This parag
is applicable only to C programs. Scalars can be safely printed anywhere. DDE w
either print the correct value, or print a warning that the address/value is unknown.
However, a variable may not be setable in all places that it is printable, as the varia
may have been replaced with a constant value. Non-scalars such as arrays, array
ments, structures and structure elements are not tracked, so the limitations from th
vious paragraph still apply.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 231

Symbol ic Debug Informat ion
232 HP PROPRIETARY

CHAPTER 9 Stack Unwind Library
ration,
 stack
ption
-
stora-

ng
at
tack
t any

ed in

code,
 an
at
 the
9.1 Overview

Stack unwinding refers to the processes of procedure trace-back and context resto
both of which have several possible system and user-level applications. A software
unwinding convention is necessary on PA-RISC because in the event of an interru
of execution, there is insufficient information directly available to perform a compre
hensive stack trace. The stack trace is the basic operation performed in context re
tion.

Some important tools are heavily dependent on the presence of the stack unwindi
facility. For example, system dump analysis tools examine all system processes th
were running at the time of a system crash, an operation which involves multiple s
traces. Symbolic debuggers require the ability to display the state of the call stack a
point during a program’s execution. Many language-specific features such as the
ESCAPE mechanism in HP Pascal,C ++ exception handling also require stack unwind-
ing capabilities.

The stack unwind information is generated once at compile time via fixups and stor
a static data structure called theunwind table. An unwind table is automatically built
into each program file by the linker.

Each entry in the unwind table contains two addresses which describe a region of
typically the starting and ending address of a procedure. Each entry also contains
unwind descriptorwhich holds information about the frame and register usage of th
region. When an unwind operation is required, the unwind table is searched to find
region containing the instruction where the exception or interrupt occurred.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 233

Stack Unwind Library

tate
ce. In
u-
e dedi-

ly
hitec-
rm to
ati-

tives are

wind

fol-

d

 are

uous

scrip-

ed in
hat

ifica-

ade
ives.
d
ss
9.2 Requirements for Stack Unwinding

Unwind depends crucially on the ability to determine, for any given instruction, the s
of the stack and whether that instruction is part of a procedure entry or exit sequen
particular, instructions that modify SP or RP must be made known to the unwind ro
tines. Furthermore, it is necessary that all the callee-saves registers be saved at th
cated locations on the stack following the procedure calling conventions.

To guarantee that a routine is unwindable, the assembly programmer should strict
adhere to the stack and register usage conventions described in the Run-time Arc
ture document. It is mandatory that the procedure entry and exit sequences confo
the standard specifications. All procedures generated by HP’s compilers will autom
cally meet all these requirements and hence will be unwindable.

The assembler provides several directives that help in making routines completely
unwindable. The ‘‘.ENTER’’ and ‘‘.LEAVE’’ directives will automatically generate the
standard entry and exit sequences. The code sequences generated by these direc
determined by the options specified in the ‘‘.CALLINFO’’ directive. In rare cases, it
may be necessary to generate non-standard stack frames or to create multiple un
regions for the same routine. These cases can be handled with proper use of the
‘‘.CALLINFO’’, ‘‘.ENTRY’’, ‘‘.EXIT’’, ”.PROC’’ and ‘‘.PROCEND’’ directives as
documented in the PA-RISC Assembly Language Reference Manual.

To successfully perform a stack trace from any given instruction in a program, the
lowing requirements must be met:

• The specified instruction must lie within a standard code sequence, as specifie
above.

• Caller-save registers must be saved and restored across a call (if their contents
live across a call).

• Unwind table entries must be generated for each routine, and for any discontin
regions of code.

• The frame size for each routine must be the same as is stated in the unwind de
tor for that routine.

• The use of RP (or MRP) in each routine must conform to the specifications stat
the unwind descriptor for the specifications stated in the unwind descriptor for t
routine.

The minimum requirements for a successful context restoration are:

• All requirements for a stack trace (as above) must be met.

• The use of the callee-saves registers in each routine must conform to the spec
tions given in the unwind descriptor for that routine.

The assembler generates fixup requests for the linker based on the information m
available to it by the programmer in the various procedure entry, exit, and call direct
The linker builds the unwind descriptors based on these fixup requests. The unwin
descriptors describe the stack and register usage information for a particular addre
234 HP PROPRIETARY

Version 3.0

four

er to
 the

en
rent

ust

rrupt

ha-
elf

rip-
the

R

 mil-
ard
. For-
pos-
s),
t it
range and the length of the entry and exit sequences. The unwind descriptors are
word entities with the following format:

The linker sorts all the unwind descriptors according to the address range they ref
and places them in a separate subspace. Most stack unwind functions depend on
unwind entries being sorted properly.

9.2.1 Unwinding Across an Interrupt Marker

Information such as machine state (i.e., register contents) are pushed on stack wh
interrupt or trap occurs. This area of stack is called the interrupt marker and is diffe
from the normal stack marker. The routine_sigreturn() marks the interrupt marker by
having the HP_UX_interrupt_marker bit of its unwind descriptor set. Unwind tool m
check this bit when unwinding through each frame. When the
HP_UX_interrupt_marker bit is set, register contents must be restored from the inte
marker. The interrupt marker is defined in thesigcontext structure.

9.2.2 Unwinding from Stubs on HP-UX

A few HP-UX specific stubs have been designed to support the shared library mec
nism. Calls to external routines in HP-UX will return via an export stub. The call its
will go through an import stub as described in Section 6.3.16 on page 146.

In the HP-UX shared library implementation, GR 19 points to a shared library desc
tor. This descriptor contains a pointer to the location where the unwind tables and
stub tables are located. Each shared library has its own tables.

When unwinding through the HP-UX export stub, the PC return register (RP) and G
19 are restored from the stack (SP-24 for RP and SP-32 for GR 19).

9.2.3 Unwinding from Millicode

The one type of standard call from which unwindability cannot be guaranteed is the
licode call. This is because the assembler cannot automatically generate the stand
entry and exit sequences for millicode routines that allocate additional stack space
tunately, relatively few millicode routines require the creation of a stack frame. It is
sible, however, to support unwinding from such routines (i.e., nested millicode call
provided that the millicode routine which allocates the stack space is written so tha

.CALLINFO (unwind descriptor)

word #1

word #2

word #3

word #4

.PROC (start address of the procedure)

.PROCEND (end address of the procedure)
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 235

Stack Unwind Library

e spe-

e

 cor-
ions
E are
in a
 pro-

ould

 of
fr12
 in

ves
uent

gister
rd

e-
et
e
ence

ies
ence.
uses the correct entry and exit sequences. It is the responsibility of the author of th
cific routine to incorporate these provisions into the actual code.

9.2.4 Instances in Which Unwinding May Fail

A successful stack trace may not be possible in the following situations:

• Procedures that have multiple (secondary) entry points.

• Code sequences in which DP (GR 27) is modified. Note that DP should never b
altered by user code, only by system code as is absolutely necessary.

9.2.5 Callee-Saves Register Spill

For a procedure to be unwindable, the callee-saves registers must be stored in the
rect location within the stack frame. The registers will be stored in the correct locat
when the standard entry and exit sequences generated by the .ENTER and .LEAV
used. The stack unwinding utilities may fail if an interrup t occurs on an instruction
non-standard entry or exit sequence. For this reason, it is advisable that assembly
grammers use .ENTER and .LEAVE rather than create their own entry and exit
sequences.

If you do not use the .ENTER and .LEAVE directives, then callee-saves registers sh
be saved within the procedure’s stack frame as follows:

• Any floating-point registers are saved starting at the double-word at the bottom
the current stack frame, the address in SP on entry to the procedure. Register
should be stored at this location, with subsequent callee-saves registers saved
numeric order in the double-words immediately following.

• Any general registers are saved starting at the first word after the last callee-sa
floating-point register is saved. Register gr3 should be stored first, with subseq
registers saved in numeric order in the words immediately following.

• Callee-saves space register sr3 is saved by moving its contents to a general re
with an MFSP instruction and then storing it in the first double-word aligned wo
immediately following the last callee-saves general register.

9.2.6 Sample entry and exit code

This example illustrates how the stack gets laid out at the entry code with the calle
saves registers. Note that the .CALLINFO requests that gr3 .. gr5 and fr12 .. fr15 g
stored in the stack. It also allocates 24 bytes of space for local variables. The entir
frame size including the frame marker is 128 bytes. Note that this is the exact sequ
of code that should be happening for procedure entry and exit, the unwinding utilit
may fail if an interrupt occurs on an instruction in a non-standard entry or exit sequ

 .SPACE $TEXT$
 .SUBSPA $CODE$,QUAD=0,ALIGN=4,ACCESS=44,CODE_ONLY,SORT=24
initboard
 .PROC
 .CALLINFO CALLER,FRAME=24,ENTRY_FR=15,ENTRY_GR=5,SAVE_RP
236 HP PROPRIETARY

Version 3.0

ors
dure
some
neces-
table.
re

s to
 the
ation
orary

/

 .ENTRY
 STW rp,-20(sp)
 FSTDS,MA fr12,8(sp)
 FSTDS,MA fr13,8(sp)
 FSTDS,MA fr14,8(sp)
 FSTDS,MA fr15,8(sp)
 STWM r3,96(sp)
 STW r4,-92(sp)
 STW r5,-88(sp)

 ;; procedure body

 LDW -88(sp),r5
 LDW -92(sp),r4
 LDWM -96(sp),r3
 FLDDS,MB -8(sp),fr15
 FLDDS,MB -8(sp),fr14
 FLDDS,MB -8(sp),fr13
 BV r0(rp)
 .EXIT
 FLDDS,MB -8(sp),fr12
 .PROCEND ;

9.3 Role of Stubs in Unwinding

The stub unwind region (also called the linker stub table) contains unwind descript
for linker-generated stubs. Stubs are usually generated by the linker when a proce
makes an external call. Although there are various kinds of stubs, all of them save
data about the current location and then branch to some other location. Since it is
sary to unwind from stubs, it is necessary to describe these regions in the unwind
To do this, the linker generates two-word unwind descriptors for stubs. If a procedu
needs to return through a parameter relocation stub, the unwind mechanism need
know that the extra rp value is saved in the stack marker. If execution is stopped in
middle of a stub, unwind needs to know that, especially if inside a parameter reloc
stub, where the stack pointer may have been bumped by 8 bytes to create a temp
storage area. The stub-unwind descriptors have the following format:

struct stub_desc {
unsigned int addr; /* address of the first instruction of the stub *
unsigned int mbz1: 4; /* must be zero - reserved */
unsigned int type: 4; /* stub type */
unsigned int mbz2: 3: /* must be zero - reserved */
unsigned int reloclen: 5; /* used only for parameter relocation stubs;

contains the number of the instruction which
stores RP on the stack in the stub. */

unsigned int length: 16; /* length (# of words) of stub area */
};
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 237

Stack Unwind Library

illi-

bles.

re
elf-

 of
In some cases, a contiguous sequence of calling, called, or long branch stubs or m
code long branch can be covered by a single unwind descriptor.

The UNWIND and RECOVER subspaces point to the unwind, stub, and recover ta
These tables are arranged in code space as follows:

The three tables mentioned above, namely the unwind, stub and recover tables, a
required to be contiguous. In a shared library, the DLT slot at 0 (gr 19) contains a s
relative pointer to a four-word descriptor containing the four pointers to the unwind
tables corresponding to the four symbols above.

9.3.1 The Stub Unwind Types

The following table describes the stub-unwind types in bits 4..7 of the second word
the two-word unwind descriptors for stubs:

$UNWIND_START$ at beginning of unwind table

$UNWIND_END$ at beginning of stub table

$RECOVER_START$ at beginning of recover table

$RECOVER_END$ at end of recover table

Stub Names Value Description

NULL 0 not used

LONG_BRANCH_STUB 1 stubs generated for branches beyond
256K-bytes offset.

LOCAL_RELOC_STUB 2 parameter relocation stub

EXTERN_IMPORT_STUB 3 MPE shared library import stub

EXTERN_EXPORT_STUB 4 calls entry point, handles inter-quad
return; deposits caller’s exec level in
rp

LONG_LOAD_STUB 5 not used

HPUX_IMPORT_STUB_NO_RP 6 o signal to the unwind
library and all other
unwind users that
this is an HP-UX
shared library
import stub (in
either a program file
or a shared library)
that does not save
RP before branch-
ing to the callee.
238 HP PROPRIETARY

Version 3.0

 exe-
er gets
 The
9.3.2 Unwinding from Parameter Relocation Stub

A parameter relocation stub creates its own temporary 8-byte stack frame while it’s
cuting, so the stack unwind mechanism needs to understand where the stack point
incremented and decremented. There are two forms of parameter relocation stub.

MILLILONG_BRANCH_STUB 7 like LONG_BRANCH_STUB,
used to reach millicode routines

INTERQUAD_IMPORT_STUB 8 loads r22 with address of routine in
quad0 and branches to _sr4export

HPUX_EXPORT_STUB_NO_RP 9 o signal to the unwind
library and all other
unwind users that
this is an HP-UX
shared library
export stub (in
either a program file
or a shared library)
that does not save
RP before branch-
ing to the entry
point; and in fact
does not trap the
return from the
entry before control
passes back to the
caller.

HPUX_EXPORT_STUB 10 HP-UX shared library export stub,
like DL_EXPORT_STUB

HPUX_IMPORT_STUB 11 HP-UX shared library import stub
used in an incomplete executable.
Loads r19 required by callee, makes
inter-quad branch, stores rp at -24
(sp).

SHLIB_IMPORT_STUB 12 HP-UX shared library import stub
used in a shared library, see
HPUX_IMPORT_STUB.

LONG_SHLIB_IMPORT_STUB 13 like SHLIB_IMPORT_STUB
except PLT entry is too far from r19.

SHL_LONG_BRANCH_STUB 14 PC-relative long branch stub used in
a shared library.

FDP_COUNTING_STUB 15 Stub generated to count branches for
feedback directed positioning.

Stub Names Value Description
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 239

Stack Unwind Library

he sec-

rg1

 (in
first form saves rp and catches the return path so it can relocate the return value; t
ond form is one way, so it does not have to save rp.

In the following two examples, assembly code are shown to handle arg1/arg0 to fa
and arg3/arg2 to farg3 parameter relocation.

With return relocation:

Without return relocation:

For parameter relocation stubs (type 2) and export stubs (types 9 and 10), the size
instructions) of the argument relocation code ((b - a)/4) is recorded in thereloclenfield,
and the total size (in instructions) of the stub ((e - a)/4) in thelength field.

If there is no return relocation path, the value (length - reloclen) will be 1.

a:

b:

c:

d:

e:

stws,ma
stws
fldds
stws
stws
fldds,mb

stw
bl,n
nop

fstds, ma
ldws
ldws, mb

ldw
bv,n

arg1, 8(sp)
arg0, -4(sp)
-8(sp), farg1
arg3, -8(sp)
arg2, -4(sp)
-8(sp),farg3

rp, -8(sp)
func,rp

fret0, 8(sp)
-4(sp), ret1
-8(sp), ret0

-8(sp), rp
0(rp)

; relocate parameters
; create temporary stack frame

; destroy temporary frame

; save rp and call the function

; function returns here
; relocate the return value

; create temporary stack frame

;destroy temporary frame

a:

b:

c:
d:
e:

stws,ma
stws
fldds
stws
stws
fldds,mb

b,n

arg1, 8(sp)
arg0, -4(sp)
-8(sp), farg1
arg3, -8(sp)
arg2, -4(sp)
-8(sp),farg3

.+8

; relocate parameters
; create temporary stack frame

; destroy temporary frame

; branch to the function
240 HP PROPRIETARY

Version 3.0

 be

ased

t

e

ths of
 of
If (length - reloclen) is greater than 1, the relative positions of the labels c and d can
inferred from the values ofreloclen andlength as follows:

c = b + 12 = a + (reloclen*4) + 12
d = e - 8 = a + (length*4) - 8

When unwinding, use the following table to determine how to find the next frame, b
on the current pc:

For export stubs (types 9 and 10), the calculations of positions c and d are differen
because the stubs are different:

c = b + 8 = a + (reloclen*4) + 8
d = e -16 = a + (length*4) - 16

9.4 External Interface

9.4.1 The Unwind Descriptor

When the assembler sees procedure directives such as ‘‘.ENTER’’ or ‘‘.LEAVE’’, it
builds fixup requests for the linker. Using the information in these fixup requests, th
linker builds a 4-word unwind descriptor for each unwind region. These descriptors
monitor a particular code address range, typically an entire procedure. The unwind
descriptors provide information about the stack size, registers usage, and the leng
the entry and exit sequences. The linker sorts these entries in the increasing order
code addresses and places them in a separate subspace.

Following is a C language declaration of the unwind descriptor:

struct unwind_table_entry {
 unsigned int region_start; /* Word 1 */
 unsigned int region_end; /* Word 2. */
 unsigned int Cannot_unwind:1; /* Word 3. */
 unsigned int Millicode:1;
 unsigned int Millicode_save_sr0:1;
 unsigned int Region_description:2;
 unsigned int reserved:1;
 unsigned int Entry_SR:1;
 unsigned int Entry_FR:4;
 unsigned int Entry_GR:5;

pc return ptr psp

pc == a rp sp

a < pc < b rp sp -8

pc == b rp sp

b < pc <= c -8(sp) sp

c < pc < d -8(psp) sp -8

d <= pc < e -8(sp) sp
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 241

Stack Unwind Library

e
ets

t

ng
 unsigned int Args_stored:1;
 unsigned int Variable_Frame:1;
 unsigned int Separate_Package_Body:1;
 unsigned int Frame_Extension_Millicode:1;
 unsigned int Stack_Overflow_Check:1;
 unsigned int Two_Instruction_SP_Increment:1;
 unsigned int sr4export:1;
 unsigned int cxx_info:1;
 unsigned int cxx_try_catch:1;
 unsigned int sched_entry_seq:1;
 unsigned int reserved1:1;
 unsigned int Save_SP:1;
 unsigned int Save_RP:1;
 unsigned int Save_MRP_in_frame:1;
 unsigned int save_r19:1;
 unsigned int Cleanup_defined:1;
 unsigned int MPE_XL_interrupt_marker:1; /* Word 4 */
 unsigned int HP_UX_interrupt_marker:1;
 unsigned int Large_frame_r3:1;
 unsigned int alloca_frame:1;
unsigned int reserved2:1;
 unsigned int Total_frame_size:27;

};

region_start

This is the starting address of the unwind region.

region_end

This is the end address of the unwind region.

word # 3 and word #4: Flags

The 3rd and the 4th word of the unwind descriptor contains bit flags and stack fram
size that are used by the unwind utility routines. The number in the following brack
are only used for identifying purpose.

1. Cannot_unwind (bit 0): One (1) if this region does not follow unwind conventions
and is therefore not unwindable; zero otherwise. (Creation of non-unwindable
assembly code is strongly discouraged.)

2. Millicode (bit 1): One if this region is a millicode routine; zero otherwise.

3. Millicode_save_sr0 (bit 2): One if this (millicode) routine saves sr0 in its frame (a
current_SP - 16); zero otherwise.

4. Region_description(bits 3-4): Describes the code between the starting and endi
offsets of this region:
242 HP PROPRIETARY

Version 3.0

f a

 of
ot

 exit
ntain

her

try

 by

d by
re dif-

gr7

 to
it
 the

ing
ire

ate
ve RP
 00: Normal (entry point at start of region, exit point at end; contains no other
entry/exit points)

 01: Entry point only (contains no exit point)

 10: Exit point only (contains no entry point)

 11: Discontinuous (contains no entry or exit point)

Normalcontext is code that falls between the last entry point and first exit point o
routine.

Entry point only context is code that makes up an alternate entry point. It consists
entry code inserted by the assembler or compiler as well as user code. It does n
contain exit code.

Exit point only context is code that makes up an alternate exit point. It consists of
code inserted by the assembler or compiler as well as user code. It does not co
entry code.

Discontinuous context is code within an assembled or compiled routine that is eit
not preceded by some entry point or not followed by some exit point.

One unwind table entry is generated per routine, plus one for each additional en
point, exit point, and discontinuous region. Normally, all unwind descriptors are
identical except for the Region_description field. The entry and exit points to any
region are marked using the ‘‘.ENTRY’’ and ‘‘.EXIT’’ assembler directives.

5. Entry_SR (bit 6): One if the sole entry-save space register sr3 is saved/restored
the associated entry/exit code sequence; zero otherwise.

6. Entry_FR (bit 7-10): The number of entry-save floating-point registers saved/
restored by the associated entry/exit code sequence.

7. Entry_GR (bit 11-15): The number of entry-save general registers saved/restore
the associated entry/exit code sequence. Note that the semantics of this field a
ferent from those of the similarly named field of the .CALLINFO directive to the
assembler. For example, a value of 5 in this field would mean that gr3 through
(inclusive) have been saved in the entry save code.

8. Args_stored (bit 16): One if this region’s prologue includes storing any arguments
the routine in memory in the architected locations; zero otherwise. (Note: this b
may not be correct if the associated routine was compiled with optimization, as
optimizer may remove initial stores of arguments, but will never clear this bit.)

9. Variable_Frame(bit 17): Indicates that this region’s frame may be expanded dur
the region’s execution (using the Ada dynamic frame facility). Such frames requ
different unwinding techniques.

10. Separate_Package_Body (bit 18): Indicates the associated region is an Ada separ
package body. It has no frame of its own, but uses space in a parent frame to sa
and spill any entry save registers.

11. Frame_Extension_Millicode (bit 19): Indicates the associated region is a special
millicode routine which implements the Ada frame extension operation.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 243

Stack Unwind Library

k

d
 of

at

r mil-
 in the
wise.
red.

y
illi-

n-

of

f

tain

 by
as, as

ave
s not
12. Stack_Overflow_Check (bit 20): Indicates the associated region has an Ada stac
overflow check in its entry sequence(s).

13. Two_Instruction_SP_Increment (bit 21): Indicates the associated (Ada) region ha
a large frame such that two instructions were necessary to produce that portion
the frame increment which cannot be deduced from the frame size field in the
unwind descriptor.

14. sr4export(bit 22): Indicates hand written sr4 export stub.

15. cxx_info (bit 23): This bit is used to indicate one or both of the followings:

(a) the associated function or region has a C++ exception specification.

(b) the associated function or region has objects which might require
cleanup (destruction).

16. cxx_try_catch (bit 24): This bit is used to indicate that the associated function or
region has one or more C++ try/catch constructs.

17. sched_entry_seq (bit 25): This bit indicates optimizer may have scheduled entry
code. U_get_previous frame emits a warning message in this case indicating th
context restoring unwind is not possible.

18. Save_SP (bit 27): One if the entry value of SP is saved by this region’s entry
sequence in the current frame marker (current_SP - 4); zero otherwise.

19. Save_RP (bit 28): For non-millicode, one if the entry value of RP is saved by the
entry sequence in the previous frame (at previous_SP - 20); zero otherwise. Fo
licode, one if the entry values of MRP and sr0 are saved by the entry sequence
current frame (at current_SP - 20 and current_SP - 16, respectively); zero other
If this bit is one, the Save_MRP_in_frame and Millicode_save_sr0 bits are igno

20. Save_MRP_in_frame (bit 29): One if the entry value of MRP is saved by the entr
code in the current frame (at current_SP - 20); zero otherwise. Applies only to m
code.

21. Save_r19 (bit 30): One if gr19 is saved for shared library tables.

22. Cleanup_defined (bit 31): The interpretation of this field is dependent upon the la
guage processor which compiled the routine.

23. MPE_XL_interrupt_marker (bit 32): One if the frame layout corresponds to that
an MPE XL interrupt marker.

24. HP_UX_interrupt_marker (bit 33): One if the frame layout corresponds to that o
an HP-UX interrupt marker.

25. Large_frame_r3 (bit 34): One if gr3 is changed during the entry sequence to con
the address of the base of the (new) frame.

26. alloca_frame (bit 35): This bit is set if alloca() is used and has been inlined. This
indicates gr3 or gr4 may contain the previous sp value.

27. Total_frame_size (bit 37-63): The amount of space, in 8-byte units, added to SP
the entry sequence of this region. This space includes register save and spill are
well as padding. This quantity is needed during unwinding to locate the entry-s
register save area. It is also used to determine the value of previous_SP if it wa
saved in the stack marker.
244 HP PROPRIETARY

Version 3.0

iven
ct
ind

nd
able
9.4.2 Unwind Utility Routines

The unwind utility routines currently reside in the libcl.a (libcl.sl for shared library).
The following section describes these routines and their interfaces.

• U_get_unwind_table

struct utable {
unsigned unwind_table_start;
unsigned unwind_table_end;

};

struct utable U_get_unwind_table(unsigned int dp_value);

This routine returns the code offsets of the start and end of the unwind table of a g
object module. The unwind table is word-aligned. It takes the DP value for the obje
module where the unwind table is stored. It returns the offset of the start of the unw
table, and the offset of the first word beyond the unwind table.

ARG0: DP value of routine being unwound to. (only used on MPE/iX)

RET0: Offset (in space of routine being unwound to) of start of unwind table.

RET1: Offset (in space of routine being unwound to) of first word beyond end of
unwind table.

• U_get_unwind_entry

int U_get_unwind_entry(
 unsigned int PC;
 unsigned int Space_id;
 unsigned int table_start;
 unsigned int table_end);

Given the PC_offset value of interest and the start and end of the associated unwi
table, this routine returns the code offset (in PC_space) of the associated unwind t
entry. If no unwind table entry exists, -1 is returned. Typically the table_start and
table_end is found using theU_get_unwind_table routine.

ARG0: PC value to look up.

ARG1: Space id of table.

ARG2: Offset of start of unwind table.

ARG3: Offset of first word beyond end of unwind table.

RET0: Offset of unwind table entry associated with PC value; -1 if none exists.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 245

Stack Unwind Library

 the

This routine requires that the unwind table is sorted in increasing order of starting
addresses. It does a binary search of the table to get to the entry corresponding to
input PC value.

• U_get_previous_frame

struct current_frame_def {

 unsigned curr_frame_size; /* Frame size of current routine. */
 unsigned curr_sp; /* The current value of stack pointer. */
unsigned curr_pcspace; /* PC-space of the calling routine. */
 unsigned curr_pcoffset; /* PC-offset of the calling routine. */
 unsigned curr_dp; /* Data Pointer of the current routine. */
 unsigned curr_rp; /* Initial value of RP. */
 unsigned curr_mrp; /* Initial value of MRP. */
 unsigned curr_sr0; /* Initial value of sr0. */
 unsigned curr_sr4; /* Initial value of sr4 */
 unsigned r3; /* Initial value of gr3 */
 unsigned cur_r19; /* GR19 value of the calling routine,

used only in shared library HP-UX. */
int r4; /* for alloca run-time stack memory

allocation */
reserved; /* may have values in future releases */

};

struct previous_frame_def {

 unsigned prev_frame_size; /* frame size of calling routine. */
 unsigned prev_sp; /* SP of calling routine. */
 unsigned prev_pcspace; /* PC_space of calling routine’s caller. */
 unsigned prev_pcoffset; /* PC_offset of calling routine’s caller. */
 unsigned prev_dp; /* DP of calling routine. */
 unsigned udescr0; /* low word of calling routine’s unwind */

/* descriptor. */
 unsigned udescr1; /* high word of calling routine’s unwind */

/* descriptor. */
 unsigned ustart; /* start of the unwind region. */
unsigned uend; /* end of the unwind region. */
unsigned uw_index; /* index into the unwind table. */

 unsigned prev_r19; /* GR19 value of the caller’s caller. */
 int r3; /* value for gr3, for run-time-stack

memory allocation */
int r4; /* value for gr4, for run-time-stack

memory allocatoin */

};
246 HP PROPRIETARY

Version 3.0

ize,
, the
 is a

-1
.

info.

 of

nput

it are
int U_get_previous_frame (
struct current_frame_def *curr_frame;
struct previous_frame_def *prev_frame);

Given a PC_space, a PC_offset value that is a return link to the caller, the frame s
and the DP and SP values of the called routine, this routine returns the frame size
DP and SP values of the caller’s frame, and the (PC_space, PC_offset) value that
return link to the caller’s caller.

The return value of this function means:

0: normal;

Negative:

-1: if curr_pcspace, curr_pcoffset is nil, indicating stack was fully unwound;

-4: if error occurs during linker stub unwinding other negative values less than
may be used in the future to indicate additional unexpected (internal) errors

Positive: The frame is not unwindable for some reason.

1: no unwind_descriptor

0x7fffffff: cannot_unwind bit on in previous unwind descriptor

Assembly interface:

ARG0: Pointer to an eleven-word area of memory that contains the current frame

ARG1: Pointer to an eleven-word area of memory defined on exit as per definition
the previous_frame_info structure.

RET0: Return value defined on exit.

This routine is designed to enable access to the previous frame on the stack with i
information about the current state. You may call this iteratively by setting thecur fields
to the appropriate machine state, and then copying the first fiveprev values into the cor-
responding fields for successive calls, until end-of-stack is reached.

When a nonzero value is returned, the fields that would normally get defined on ex
undefined.

If the frame of the called routine is the topmost frame on the stack when unwinding
commences,cur_frsize should be zero on the initial call.

• U_get_previous_frame_x

int U_get_previous_frame_x (
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 247

Stack Unwind Library

ffer-
ew
ca
-time
d for

us

*/

given

scal
l

resses

ored.
struct current_frame_def *curr_frame;
struct previous_frame_def *prev_frame;
int size);

The functionality of this routine is the same as U_get_previous_frame. The only di
ence is the addition of the third parameter. This routine is introduced to allow for n
fields to be added to the current_frame_def and previous_frame_def. With the allo
support, the data structures have to be extended to include new fields for alloca run
stack memory information. The size field is used to specify the number of bytes use
the previous_frame_def. Starting at 10.0, users should start using
U_get_previous_frame_x instead of U_get_previous_frame to access to the previo
frame on stack.

• U_get_recover_table

struct recover_table_entry {

unsigned TRY_start; /* Starting offset (from sr4) of TRY region.
unsigned TRY_end; /* Ending offset (from sr4) of the

instruction following TRY region. */
unsigned RECOVER_start; /* RECOVER block offset for associated

TRY region (execution resumes here). */
};

struct rtable {
unsigned recover_table_start;
unsigned recover_table_end;

};

struct rtable U_get_recover_table (unsigned int dp_value);

This function returns the code offsets of the start and end of the recover table of a
object module.

This routine and the one describes below (U_get_recover_address) can be used to
resume execution at a specific point if something unexpected happens. The HP Pa
run-time libraries use these routines to recover from traps and to execute non-loca
ESCAPE statement.

The recover table has three word entries containing the beginning and the end add
of the unwind region and the resume address. It is word-aligned.

This function takes the DP value for the object module where the recover table is st
It returns the offset of the start of the recover table, and the offset of the first word
beyond the recover table.

This is the interface for assembly programmers:
248 HP PROPRIETARY

Version 3.0

ble,
ffset

e.
ARG0: DP value of routine associated with PC value of interest.

RET0: Offset (in space of routine being unwound to) of start of recover table.

RET1: Offset (in space of routine being unwound to) of first word beyond end of
recover table.

• U_get_recover_address

Given the PC_offset value of interest and the location of the associated recover ta
returns the code offset (in PC_space) of the associated recover block. If the PC_o
does not point to a try block, an -1 is returned.

int U_get_recover_address(unsigned int PC;

unsigned int Space_id;

unsigned int rtable_start;

unsigned int rtable_end);

This is the interface for assembly programmers:

ARG0: PC_offset to look up.

ARG1: Offset (in space of routine being unwound to) of start of recover table.

ARG2: Offset (in space of routine being unwound to) of first word beyond end of
recover table.

ARG3: Space id of recover table.

RET0: Recover address with actual execution level, or -1 if not found.

• U_STACK_TRACE

U_STACK_TRACE();

Applications can obtain stack traces easily using the U_STACK_TRACE() routin
This routine can be called from any place without any arguments. It will print the
stack trace from the caller’s frame onwards onto the standard output stream.

• U_get_shLib_text_addr

int U_get_shLib_text_addr(int GR19);
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 249

Stack Unwind Library

 the

 the
nd

 the
ver

ou-
trace

 have

stack
g

ck is
e
 the
itial

ds
vel
Given the GR 19 value, this routine will return -1 if the corresponding code is not in
HP-UX shared library, otherwise it will return the text address of the shared library.

• U_get_shLib_unw_tbl

struct utable U_get_shLib_unw_tbl(int GR19);

Given the GR 19 value, this routine will return -1 if the corresponding code is not in
HP-UX shared library, otherwise it will return the address of unwind start and unwi
end of the shared library.

• U_get_shLib_recv_tbl

struct rtable U_get_shLib_recv_tbl(int GR19);

Given the GR 19 value, this routine will return -1 if the corresponding code is not in
HP-UX shared library, otherwise it will return the address of recover start and reco
end of the shared library.

9.4.3 Unwind Examples: Using U_get_previous_frame

This following example illustrates how to make use of the U_get_previous_frame r
tine to write a stack trace into a character string. This example demonstrates that
mechanism works for both archived and shared library routines.

Since a full stack trace requires access to the symbol tables in the program file, we
omitted the symbols from the output.

To try out the example, do:

make unwind_example

U_get_previous_frame is designed to enable access to the previous frame on the
with input information about the current state. You may call this iteratively by settin
the curr_frame to the appropriate machine state, and then copying the first five
prev_frame fields into the corresponding fields for successive calls, until end of sta
reached. The initial set-up of curr_frame is done using a supported low-level routin
which HP has written. This assembly level routine MUST be in the same image as
routine which uses it. This is the method we recommend using when priming the in
curr_frame for U_get_previous_frame. NOTE: the curr_frame and prev_frame fiel
are subject to change across releases. Thus, you should always extract the low-le
routine from the system on which the executable will be built for (the location of the
routine is explained in trace.c below).

=========
Makefile
=========
250 HP PROPRIETARY

Version 3.0
unwind_example: example.out example.sl trace.sl output.txt

output.txt: example.out
example.out 1>output.txt 2>&1

example.out: test_unwind.c example.sl trace.sl
cc -Aa -o example.out test_unwind.c example.sl trace.sl -lcl

example.sl: test_shl.c
cc -c -Ae +z test_shl.c
ld -o example.sl -b test_shl.o
rm test_shl.o

trace.sl: trace.c unwind.h ugetfram.s
cc -c -Aa +z trace.c ugetfram.s
ld -o trace.sl -b trace.o ugetfram.o
rm trace.o ugetfram.o

clean:
rm -f *.o *.out *.sl *.txt

=========
unwind.h
=========

#ifndef UNWIND_HEADER_FILE
#define UNWIND_HEADER_FILE

typedef struct cframe_info {
 unsigned cur_frsize; /* frame size */
 unsigned cursp; /* stack pointer */
 unsigned currls; /* PC-space of CALLING routine */
 unsigned currlo; /* PC-offset of CALLING routine */
 unsigned curdp; /* data pointer */
 unsigned toprp; /* return pointer */
 unsigned topmrp; /* millicode return pointer */
 unsigned topsr0; /* sr0 */
 unsigned topsr4; /* sr4 */
 unsigned r3; /* gr3 */
 unsigned cur_r19; /* linkage-table pointer (gr19) - for PIC code */

} cframe_info;

typedef struct pframe_info {
 unsigned prev_frsize; /* frame size */
 unsigned prevsp; /* stack pointer */
 unsigned prevrls; /* PC-space of CALLING routine */
 unsigned prevrlo; /* PC-offset of CALLING routine */
 unsigned prevdp; /* data pointer */
 unsigned udescr0; /* first half of unwind descriptor */
 unsigned udescr1; /* second half of unwind descriptor */
 unsigned ustart; /* start of the unwind region */
 unsigned uend; /* end of the unwind region */
 unsigned uw_index; /* index into the unwind table */
 unsigned prev_r19; /* linkage-table pointer (gr19) - for PIC code */

} pframe_info;

#endif /* UNWIND_HEADER_FILE */

=========
trace.c
=========
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 251

Stack Unwind Library
#include <stdio.h>
#include “unwind.h”

static void copy_prev_to_curr (cframe_info *curr_frame,
 pframe_info *prev_frame);

void unwind_trace (char *stack_trace)
{
 cframe_info curr_frame;
 pframe_info prev_frame;
 unsigned stack_ptr, space_reg, offset_reg;
 unsigned data_ptr, linkage_ptr;
 unsigned sp20, depth;
 unsigned status;

 /* set up a valid curr_frame by calling an assembly routine.
 * This assembly routine is not exported by HP, but can
 * be extracted from /usr/lib/libcl.a ... it is called
 * ugetfram.o. The U_get_frame_info routine MUST be put into
 * the same image as this routine. It can then set up a dummy
 * curr_frame that has the correct values set.
 */
 U_get_frame_info (&curr_frame);

/* U_get_frame_info doesn’t zero sr0 and sr4 ... so do them explicetly
*/

 curr_frame.topsr0 = 0;
 curr_frame.topsr4 = 0;

 /* throw away the first frame ... since its a dummy frame
 * created by the call to U_get_frame_info.
 */
 status = U_get_previous_frame (&curr_frame, &prev_frame);

 /* Check to make sure everything is okay */
 if (status)

{
 fprintf(stderr, “Stack_Trace: error while unwinding stack\n”);
 return;

}

 /* copy the prev_frame to the curr_frame */
 copy_prev_to_curr (&curr_frame, &prev_frame);

 /* Now for the real work. Initialize the trace string, and then
 * loop, unwinding a frame at a time until there are no more frames
 * to unwind (i.e. the offset portion of the return address is 0).
 */
 *stack_trace=0;

 for (depth = 0; curr_frame.currlo; depth++)
{

 status = U_get_previous_frame (&curr_frame, &prev_frame);

 /* Check to make sure everything is okay */
 if (status)

{
fprintf(stderr, “Stack_Trace: error while unwinding stack\n”);
return;
252 HP PROPRIETARY

Version 3.0
}

 /* Now, we’d like to print out the return pointer. However,
 * U_get_previous_frame returns the prev_frame for the 1st NON-STUB
 * frame in the call chain. It may be the case that the return

* pointer for this frame points into another stub. What we’d
* really like to see is the return point for all NON-STUBS.

 * U_get_previous_frame updates curr_frame so that it contains
 * a frame whose return point is a NON-STUB. Print out this value
 * before copying over prev_frame into curr_frame.
 */
 sprintf(stack_trace + strlen(stack_trace),
 “ (%2d) 0x%x\n”, depth, (curr_frame.currlo & ~3));

 copy_prev_to_curr (&curr_frame, &prev_frame);
 }
}

static void copy_prev_to_curr (cframe_info *curr_frame,
 pframe_info *prev_frame)
{
 /* Update curr_frame with values returned in prev_frame */
 curr_frame->cur_frsize = prev_frame->prev_frsize;
 curr_frame->cursp = prev_frame->prevsp;
 curr_frame->currls = prev_frame->prevrls;
 curr_frame->currlo = prev_frame->prevrlo;
 curr_frame->curdp = prev_frame->prevdp;

 /* don’t update curr_frame.cur_r19 because U_get_previous_frame does
 * it directly.
 */
}

=========
test_unwind.c
=========
#include <stdio.h>

/* This file is built into an archived executable. Traces in here
 * should prove that our trace mechanism works with archived routines.
 */

/* A prototype for a function that is in a shared library */
void foobar (void (* funcptr) (void));

/* This routine shows that our trace works when a shared library
 * routine calls back into the archived executable (2 levels deep)
 */
void foofoo (void)
{
 char trace_string[1025];

 unwind_trace (trace_string);

 fprintf(stderr, “\n\n\nIn foofoo, our trace gives: \n%s\n”,
trace_string);

 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();
}

PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 253

Stack Unwind Library
/* This routine shows that our trace works when a shared library
 * routine calls back into the archived executable (1 levels deep)
 */
void barfoo (void)
{
 char trace_string[1025];

 unwind_trace (trace_string);

 fprintf(stderr, “\n\n\nIn barfoo, our trace gives: \n%s\n”,
trace_string);

 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();

 foofoo();
}

/* This routine shows that our trace works for archived functions */
void bar (void)
{
 char trace_string[1025];

 unwind_trace (trace_string);

 fprintf(stderr, “\n\n\nIn bar, our trace gives: \n%s\n”, trace_string);
 fprintf(stderr, “and U_STACK_TRACE gives: \n”);
 U_STACK_TRACE();

 foobar(barfoo);
}

void foo (void)
{
 bar();
}

main()
{
 foo();
}

=========
Ugetfram.s
=========

.CODE
;--
; :
; U_get_frame_info :
; :
; U_get_frame_info loads the value of the caller’s SP, PCspace, PCOffset
:
; and DP into a record, a pointer to which has been passed into
; this routine in arg0. The format of this record is that required by the
; unwind routine :
; “U_get_previous_frame”.
:
; :
; offset contents :
; :
254 HP PROPRIETARY

Version 3.0
; 0 cur_frsize framesize of called routine :
; 4 curSP SP of called routine :
; 8 curRLS PC_space of calling routine :
; 12 curRLO PC_offset of calling
; routine :
; 16 curDP DP of called routine :
; 20 topRP RP (reg. 2) of called routine
:
; 24 topMRP MRP (reg. 31) of called routine
:
; 28 cuffSR0 :
; 32 cuffSR4 :
; 36 curR3 :
; 40 cur_r19(new offset) :
;endif :
; :
; INPUT PARAMETERS: :
; arg0 : pointer to a 11-word structure with the above
; layout :
; :
; OUTPUT PARAMETERS: :
; the fields curSP, curRLS, curRLO,curDP
:
;--
;
U_get_frame_info
 .PROC
 .CALLINFO
 .ENTRY
 stw sp,4(arg0) ; store caller’s SP
 mfsp sr4,r20
 stw r20,8(arg0) ; store caller’s PC space
 stw rp,12(arg0) ; store caller’s PC offset
 stw dp,16(arg0) ; store caller’s DP

stw r3,36(arg0) ; store caller’s R3
 stw r0,0(arg0) ; initialize rest of fields
 stw r0,20(arg0) ; -”-

stw r19,40(arg0) ; fetch r19
 bv r0(rp) ; return, after restoring SP

.EXIT
 stw r0,24(arg0) ; -”-
 .PROCEND

 .EXPORT U_get_frame_info,CODE,PRIV_LEV=3
 .END

=========
output.txt
=========

In bar, our trace gives:
 (0) 0x2044
 (1) 0x20c0
 (2) 0x20f8
 (3) 0x800419a4
 (4) 0x18fc

and U_STACK_TRACE gives:
(0) 0x0000208c bar + 0x60 [./example.out]
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 255

Stack Unwind Library
(1) 0x000020c0 foo + 0x14 [./example.out]
(2) 0x000020f8 main + 0x14 [./example.out]
(3) 0x800419a4 start + 0x70 [/lib/libc.sl]
(4) 0x000018fc $START$ + 0x9c [./example.out]

In foobar, our trace gives:
 (0) 0x8084844c
 (1) 0x20a0
 (2) 0x20c0
 (3) 0x20f8
 (4) 0x800419a4
 (5) 0x18fc

and U_STACK_TRACE gives:
(0) 0x808484d0 foobar + 0xe0 [/tmp/unwind_example/example.sl]
(1) 0x000020a0 bar + 0x74 [./example.out]
(2) 0x000020c0 foo + 0x14 [./example.out]
(3) 0x000020f8 main + 0x14 [./example.out]
(4) 0x800419a4 start + 0x70 [/lib/libc.sl]
(5) 0x000018fc $START$ + 0x9c [./example.out]

In barfoo, our trace gives:
 (0) 0x1fb4
 (1) 0x808484f4
 (2) 0x20a0
 (3) 0x20c0
 (4) 0x20f8
 (5) 0x800419a4
 (6) 0x18fc

and U_STACK_TRACE gives:
(0) 0x00001ffc barfoo + 0x60 [./example.out]
(1) 0x808484f4 foobar + 0x104 [/tmp/unwind_example/example.sl]
(2) 0x000020a0 bar + 0x74 [./example.out]
(3) 0x000020c0 foo + 0x14 [./example.out]
(4) 0x000020f8 main + 0x14 [./example.out]
(5) 0x800419a4 start + 0x70 [/lib/libc.sl]
(6) 0x000018fc $START$ + 0x9c [./example.out]

In foofoo, our trace gives:
 (0) 0x1f30
 (1) 0x2008
 (2) 0x808484f4
 (3) 0x20a0
 (4) 0x20c0
 (5) 0x20f8
 (6) 0x800419a4
 (7) 0x18fc

and U_STACK_TRACE gives:
(0) 0x00001f78 foofoo + 0x60 [./example.out]
(1) 0x00002008 barfoo + 0x6c [./example.out]
(2) 0x808484f4 foobar + 0x104 [/tmp/unwind_example/example.sl]
(3) 0x000020a0 bar + 0x74 [./example.out]
256 HP PROPRIETARY

Version 3.0

un-

y the

d the
(4) 0x000020c0 foo + 0x14 [./example.out]
(5) 0x000020f8 main + 0x14 [./example.out]
(6) 0x800419a4 start + 0x70 [/lib/libc.sl]
(7) 0x000018fc $START$ + 0x9c [./example.out]

In sig_hand, our trace gives:
 (0) 0x8084830c
 (1) 0x800ab3e8
 (2) 0x808484fc
 (3) 0x20a0
 (4) 0x20c0
 (5) 0x20f8
 (6) 0x800419a4
 (7) 0x18fc

and U_STACK_TRACE gives:
(0) 0x8084838c sig_hand + 0xb4 [/tmp/unwind_example/example.sl]
(1) 0x800ab3e8 sigreturn [/lib/libc.sl]
(2) 0x808484fc foobar + 0x10c [/tmp/unwind_example/example.sl]
(3) 0x000020a0 bar + 0x74 [./example.out]
(4) 0x000020c0 foo + 0x14 [./example.out]
(5) 0x000020f8 main + 0x14 [./example.out]
(6) 0x800419a4 start + 0x70 [/lib/libc.sl]
(7) 0x000018fc $START$ + 0x9c [./example.out]

9.5 Setjmp and longjmp jmp_buf

Setjmp and longjmp functions are useful for dealing with errors and interrupts enco
tered in a low-level subroutine of a program. Setjmp saves its stack environment inenv
(jmp_buf type) for later use by longjmp. Longjmp restores the environment saved b
last call of setjmp with the corresponding envargument. After longjmp is completed,
program execution continues as if the corresponding call of setjmp had just returne
valueval.

#include <setjmp.h>
int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

struct jump_buffer {
int jb_rp; /* Return Pointer */
int jb_sp; /* Marker SP */
int jb_sm; /* Signal Mask */
int jb_os; /* On Sigstack */
int jb_gr3; /* Entry Save General Registers */
int jb_gr4;
int jb_gr5;
int jb_gr6;
int jb_gr7;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 257

Stack Unwind Library

pack-
d

at
ds to
 sys-
g
eck

sig-

 The
s-
int jb_gr8;
int jb_gr9;
int jb_gr10;
int jb_gr11;
int jb_gr12;
int jb_gr13;
int jb_gr14;
int jb_gr15;
int jb_gr16;
int jb_gr17;
int jb_gr18;
int jb_gr19;
int jb_sr3; /* Entry Save Space Register */
double jb_fr12; /* Entry Save Floating Point Registers */
double jb_fr13;
double jb_fr14;
double jb_fr15;
int jb_sm2; /* Second word for Signal Mask */
double jb_fr16;
double jb_fr17;
double jb_fr18;
double jb_fr19;
double jb_fr20;
double jb_fr21;
int jb_rp_prime; /* rp prime from frame marker */
int jb_ext_dp; /* external_dp from frame marker */
 };

typedef struct jump_buffer jmp_buf;

9.6 Process Context

This section discusses exception handling in Ada and C++.

9.6.1 Ada Exception handling

The exception handling semantics of the Ada/800 runtime are implemented in the
age EXCEPTION_MANAGER, which is nested in the package ADA_RUNTIME, an
its subunits.

The code generator generates instructions to raise exceptions along with tables th
describe the actions to be taken when an exception is raised. There are two metho
enter RAISE_EXCEPTION, the procedure that handles exceptions. One is through
tem traps and the signal handler of the runtime system, the other one is by invokin
RAISE_EXCEPTION directly. The trap instructions are used for checks. When a ch
fails, it will trap, and the signal catcher of the runtime system will receive a HP-UX
nal. It then decodes the trap and calls
EXCEPTION_MANAGER.RAISE_EXCEPTION to treat the exception. For explicit
raise statements, the code generator will emit direct calls to RAISE_EXCEPTION.
RAISE_EXCEPTION routine can also be called by other routines in the runtime sy
tem.
258 HP PROPRIETARY

Version 3.0

 place
r. If a
ctions
ation
aiting
he

eption
bject

ts of
 the

first
truc-
RAISE_EXCEPTION takes two pieces of information from its caller: the exception
code and the program counter where the exception occurred.

Exception Through Traps and Signals

The operation to handle signals is as follows:

• exception occurs

• system trap occurs

• signal generated

• signal handler entered

• RAISE_EXCEPTION called

The exception manager looks up the exception in a set of tables, depending on the
where the exception occurred and what exception it was, and tries to find a handle
handler is found, the exception manager does all cleanups necessary (all cleanup a
in scopes from the scope that raised the error down to, but not including the destin
scope) and then passes control to the handler. The necessary cleanups include w
for dependent tasks, freeing heap memory, and cutting back the stack to reclaim t
space for dynamic objects. If no handler is found, the exception is propagated.

Exception Tables

The object code contains scope and handler tables which are searched by the exc
manager. The linker emits the scope table from information in the the relocatable o
(SOM) files. The code generator emits the handler table directly.

There is a scope table created by the linker for a program. The scope table consis
scope entries. There are two symbols (beginning and ending symbols) provided by
linker to delimit the scope entries. The beginning and ending symbols point to the
entry and the entry past the last one (first byte not in the table) respectively. The s
tures of a scope table and a scope table entry are as follows:

Scope Table

entry #1

entry #2

...

Scope Table Entry

scope_begin

scope_end

handler_tbl_addr
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 259

Stack Unwind Library

is

ing the
ically
ope is

 This is
parate
body

dler
ans
f the

ill be
age of

rt of
ase, it
pagate
nts

xit,
des

ables.
e

ord
consis-
 3
ble
er to
eeded
 spe-
ion.

re. As
rent

ress in
 scope

h indi-
Thescope_begin andscope_end are the beginning and ending offsets associated with
the current scope. Thehandler_tbl_addr is the code address of the handler table for th
scope.

 The scope entries need to be sorted in the order of the code generator encounter
end of scope. This means that in the table, the "scope_end" values will be monoton
increasing. The linker has to be changed to allow stacked scopes, i.e., an inner sc
totally nested within an outer scope.

We only need a scope entry for the statement region of a scope that has a handler.
a great simplification from previous schemes. We do not need scope entries for se
package bodies, since unwind will be able to unwind through a separate package
and find the invocation location.

When an exception is raised in a block which is nested in another block, if the han
of the inner scope doesn’t handle it, it will be propagated to the outer scope. It me
that the "scope_begin" and "scope_end" of the outer scope has to enclose those o
inner scope. The current UCODE implementation unnests scope entries such that
entries do not have overlapping "scope_begin" and "scope_end". An Ada option w
added to the UCODE such that entries will not be unnested. It also has the advant
having less scope entries than entries which are unnested.

The exception parts are placed in line, to follow immediately after the statement pa
the scopes. While this introduces a branch over the exception part in the normal c
makes the tables simpler, because a table entry is not needed to know how to pro
out of the exception scope. This decision was also necessary due to the requireme
imposed by existing HP-PA utilities that demand that a procedure have only one e
and this exit must be the last instruction in the procedure. This requirement preclu
putting exception parts in the "dead space" after the procedure exit.

There is a one-to-one correspondence between scope table entries and handler t
This means that the handler table is basically an extension of the information in th
scope table entry. It would be possible to merge the two tables, and eliminate the w
necessary for the "handler_tbl_addr". For now, the tables are kept separate, to be
tent with Pascal’s method of handling try/recover information, which uses a similar
word scheme to describe try/recover scopes. Pascal does not need the handler ta
information, so their 3rd word is simply the code address of the recover part. In ord
stop Pascal from executing code in the handler table, a special trap instruction is n
at the beginning of the handler table and its trap handler will stop the program. The
cial trap instruction is necessary because the handler table is not in the unwind reg
The handler table is put in the code space and is right after the code for a procedu
unwind regions only cover code and the handler table is between the code for diffe
procedures, the handler table is not in the unwind region.

A handler table consists of a header and an array of handler entries. The code add
the scope table entry points to the handler table header. This header describes the
which has an exception part. Following this header are entries which describe eac
vidual exception which has a handler, and the code address of that handler.
260 HP PROPRIETARY

Version 3.0

s fol-

is

ck-
occur-
t
pend-
 look
. We
ro-
d is
age

r-
he
ed off-
The structures of a handler table, a handler table header and a handler entry are a
lows:

Thenumber_of_entries field simply denotes how many handler table entries follow th
header.

Thescope_kind denotes the kind of scope we have, such as procedure, function, pa
age, accept body, etc. This is necessary in the case where we have an exception
ring in the statements covered by these handlers, but the exception we have is no
handled here. We therefore need to propagate, and the propagation is different de
ing on the scope_kind. If the scope is an inline package or block, we simply need to
for a handler in the scope tables immediately following the current scope table entry
continue this linear search till we either find an enclosing entry or we get to a subp
gram type entry which starts after the exception raising offset. The scope_kind fiel
necessary to terminate this search. If the scope is a subprogram or separate pack
body, we need to call unwind to determine the call or invocation location.

Theanonymous_raise_save_offset is an offset to a frame location used to save the cu
rent exception code before giving control to the handler. It is also used to restore t
exception code when any anonymous raise is executed. It has the value of undefin

Handler Table

handler_table_header

handler_table_entry #1

handler_table_entry #2

...

Handler Table Header

trap_instruction

number_of_entries

scope_kind

anonymous_raise_save_offset

sp_save_location

cleanup_stop_point

Handler Table Entry

exception_code

handler_code_addr
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 261

Stack Unwind Library

er

ep-
er
ack

ol to

of the
ts on
that
e
 the

rep-
t
dler

de is
-
f
s.
set unless one of the handlers contains an anonymous raise.

Thesp_save_location is an offset to a frame location used to restore the stack point
before transferring control to one of the handlers. The object code stored the stack
pointer into this frame location at entry to the statement region covered by this exc
tion part. It has the value of an invalid frame offset if the unit does not contain furth
blocks which have dynamic variables. If it is the invalid frame offset, no stack cut b
is necessary. Thecleanup_stop_point is an offset to a frame location that describes
where to stop the process of tasking and heap cleanups. Before transferring contr
one of the handlers, we need to wait for all dependent tasks on the chain above
cleanup_stop_point, and after that, free all heap objects on the chain above
cleanup_stop_point. The code generator will set cleanup_stop_point to be the top
logical frame for the block that has the handler. This will cause cleanup of all objec
the chain above those of this particular block (and NOT including this block). Note
is doesn’t matter if the block has cleanups or not, since we have only a top of fram
point, and not the location of the cleanup list entries for the block. All the offsets in
handler table header (anonymous_raise_save_offset, sp_save_location, and
cleanup_stop_point) are always offsets from PSP even on static frames.

Theexception_code is the value of an exception handled here, or a special value to
resent a "when others". Thehandler_code_addr is a subprogram symbol plus an offse
which points to the handler code area for the particular exception code. As the han
table is put in the code space and is right after the end of a procedure,
handler_code_addr is relocation fixup. In the case of nested blocks, the handler co
inline but the handler table is moved out of the line (to right after the end of a proce
dure). The reason for this is that the unwind regions delimit the "begin" and "end" o
code which should not have any data, otherwise, the linker may do undesired fixup
Here is an example of code layout :

begin
statements #1
begin

statements #2
exception

handlers # 2
end;

exception
handlers #1

end;

The layout of generated code and table is as follow:

code for statements #1
code for statements #2
code for handlers #2
code for handlers #1
handler table for the inner scope
handler table for the outer scope
262 HP PROPRIETARY

Version 3.0

ng

. It
t, and
is
coun-
re

, and
p 1.

an-

 control
he
o back
 from a
with
ce-

 a

s. The
e.
 the
pe is
ation

This
scope.

roce-
cope

vious
his
When RAISE_EXCEPTION is called, it calls various routines to perform the followi
operations:

1. FIND_SCOPE_ENTRY routine uses two steps to locate the desired scope entry
first does a binary search to find the first entry that ends on or after the raising offse
then a linear search from there to find the first entry including the raising offset. Th
algorithm works because the entries are emitted in order of the code generator en
tering the end-of-scopes. This means that entries from inner blocks will come befo
entries from outer blocks.

2. If no scope entry is found, then there is no local handler within the current scope
we need to propagate by calling unwind to go back one scope, and then repeat ste

3. If the scope entry is found, FIND_HANDLER_TABLE routine finds the handler
table based on the handler table offset in the scope entry.

4. The FIND_HANDLER routine loops through the handler table to search for the h
dler entry whose exception code matches with the exception raised.

5. If a handler is found, save the current exception at the handler table’s
anonymous_raise_save_offset if necessary, do any necessary cleanups, and pass
to the handler; otherwise, propagate the exception. If we need to propagate, and t
scope kind is either a procedure or a separate package body, then call unwind to g
one scope, and then start this entire search process again. If we need to propagate
block or inline package, simply keep searching forward in the scope table starting
the next entry after the current one. In this way, if there is an enclosing block or pro
dure with a handler, we will find it based on the original offset.

Unwind Mechanism

The exception handling routines need to call lower level utilities to unwind through
scope. The existing unwind mechanism for Spectrum is used for this purpose, with
some extensions to allow handling of variable sized scopes and separate package
primary routine provided by the unwind utilities is the u_get_previous_frame routin
Given a PC value, this routine gets the appropriate unwind entry for this scope from
unwind table. If a scope is a subprogram, then its previous scope is its call; if a sco
a separate package body, then its previous scope is its invocation point. The inform
kept and updated by the unwind routines reflects the program state in that scope.
information consists of the SP, DP, PC space, PC offset and the size of the current
When running under HP-UX, DP and the PC space values do not change.

The unwind utilities find out the scope size of any scope by looking at the unwind
descriptor for that scope. In Ada, the scope size is not known at compile time for p
dures that either allocate dynamic objects or have separate packages. Thus, the s
size cannot be looked up in the unwind descriptor. A boolean flag will be set in the
unwind descriptor to indicate a variable sized scope. For such procedures, the pre
stack pointer (PSP) will be stored in the frame marker upon entry to a procedure. T
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 263

Stack Unwind Library

t that
a spe-
crip-

wind
e of

 the
ecial
 and

it. The

 of a
stored
ed.

tions.
If we

ll
ly fol-
f the

ndler.
r tasks
eces-
 desti-
t a
 that

cation
store.

te that
w SP
age
ing up
ure
stored PSP will be used to get the SP for the previous (caller’s) frame.

When a procedure allocates a dynamic object, the size of the frame is increased a
point. The frame marker is also moved out. This extension of the frame is done by
cial millicode routine. Within this routine the SP changes in value. The unwind des
tor of the frame extension millicode routine is specially marked, so that the unwind
utilities can recognize the fact that SP changes value within the routine and can un
appropriately. This implies that the unwind utilities have to know about the sequenc
instructions in the millicode routine completely.

On exit from a block that allocates dynamic objects, the frame has to be shrunk to
correct size. This is again done through a special millicode routine. However, no sp
treatment is needed to unwind through this frame size reduction millicode. The SP
the frame marker are in a valid state at each instruction in the routine.

The elaboration code of a separate package is in the same frame as the parent un
entry and exit sequences of this code are different from ordinary procedures. The
unwind descriptor for a separate package elaboration has to indicate that it is part
parent frame. However, the base of the frame contribution of the package must be
in the descriptor so that the spill locations for the separate package can be identifi

There is one thing we have to be extremely careful about while propagating excep
The meaning of offsets into the code may be different depending on the situation.
are starting to unwind from a trap, we will have the actual trapping offset. If we are
unwinding through a procedure call, the return point is two instructions past the ca
branch. The reason it is two past and not one past is that the instruction immediate
lowing the call branch is executed before the call actually occurs, in the delay slot o
branch.

Cleanups for Dependent Tasks, Heap Objects, and Stack Space

There are three separate cleanups necessary before transferring control to any ha
These are for tasks, heap objects, and stack space used by dynamic variables. Fo
and heaps, there are two chains that contain cleanup information. The cleanups n
sary are for entries on these lists above the frame contribution for the scope of the
nation exception handler. This assumes that frame contributions are sorted, in tha
nested scope’s frame contribution will always be above the contributions of scopes
it is nested within. This scheme is described in detail in another memo.

To cut the stack back to reclaim space used for dynamic variables, use sp_save_lo
field as the offset to a frame location containing the value of SP that we need to re
This is necessary only for scopes that contain blocks with dynamic variables. If
sp_save_location contains the invalid_offset then we do not need to restore SP. No
we must change SP and then copy the frame marker back to correspond to the ne
value. This means that we need to modify the value of SP in our saved register im
and also move the stack marker. Note that this cleanup scheme only handles clean
dynamic variables in the frame of the handler. This works since the unwind proced
will get rid of dynamic objects in frames above the destination, since their dynamic
objects will disappear when their frame disappears.
264 HP PROPRIETARY

Version 3.0

ama-

hich
s.

(s) of
y
ilation
ogram

xiliary
lso,

no
ack-

t find
int,
sing

 are
uxil-
Note that we must do the tasking cleanups before the heap cleanups or stack recl
tion, since the tasks may be using the heap objects or dynamic variables.

Procedure Traceback Tables and Mechanism

When an exception is raised but not handled, we want to give a stack traceback, w
provides information about the path of exception propagation through active scope
The traceback routine prints the exception name, followed by the stack trace which
prints the compilation unit name(s), scope name(s), scope kind(s), and line number
each scope it encounters. This information all comes from the unwind and auxiliar
unwind tables (generated by the linker), the name tables (generated for each comp
unit by code generator), and the exception name table (generated for the entire pr
by the binder). For traceback, we do not use information from the exception tables
themselves. The scope part is not printed, since it would take more space in the au
unwind table to support it, and we are unsure that the user really wants to see it. A
we decided to suppress the tracing of blocks and local packages, so there will be
entries in the unwind tables for them. There will, however, be entries for separate p
ages, so the user will see trace propagation through separate packages.

When the exception manager goes all the way to the base of the stack and canno
any applicable handler, then it knows that the current task will terminate. At this po
we will print a traceback. The exception manager will call the traceback routine, pas
the original raising offset.

The linker generates the unwind and auxiliary unwind tables, and these two tables
parallel. For each entry in the unwind table, there is a corresponding entry in the a
iary unwind table. Their structures are as follows:

Unwind Table

unwind entry #1

unwind entry #2

...

Unwind entry

scope_begin

scope_end

flags

frame_size

aux_unwind_table

aux unwind entry #1

aux unwind entry #2

...
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 265

Stack Unwind Library

e
ubpro-
are no
ram
 sub-

ith
port
y
t the
d

to
 will

 the
les
ex
nd

es and
d
ame
is no
e start
ted to
The unwind table is similar to the scope table for exception handling, except that th
unwind table has more entries and entries are unnested. It has an entry for each s
gram level scope as well as library level packages and separate packages. There
entries for local packages as it would require multiple unwind entries for a subprog
level scope. In other words, we forgo having traceback for any scopes smaller than
programs (ie: blocks and local packages). Thescope_begin andscope_end have the
same meaning as the exception tables, and are sorted in the same order. Theflags can
include a boolean indicating the presence of a variable sized frame.

Bothcu_name_ptr andscope_name_ptr point to the name table which contains the
string literals emitted by code generator. A null pointer for cu_name_ptr or
scope_name_ptr indicates "unknown" which may occur when units are compiled w
traceback off. If the value of scope_name_ptr is 1, it indicates that it is a "<type sup
subprogram>". Theline_number_tbl_ptr points to the line number table generated b
the linker. The linker uses the information from the start of statement fixups to emi
line number table. The code generator provides cu_name_ptr, scope_name_ptr an
scope_kind to let the linker emit the auxiliary unwind table. Ada will use an option
pass these to Ucode, and there is a new fixup called R_AUX_UNWIND that Ucode
use to communicate these items to the linker.

The traceback routine callsu_get_previous_frame which takes an offset to get the
appropriate unwind entry from the unwind table. Once the unwind entry is located,
corresponding entry in the auxiliary unwind table can be located easily as both tab
consist of parallel arrays of entries. A unwind utility routine will return either an ind
or offset from the beginning of the unwind table such that the runtime routine can fi
the associated auxiliary unwind entry.

The name table generated by the code generator consists of compilation unit nam
scope names pointed by cu_name_ptr and scope_name_ptr in the auxiliary unwin
table. The string literals in the name table end with a null character. There is one n
table for each compilation unit (not just a single one for the entire program). There
need to ever traverse the name tables, so we do not need pointers or symbols to th
of them. The only action supported by these tables is direct access to a name poin
by an entry in the auxiliary unwind table.

The structure of a name table is as follows:

aux unwind entry

cu_name_ptr

scope_name_ptr

scope_kind

line_number_tbl_ptr
266 HP PROPRIETARY

Version 3.0

search

s
te
ion

ch
rs of
he
The exception names table has a different format, however. We need to be able to
this table, looking for an entry with a given exception value. We do not have direct
pointers into entries in this table. The binder will write out a single exception name
table for the entire program, using information provided by the code generator. No
that if we are suppressing traceback, we do not need to produce either the except
names table or the names tables.

The structure of the exception names table is as follows:

The exception names table is thus a table containing entries of varying lengths. Ea
entry starts with an exception value, and then supplies the length and the characte
the name of that exception. All exceptions will have entries in this table, including t
predefined and I/O exceptions.

The structure of line_number_table is as follows:

 Name Table of a cu

cu_name

scope_names

Exception names table

exception name entry #1

exception name entry #2

...

Exception names entry

exception_value

exception_name_length

exception_name_text

Line Number Table

version_number

start_code_offset

start_line_number
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 267

Stack Unwind Library

n:
s the
 pos-
or-

ixing

ion
s the
y
usu-
rrent
ed
 this

a
ard
o-
nd

hown
The line_number_table starts with a header that contains three words of informatio
version_number, start_code_offset and start_line_number. The first word contain
version number, as a 32-bit integer. It is initially 1 (one), and is here to support the
sibility of changing the table format sometime in the future. If we ever change the f
mat, the runtime would have to look at the version number, and interpret the tables
based on the format that corresponded to that version. This would allow the interm
of old format and new format SOMs into one executable.

The second word gives the offset (in BYTES) from the beginning of the unwind reg
to the start of the code for the first numbered line in the region. The third word give
line number of that first line of code. After that, the line_number_table contains an
number of elements, each of which has a pair of code_diff and line_diff which are
ally the differences of code offsets and line numbers between the previous and cu
elements. The code_diff values are word offsets (not byte offsets), and are unsign
(range 0 .. 255). The line_diff values are signed, range (-128 .. 127). Both entries in
pair (code_diff and line_diff) occupy only one byte each. For entries with too large
span to fit into one byte fields, the table simply uses additional entries, in the stand
format. Note that since the first line of code is covered by the information in the tw
word header, the first pair of (code_diff, line_diff) gives the information for the seco
line of code.

The meaning of each pair in the table is determined by the value of code_diff, as s
in the table below.

code_diff line_diff code_diff line_diff

code_diff line_diff code_diff line_diff

...

Code_diff_valu
e Meaning

0 to 250 Normal entry, representing differences.

251
The next 3 bytes (the line_diff, and the following code_diff and
line_diff) contain a secondary line number.

252

This is the short form of a secondary line number. The following
(signed) line_diff gives the difference between the last secondary line
number and the value of the current one.

253

The next 3 bytes (the line_diff, and the following code_diff and
line_diff) contain an absolute line number. This is used in place of
many difference entries, when the difference between two line
numbers is large. This must follow an entry with a line_diff of zero
(see below).
268 HP PROPRIETARY

Version 3.0

next
nstan-
e
er

e
te
f this
r can
 line
umber

 of
e this
is
ith
es

y with
e

ould
ers.

 (with
After
e
 line

stan-
e sec-
e used

as for

bytes
n

The special code value of 251 means that a secondary line number follows in the
three bytes. These entries give an extra line number for lines that are the result of i
tiations or inlinings. In this case, the regular table entries give the line number of th
inlining or instantiation, and the secondary line number gives the original line numb
of the source (before it was inlined or instantiated).

The special code value of 252 is the short form of the above. Instead of taking thre
bytes to give the absolute value of a secondary line number, this form gives one by
which when added to the value of the last secondary line number, gives the value o
secondary line number. The following byte is signed, so the secondary line numbe
go either up or down. The following byte can be zero, which means this secondary
number is exactly the same as the last one. Note that the previous secondary line n
(that we base the value on) can be either a short form or a long form).

The special code value of 253 is an absolute line number. When encountering one
these, we disregard our line number value we have built using the line_diffs, and us
new value. From then on, new line_diffs apply to the new value. Note that since th
form does not have a code_diff field, it is equivalent to a (code_diff, line_diff) pair w
a code_diff value of zero. Entries like this have the effect of hiding the line that com
before it. To prevent this, before the code 253 special entry, we need a regular entr
a zero value for line_diff, and a code_diff value giving the length of the previous lin
(see example).

Because a code 253 entry takes up 6 extra bytes, we should only use it when we w
otherwise have to use more than 4 regular entries to span a large gap in line numb

During the traversal of the table, we do not use the secondary line number entries
codes of 251 or 252) as we attempt to find the line number for a given code offset.
we find the line number, we look at the following entry, to see if it is a secondary lin
number entry. If so, it applies to the line we just found. If not, there is no secondary
number for that line, which means the line was not involved in inlining or generic
instantiation.

This line number table, and the associated auxiliary unwind tables are now a CLL
dard, and will be produced by the linker. So far, Ada is the only language to use th
ondary line numbers, and no language uses the special code 254. Code 253 can b
by any language, but BASIC is the language that will probably use it the most. The
design of the tables is such that when there are no secondary line numbers (such
the other languages), there is very little overhead to support them.

It is likely that any future use of the code 254 would have to change the number of
to skip. This is OK, since if we made that change we would also change the versio

254

Ignore this pair and the following two pairs (the 254 and the
following line_diff, code_diff, line_diff, code_diff, and line_diff).
This is for future expansion.

255
End of the table. Stop searching. On this entry, the value of line_diff
is meaningless
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 269

Stack Unwind Library

 code
ble

sing.
d 4,
ter
t 30.
and
e
off-

s

number, so the runtime could use the new method.

The best way to demonstrate this method is by example. Suppose you have some
with the following characteristics (all starting positions and sizes in the following ta
are in WORDS):

Note that the above example has line numbers which are not monotonically increa
The line numbers are also not very regular. There is some code at lines 1, 2, 3, an
and then a lot of comments, so the next line of code is at line 200. Furthermore, af
line 205, we have some unnested exception handlers, with lines at 180 and then a
Finally, we have lots of comments, followed some final lines at line numbers 3000
3010. Line 3 is an inlining of a single-line subprogram (originally at line 95), and lin
30 is an instantiation of a 3 line generic (originally at line 4000 to 4005). The code
sets are monotonically increasing, as you would expect.

Here is the line number table that would represent the above situation. The picture
below shows the actual table content in the first two columns only. The last column
indicate the meaning of that entry.

Line #
Secondary
Line #

Start
at: Size

1 - 0 10

2 - 10 20

3 30 400

4 - 430 10

200 - 440 10

205 - 450 10

180 - 460 300

30 4000 760 10

30 4001 770 20

30 4005 790 15

3000 - 805 22

3010 - 827 25

start_code_offset start_line_number Means Actual Offset Line #

0 1 = > 0 1
270 HP PROPRIETARY

Version 3.0
code_diff line_diff Means Actual Offset Line #

10 1 = > 10 2

20 1 = > 30 3

code_diff extra info Means secondary line number

251 0, 0, 95 = > 95

code_diff line_diff Means Actual Offset Line #

250 0 = > 280 3

code_diff extra info Means secondary line number

252 0 = > 95

code_diff line_diff Means Actual Offset Line #

150 1 = > 430 4

10 127 = > 440 131

 0 69 = > 440 200

10 5 = > 450 205

10 -25 = > 460 180

250 0 = > 710 180

50 -128 = > 760 52

0 -22 = > 760 30

code_diff extra info Means secondary line number

251 0, 15, 160 = > 4000

code_diff line_diff Means Actual Offset Line #

10 0 = > 770 30

code_diff extra info Means secondary line number

252 1 = > 4001

code_diff line_diff Means Actual Offset Line #

20 0 = > 790 30

code_diff extra info Means secondary line number

252 4 = > 4005

code_diff line_diff Means Actual Offset Line #

15 0 = > 805 30
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 271

Stack Unwind Library

e
ose
t and
_diff
d its
53
col-
 each

 in
ms,
 and

<=
er of

-
short

 is
 not
. Note

5
ffset
ry for
that
h the

 line
 ..
ith
The algorithm for traversing the tables is as follows. You start with the offset of cod
that was active at the time of the traceback. The goal is to find the line number wh
code contains this offset. As you traverse the table, you start with Start_code_offse
Start_line_number. When you encounter a regular table entry pair (one with a code
in the range 0 .. 250), add its code offset difference to your code offset counter, an
line number difference to your line number counter. When you encounter a code 2
entry, update your line number from the next three bytes in the table. The last two
umns of the table above shows the value of these two counters after encountering
such entry in the table.

The algorithm stops when it finds the last actual code offset (the one furthest along
the table) that is less than or equal to the offset you are looking for. In practical ter
this means find the first actual code offset bigger than the one you are looking for,
then back up one entry in the table.

Let’s look at a few examples:

Example 1. If you are looking for offset 90, you find line 3, since 30 is the last offset
90. You then notice that this piece of line 3 has a (long form) secondary line numb
95.

Example 2. If you are looking for offset 300, you also find line 3, but you find its sec
ond entry, since 280 is the last offset <= 300. Here also, this piece of line 3 has a (
form) secondary line number of 95.

Example 3.If you are looking for offset 440, you find line 200, since its offset of 440
the last offset <= 440. Note that the entry for line 131 (there really is no line 131) is
reachable, since its actual offset of 440 is the same as the next entry’s actual offset
that there is no secondary line number on this line.

Example 4.If you are looking for offset 805, you find line 3000, since its offset of 80
is the last offset <= 805. Once again, there is a hidden line before it, also with an o
of 805, which is just necessary to establish the code offset for the absolute line ent
line 3000. Since line 3000 shares the same code offset as the last entry for line 3,
last entry for line 3 is not reachable. This unreachable entry must exist, to establis
starting offset for the line 3000 entry.

This method uses only two bytes per line in most cases. If the size of an individual
is bigger than 250 words, or the difference in line numbers is not in the range -128
127, then you will end up with extra regular entries in the table. You may end up w

code_diff extra info Means Actual Offset Line #

253 0, 11, 184 = > 805 3000

code_diff line_diff Means Actual Offset Line #

22 10 = > 827 3010

255 0 = > stop stop
272 HP PROPRIETARY

Version 3.0

words

nfor-

 long
follow
 that

span
e an
hese
et with
um-

 250
ther
This is
mber,
0 in

ve
ple,

end
When

ave
m-
h

many extra regular entries on unusual cases. For example, a line containing 1100
of object code would need five regular table entries.

Any line with a secondary line number will also use more space, to hold the extra i
mation.

Any extra regular entries inserted in the table will be of one of two types:

1. A duplicate entry for a given line number, to get around the limit of 250 words of
object code per line (as shown by lines 3 and 180 in the example). Note that if the
line also has a secondary line number, we need a secondary line number entry to
each piece of the original line in the table (as shown by line 3 in the example). Note
after the first secondary line number entry, the duplicate ones can be the short form
(code 252) with a difference value of 0.

2. A hidden entry with an unused line number, to either get around the limit on the
between line numbers (as shown by lines 131 and 52 in the example), or to preced
absolute line number entry (as shown by the last entry for line 3 in the example). T
entries can never show up in a traceback because they share the same actual offs
the entry that follows them. Note that in this case we do not need secondary line n
bers on these hidden lines.

Note that if any line needs both classes of extra regular entries (if it has more than
words of code AND has a line number that differs from the next one by an amount o
than -128 .. 127), then all the class 1 extra entries must precede the class 2 ones.
necessary, since you must first take into account all the offsets for the given line nu
before you start changing the line number for the next line. This is shown by line 18
the example.

The advantages of this method are that it is very compact, in that most lines will ha
only one entry, occupying 2 bytes total, and that the necessary extensions are sim
and don’t effect the processing speed very much.

9.6.2 C++ Exception handling

The C++ exception handling can be broken down into four functional areas:

1. Transfer of Control

When an exception is encountered, the exception handling mechanism must susp
execution at the throw point, and resume execution at the appropriate catch point.
execution is resumed, global and local variables must have correct values.

2. Exception Identification

The exception handling run-time support (henceforth simply the “run-time”) must h
type information available which describes various characteristics of a type; for exa
ple, this information is used to determine if a thrown exception is handled by a catc
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 273

Stack Unwind Library

on

estroy
e
bject

n
ry

try

s
eter-
ecifi-

on, a
t to
nc-

; this
tion
clause. The mechanism for emitting and utilizing this information is called “Excepti
Identification”.

3. Object Cleanup

When an exception occurs, the exception handling mechanism should attempt to d
all fully and partially constructed automatic objects between the throw point and th
catch point. If an exception occurs in the construction of a heap object, the heap o
should be destroyed and any memory allocated for the object should be deallo-
cated.Whenexit is called, fully and partially constructed static objects should be
destroyed.

4. Storage Management

The run-time must maintain a copy of a thrown object. There can be multiple throw
objects which are simultaneously active, and the run-time must manage the memo
necessary to store such objects.

Implementation Scheme

The exception handling scheme can be summarized as follows:

• Use setjmp/longjmp to transfer control from athrow to the appropriatecatch clause.

• Use a linked list of “markers” running through the stack to record the execution of
blocks, functions with exception specifications, and functions which require object
cleanup.

• The translator emitstypeinfo objects to store useful information about a type (such a
the list of base classes). This information is used by the exception mechanism to d
mine if a catch clause can handle the thrown object, and to check for exception sp
cation violations. Thetypeinfo information is also used to determine how to destroy
partially constructed objects.

• Upon entry into a function which requires object cleanup in the event of an excepti
“cleanup marker” is chained into the chain of markers. This cleanup marker will poin
a statically generated table which describes the cleanup actions required by this fu
tion.

• The chain of markers is also used to handle functions with exception specifications
is done by adding a “specification marker” to the marker chain upon entry to a func
with an exception specification.
274 HP PROPRIETARY

CHAPTER 10 Millicode Library
only
eg-
n

r-
nip-
al

e or

 etc...
10.1 Content of the Millicode Library

The Millicode library contains special purpose routines that are tailored for perfor-
mance. These routines are written in the PA-RISC assembly language and follow
the millicode calling conventions. Each Millicode routine determines exactly what r
isters are preserved and which are destroyed, and the compiler has this informatio
hardcoded into it.

There are four kinds of millicode routine:

Languages Support Millicode:

These are packed and unpacked decimal arithmetic operations, decimal conve
sions, or strings comparison. By convention, routines that begin with $$g... ma
ulate unpacked decimal and those begin with $$d... manipulate packed decim
numbers.

Arithmetic Instructions:

These instructions are not supported in a typical RISC processor such as divid
remainder.

Compiler Back End Support routines:

These include address manipulation and moves, ripple, stack frame extension

Miscellaneous Support routines:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 275

Mil l icode Library

orts
These include operating systems supports ($$CALLX); calling convention supp
($$dyncall); utilities ($$get_version); etc...

The following table lists all the entry points in the millicode library and summarizes
their function. The next section will show the complete interfaces for all routines.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose

$$get_ascii_ptr COBOL support Get a pointer to tables of constants for
various unpacked ASCII decimal trans-
formations (ASCII table).

$$tbl_ASCII COBOL support Export the address of the ASCII table.

$$cvt_id COBOL support Convert 32-bit binary to packed deci-
mal.

$$cvt_dg_regs COBOL support Convert a packed decimal number in
register form to an ASCII unpacked
decimal in register form.

$$cvt_gd_regs COBOL support Convert an ASCII decimal in ‘special
register format’ to a packed decimal in
register form.

$$d_mul COBOL support Multiply 2 unsigned packed decimals to
produce an unsigned packed decimal
result.

$$d_mul1 COBOL support Multiply 2 packed decimal of 4 bytes
long to produce a product of double that
precision.

$$d_mul2 COBOL support Multiply 2 packed decimal of 8 bytes
long to produce a product of double that
precision.

$$d_mul3 COBOL support Multiply 2 packed decimal of 12 bytes
long to produce a product of double that
precision.

$$d_mul4 COBOL support Multiply 2 packed decimal of 16 bytes
long to produce a product of double that
precision.

$$dadd1 COBOL support One word packed decimal add. Oper-
ands and destination are 1 word in
length.

$$dadd2 COBOL support Two words packed decimal add. Oper-
ands and destination are 2 words in
length.
276 HP PROPRIETARY

Version 3.0
$$dadd3 COBOL support Three words packed decimal add. Oper-
ands and destination are3 words in
length.

$$dadd4 COBOL support Four words packed decimal add. Oper-
ands and destination are4 words in
length.

$$dsub1 COBOL support One word packed decimal subtraction
routine.

$$dsub2 COBOL support Two words packed decimal subtraction
routine.

$$dsub3 COBOL support Three words packed decimal subtrac-
tion routine.

$$dsub4 COBOL support Four words packed decimal subtraction
routine.

$$dcmp1 COBOL support One word packed decimal comparison.
Operand1 is compared to operand2 and
RET1 (r29) is set to the following:

op1 == op2 ==> RET1 = 0

op1 > op2 ==> RET1 = 1

op1 < op2 ==> RET1 = -1

$$dcmp2 COBOL support Same as $$dcmp1, but operands are 2
words in length.

$$dcmp3 COBOL support Same as $$dcmp1, but operands are 3
words in length.

$$dcmp4 COBOL support Same as $$dcmp1, but operands are 4
words in length.

$$gcmp COBOL support Compare 2 unpacked ASCII decimal
strings of the same length. See $$dmp1
for return values.

$$g_cmp_reg COBOL support Compare two decimal numbers in
ASCII register format. See $$dmp1 for
return values.

$$dcvtdh2 COBOL support Convert a 15-digit packed decimal to a
double precision unsigned integer and a
sign bit.

$$dcvtdh3 COBOL support Convert a 23-digit packed decimal to a
double precision unsigned integer and a

sign bit.

$$dcvtdi1 COBOL support Convert a 7-digit packed decimal to a
single precision unsigned integer and a

sign bit.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 277

Mil l icode Library
$$dcvtdi2 COBOL support Convert a 15-digit packed decimal to a
single precision unsigned integer and a
sign bit.

$$dcvthd COBOL support Convert an unsigned double precision
integer to a 23-digit packed decimal
with a specified sign.

$$dcvtid COBOL support Convert an unsigned single precision
integer to a 15-digit packed decimal
with a specified sign.

$$gcvt_d_to_g COBOL support Convert a packed decimal to an
unpacked decimal number.

$$gcvt_g_to_d COBOL support Convert an unpacked decimal to a
packed decimal number.

$$gcvt_g_to_i COBOL support Convert an unpacked decimal to a
binary integer number.

$$gcvt_i_to_g COBOL support Convert a signed binary integer to an
unpacked decimal number.

$$gcvt_i_to_g_reg COBOL support Convert a signed binary integer to an
unpacked decimal number. The differ-
ence with $$gcvt_i_to_g is that this
routine returns the sign of the source
value in RET1 (-1 if neg., +1 if 0 or
pos.).

$$g_equ COBOL support Compare 2 unpacked decimal strings
for equality. RET1 returns as:

0 if unequal; +1 as equal.

$$g_equ_cont COBOL support Continue compare 2 ASCII decimal
numbers. The right-most digits have
been compared and are either equal or
inconclusive. Return an indication of
equality as in $$g_equ.

$$g_equ_reg_cont COBOL support Continue compare 2 ASCII decimal
numbers in register format. The right-
most digits have been compared and are
either equal or inconclusive. Return an
indication of equality as in $$g_equ.

$$g_inc_inplace COBOL support Specialized routine for COBOL, used to
complete an increment operation when
operating on the right-most byte was
insufficient to complete the operation.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
278 HP PROPRIETARY

Version 3.0
$$g_dec_inplace COBOL support Specialized routine for COBOL, used to
complete an decrement operation when
operating on the right-most byte was
insufficient to complete the operation.

$$g_inc_reg_inplace COBOL support Continue an increment operation. The
right-most digit has been handled and
determined to be a special case. The
special cases are: ‘1’ and has neg. sign;
‘0’ and has neg. sign, ‘9’ and has pos.
sign.

$$g_dec_reg_inplace COBOL support Continue an decrement operation. The
right-most digit has been handled and
determined to be a special case. Special
cases are ‘0’ and has pos. sign; ‘9’ and
has neg. sign.

$$ddiv4 COBOL support Divide two 16-byte packed decimals to
produce a 16-byte packed decimal.

$$ddiv5 COBOL support Divide two 20-byte packed decimals to
produce a 20-byte packed decimal.

$$g_zero_check COBOL support Special routine used for COBOL com-
piler to check a decimal string for being
zero.

$$g_zero_check_word COBOL support Special routine used for COBOL com-
piler to check a decimal string for being
zero. The string must be word aligned
and has an integral number of words.

$$g_add_const_reg COBOL support Add a constant and a variable in ASCII
register format.

$$g_add_const COBOL support Add a positive constant to an ASCII
unpacked decimal number.

$$g_add_reg COBOL support Add 2 strings of ASCII digits. This rou-
tine is specialized for COBOL.

$$g_sub_reg COBOL support Subtract 2 strings of ASCII digits. This
routine is specialized for COBOL.

$$gadd COBOL support Add 2 unpacked ASCII decimal strings.
Both operands and result are of the
same length.

$$gsub COBOL support Subtract 2 unpacked ASCII decimal
strings. Both operands and result are of
the same length.

$$valg COBOL support COBOL unpacked ASCII decimal vali-
dation routine. All digit positions are
checked for valid representation.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 279

Mil l icode Library
$$valg_lb RPG support Same as $$valg but allows leading
blanks. This is used for RPG language.

$$d_val COBOL support General routine for packed decimal val-
idation.

$$d_valf COBOL support Same as $$d_val but this routine will
fix an invalid sign.

$$d_val2 COBOL support Packed decimal validation for 2 nibbles,
all alignments.

$$d_val4_e COBOL support Packed decimal validation for 4 nibbles,

aligned 0, 2.

$$d_val4_1 COBOL support Packed decimal validation for 4 nibbles,

aligned 1.

$$d_val4_3 COBOL support Packed decimal validation for 4 nibbles,

aligned 3 or unknown.

$$d_val6_0 COBOL support Packed decimal validation for 6 nibbles,

aligned 0.

$$d_val6_1 COBOL support Packed decimal validation for 6 nibbles,

aligned 1.

$$d_val6_2 COBOL support Packed decimal validation for 6 nibbles,

aligned 2.

$$d_val6_3 COBOL support Packed decimal validation for 6 nibbles,

aligned 3.

$$d_val8_0 COBOL support Packed decimal validation for 8 nibbles,
aligned 0.

$$d_val8_1 COBOL support Packed decimal validation for 8 nibbles,
aligned 1.

$$d_val8_2 COBOL support Packed decimal validation for 8 nibbles,
aligned 2.

$$d_val8_3 COBOL support Packed decimal validation for 8 nibbles,
aligned 3.

$$divI, $$divoI Arithmetic milli-
code

Single precision divide for signed
binary integer. Division of -231 by -1 is
trapped for $$divoI but not for $$divI.

$$divJ Arithmetic milli-
code

Division for signed 16-bit binary inte-
ger.

$$divU Arithmetic milli-
code

Single precision divide for unsigned
integer.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
280 HP PROPRIETARY

Version 3.0
$$divI_#,

where # is any of:
2,3,4,5,6,7,8,9,10,12,14,1
5,16,17

Arithmetic milli-
code

Divide by constant for single precision
binary integer. no overflow.

$$divU_#

where # is any of:

3,5,6,7,9,10,12,14,15,

17.

Arithmetic milli-
code

Divide by constant for single precision
binary integer. Overflow is allowed.

$$divo2I, $$div2I,

$$div2U

Arithmetic milli-
code

Divide a signed 64-bit by a signed 64-
bit to produce a signed 64-bit result.
The result will be truncated toward
zero.

$$mulI Arithmetic milli-
code

Multiply 2 single word integers to pro-
duce a single word integer result. No
overflow trap.

$$muloI Arithmetic milli-
code

Multiply 2 single word integers to pro-
duce a single word integer result. Over-
flow trap if result does not fit in 1 word.

$$mulU Arithmetic milli-
code

Multiply 2 single word unsigned inte-
gers to produce a single word integer
result. No overflow trap.

$$mul2U, $$mulo2U Arithmetic milli-
code

Multiply two unsigned 64-bit argu-
ments to produce an unsigned 64-bit
product.

$$muloU Arithmetic milli-
code

Multiply 2 single word unsigned inte-
gers to produce a single word integer
result. Overflow trap if result does not
fit in 1 word.

$$mul12U Arithmetic milli-
code

Multiply two unsigned 32-bit argu-
ments to produce an unsigned 64-bit
product.

$$mulo2I Arithmetic milli-
code

Multiply double precision signed inte-
gers to produce a precision signed inte-
ger result. Trap on overflow.

$$remI Arithmetic milli-
code

Return the remainder of the division of
2 signed 32-bit integers. Sign of
remainder is the same as the sign of div-
idend

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 281

Mil l icode Library
$$remJ Arithmetic milli-
code

Remainder for 16-bit division. Both
dividend and divisor are 32-bit quantity
but they are guaranteed by the caller to
be in the ranger of 16-bit or:

-215 ... 215 -1

The returned remainder will be a 32-bit
integer but also in the 16-bit range. Sign
of remainder is the same as the sign of
dividend

$$remU Arithmetic milli-
code

Return the remainder as result of a sin-
gle precision divide of unsigned binary
integers.

$$remoI Arithmetic milli-
code

Return a 32-bit signed remainder as
result of a 32-bit signed divide. Over-
flow trap will be detected for:

0x80000000 / -1 and 0 / -1.

$$rem2I Arithmetic milli-
code

Divide a signed 64 bit dividend by a
signed 64 bit divisor. Produce a signed
64 bit remainder satisfying the division
equality where the quotient is obtained
by truncation towards zero. The sign of
the remainder will be the same as the
sign of the dividend. Trap on “divide by
zero”.

$$rem2U Arithmetic milli-
code

Divide an unsigned 64 bit dividend by
an unsigned 64 bit divisor. Produce an
unsigned 64 bit remainder satisfying the
division equality where the quotient is
obtained by truncation towards zero.

$$remo2I Arithmetic milli-
code

Return a 64-bit signed remainder as
result of a 64-bit signed divide. Over-
flow trap will be detected for:

0x80000000 / -1 and 0 / -1.

$$scmp2_and_fill_tran Strings comparison Compare 2 strings for equality.

$$scmp2_byte_tran Strings comparison Compare 2 strings for equality.

$$scmp2_fill_tran Strings comparison Compare 2 strings for equality.

$$scmp2_pasc_tran Strings comparison Compare 2 strings for equality.

$$scmp_and_fill Strings comparison Compare 2 strings for equality.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
282 HP PROPRIETARY

Version 3.0

r.

r.

er
$$scmp_and_fill_long Strings comparison Compare 2 strings for equality.

$$scmp_and_fill_tran Strings comparison Compare 2 strings for equality.

$$scmp_byte Strings comparison Compare 2 strings left to right.

$$scmp_byte_long Strings comparison Compare 2 strings left to right. This is
the long version.

$$scmp_byte_tran Strings comparison Compare 2 string left to right after byte
by byte translation thru a caller supplied
256-byte max table in the caller address
space.

$$scmp_fill Strings comparison Compare a string to a fill character.

$$scmp_fill_long Strings comparison Compare a string to a fill character. This
is the long version.

$$scmp_fill_tran Strings comparison Compare a string to a fill character after
byte by byte translation thru a caller
supllied 256-byte max table in the caller
address space.

$$scmp_pasc Strings comparison Compare 2 strings in the Pascal manne

$$scmp_pasc_long Strings comparison Compare 2 strings in the Pascal manne
This is the long version.

$$scmp_pasc_tran Strings comparison Compare 2 strings in the Pascal mann
after byte by byte translation thru a
caller supplied 256-byte max table in
the caller address space

$$wa_scmp_neq Strings comparison Compare 2 word-aligned strings for
equality.

$$wa_scmp_neq_long Strings comparison Compare 2 word-aligned strings for
equality. This is the long version.

$$bit_adrs_load Back end support Load a 1 to 64 bit item from an address
given by byte address and an integer bit
offset from that byte.

$$bit_adrs_load_long Back end support Same as $$bit_adrs_load except that a
long load (load using given space regis-
ter) is issued.

$$bit_adrs_store Back end support Store a 1 to 64 bit item from an address

given by byte address and an integer bit

offset from that byte.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 283

Mil l icode Library

a
$$bit_adrs_store_long Back end support Same as $$bit_adrs_store except that

long store (store using given space reg-
ister) is issued.

$$copy_byte Back end support Copy an unaligned byte string to an
unaligned location.

$$copy_byte_long Back end support Copy an unaligned byte string to an
unaligned location. Using long pointer
(load/store with given space register).

$$copy_fill Back end support Move an unaligned byte string to an

unaligned string.

$$copy_fill_long Back end support Move an unaligned byte string to an
unaligned string. Using long pointer
(load/store with given space register).

$$cvtl2s Back end support Convert long pointer to short pointer.

$$fill3 Back end support Fill an unaligned byte string with a 3-
byte fill value.

$$fill3_long Back end support Fill an unaligned byte string with a 3-
byte fill value. Using long pointer (load/
store with given space register).

$$fill4 Back end support Fill an unaligned byte string with a 4-
byte fill value.

$$fill4_long Back end support Fill an unaligned byte string with a 4-
byte fill value. Using long pointer (load/
store with given space register).

$$fill_byte Back end support Fill an unaligned memory area with a
value.

$$fill_byte_long Back end support Fill an unaligned memory area with a
value. Using long pointer (load/store
with given space register).

$$move_byte Back end support Move an unaligned byte string to an
unaligned location.

$$move_byte_long Back end support Move an unaligned byte string to an
unaligned location. Using long pointer
(load/store with given space register)

$$move_fill Back end support Move an unaligned byte string to an
unaligned byte string. Fill out the
remainder of the destination with a fill
value when the destination string is
longer than the source string.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
284 HP PROPRIETARY

Version 3.0
$$move_fill_long Back end support Move an unaligned byte string to an
unaligned byte string. Fill out the
remainder of the destination with a fill
value when the destination string is
longer than the source string. Long
pointer version.

$$lr_na_unk Back end support General data move. Move data from
one address to another. Source and tar-
get do not have the same alignment and
lengths are unknown.

$$lr_na_##

where ## = 1 to 31

Back end support Specific data move. Entry point is 1 less
than the number of initial words to be
stored into.

$$lr_unk_unk Back end support Alignments and lengths are unknown at
compile time.

$$lr_wa_unk Back end support Data move. Source & target are word
aligned but length unknown.

$$lr_wa_big Back end support Data move. Source & target are word
aligned and length > 32 words.

$$lr_wa_##

where ## = 1 to 31

Back end support Data move. Source & target are word
aligned and lengths are known. The
entry point is the number of initial full
words.

$$lr_na_unk_long Back end support Long pointer version of$$lr_na_unk.

$$lr_na_##_long

where ## = 1 to 31

Back end support Long pointer version of$$lr_na_##.

$$lr_unk_unk_long Back end support Long pointer version of$$lr_unk_unk.

$$lr_wa_unk_long Back end support Long pointer version of$$lr_wa_unk

$$lr_wa_big_long Back end support Long pointer version of$$lr_wa_big

$$lr_wa_##_long

where ## = 1 to 31

Back end support Long pointer version of$$lr_wa_##

$$fill_unk_unk Back end support Fill an area with a specified character.
Alignment and length are unknown at
compile time.

$$fill_wa_unk Back end support Fill an area with a specified character.
The address is word aligned but length
is unknown.

$$fill_big Back end support Fill an area with a specified character.
Fill covers more than 32 words.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 285

Mil l icode Library

.

.

$$fill_xx

where ## = 1 to 32

Back end support Fill an area with a specified character.
Alignment and length are own at com-
pile time.

$$fill_unk_unk_long Back end support Fill an area with a specified character.
Alignment and length are unknown at
compile time. Used long pointer.

$$fill_wa_unk_long Back end support Fill an area with a specified character.
The address is word aligned but length
is unknown. Used long pointer.

$$fill_big_long Back end support Fill an area with a specified character.
Fill covers more than 32 words. Used
long pointer.

$$fill_xx_long

where ## = 1 to 32

Back end support Fill an area with a specified character.
Alignment and length are own at com-
pile time. Used long pointer.

$$mv_lr_na_unk Back end support Move data from one address to another
Source & target are not aligned to the
same byte and length is unknown.

$$mv_lr_na_##

where ## = 1 to 31

Back end support Move data from one address to another.
Source & target are not aligned to the
same byte. Entry point is 1 less than the
number of initial words to be stored
into.

$$mv_lr_unk_unk Back end support Move data from one address to another.
Source & target are not aligned to the
same byte and length is unknown.

$$mv_lr_wa_unk Back end support Move data from one address to another.
Source & target are word aligned and
length is unknown.

$$mv_lr_wa_big Back end support Move data from one address to another.
Source & target are word aligned and
length is more than 32 word.

$$mv_lr_wa_##

where ## = 1 to 32

Back end support Move data from one address to another.
Source & target are word aligned. Entry
point is number of initial full words.

$$mv_lr_na_unk_long Back end support Move data from one address to another
Source & target are not aligned to the
same byte and length is unknown. Long
pointer version.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
286 HP PROPRIETARY

Version 3.0

.

.

.

$$mv_lr_na_##_long

where ## = 1 to 31

Back end support Move data from one address to another.
Source & target are not aligned to the
same byte. Entry point is 1 less than the
number of initial words to be stored
into. Long pointer version.

$$mv_lr_unk_unk_long Back end support Move data from one address to another
Source & target are not aligned to the
same byte and length is unknown. Long
pointer version.

$$mv_lr_wa_unk_long Back end support Move data from one address to another
Source & target are word aligned and
length is unknown. Long pointer ver-
sion.

$$mv_lr_wa_big_long Back end support Move data from one address to another
Source & target are word aligned and
length is more than 32 word. Long
pointer version.

$$mv_lr_wa_##_long

where ## = 1 to 32

Back end support Move data from one address to another.
Source & target are word aligned. Entry
point is number of initial full words.
Long pointer version.

$$ripple Back end support Move unaligned byte string to an
unaligned location. Ripple occurs as if a
left to right byte at a time move were
done.

$$ripple_long Back end support This is the long pointer version of
$$ripple.

$$cerror Misc. Standard system call error routine.

$$CALLX Misc. External call mechanism for

MPE/iX.

 Normal case (xleast=3, exec_level=3)

$$CALL32 Misc. External call mechanism for

MPE/iX.

 Special case (xleast=3, exec_level=2)

$$CALLX31 Misc. External call mechanism for

MPE/iX.

Special case (xleast=3, exec_level=1)

$$CALLX30 Misc. External call mechanism for

MPE/iX.

 Special case (xleast=3, exec_level=0)

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 287

Mil l icode Library
NOTE: The space register SR0 is a return space register reserved for external millicode.
External millicode, if supported must be re-assemble.

All millicode routines that execute load/store may trap on null pointers or on
stack overflow.

$$CALLX21 Misc. External call mechanism for

MPE/iX.

Special case (xleast=2, exec_level=1)

$$CALLX10 Misc. External call mechanism for

MPE/iX.

 Special case (xleast=1, exec_level=0)

$$dyncall Misc. Procedure label call mechanism.

$$get_version Misc. Return a pointer to a string holding the
version number of the millicode library.

$$get_libc_version Misc. Return a pointer to a string holding the
version number of the milli code library
used in libc.a.

$$get_libcl_version Misc. Return a pointer to a string holding the
version number of the milli code library
used in libcl.a (HP-UX).

$$get_milli_version Misc. Return a pointer to a string holding the
version number of the milli code library
used in libcl.a (MPE/iX).

$$slide_frame Ada support Stack frame expansion routine. Stack
overflow trap will be checked.

$$NC_slide_frame Ada support Stack frame expansion routine. Stack
overflow trap willNOT be checked,

$$sh_func_adrs Back end support Used for function pointers comparison.

TABLE 26. Content of the millicode library

Routine / Entry Name Type Purpose
288 HP PROPRIETARY

Version 3.0

cked

r bit
gs are
10.2 Library Routines Interfaces

This section describes individual millicode routines and their external interfaces.

ROUTINE: $$get_ascii_ptr

DESCRIPTION:

Returns a pointer to tables of constants for various transformations involving unpa
ASCII decimal numbers and of one word constants useful in calculations.

INPUT REGISTERS:

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

ret1 = short pointer to table

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$bit_adrs_load

DESCRIPTION:

Will load a 1 to 64 bit item from an address given by a byte address and an intege
offset from that byte. This routine, however, does assume (in some cases) that thin
truly nonaligned.

ARGUMENTS

arg0 address to first byte desired

arg1 positive bit offset from arg0 to 1st significant bit, must be 0..7
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 289

Mil l icode Library
arg2 length: number of bits of interest

RETURN VALUE:

1..32 bits: ret0

33..64 bits: hi order in ret0, low order in ret1

REGISTERS DESTROYED

r1, arg0, arg1, arg2, arg3, r22

INPUT REGISTERS:

arg0 == address of first byte to load

arg1 == positive bit offset to 1st significant bit.

arg2 == length in bits to load

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = Len <= 32 Bits: bits loaded, right justified.

Len > 32 Bits: High Order Bits, right justified.

ret1 = Len <= 32 Bits: undefined

Len > 32 Bits: Low Order Bits , right justified.

OTHER REGISTERS AFFECTED:

r1 = undefined

arg3 = undefined

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE
290 HP PROPRIETARY

Version 3.0

r bit
gs are
ROUTINE: $$bit_adrs_load_long

DESCRIPTION:

Will load a 1 to 64 bit item from an address given by a byte address and an intege
offset from that byte. This routine, however, does assume (in some cases) that thin
truly nonaligned.

ARGUMENTS

arg0 address to first byte desired

arg1 positive bit offset from arg0 to 1st significant bit, must be 0..7

arg2 length: number of bits of interest

RETURN VALUE:

1..32 bits: ret0

33..64 bits: hi order in ret0, lo order in ret1

REGISTERS DESTROYED

r1, arg0, arg1, arg2, arg3, r22

INPUT REGISTERS:

arg0 == address of first byte to load

arg1 == positive bit offset to 1st significant bit.

arg2 == length in bits to load

r31 == return pc

sr0 == return space when called externally

sr1 == sid

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = Len <= 32 Bits: bits loaded, right justified.

Len > 32 Bits : High Order Bits, right justified.

ret1 = Len <= 32 Bits: undefined

Len > 32 Bits: Low Order Bits , right justified.

OTHER REGISTERS AFFECTED:

r1 = undefined

arg3 = undefined

r22 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 291

Mil l icode Library

re.
SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$bit_adrs_store

DESCRIPTION:

arg0 (1..32 bits) Item to store, right justified. (33..64 bits) hi order bits of item to sto

arg1 (33..64 bits) low 32 bits of item to store.

arg2 address to 1st byte to store into.

arg3 positive bit offset from arg0 to 1st significant bit, must be 0..7

arg4(?) length (could put this in arg1 iff 1..32 bits)

REGISTERS NOT PRESERVED

arg0, arg1, arg3, r22, ret0, ret1

The address parameter (arg2) is preserved.

INPUT REGISTERS:

arg0 ==Item to store,32 bits,or high order,64 bits, right justified.

arg1 == Low order, 64 bits, of item to store.

arg2 == Address of first byte to store into.

arg3 == Positive bit offset from arg0 to 1st bit, range 0..7.

arg4 == undefined.

ret0 == Length in Bits.

ret1 == undefined.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined
292 HP PROPRIETARY

Version 3.0

re.
arg2 = address of 1st target byte preserved.

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$bit_adrs_store_long

DESCRIPTION:

arg0 (1..32 bits) Item to store, right justified. (33..64 bits) hi order bits of item to sto

arg1 (33..64 bits) low 32 bits of item to store.

arg2 address to 1st byte to store into.

arg3 positive bit offset from arg0 to 1st significant bit, must be 0..7

arg4(?) length (could put this in arg1 iff 1..32 bits)

REGISTERS NOT PRESERVED

arg0, arg1, arg3, r22, ret0, ret1

The address parameter (arg2) is preserved.

INPUT REGISTERS:

arg0 ==Item to store,32 bits,or high order,64 bits, right justified.

arg1 == Low order, 64 bits, of item to store.

arg2 == Address of first byte to store into.

arg3 == Positive bit offset from arg0 to 1st bit, range 0..7.

arg4 == undefined.

ret0 == Length in Bits.

ret1 == undefined.

r31 == return pc
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 293

Mil l icode Library
sr0 == return space when called externally

sr1 == space register for long pointer store address.

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = address of 1st target byte preserved.

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $cerror

DESCRIPTION:

Standard system call error routine.

INPUT REGISTERS:

ret0 == standard error value.

OUTPUT REGISTERS:

ret0 == Always -1.

OTHER REGISTERS AFFECTED: r1

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:errno

DISCUSSION:
294 HP PROPRIETARY

Version 3.0

ere
en
Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

Types of arguments: integers

Type of the return value: Always returns -1.

Setup conditions to be performed by the caller: Place the error values inret0 andret1.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

ROUTINE: $$copy_byte

Copies an unaligned byte string to an unaligned location. Performs as if all data w
first moved from source to temp storage and then to the target. Must not ripple wh
overlap occurs.

INPUT REGISTERS:

arg0 == pointer to source byte string

arg1 ==pointer to destination byte string

arg2 ==number of bytes to copy (signed number)

copies zero when less than zero

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes located by arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Branches to other millicode routines: $$move_byte
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 295

Mil l icode Library

th a

b-

efore

ith
Comparison of pointers must be done with unsigned completers!

FUTURE POSSIBLE ENHANCEMENTS:

• update target pointer

• find something faster than byte at a time move

ROUTINE: $$copy_fill

Moves an unaligned byte string to an unaligned string. Fills out the target string wi
provided value when the target length is greater than the source length.

Must copy source as if first completely moved to temporary space.

This is a complete replacement of the previous version which had the following pro
lems:

• Copied all of source to the target regardless of source length.

• After copying source, advanced a number of bytes equal to thesource length b
filling.

• Was not unwindable.

• Did not handle negative or zero lengths.

INPUT REGISTERS:

arg0 ==pointer to source string

arg1 ==byte length of source string

NOP when negative.

arg2 ==pointer to target string

arg3 ==byte length of target string

NOP when negative.

ret1 ==value for fill byte when target longer than source This is a four byte value w
all bytes equal.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret1 =undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg3 bytes at location given by arg2

PERMISSIBLE CONTEXT:
296 HP PROPRIETARY

Version 3.0

ere
en
Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers and return pointers.

DISCUSSION:

Calls other millicode routines using r31:

$$copy_byte

$$fill_byte

Calls other millicode routines: NONE

ROUTINE: $$copy_byte_long
Long pointers!

Copies an unaligned byte string to an unaligned location. Performs as if all data w
first moved from source to temp storage and then to the target. Must not ripple wh
overlap occurs.

INPUT REGISTERS:

arg0 == pointer to source byte string

arg1 ==pointer to destination byte string

arg2 ==number of bytes to copy (signed number) copies zero when less than zero

r31 == return pc

sr0 == return space when called externally

sr1 ==space pointer for source string

sr2 ==space pointer for target string

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes located by arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Branches to other millicode routines:

$$move_byte_long

ROUTINE: $$copy_fill_long

Long pointers!
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 297

Mil l icode Library

th a

b-

efore

ith
Moves an unaligned byte string to an unaligned string. Fills out the target string wi
provided value when the target length is greater than the source length.

Must copy source as if first completely moved to temporary space.

This is a complete replacement of the previous version which had the following pro
lems

• Copied all of source to the target regardless of source length.

• After copying source, advanced a number of bytes equal to thesource length b
filling.

• Was not unwindable.

• Did not handle negative or zero lengths.

INPUT REGISTERS:

arg0 ==inner space pointer to source string

arg1 ==byte length of source string

NOP when negative.

arg2 ==inner space pointer to target string

arg3 ==byte length of target string

NOP when negative.

ret1 ==value for fill byte when target longer than source. This is a four byte value w
all bytes equal.

r31 == return pc

sr0 == return space when called externally

sr1 ==space pointer for source string

sr2 ==space pointer for target string

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret1 =undefined

sr1 =unchanged

sr2 =unchanged

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg3 bytes at location given by sr2:arg2

PERMISSIBLE CONTEXT:

Unwindable.
298 HP PROPRIETARY

Version 3.0

ble.
Suitable for internal or external millicode.

Makes a stack frame for saving registers and return pointers.

DISCUSSION:

Calls other millicode routines using r31:

$$copy_byte

$$fill_byte

Calls other millicode routines: NONE

ROUTINE: $$cvt_id
DESCRIPTION:

Convert a 32-bit binary number to packed decimal.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==pointer to msd of left (msw) destination word.

arg1 ==32 bit signed value to be converted.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 299

Mil l icode Library

l
gns

indi-
 on
ble.

ble.

um-

rd
ROUTINE: $$cvt_dg_regs
Converts a packed decimal number in register form to an ASCII unpacked decima
number in register form. The length is the number of words of digits to produce. Si
are preserved including designation as unsigned.

ASCII decimal register format is a string of words where the first word has the sign
cated by -1, 0, or +1. Succeeding words each hold 4 ASCII decimal digits. A blank
an input operand is equivalent to an ASCII zero. A minus zero value is not accepta

A sign value of 0 implies an unsigned value.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==short pointer to rightmost word of packed number

arg1 ==short pointer to leftmost word (sign word) of target area for the unpacked n
ber

arg2 ==number of words containing digits to produce does not include the sign wo

arg3 ==short pointer to millicode ascii table for constants

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2+1 words at location given in arg1

PERMISSIBLE CONTEXT:

Special purpose routine for COBOL

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.
300 HP PROPRIETARY

Version 3.0

l

indi-
 on
ble.

. The

egis-
Assumes special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$cvt_gd_regs
Converts an ASCII decimal number in special “register” format to a packed decima
number in its “register” format.

ASCII decimal register format is a string of words where the first word has the sign
cated by -1, 0, or +1. Succeeding words each hold 4 ASCII decimal digits. A blank
an input operand is equivalent to an ASCII zero. A minus zero value is not accepta

A sign value of 0 implies an unsigned value.

Packed decimal format is a string of characters with each digit consuming a nibble
last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Output of routine is in multiples of 4 characters (whole words).

Input size Output size (bytes)
4 4

8 8

12 8

 16 12

When the unpacked number is unsigned, the packed number will be marked as
unsigned.

The leftmost word of the result is filled with zeros to the left.

INPUT REGISTERS:

arg0 ==short pointer to leftmost word of ASCII decimal string in register format (the
sign word)

arg1 ==short pointer to rightmost word of target area for packed decimal string in r
ter format

arg2 ==number of words of source operand excluding sign word

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

OTHER REGISTERS AFFECTED:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 301

Mil l icode Library

ed by

ce id
r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Memory located by arg1 is modified for
length specified above.

PERMISSIBLE CONTEXT:

Special routine for COBOL.

Unwindable

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes special millicode register convention.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$cvtl2s
DESCRIPTION:

Convert long pointer to short pointer. Traps when long pointer cannot be represent
short pointer.

Implements UCODE operation CVT F <- a.

INPUT REGISTERS:

arg0 == offset part of long pointer

arg1 == space id of long pointer

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = sid returned from sr.

arg1 = undefined

ret1 = short pointer (just a copy of arg0)

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

Quadrant of the offset part does not allow representation for short pointer or spa
does not agree.

Trap instruction is ADDITO,TR -20,r0,r0.

Changes memory at the following places: NONE
302 HP PROPRIETARY

Version 3.0

imal
an

ble
pati-
PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$d_mul
Multiply two unsigned packed decimal numbers producing an unsigned packed dec
result.The multiplicand is no more than 7 digits. The multiplier should be smaller th
the multiplicand, but may be 8 digits.

This routine is intended to be called by multiple precision packed decimal routines
which take sign into consideration and properly align operands. It may not be suita
for calls from compilers since it uses call save registers in a way not currently com
ble with optimizer conventions.

INPUT REGISTERS:

arg0 ==multiplicand == 7 digit unsigned packed decimal number

arg1 ==multiplier == unsigned packed decimal number

arg2 == constant 0x11111111

arg3 == constant 0x66666666

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 =unchanged

arg3 =unchanged

ret0 =biased high word of product (excess 0x66666666)

ret1 =biased low word of product

OTHER REGISTERS AFFECTED:

r1 = undefined

r22 =undefined

r21 =undefined

r20 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 303

Mil l icode Library

 a

 As
digit
eliber-
igit
s in

ation
ne
to the
 of the
one

t oper-

ble.
PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

A multiply is done for each digit of the multiplier.

After each multiply, the product is shifted right by a digit.

To do a multiply by a digit, a case statement on the digit value selects a multiply by
constant.

Initially the multiplier is complemented and placed in the lower word of the product.
the product is shifted right the digit just used is shifted out. The complement of the
is used to be able to reverse the order of table entries. This allows many cases to d
ately fall into the next one. The original multiplier is retained and shifted for each d
to determine when remaining digits are zero. The result is a saving of 2 instruction
the inner loop.

ROUTINE: $$dadd1
DESCRIPTION:

$$dadd1 is a one word packed decimal add millicode routine. Operands and destin
are one word in length, seven (7) digits and a right sign digit. The sum of the two o
word operands is placed in the one word destination. Short, word aligned pointers
one word are passed as arguments. Arg0 contains a short pointer to the one word
one word destination area in memory. Arg1 and arg2 contain short pointers to the
word of the one word operands, op1 and op2.Ret1 is to contain a one (1) on overflow,
else zero (0). Input registers remain untouched. Illegal data goes unreported. Inpu
ands and output target are assumed to not overlap.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst is a short word-aligned pointer to one-word result.

arg1 == op1 is a short word-aligned pointer to one-word operand 1.

arg2 == op2 is a short word-aligned pointer to one-word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged
304 HP PROPRIETARY

Version 3.0

ation

to the
to the

main
med to

ble.
arg3 = undefined

ret0 =undefined

ret1 = overflow = 1, else 0

OTHER REGISTERS AFFECTED:

#ifdef REGISTER_SAVE_KLUDGE

#else

r21 = undefined

#endif

r1 = undefined

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst - a one word area in memory.

PERMISSIBLE CONTEXT:

#ifdefREGISTER_SAVE_KLUDGE

Unwindable

Makes a frame stack for saving registers

#else

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dadd2
DESCRIPTION:

$$dadd2 is a two word packed decimal add millicode routine. Operands and destin
are two word in length, fifteen (15) digits and a right sign digit. The sum of the two
operands is placed in the two word destination area. Short, word aligned pointers
beginning of the left word are passed as arguments. Arg0 contains a short pointer
left word of the two word destination area in memory. Arg1 and arg2 contain short
pointers to the left word of the two word operands, op1 and op2. Input registers re
untouched. Illegal data goes unreported.Input operands and output target are assu
not overlap.Ret1 returns 1 if overflow, else 0.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 305

Mil l icode Library
INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to two word destination.

arg1 == op1 a word-aligned short pointer to two word operand 1.

arg2 == op2 a word-aligned short pointer to two word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow = 1 , else 0

OTHER REGISTERS AFFECTED:

#ifdef REGISTER_SAVE_KLUDGE

#else

r21 = undefined

r20 = undefined

#endif

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst a two word destination area for sum.

PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Unwindable.

Creates a stack frame for saving callsave register(s).

#else

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

Assumes the special millicode register convention.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE
306 HP PROPRIETARY

Version 3.0

ation
the
ers to
ter to
hort
main
umed

ble.
ROUTINE: $$dadd3
DESCRIPTION:

$$dadd3 is a three word packed decimal add millicode routine.Operands and destin
are three word in length, twenty-three (23) digits and a right sign digit. The sum of
two operands is placed in the three word destination area.Short, word aligned point
the beginning of the left word are passed as arguments. Arg0 contains a short poin
the left word of the three word destination area in memory. Arg1 and arg2 contain s
pointers to the left word of the three word operands, op1 and op2. Input registers re
untouched. Illegal data goes unreported. Input operands and output target are ass
to not overlap.Ret1 returns overflow = 1, else ret1 = 0.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to three word destination.

arg1 == op1 a word-aligned short pointer to three word operand 1.

arg2 == op2 a word-aligned short pointer to three word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow =1, else 0.

OTHER REGISTERS AFFECTED:

#ifdef REGISTER_SAVE_KLUDGE

#else

r21 = undefined

r20 = undefined

#endif

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst - a three word destination area.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 307

Mil l icode Library

ation
two

to the

main

ble.
PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Unwindable.

Creates a stack frame for saving callsave register(s).

#else

Uwindable.

Does not create a stack frame for saving callsave registers.

#endif

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dadd4
DESCRIPTION:

$$dadd4 is a four word packed decimal add millicode routine. Operands and destin
are four words in length, thirty-one (31) digits and a right sign digit. The sum of the
operands is placed in the four word destination. Short, word aligned pointers to the
beginning of the left word are passed as arguments. Arg0 contains a short pointer
left word of the four word destination area in memory. Arg1 and arg2 contain short
pointers to the left word of the four word operands, op1 and op2. Input registers re
untouched. Illegal data goes unreported.Ret1 is to contain a one (1) on overflow, else
zero (0). Input operands and output target are assumed to not overlap.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to four word destination.

arg1 == op1 a word-aligned short pointer to four word operand 1.

arg2 == op2 a word-aligned short pointer to four word operand2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow = 1, else 0 .
308 HP PROPRIETARY

Version 3.0

word-
seven

ble.
OTHER REGISTERS AFFECTED:

#ifdef REGISTER_SAVE_KLUDGE

#else

r21 = undefined

r20 = undefined

#endif

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst - a four word location in memory.

PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Unwindable.

Makes a stack frame for saving registers.

#else

Unwindable

Does not create a stack frame

#endif

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dcmp1
DESCRIPTION:

$$dcmp1 is a packed decimal one word comparison millicode routine. It is passed
aligned short pointers in arg0 and arg1 to two,one word packed decimal numbers,
(7) digits plus right sign digit. The two words are compared andret1 returns the follow-
ing:

op1 == op2 -> ret1 = 0;
op1 > op2 -> ret1 = 1;
op1 < op2 -> ret1 = -1.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 309

Mil l icode Library

 left
bers,

ble.
arg0 == op1 word-aligned short pointer to one word operand 1.

arg1 == op2 word-aligned short pointer to one word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = result of compare, as above.

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dcmp2
DESCRIPTION:

$$dcmp2 is a packed decimal two word comparision millicode routine. It is passed
word-aligned short pointers in arg0 and arg1 to two, two word packed decimal num
fifteen (15) digits plus right sign digit. The two word operands are compared andret1
returns the following:

op1 == op2 -> ret1 = 0;
op1 > op2 -> ret1 = 1;
op1 < op2 -> ret1 = -1.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:
310 HP PROPRIETARY

Version 3.0

d left
m-
red

ble.
arg0 == op1 left word-aligned short pointer to operand 1.

arg1 == op2 left word-aligned short pointer to operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = result of compare as above.

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dcmp3
DESCRIPTION:

$$dcmp3 is a packed decimal three word comparison millicode routine. It is passe
word-aligned short pointers in arg0 and arg1 to two, three word packed decimal nu
bers, twenty-three (23) digits plus the right sign digit. The two operands are compa
andret1 returns the following:

op1 == op2 -> ret1 = 0;
op1 > op2 -> ret1 = 1;
op1 < op2 -> ret1 = -1.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 311

Mil l icode Library

 left
-

d

ble.
INPUT REGISTERS:

arg0 == op1 left word-aligned short pointer to three word operand 1.

arg1 == op2 left word-aligned short pointer to three word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 = result of compare as above.

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dcmp4
DESCRIPTION:

$$dcmp4 is a packed decimal four word comparison millicode routine. It is passed
word-aligned short pointers in arg0 and arg1 to two, four word packed decimal num
bers, thirty-0ne (31) digits plus right sign digit. The two operands are compared an
ret1 returns the following:

 op1 == op2 -> ret1 = 0;
op1 > op2 -> ret1 = 1;
op1 < op2 -> ret1 = -1.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:
312 HP PROPRIETARY

Version 3.0

n.
arg0 == op1 left word-aligned short pointer to four word operand 1.

arg1 == op2 left word-aligned short pointer to four word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = result of compare, as above.

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dcvtdh2
Converts a 15-digit packed decimal to a double precision unsigned integer and sig

Packed decimal format is a string of words with each digit consuming a nibble. The
rightmost nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==pointer to 15-digit packed decimal

arg1 ==pointer to where to place the double precision unsigned integer

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 313

Mil l icode Library

ad of

n.
arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = 0 if positive or unsigned; 1 if negative

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Two words located by arg1.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Modified to be unwindable by using the standard millicode call save registers inste
pushing entry save registers onto the stack.

ROUTINE: $$dcvtdh3
Converts a 23-digit packed decimal to a double precision unsigned integer and sig
Only looks at 19 digits. Other 4 digits are ignored with no trap or error indication.

Packed decimal format is a string of words with each digit consuming a nibble. The
rightmost nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==pointer to 23-digit packed decimal

arg1 ==pointer to where to place the double precision unsigned integer

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined
314 HP PROPRIETARY

Version 3.0

ad of
ret1 = 0 if positive or unsigned; 1 if negative

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Two words located by arg1.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Modified to be unwindable by using the standard millicode call save registers inste
pushing entry save registers onto the stack.

ROUTINE: $$dcvtdi1
Converts a 7-digit packed decimal to a single precision unsigned integer and sign.

Packed decimal format is a string of words with each digit consuming a nibble. The
rightmost nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==pointer to 7-digit packed decimal

arg1 ==pointer to where to place the single precision unsigned integer

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret1 = sign of packed decimal number reduced by 12

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: One word located by arg1.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 315

Mil l icode Library

ad of

 Only
PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Modified to be unwindable by using the standard millicode call save registers inste
pushing entry save registers onto the stack.

ROUTINE: $$dcvtdi2
Converts a 15-digit packed decimal to a single precision unsigned integer and sign.
looks for 10 digits. Does not cause exception when ignored digits are nonzero.

Packed decimal format is a string of words with each digit consuming a nibble. The
rightmost nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==pointer to 15-digit packed decimal

arg1 ==pointer to where to place the single precision unsigned integer

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret1 = 1 when sign digit is 13, 0 otherwise

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: One word located by arg1.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.
316 HP PROPRIETARY

Version 3.0

ad of

peci-
ib-

arg1.
Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Modified to be unwindable by using the standard millicode call save registers inste
pushing entry save registers onto the stack.

ROUTINE: $$dcvthd
Converts an unsigned double precision integer to 23-digit packed decimal with a s
fied sign. Packed decimal format is a string of words with each digit consuming a n
ble. The rightmost nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 == pointer to double precision unsigned binary integer

arg1 == pointer to where 23-digit pd number is to be placed

arg2 ==value (valid values are 0,1,3) to be added to 12 for

sign nibble

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r22 =undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Three words at the location provided by

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 317

Mil l icode Library

ad of

ified
e.
DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Modified to be unwindable by using the standard millicode call save registers inste
pushing entry save registers onto the stack.

ROUTINE: $$dcvtid
Converts a single precision unsigned integer to 15-digit packed decimal with a spec
sign. Packed decimal format is a string of words with each digit consuming a nibbl
The right most nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 == pointer to unsigned binary integer

arg1 == pointer to where 15 digit pd number is to be placed

arg2 ==value (valid values are 0,1,3) to be added to 12 for sign nibble

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r22 =undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

Two words at the location provided by arg1.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:
318 HP PROPRIETARY

Version 3.0

ad of
Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Modified to be unwindable by using the standard millicode call save registers inste
pushing entry save registers onto the stack.

ROUTINE: $$ddiv4
DESCRIPTION:

$$ddiv4 divides two 16-byte packed decimal strings to produce a 16-byte result.

INPUT REGISTERS:

arg0 == q - pointer to leftmost byte of Result area

arg1 == n - pointer to leftmost byte of dividend (numerator)

arg2 == d - pointer to leftmost byte of divisor (denominator)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r19 = undefined(Not anymore. Use r18 instead.)

r20 = undefined

r21 = undefined

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:divisor is zero

Changes memory at the following places:q for 16 bytes

PERMISSIBLE CONTEXT:

Unwindable

Creates a stack frame to save registers.

Is usable for internal or external microcode

Uses special millicode register conventions

DISCUSSION:

Calls other millicode routines via r31: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 319

Mil l icode Library

IC/
Calls other millicode routines: NONE

CHANGES:

Removed r19 from being used as a caller save, since r19 is now being used as a P
SHLIB register. Changed to routine to use r18 instead.

Changed trap code. Have to trap w/o a stack frame.

ROUTINE: $$ddiv5
DESCRIPTION:

$$ddiv5 divides two 20-byte packed decimal strings to produce a 20-byte result.

INPUT REGISTERS:

arg0 == q - pointer to leftmost byte of Result area

arg1 == n - pointer to leftmost byte of dividend (numerator)

arg2 == d - pointer to leftmost byte of divisor (denominator)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r19 = Saved/restored for PIC.

r20 = undefined

r21 = undefined

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:divisor is zero

Changes memory at the following places: q for 20 bytes

PERMISSIBLE CONTEXT:

Unwindable

Creates a stack frame to save registers.

Is usable for internal or external microcode

Uses special millicode register conventions
320 HP PROPRIETARY

Version 3.0

before
 had
eplace

ng

quo-
DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

CHANGES:

Changed the routine to create a frame marker on the stack. It stores r19 at sp -32
using r19. This is necessary for unwind purposes with the PIC/SHLIB release. This
to be done because this routine uses every callee save reg, so there is no way to r
r19 with some other register.

Modified to trap w/o a stack frame. Also changed the location where r19 was getti
stored away.

ROUTINE: $$div2I
Divide a signed 64 bit dividend by a signed 64 bit divisor. Produce a signed 64 bit
tient with truncation towards zero. Traps are caused by: “divide by zero”.

INPUT REGISTERS:

arg0 == low word of dividend

arg1 == high word of dividend

arg2 == low word of divisor

arg3 == high word of divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 to arg3 = undefined

ret0 = high word of quotient

ret1 = low word of quotient

OTHER REGISTERS AFFECTED:

r1 = undefined

r20 =undefined

r21 =undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

Divide by zero via“ADDIT,= 0,R0,R0”

Changes memory at the following places:

NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Makes a stack frame for saving registers.

DISCUSSION:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 321

Mil l icode Library

ned
Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

This version uses the long division algorithm taught in most advanced

elementary schools before the invention of calculators.

In binary, the quess for the next digit becomes trivial.

The inner loop takes 8 instructions for each quotient bit produced.

The algorithm terminates when the proper number of quotient bits are

produced.

Changes to this routine will probably coincide with changes to

other 64 bit division-related routines: $$divo2I, $$div2U, $$remo2I,

$$rem2I, $$rem2U

See $$divo2I (including its revision log) for further discussion.

CHANGES FROM $$divo2I:

Removed check for division of 80000000,00000000 by -1,-1

Removed ICA__START, ICA__END labels

ROUTINE: $$div2U

Divide an unsigned 64 bit dividend by an unsigned 64 bit divisor.Produce an unsig
64 bit quotient with truncation towards zero.Traps are caused by: “divide by zero”.

INPUT REGISTERS:

arg0 == low word of dividend

arg1 == high word of dividend

arg2 ==low word of divisor

arg3 ==high word of divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of quotient

ret1 = low word of quotient
322 HP PROPRIETARY

Version 3.0

edin
ate
r of
ges

een

llee-

ode
OTHER REGISTERS AFFECTED:

r1 = undefined

r20 =undefined

r21 =undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

Divide by zero via“ADDIT,= 0,R0,R0”

Changes memory at the following places:

NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Does not create a stack frame.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

This version uses the long division algorithm taught in most advancedelementary
schools before the invention of calculators.In binary, the quess for the next digit
becomes trivial.The inner loop takes 8 or 9 instructions for each quotient bit produc
the usual case, or 10 or 11 instructions under certain circumstanceswhen an altern
inner loop must be used instead.The algorithm terminates when the proper numbe
quotient bits areproduced.Changes to this routine will probably coincide with chan
to other 64 bit division-related routines: $$divo2I, $$div2I, $$remo2I,$$rem2I,
$$rem2U

See $$divo2I (including its revision log) for further discussion.

CHANGES FROM $$divo2I:

Removed sign-computations; this permitted the elimination of a register that had b
used to store the sign of the quotient;

this register, a caller-save, is now used for LoopCtr instead ofa register that was ca
save; and so no stack frame is needed.

Added code to handle dividend greater than or equal to 80000000,00000000;this c
needs a callee-save register, and so it creates a stack frame.

Removed special-case alignment behavior when dividend is 80000000,00000000

Removed check for division of 80000000,00000000 by -1,-1

Removed ICA__START, ICA__END labels
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 323

Mil l icode Library

s

 by

e-
ROUTINE: $$divI, $$divoI
Single precision divide for signed binary integers. The quotient is truncated toward
zero.

The sign of the quotient is the XOR of the signs of the dividend and divisor. Divide
zero is trapped. Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.

INPUT REGISTERS:

arg0 ==dividend

arg1 ==divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = quotient

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

divisor is zero (traps with ADDIT,= 0,25,0)

dividend==-2**31 and divisor==-1 and routine is $$divoI

(traps with ADDO 26,25,0)

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Branches to other millicode routines using BE

$$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15

For selected divisors, calls a divide by constant routine. Eligible divisors are 1..15
excluding 11 and 13.

The only overflow case is -2**31 divided by -1.

Both routines return -2**31 but only $$divoI traps.

ROUTINE: $$divJ
Division for signed 16-bit binary integers. Dividend and divisor are 32-bit binary int
gers but are guaranteed by the caller to be in the range (-2**15)..(2**15-1).
324 HP PROPRIETARY

Version 3.0

nt
ivi-

.

raps
The quotient will be a 32-bit binary integer in the range (-2**15)..(2**15). The quotie
is truncated towards zero. The sign of the quotient is the XOR of the signs of the d
dend and divisor.

Divide by zero is trapped. Divide of -2**15 by -1 is not trapped; the result is +2**15

INPUT REGISTERS:

arg0 ==dividend

arg1 ==divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = quotient

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

divisor is zero (traps with ADDITO,= 0,25,0)

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Branches to other millicode routines using BE

$$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15

For selected divisors, calls a divide by constant routine.

Eligible divisors are 1..15 excluding 11 and 13.

ROUTINE: $$divU
Single precision divide for unsigned integers. Quotient is truncated towards zero. T
on divide by zero.

INPUT REGISTERS:

arg0 ==dividend

arg1 ==divisor

r31 == return pc
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 325

Mil l icode Library

:

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = quotient

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: divisor is zero

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Branches to other millicode routines using BE:

$$divU_# for 3,5,6,7,9,10,12,14,15

For selected small divisors calls the special divide by constant routines. These are
3,5,6,7,9,10,12,14,15.

ROUTINE: $$divI_2
$$divI_3, $$divU_3
$$divI_4
$$divI_5, $$divU_5
$$divI_6, $$divU_6
$$divI_7, $$divU_7
$$divI_8
$$divI_9, $$divU_9
$$divI_10, $$divU_10
$$divI_12, $$divU_12
$$divI_14, $$divU_14
$$divI_15, $$divU_15
$$divI_16
$$divI_17$$divU_17

Divide by selected constants for single precision binary integers.
326 HP PROPRIETARY

Version 3.0

quo-
ow”.
INPUT REGISTERS:

arg0 ==dividend

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = quotient

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$divo2I
Divide a signed 64 bit dividend by a signed 64 bit divisor. Produce a signed 64 bit
tient with truncation towards zero.Traps are caused by: “divide by zero” and “overfl

INPUT REGISTERS:

arg0 == low word of dividend

arg1 == high word of dividend

arg2 ==low word of divisor

arg3 ==high word of divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 327

Mil l icode Library

ain-

n of
the

ul. The

ve,
arg3 = undefined

ret0 =high word of quotient

ret1 = low word of quotient

OTHER REGISTERS AFFECTED:

r1 = undefined

r20 =undefined

r21 =undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

Divide by zero via“ADDIT,= 0,R0,R0”

Overflow via“ADDO ARG1,ARG1,R0”

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Does not create a stack frame.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

This version uses the long division algorithm taught in most advanced elementary
schools before the invention of calculators. In binary, the guess for the next digit
becomes trivial.

The inner loop takes 8 instructions for each quotient bit produced.

The algorithm terminates when the proper number of quotient bits are produced.

Changes to this routine will probably coincide with changes to the 64 bit signed rem
der routine.

Attempts at using the divide step instruction have not been successful. Propagatio
PSW(V) being the problem. The best case obtained used about 12 instructions in
inner loop.

Making a special case when both upper words are zero has also been unsuccessf
algorithm failed with large numbers where bit 0 was on.

CHANGES:

Changed routine to use r3 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable, r19 is
replaced with r3.

ROUTINE: $$ddmul2, $$dmul3, $$dmul4
328 HP PROPRIETARY

Version 3.0

f
n-
Multiply two packed decimal numbers (8, 12, 16 bytes long) to produce a product o
double that precision. Packed decimal format is a string of words with each digit co
suming a nibble. The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

INPUT REGISTERS:

arg0 ==short pointer to rightmost word of multiplicand

arg1 ==short pointer to rightmost word of multiplier

arg2 ==short pointer to rightmost word of target area for the product

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

4 words located by $arg2 for $$dmul2

6 words located by $arg2 for $$dmul3

8 words located by $arg2 for $$dmul4

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Makes a stack frame for saving registers.

]

DISCUSSION:

Calls other millicode routines using r31: $$d_mul

CHANGES:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 329

Mil l icode Library

ave,
een

ec-
ointer
oper-
er-

 last

r

 ten
Changed routine to use r11 instead of r19. r19 cannot be used freely like a caller s
because it is now a PIC/SHLIB register. To make this routine unwindable r19 has b
replaced with r11.

ROUTINE: $$dmul1
Multiply two 7-digit (4 byte) packed decimal to produce a 15-digit (8 byte) packed d
imal product. The parameters are two short pointers to the operands and a short p
to the target area. There is no problem with the target area overlapping the source
ands, however it is discouraged since it will cause a problem with multi-precision v
sions.

Packed decimal format is a string of words with each digit consuming a nibble. The
nibble holds the sign indicated by oneof the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

The product produced by this routine will not be unsigned. There is no indication fo
erroneous sign in an operand.

BEWARE: Previous versions of packed decimal multiply produced a result that was
times too great!

INPUT REGISTERS:

arg0 == short pointer to multiplicand

arg1 == short pointer to multiplier

arg2 == short pointer to where product is to be placed

points to least significant of two words

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: 2 words at location provided by arg2

PERMISSIBLE CONTEXT:
330 HP PROPRIETARY

Version 3.0

ve,
been

nd
ence

a short
 con-
egis-

utput

ble.
Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: $$d_mul

CHANGES:

Changed routine to use r4 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable, r19 has
replaced with r4.

ROUTINE: $$dsub1

DESCRIPTION:

$$dsub1 is a one word packed decimal subtract millicode routine. The operands a
destination are one word in length, seven (7) digits and a right sign digit. The differ
of the two operands is put into the destination area in memory. Short, word aligned
pointers to the beginning of the one word are passed as arguments. Arg0 contains
pointer to the one word of the one word destination area in memory. Arg1 and arg2
tain short pointers to the one word of the one word operands, op1 and op2. Input r
ters remain not touched.

Ret1 = 1 when overflow, else 0. Illegal data goes unreported. Input operands and o
target are assumed to not overlap.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to the one word destination.

arg1 == op1 a word-aligned short pointer to the one word operand 1.

arg2 == op2 a word-aligned short pointer to the one word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow = 1, else 0
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 331

Mil l icode Library

iffer-

nd
fer-
igned
 short
con-
gis-

put

ble.
OTHER REGISTERS AFFECTED:

#ifdefREGISTER_SAVE_KLUDGE

#else

r21 = undefined

#endif

r1 = undefined

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:NONE

Changes memory at the following places: dst a one word destination area for the d
ence.

PERMISSIBLE CONTEXT:

#ifdefREGISTER_SAVE_KLUDGE

Unwindable.

Creates a stack frame to save callsave registers

#else

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dsub2

DESCRIPTION:

$$dsub1 is a two word packed decimal subtract millicode routine. The operands a
destination are two words in length, fifteen (15) digits and a right sign digit. The dif
ence of the two operands is put into the destination area in memory. Short, word al
pointers to the beginning of the left word are passed as arguments. Arg0 contains a
pointer to the left word of the two word destination area in memory. Arg1 and arg2
tain short pointers to the left word of the two word operands, op1 and op2. Input re
ters remain not touched.

Ret1 = 1 for overflow, else 0. Illegal data goes unreported. Input operands and out
target are assumed to not overlap.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.
332 HP PROPRIETARY

Version 3.0
Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to the two word destination.

arg1 == op1 a word-aligned short pointer to the two word operand 1.

arg2 == op2 a word aligned short pointer to the two word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow = 1, else 0

OTHER REGISTERS AFFECTED:

#ifdefREGISTER_SAVE_KLUDGE

#else

r21 = undefined

r20 = undefined

#endif

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst the two word destination area.

PERMISSIBLE CONTEXT:

#ifdefREGISTER_SAVE_KLUDGE

Unwindable.

Creates a stack frame for saving call register(s).

#else

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 333

Mil l icode Library

nd
he

gned
 short
2
put

ble.
Calls other millicode routines: NONE

ROUTINE: $$dsub3

DESCRIPTION:

$$dsub3 is a three word packed decimal subtract millicode routine.The operands a
destination are three word in length, twenty-three (23) digits and a right sign digit.T
difference of the two operands is in the destination area in memory. Short, word ali
pointers to the beginning of the left word are passed as arguments. Arg0 contains a
pointer to the left word of the three word destination area in memory. Arg1 and arg
contain short pointers to the left word of the three word operands, op1 and op2. In
registers remain not touched.

Ret1 = 1 for overflow, else = 0. Illegal data goes unreported.

Input operands and output target are assumed to not overlap.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to three word destination.

arg1 == op1 a word-aligned short pointer to three word operand 1.

arg2 == op2 a word-aligned short pointer to three word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged

arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow = 1, else 0

OTHER REGISTERS AFFECTED:

#ifdefREGISTER_SAVE_KLUDGE

#else

r21 = undefined

r20 = undefined

#endif

r22 = undefined

r1 = undefined
334 HP PROPRIETARY

Version 3.0

nd
if-
ed
 short
con-
gis-

ble.
SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst - the three word destination area.

PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Unwindable.

Creates a stack frame for saving callsave register(s).

#else

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$dsub4

DESCRIPTION:

$$dsub4 is a four word packed decimal subtract millicode routine. The operands a
destination are four words in length, thirty-one (31) digits and right sign digit. The d
ference of the two operands is in the destination area in memory. Short, word align
pointers to the beginning of the left word are passed as arguments. Arg0 contains a
pointer to the left word of the four word destination area in memory. Arg1 and arg2
tain short pointers to the left word of the four word operands, op1 and op2. Input re
ters remain not touched.

Illegal data goes unreported. Ret1 is to return overflow, 1 = overflow, else 0.

Input operands and output target are assumed to not overlap.

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

Any value other than 0xd is to be considered positive.

INPUT REGISTERS:

arg0 == dst a word-aligned short pointer to the four word destination.

arg1 == op1 a word-aligned short pointer to the four word operand 1.

arg2 == op2 a word-aligned short pointer to the four word operand 2.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = unchanged
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 335

Mil l icode Library
arg2 = unchanged

arg3 = undefined

ret0 =undefined

ret1 = overflow = 1, else = 0.

OTHER REGISTERS AFFECTED:

#ifdef REGISTER_SAVE_KLUDGE

#else

r21 = undefined

r20 = undefined

#endif

r22 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: dst the four word destination area.

PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Unwindable.

Makes a stack frame for saving registers.

#else

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31:NONE

Calls other millicode routines: NONE

Dynamic Procedure Call ALGORITHM
IF X bit in procedure label = 0

THEN

Branch Vectored using procedure label

ELSE

BEGIN

Clear X bit.

Save DP.

Load address of CALLX.

Save RP’.

Move SR4 to old DP register.

Branch to CALLEE.
336 HP PROPRIETARY

Version 3.0

ot
END.

ROUTINE: $$fill3

Fill an unaligned byte string with a 3 byte fill value. The individual bytes are not
assumed to be equal. The value is cyclicly repeated for the byte count.

INPUT REGISTERS:

arg0 ==Fill value. Three bytes left justified.

arg1 ==Pointer to location to be filled.

arg2 ==Number of bytes to be stored (signed number); NOP when <0.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = updated to next byte

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes at location given by arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

$$ripple branches to this routine.

ROUTINE: $$fill3_long
Long Pointers! Fill an unaligned byte string with a 3 byte fill value. The bytes are n
assumed to be equal.

INPUT REGISTERS:

arg0 ==Fill value. Three bytes left justified.

arg1 ==Pointer to location to be filled.

arg2 ==Number of bytes to be stored (signed number); NOP when <=0
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 337

Mil l icode Library
r31 == return pc

sr0 == return space when called externally

sr2 == space pointer for target

OUTPUT REGISTERS:

arg0 = undefined

arg1 = updated to next target byte

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes at location given by sr2:arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

$$ripple branches to this routine.

ROUTINE: $$fill4

Fill an unaligned byte string with a four byte value. The individual bytes are not
assumed to be equal. The value is cyclically repeated for the byte count.

INPUT REGISTERS:

arg0 ==four byte value with which to fill the string

arg1 ==pointer to the target byte string

arg2 ==number of bytes to be stored (signed number); NOP when <=0

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = updated to next byte

arg2 = undefined
338 HP PROPRIETARY

Version 3.0

tes
OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes located by arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

$$ripple branches to this routine.

ROUTINE: $$fill4_long

Long pointers! Fill an unaligned byte string with a four byte value. The individual by
are not assumed to be equal. The value is cyclically repeated for the byte count.

INPUT REGISTERS:

arg0 ==four byte value with which to fill the string

arg1 ==pointer to the target byte string

arg2 ==number of bytes to be stored (signed number); NOP when <=0

r31 == return pc

sr0 == return space when called externally

sr2 == space pointer to target

OUTPUT REGISTERS:

arg0 = undefined

arg1 = updated to next byte

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes located by arg1

PERMISSIBLE CONTEXT:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 339

Mil l icode Library

alue.
Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

$$ripple branches to this routine.

ROUTINE: $$fill_byte
Fills an unaligned memory area with a value.

INPUT REGISTERS:

arg0 ==value with which to fill destination This must be 4 bytes of the same byte v

arg1 ==pointer to byte aligned memory area

arg2 ==number of bytes to fill (signed number) No effect when negative.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = unchanged

!arg1 = undefined

!arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes at location given by arg1.

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

Uses a restrictive set of registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NON

This routine is called by $$copy_fill.

$$move_fill and $$ripple branch to this routine.

ROUTINE: $$fill_byte_long
340 HP PROPRIETARY

Version 3.0

alue.
Long pointers! Fills an unaligned memory area with a value.

INPUT REGISTERS:

arg0 ==value with which to fill destination This must be 4 bytes of the same byte v

arg1 ==pointer to byte aligned memory area

arg2 ==number of bytes to fill (signed number)

No effect when negative.

r31 == return pc

sr0 == return space when called externally

sr2 == space pointer to target

OUTPUT REGISTERS:

arg0 = unchanged

arg1 = undefined

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg2 bytes at location given by sr2:arg1.

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

This routine is called by $$copy_fill_long.

$$move_fill_long and $$ripple_long branch to this routine.

ROUTINE: $$g_zero_check
A specialized routine for COBOL that checks a decimal string for being zero.

INPUT REGISTERS:

arg0 == short pointer to ASCII string

arg1 == length of string (positive signed integer)

ret1 == a value to be incremented by 2 or 0

r31 == return pc
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 341

Mil l icode Library

 is
exam-
ere a
sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 += 2 if see a character that is not an ASCII zero

 0 otherwise

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS: NONE

PERMISSIBLE CONTEXT:

Unwindability is no problem.

Routine is suitable for internal or external millicode.

Unwind descriptors are created for external millicode.

DISCUSSION:

An ASCII zero is either 0x20 or 0x30 but we only look at the low nibble. The count
decremented down to 1 since it is assumed to be positive. In the loop the count is
ined before memory access to avoid accessing memory off the end of the string wh
read violation could occur.

ROUTINE: $$g_zero_check_word
A specialized routine for COBOL that checks a decimal string for being zero when
string is word aligned and has an integral number of words.

INPUT REGISTERS:

arg0 == short pointer to ASCII word aligned string

arg1 == length of string in words (positive signed integer)

arg2 == mask for digits (0x0f0f0f0f)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = unchanged

ret1 = -1 if see a character that is not an ASCII zero +1 otherwise

OTHER REGISTERS AFFECTED:

r1 = undefined
342 HP PROPRIETARY

Version 3.0

 is
exam-
ere a

-
yte is
eros.

. The

indi-
 on
le. A

e is
SIDE EFFECTS: NONE

PERMISSIBLE CONTEXT:

Unwindability is no problem.

Routine is suitable for internal or external millicode.

Unwind descriptors are created for external millicode.

DISCUSSION:

An ASCII zero is either 0x20 or 0x30 but we only look at the low nibble. The count
decremented down to 1 since it is assumed to be positive. In the loop the count is
ined before memory access to avoid accessing memory off the end of the string wh
read violation could occur.

ROUTINE: $$g_add_const_reg

Add a constant and a variable in ASCII register format. The constant has been pre
biased by adding 0x96 to each byte. The constant did not have blanks, that is, no b
0xb0. The constant is assumed to be positive. The variable may contain blanks for z
The operands and the result are all word aligned. The result will always be signed
result will not retain any blanks that may have been in the variable.

ASCII decimal register format is a string of words where the first word has the sign
cated by -1, 0, or +1. Succeeding words each hold 4 ASCII decimal digits. A blank
an input operand is equivalent to an ASCII zero. A minus zero value is not acceptab
sign value of 0 implies an unsigned value.

INPUT REGISTERS:

arg0 ==short pointer to the rightmost word of the constant (NOT the leftmost! Ther
no sign word)

arg1 ==short pointer to the sign word (leftmost) of the variable

arg2 ==short pointer to sign word (leftmost) of the result area

arg3 ==word length of the digit part of the operands and the result

arg4 ==short pointer to millicode ASCII table

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

arg4 =undefined (==r22)

r20 =undefined

r19 =undefined(Not anymore. Used r3 instead.)
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 343

Mil l icode Library

 it is

ve,
been

r
lt will

en pre-

e

ret0 =undefined

ret1 = 1 if overflow, else 0

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: arg3+1 words starting at location in arg2

PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Not unwindable.

Creates a nonstandard stack frame.

Awaiting SLLIC and UCODE modifications to permit use of r20 + r19.

#else

Assumes SLLIC and UCODE modification permitting use of r20 + r19.

Unwindable.

Does not create a stack frame.

#endif

Suitable for internal or external millicode.

Assumes special millicode conventions regarding register use.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

The instruction “sh2add NumWords,ZPtr,ZPtr” will reset carry when the operation
leaves ZPtr in the same quadrant and space.

The case where the variable is positive is expected to be more common than when
negative.

CHANGES:

Changed routine to use r3 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable, r19 has
replaced with r3.

ROUTINE: $$g_add_const

Add a positive constant to an ASCII unpacked decimal number. Since the compile
known that a constant is being added, the constant has been pre-biased. The resu
be unsigned only when the variable is unsigned. Each byte of the constant has be
biased by adding 0x96 to it. Thus 9110 would look like 0xcfc7c7c6.

The data format for ASCII decimal has the following conventions for the sign on th
right digit:
344 HP PROPRIETARY

Version 3.0
char hex value
{ 7B +0

} 7D -0

A 41 +1

...

...

I 49 +9

J 4A -1

...

...

R 52 -9

INPUT REGISTERS:

arg0 ==short pointer to rightmost byte of the constant

pre-biased positive unpacked decimal

arg1 ==short pointer to rightmost byte of the variable

unpacked ASCII decimal number

arg2 ==short pointer to rightmost byte of target variable

arg3 ==byte length of the operands and the result

arg4 == short pointer to millicode ASCII tables

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

arg4 =undefined

ret0 =undefined

ret1 = 1 if overflow, 0 otherwise

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 345

Mil l icode Library

 digit

 and

lace
CII
DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

The ASCII tables with a decimal digit index return a byte describing the digit in the
form ss11nnnn where:

ss is the sign: 00=unsigned, 01=positive, 11-negative

nnnn is the digit part

The ASCII tables are also used to produce the proper signed digit for the rightmost
of the result.

ROUTINE: $$g_add_reg and $$g_sub_reg

Specialized for COBOL to add|sub two strings of ASCII digits. Each operand string
the result string is a string of words. The first word has the sign in binary:

-1 == negative,

 0 == unsigned (indistinguishable from positive)

+1 == positive

Successive words each hold exactly four ASCII digits. A blank may also occur in p
of a zero. The operands and result are the same length in words (this is called AS
register format).

A result of minus zero is not permitted. A minus zero operand is unexpected.

INPUT REGISTERS:

arg0short pointer to leftmost word of result string

arg1short pointer to leftmost word of left operand string

arg2 short pointer to leftmost word of right operand string

arg3 number of words in the digit part of the strings

arg4 (r22)short pointer to millicode ascii table

r31return pc

sr0return space when called externally

OUTPUT REGISTERS:

ret1 = 0 when no overflow

1 when overflow

OTHER REGISTERS AFFECTED:

#ifdef REGISTER_SAVE_KLUDGE

All temporary registers are preserved.

The following registers are left undefined:

arg0 = undefined

arg1 = undefined

arg2 = undefined
346 HP PROPRIETARY

Version 3.0

ith
sult-
, sub-
hen a

just
arg3 = undefined

arg4 = undefined

ret0 = undefined

r1 = undefined

#else

All call-save (caller-saves) registers except for ret1 are destroyed.

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

arg4 = undefined

ret0 = undefined

r1 = undefined

r19 = undefined(Not anymore. r3 is used instead.)

r20 = undefined

r21 = undefined

#endif

SIDE EFFECTS:

No traps occur.

Only memory located by result pointer is modified.

PERMISSIBLE CONTEXT:

#ifdef REGISTER_SAVE_KLUDGE

Stack space is acquired and registers saved in an unconventional

manner.

#else

Unwindability is no problem.

#endif

Routine is suitable for internal or external millicode.

Unwind descriptors are created for external millicode.

Assumes special millicode register conventions.

DISCUSSION:

arg4 is a pointer to a table of constants defined within millicode. Subtraction (add w
different signs) first proceeds left to right until a non-zero result is obtained. The re
ing sign is then determined and the operand pointers swapped if it changes. Then
traction proceeds right to left. This avoids a complementation pass on the result w
final borrow would otherwise occur on a right to left subtraction.

The subtraction loop is duplicated to avoid the extra instructions it would take to ad
the pointers for a common loop.

CHANGES:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 347

Mil l icode Library

ve,
been

d
esult.
o

Changed routine to use r3 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable, r19 has
replaced with r3.

ROUTINE: $$gadd, $$gsub

DESCRIPTION:

$$gadd adds two unpacked ASCII decimal strings. $$gsub subtracts two unpacke
ASCII decimal strings. Both strings are the same length, which is the same as the r
The last digit of the operand strings also encodes the sign. Blanks are equivalent t
zeros. Negative zero is a valid operand, but will not be produced as a result.

INPUT REGISTERS:

arg0 == ResP - pointer to leftmost byte of Result area

arg1 == Len - length of operands and result in bytes

arg2 == Op1P - pointer to leftmost byte of Operand 1

arg3 == Op2P - pointer to leftmost byte of Operand 2

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 = overflow = 1, else 0

OTHER REGISTERS AFFECTED:

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: ResP for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE
348 HP PROPRIETARY

Version 3.0

valent
ROUTINE: $$gcmp

DESCRIPTION:

$$gcmp compares two unpacked ASCII decimal strings. Both strings are the same
length. The last digit of the operand strings also encodes the sign. Blanks are equi
to zeros. Negative zero is a valid operand.

INPUT REGISTERS:

arg0 == Op1P - pointer to leftmost byte of Operand 1

arg1 == Op2P - pointer to leftmost byte of Operand 2

arg2 == Len - length of operands and result in bytes MINUS ONE

r22 == Table - pointer to ASCII table

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 = return value: -1, 0, or +1

OTHER REGISTERS AFFECTED:

r22 = undefined

r20 = undefined

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$g_cmp_reg
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 349

Mil l icode Library

ord
l dig-
 is
Compare two decimal numbers in ASCII register format. Return indication of less,
equal, or greater. ASCII decimal register format is a string of words where the first w
has the sign indicated by -1, 0, or +1. Succeeding words each hold 4 ASCII decima
its. A blank on an input operand is equivalent to an ASCII zero. A minus zero value
not acceptable. A sign value of 0 implies an unsigned value.

INPUT REGISTERS:

arg0 ==short pointer to leftmost word of left operand

arg1 ==short pointer to leftmost word of right operand

arg2 ==number of words in the digit part of the numbers

arg3 ==short pointer to the millicode table of ASCII constants

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = -1 when left < right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Special routine for COBOL.

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

The time/space trade off is decided in favor of time.

The comparison loop is duplicated to save cycles.
350 HP PROPRIETARY

Version 3.0

n and
an

ble.
ROUTINE: $$gcvt_d_to_g

DESCRIPTION:

Convert a packed decimal number to an unpacked decimal number. Word aligned
src,dest required, else address error. Result’s specified length constrains conversio
is correct. Sign is preserved and all undefined values for the packed sign result in
positive resultant sign.

DEFINITIONS:

Packed decimal register format is a string of words with each digit consuming a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

The data format is ASCII decimal, and is the same as $$g_add_const_reg.

INPUT REGISTERS:

arg0 ==short pointer to result, word aligned.

arg1 ==short pointer to source, word aligned.

arg2 ==length of result unpacked in bytes.

arg3 == length of source packed in bytes.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r20 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: ResP- arg0 pointer to result area.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 351

Mil l icode Library

n (+/-/

ble.
Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Uses $$tbl_ASCII to determine sign digit.

ROUTINE: $$gcvt_g_to_d

DESCRIPTION:

Convert an unpacked decimal number to a packed decimal number. Preserves sig
u) from source to destination.

DEFINITIONS:

Packed decimal register format is a string of words with each digit consumes a nib
The last nibble holds the sign indicated by one of the values:

0xc == positive, 0xd == negative, 0xf == unsigned.

The data format is ASCII decimal, and is the same as $$g_add_const_reg.

INPUT REGISTERS:

arg0 ==short pointer to result, word aligned.

arg1 ==short pointer to source, word aligned.

arg2 ==length in bytes of source.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: ResP - arg0 pointer to result area.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE
352 HP PROPRIETARY

Version 3.0

digit

ci-
ROUTINE: $$gcvt_g_to_i
DESCRIPTION:

Convert and unpacked decimal number to an binary integer. Does not handle one
unsigned unpacked decimal numbers.

DEFINITIONS:

The data format is ASCII decimal, and is the same as $$g_add_const_reg.

INPUT REGISTERS:

arg0 ==pointer to source, word aligned.

arg1 ==length - 1 in bytes of source.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = result.

OTHER REGISTERS AFFECTED:

r20 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

NONE in module NA

Calls other millicode routines:

NONE in module NA

ROUTINE: $$gcvt_i_to_g
DESCRIPTION:

Convert a signed binary integer to unpacked decimal. If result overflows length spe
fied, will not trap but will truncate high-order digits.

DEFINITION:

The data format is ASCII decimal, and is the same as $$g_add_const_reg.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 353

Mil l icode Library

 be

ci-
INPUT REGISTERS:

arg0 ==pointer to result.

arg1 ==source to be converted.

arg2 == length in bytes - 1, must be less than 10!

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

r22 = undefined.

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

NONE

Changes memory at the following places:

ResP - result area from arg0 pointer for arg2+1 bytes

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: $$remU

Calls other millicode routines: NONE

Uses $$tbl_IG.

This routine is similar to $$gcvt_i_to_g_reg. Any changes needed here are likely to
needed there also.

ROUTINE: $$gcvt_i_to_g_reg
DESCRIPTION:

Convert a signed binary integer to unpacked decimal. If result overflows length spe
fied, will not trap but will truncate high-order digits.

DEFINITIONS:
354 HP PROPRIETARY

Version 3.0

ere

e the
e

The data format is ASCII decimal, There is no sign on the right digit.

INPUT REGISTERS:

arg0 ==pointer to result.

arg1 == source value to be converted.

arg2 == length in bytes - 1.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

r22 = undefined

ret1 = sign of source value

-1 if negative

+1 if zero or positive

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

ResP - result area from arg0 pointer for arg2+1 bytes

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: $$remU

Calls other millicode routines: NONE

Uses $$tbl_IG

This routine is similar to $$gcvt_i_to_g. Changes made here may have to made th
also.

ROUTINE: $$g_equ
DESCRIPTION:

$$gequ compares two unpacked ASCII decimal strings for equality. Both strings ar
same length. The last digit of the operand strings also encodes the sign. Blanks ar
equivalent to zeros. Negative zero is a valid operand.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 355

Mil l icode Library

cation
Per-
INPUT REGISTERS:

arg0 == Op1P - pointer to leftmost byte of Operand 1

arg1 == Op2P - pointer to leftmost byte of Operand 2

arg2 == Len - length of operands and result in bytes MINUS ONE

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 = return value: 0 if unequal, or +1 if equal

OTHER REGISTERS AFFECTED:

r1 = undefined

r20 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$g_equ_cont
Continue the comparison of two ASCII decimal numbers. The rightmost digits have
been compared and determined to be either equal or inconclusive. Returns an indi
of equal or unequal. Makes no assumption about memory alignment of operands.
mits a negative zero as a legal argument.

The data format is ASCII decimal with the following conventions for the sign on the
right digit:

char hex value

0 30 +0

space 20 +0

{ 7B +0
356 HP PROPRIETARY

Version 3.0

. Of
e the
} 7D -0

A 41 +1

...

I 49 +9

J 4A -1

...

R 52 -9

INPUT REGISTERS:

arg0 ==short pointer to rightmost byte of left operand

arg1 ==short pointer to rightmost byte of right operand

arg2 == byte length of operands excluding rightmost byte

ret0 ==original rightmost digit of left operand

ret1 == original rightmost digit of right operand

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret1 = 1 if equal, 0 if unequal

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not creates a stack frame.

Suitable for internal or external millicode.

Assumes special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

This routine is called when the rightmost digits are equal or both are a form of zero
special concern is the case where one operand has a sign digit of minus zero whil
other has a sign digit of one of the plus zero values.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 357

Mil l icode Library

re-
 the
ht-

ible.

 not

occurs.
ROUTINE: $$g_inc_inplace and $$g_dec_inplace

These specialized routines for COBOL are called to complete an increment or dec
ment operation when operating on the right most byte was insufficient to complete
operation. Thus these routines are called about twenty percent of the time. The rig
most byte has been destroyed by the calling code.

The cases for the rightmost digit are:

(1) increment +9 to +0: Overflow is possible.

Examples: +09 to +10, +19 to +20, +099 to +100, +109 to +110

(2) increment -0 to -9: Must handle -0 to +1 as a special case. Overflow is not poss

Examples: -00 to +01, -10 to -09, -100 to -099, -110 to -109

(3) increment -1 to -0: -1 to +0 must be distinguished from other cases. Overflow is
possible.

Examples: -01 to +00, -11 to -10, -21 to -20, -101 to -100

(4) decrement +0 to +9: Decrementing zero is a special case since a sign change
Overflow is not possible.

Examples: +00 to -01, +10 to +09, +100 to +99, +110 to +109

(5) decrement -9 to -0: Overflow is possible.

Examples: -09 to -10, -19 to -20, -099 to -100

INPUT REGISTERS:

arg0 ==short pointer to right byte of operand

arg1 == byte length of operand (including right byte)

arg2 == previous value of right byte of operand (digit+overpunch)

The old value in memory has been destroyed.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

ret1 = 1 if overflow

0 no overflow

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

The string operand has been changed.
358 HP PROPRIETARY

Version 3.0

 per-
s, effi-

efer-
case
ly be
dles

value

OL
ister
l case
er
s will
se

ncre-

ecre-

hold
. A

 pre-
PERMISSIBLE CONTEXT:

Unwindability is no problem.

Routine is suitable for internal or external millicode.

Unwind descriptors are created for external millicode.

Assumes special millicode register conventions.

DISCUSSION:

The data format is ASCII decimal with the following conventions for the sign on the
rigid is the same as $$g_add_const_reg. Since this routine is only called on twenty
cent of the cases, a second pass through the loop will occur only one percent. Thu
ciency for other than the first pass is not very rewarding.

The special case of decrementing zero to obtain plus or minus one, is treated by d
ring the write back of data until the exact case is determined. Ordinarily, a special
like this should not receive this amount of attention. However, this case could easi
in someone benchmark. Although minus zero is an invalid number, this routine han
it properly. Apparently there are many data bases around that have that particular
in them.

ROUTINE: $$g_inc_reg_inplace, $$g_dec_reg_inplace

Continues an increment or decrement operation from code generated by the COB
compiler. Increment|decrement an ASCII decimal number (unpacked) in special reg
format. The rightmost digit has already been handled and known to cause a specia
which is to be handled here. The number will be adjusted in memory. The high ord
bytes will be unchanged unless a carry|borrow propagation extends into them. Thi
be on a per word basis except for the case of incrementing a negative number who
rightmost digit is a one.

The values in the rightmost digit that cause special case handling when doing an i
ment ($$g_inc_reg_inplace):

(1) ‘1’ when have negative sign

(2) ‘0’ when have negative sign (could be 0x20)

(3) ‘9’ when have positive sign

The values in the rightmost digit that cause special case handling when doing an d
ment ($$g_dec_reg_inplace):

(1) ‘0’ when have positive sign (could be 0x20) May produce a minus one!

(2) ‘9’ when have negative sign ASCII decimal register format is a string of words
where the first word has the sign indicated by -1, 0, or +1. Succeeding words each
4 ASCII decimal digits. A blank on an input operand is equivalent to an ASCII zero
minus zero value is not acceptable. A sign value of 0 implies an unsigned value.

INPUT REGISTERS:

arg0 ==short pointer to rightmost word of operand

arg1 ==word length of digit part of operand

arg2 ==rightmost digit of operand before increment|decrement was attempted. The
vious value has been destroyed.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 359

Mil l icode Library

ht to
. The

The
eci-
y -1,
per-
lue
arg3 == pointer to millicode table of constants (i.e. $$tbl_ASCII)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = returns 1 when overflow occurs, otherwise 0

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg0 for up to arg1-1 preceding words.

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes special millicode register convention.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Assumes that:
(1) the RightByte determines the proper case.

(2) there will be at least one word (otherwise there cannot be a right byte!) When
decreasing, a left to right search for non-zero will be made before attempting the rig
left decrementation. A complementation step for producing -1 is then not necessary
rightmost word is always decreased immediately.

ROUTINE: $$g_equ_reg_cont
Continue a compare for equality of two decimal numbers in ASCII register format.
rightmost words are known to match. The signs have not been compared. ASCII d
mal register format is a string of words where the first word has the sign indicated b
0, or +1. Succeeding words each hold 4 ASCII decimal digits. A blank on an input o
and is equivalent to an ASCII zero. A minus zero value is not acceptable. A sign va
of 0 implies an unsigned value.
360 HP PROPRIETARY

Version 3.0

ers
 to be

ring
ith
enti-
INPUT REGISTERS:

arg0 ==short pointer to rightmost word of left operand

arg1 ==short pointer to rightmost word of right operand

arg2 ==number of words less one of the digit parts

actual number of words to compare

arg3 ==short pointer to millicode tables of ASCII constants

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =undefined

ret1 = 1 if equal, 0 if unequal

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

It is expected that a difference will show first between the magnitudes of the numb
before the signs. That is, comparisons of numbers with the same sign is expected
more common.

ROUTINE: $$get_libc_version
Returns a pointer to a string holding the version of millicode. The first word of the st
is its length in bytes including the word holding the length. The string is terminated w
a null character. The main purpose for this routine is to hold a secondary version id
fication string, to identify the version of Millicode contained in libc on HP-UX.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 361

Mil l icode Library

ring
ith
enti-
INPUT REGISTERS:

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

ret0 =short pointer to the version string

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

ROUTINE: $$get_libcl_version
Returns a pointer to a string holding the version of millicode. The first word of the st
is its length in bytes including the word holding the length. The string is terminated w
a null character. The main purpose for this routine is to hold a secondary version id
fication string, to identify the version of Millicode contained in libcl on HP-UX.

INPUT REGISTERS:

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

ret0 =short pointer to the version string

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.
362 HP PROPRIETARY

Version 3.0

ring
ith

n

inter
e

ere
DISCUSSION:

ROUTINE: $$get_milli_version
Returns a pointer to a string holding the version of millicode. The first word of the st
is its length in bytes including the word holding the length. The string is terminated w
a null character. The main purpose for this routine is to hold a product_level versio
identification string, to identify the version of Millicode contained in MILLI.LIB.SYS
onMPE/iX .

INPUT REGISTERS:

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

ret0 =short pointer to the version string

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

ROUTINE: $$move_byte
Moves an unaligned byte string to an unaligned location. Leaves the destination po
pointing to the next byte position. Ripples data when target address exceeds sourc
address by at leastfour (4). Ripple occurs as if a left to right byte at a time move w
done. Thus when Target=Source+delta, delta bytes will be repeated.

INPUT REGISTERS:

arg0 ==pointer to source byte string

arg1 ==pointer to destination byte string

arg2 ==number of bytes to move

(signed number considered zero when negative)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = incremented by input value of arg2
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 363

Mil l icode Library

 is
ce and
 had
arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg2 bytes at location given by arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

$$ripple, $$copy_byte, $$move_fill branch to this routine.

$$move_fill calls this routine

ROUTINE: $$move_fill
Move an unaligned byte string to an unaligned byte string.

Fill out the remainder of the destination with a fill value when the destination string
longer than the source string. There is no special behavior expected when the sour
target areas overlap. This is a complete replacement of the previous version which
the following problems:

() Was not unwindable.

() Did not handle negative or zero lengths.

INPUT REGISTERS:

arg0 ==pointer to source byte string

arg1 ==number of bytes in source string

arg2 ==pointer to destination byte string

arg3 ==number of bytes in destination string

ret1 ==fill value (4 bytes, all equal)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined
364 HP PROPRIETARY

Version 3.0

 the

ial
arg3 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg3 bytes at location given by arg2

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers and calling other routines.

DISCUSSION:

Calls other millicode routines using r31:

$$move_byte

$$fill_byte

Calls other millicode routines: NONE

ROUTINE: $$lr_na_unk
$$lr_na_##, where ## = 1 to 31
 $$lr_unk_unk
$$lr_wa_unk
$$lr_wa_big
$$lr_wa_##, where ## = 1 to 31

DESCRIPTION:

Move data from one address to another address.

$$lr_na_unk--source and target not aligned to same byte and length unknown

$$lr_na_##--source and target not aligned to same byte entry point is one less than
number of initial words to be stored into

$$lr_unk_unk--alignment and length unknown at compile

$$lr_wa_unk--word aligned but length unknown

$$lr_wa_big--word aligned with length more than 32 words

$$lr_wa_##--word aligned and length known at compile entry point is number of init
full words

INPUT REGISTERS:

For all routines:
r31 == return pc

sr0 == return space when called externally
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 365

Mil l icode Library

s to

, oth-
For all routines except $$mv_lr_na_## and $$mv_lr_wa_##:
arg0 == Src => Source pointer

arg1 == Dst => Destination pointer

arg2 == Len => Length of move (in bytes)

 For $$mv_lr_na_##:
arg0 == Src => Adjusted source pointer

arg1 == Dst => Adjusted target pointer

arg2 == see discussion below

arg3 == see discussion below

ret1 == see discussion below

cr11 ==shift amount for aligning data

 For $$mv_lr_wa_##:

arg0 == Src => Source pointer -- word after last full word

arg1 == Dst => Target pointer -- word after last full word

arg2 == Even => First word to be moved; if word length is even

arg3 == Odd => First word to be moved; if word length is odd

ret1 == Temp2=> Length mod 4; if zero set to -1 (this is the residual number of byte
be moved)

OUTPUT REGISTERS:

arg0 =updated to next word aligned byte, when wa_big | wa_## | na_## undefined
erwise

arg1 = updated to point to next byte

arg2 = undefined

arg3 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

ret1 = undefined

cr11 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Dst for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE
366 HP PROPRIETARY

Version 3.0

occur.

he
nce is

ored.

enta-

e

us

nts
This group of move routines have the following in common:

1- When target is less than source, data copy is correct even though overlap may

2- When target exceeds source by at least 8 bytes a ripple effect will occur within t
overlapped area. There is no guaranteed effect when overlap occurs and the differe
less than 8.

3- The target pointer is always updated to point to where the next byte would be st

4- Data outside of the source area will not be accessed. Thus an unexpected segm
tion violation will not occur when moving data stored near a page edge.

5- The only general registers used are r1, arg0, arg1, arg2, and arg3.

CALLING SEQUENCE FOR $$lr_na_##

Using C notation, the following static computations would be performed to select th
proper code to emit by a compiler or macro assembler.

Given:

Length == the number of bytes to move.

Source == the pointer to the source area.

Target == the pointer to the target area.

Compute word relative byte positions:

SrcAlign=Source%4;

TrgAlign=Target%4;

Compute index of routine to call (number of initial words to be stored at target min
one):

XX=(Length+TrgAlign)/4-1;

Adjust source pointer to word boundary:

Source -= SrcAlign;

Set shift amount register:

emit(“ldi (TrgAlign-SrcAlign)*8,r1”)

emit(“mtsar r1”);

Emit instructions according to whether XX is odd and according to relative alignme
of the pointers:

if(XX+1 & 1)

 {

if(SrcAlign>TrgAlign)

{ emit(“ LDW Source(dp),arg2”); Source+=4; }

emit(“ LDW Source(dp),arg3”); Source+=4;

emit(“ VSHD arg2,arg3,r1”);

emit(“ LDW Source(dp),arg2”); Source+=4;

 }

else

 {

 if(SrcAlign>TrgAlign)

{ emit(“ LDW Source(dp),arg3”); Source+=4; }

 emit(“ LDW Source(dp),arg2”); Source+=4;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 367

Mil l icode Library

iler

en

than

of
 emit(“ VSHD arg3,arg2,r1”);

 emit(“ LDW Source(dp),arg3”); Source+=4;

 }

emit(“ STBYS,B r1,Target(dp)”)

Adjust the target pointer

Target = Target - TrgAlign + 4*(XX+1);

Emit the call and set ret1 to the number of residual bytes:

emit(“ BLE $$lr_na_XX(sr4,r0)”)

emit(“ LDI (Length+TrgAlign)%4,ret1”)

In the event that both pointers have the same word relative byte position, the comp
should handle the first partial word by a LDW followed by a STBYS and then call a
word aligned routine, e.g. $$lr_wa_XX. These routines will fail to copy correctly wh
relative byte positions are equal.

ROUTINE: $$lr_na_unk_long
$$lr_na_##_long where ## = 1 to 31

$$lr_unk_unk_long
$$lr_wa_unk_long
$$lr_wa_big_long
$$lr_wa_##_longwhere ## = 1 to 31

DESCRIPTION:

Move data from one address to another address in different spaces.

$$lr_na_unk_longsource and target not aligned to same byte and length unknown

$$lr_na_##_long source and target not aligned to same byteentry point is one less
the number of initial words to be stored into

$$lr_unk_unk_long alignment and length unknown at compile

$$lr_wa_unk_long word aligned but length unknown

$$lr_wa_big_long word aligned with length more than 32 words

$$lr_wa_##_long word aligned and length known at compile entry point is number
initial full words

INPUT REGISTERS:

 For all routines:
r31 == return pc

sr0 == return space when called externally

sr1 ==source space register

sr2 == target space register

For all routines except $$lr_na_##_long and $$lr_wa_##_long:
arg0 == Src => Source pointer

arg1 == Dst => Destination pointer

arg2 == Len => Length of move (in bytes)
368 HP PROPRIETARY

Version 3.0

s to

occur.
For $$lr_na_##_long:
arg0 == Src => Adjusted source pointer

arg1 == Dst => Adjusted destination pointer

arg2 == see discussion below

arg3 == see discussion below

ret1 == see discussion below

cr11 ==shift amount for aligning data

 For $$lr_wa_##_long:
arg0 == Src => Source pointer -- word after last full word

arg1 == Dst => Target pointer -- word after last full word

arg2 == Even => First word to be moved; if word length is even

arg3 == Odd => First word to be moved; if word length is odd

ret1 == Temp2=> Length mod 4; if zero set to -1 (this is the residual number of byte
be moved)

OUTPUT REGISTERS:

arg0 =updated to next word aligned byte, when wa_big | wa_## | na_##

undefined, otherwise

arg1 = updated to point to next byte

arg2 = undefined

arg3 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

ret1 = undefined

cr11 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Dst for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

This group of move routines have the following in common:

1- When target is less than source, data copy is correct even though overlap may
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 369

Mil l icode Library

he
nce is

ored.

enta-

e

us

nts
2- When target exceeds source by at least 8 bytes a ripple effect will occur within t
overlapped area. There is no guaranteed effect when overlap occurs and the differe
less than 8.

3- The target pointer is always updated to point to where the next byte would be st

4- Data outside of the source area will not be accessed. Thus an unexpected segm
tion violation will not occur when moving data stored near a page edge.

5- The only general registers used are r1, arg0, arg1, arg2, and arg3.

CALLING SEQUENCE FOR $$lr_na_##

Using C notation, the following static computations would be performed to select th
proper code to emit by a compiler or macro assembler.

Given:

Length == the number of bytes to move.

Source == the pointer to the source area.

Target == the pointer to the target area.

Compute word relative byte positions:

SrcAlign=Source%4;

TrgAlign=Target%4;

Compute index of routine to call (number of initial words to be stored at target min
one):

XX=(Length+TrgAlign)/4-1;

Adjust source pointer to word boundary:

Source -= SrcAlign;

Set shift amount register:

emit(“ldi (TrgAlign-SrcAlign)*8,r1”)

emit(“mtsar r1”);

Emit instructions according to whether XX is odd and according to relative alignme
of the pointers:

if(XX+1 & 1)

 {

 if(SrcAlign>TrgAlign)

{ emit(“ LDW Source(dp),arg2”); Source+=4; }

emit(“ LDW Source(dp),arg3”); Source+=4;

emit(“ VSHD arg2,arg3,r1”);

emit(“ LDW Source(dp),arg2”); Source+=4;

 }

else

 {

 if(SrcAlign>TrgAlign)

{ emit(“ LDW Source(dp),arg3”); Source+=4; }

emit(“ LDW Source(dp),arg2”); Source+=4;

emit(“ VSHD arg3,arg2,r1”);
370 HP PROPRIETARY

Version 3.0

iler

tly
emit(“ LDW Source(dp),arg3”); Source+=4;

 }

emit(“ STBYS,B r1,Target(dp)”)

Adjust target pointer

Target = Target - TrgAlign+4*(XX+1);

Emit the call and set ret1 to the number of residual bytes:

emit(“ BLE $$lr_na_XX(sr4,r0)”)

emit(“ LDI (Length+TrgAlign)%4,ret1”)

In the event that both pointers have the same word relative byte position, the comp
should handle the first partial word by a LDW followed by a STBYS and then call a
word aligned routine, e.g. $$lr_wa_XX_long. These routines will fail to copy correc
when relative byte positions are equal.

ROUTINE: $$mul12U
Multiply two unsigned 32-bit arguments to produce an unsigned 64-bit product.

INPUT REGISTERS:

arg0 == multiplicand

arg1 == multiplier

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of product

ret1 = low word of product

OTHER REGISTERS AFFECTED:

r1 = undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Does not create a stack frame.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 371

Mil l icode Library

is
DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

CHANGES FROM impyu:

Changed register usage to conform to millicode conventions.

Modified detection of zero multiplicand.

ROUTINE: $$mul2U

Multiply two unsigned 64-bit arguments to produce an unsigned 64-bit product. Th
works equally well for signed 64-bit integers.

INPUT REGISTERS:

arg0 == low word of first operand

arg1 == high word of first operand

arg2 == low word of second operand

arg3 == high word of second operand

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of product

ret1 = low word of product

OTHER REGISTERS AFFECTED:

r1 = undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Makes a stack frame for saving registers and return pointers.
372 HP PROPRIETARY

Version 3.0
DISCUSSION:

Calls other millicode routines using r31: $$mul12U, $$mulU

Changes to this routine should track changes to $$mulo2U

ROUTINE: $$mulI
DESCRIPTION:

$$mulI multiplies two single word integers, giving a single word result.

INPUT REGISTERS:

arg0 = Operand 1

arg1 = Operand 2

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = result

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$mulU
DESCRIPTION:

$$mulU multiplies two single word unsigned integers, giving a single word result.

INPUT REGISTERS:

arg0 = Operand 1

arg1 = Operand 2

r31 == return pc

sr0 == return space when called externally
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 373

Mil l icode Library

ger
OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = result

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$mulo2I
Multiply double precision signed integers to produce a double precision signed inte
result. Trap on overflow of product.

INPUT REGISTERS:

arg0 ==low word of first operand

arg1 ==high word of first operand

arg2 ==low word of second operand

arg3 ==high word of second operand

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of product

ret1 = low word of product

OTHER REGISTERS AFFECTED:

r1 = undefined
374 HP PROPRIETARY

Version 3.0

lti-

d
es

p on
SIDE EFFECTS:

Causes a trap under the following conditions:

Overflow -- product requires more than 64 bits.

Changes memory at the following places:

NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines:NONE

This flavor of multiply switches on nibbles of the multiplier to perform a constant mu
ply. Initial setup requires from 12 to 18 instructions. The main body takes min=10,
avg=18, max=24 instructions per nibble. A straight line bit at a time algorithm woul
take 28 instructions per nibble. The algorithm terminates when the multiplier becom
zero.

ROUTINE: $$mulo2U

Multiply two unsigned 64-bit arguments to produce an unsigned 64-bit product. Tra
overflow of product.

INPUT REGISTERS:

arg0 == low word of first operand

arg1 == high word of first operand

arg2 == low word of second operand

arg3 == high word of second operand

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of product

ret1 = low word of product

OTHER REGISTERS AFFECTED:

r1 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 375

Mil l icode Library
r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

Overflow -- product requires more than 64 bits

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Makes a stack frame for saving registers and return pointers.

DISCUSSION:

Calls other millicode routines using r31: $$mul12U, $$muloU

Changes to this routine should track changes to $$mul2U

ROUTINE: $$muloI
DESCRIPTION:

$$muloI multiplies two single word integers, giving a single word result. Overflow is
indicated if the result is largerthan one word.

INPUT REGISTERS:

arg0 = Operand 1

arg1 = Operand 2

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = result

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: OVERFLOW

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame
376 HP PROPRIETARY

Version 3.0

 A

inter
Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$muloU
DESCRIPTION:

$$muloU multiplies two single word unsigned integers, giving a single word result.
trap is generated if the value will not fit in a single word.

INPUT REGISTERS:

arg0 = Operand 1

arg1 = Operand 2

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = result

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: OVERFLOW

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$move_byte_long
Long pointers!

Moves an unaligned byte string to an unaligned location. Leaves the destination po
pointing to the next byte position.

Ripples data when target address exceeds source address by at least four (4).
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 377

Mil l icode Library

f the
ring.
his is a
Ripple occurs as if a left to right byte at a time move were done. Thus when

Target=Source+delta, delta bytes will be repeated.

INPUT REGISTERS:

arg0 ==pointer to source byte string

arg1 ==pointer to destination byte string

arg2 ==number of bytes to move

(signed number considered zero when negative)

r31 == return pc

sr0 == return space when called externally

sr1 == space pointer to source

sr2 ==space pointer to target

OUTPUT REGISTERS:

arg0 = undefined

arg1 = incremented by input value of arg2

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg2 bytes at location given by sr2:arg1

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

$$ripple, $$copy_byte, $$move_fill branch to this routine.

$$move_fill calls this routine

ROUTINE: $$move_fill_long

Long pointers!

Move an unaligned byte string to an unaligned byte string. Fill out the remainder o
destination with a fill value when the destination string is longer than the source st
There is no special behavior expected when the source and target areas overlap. T
complete replacement of the previous version which had the following problems:
378 HP PROPRIETARY

Version 3.0
() Was not unwindable.

() Did not handle negative or zero lengths.

INPUT REGISTERS:

arg0 ==inner space pointer to source byte string

arg1 ==number of bytes in source string

arg2 ==inner space pointer to destination byte string

arg3 ==number of bytes in destination string

ret1 ==fill value (4 bytes, all equal)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

sr1 =unchanged

sr2 =unchanged

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg3 bytes at location given by arg2

PERMISSIBLE CONTEXT:

Unwindable.

Suitable for internal or external millicode.

Makes a stack frame for saving registers and calling other routines.

DISCUSSION:

Calls other millicode routines using r31:

$$move_byte_long

$$fill_byte_long

Calls other millicode routines: NONE

ROUTINE: $$fill_unk_unk
$$fill_big
$$fill_wa_unk
$$fill_xx where xx = 1 to 32
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 379

Mil l icode Library
DESCRIPTION:

Fill an area with a specified character.

Special case routines:

$$fill_unk_unk -- alignment and length unknown at compile

$$fill_wa_unk -- word aligned fill but length unknown

$$fill_big-- fill covers more than 32 words

$$fill_xx-- alignment and length both known at compile

INPUT REGISTERS:

For all routines
arg0 == Fill => Fill character, expanded to full word

arg1 == Dst => Destination pointer

For $$fill_unk_unk, $$fill_wa_unk:
arg2 == Len => Length of fill (in bytes)

For $$fill_big:
arg2 == Len => Byte length of fill + (Destination pointer mod 4)

OUTPUT REGISTERS:

arg0 = NOT changed

arg1 = updated to next byte

arg2 = undefined($$fill_unk_unk, $$fill_wa_unk, $$fill_big)

OTHER REGISTERS AFFECTED:

r1 = undefined ($$fill_unk_unk, $$fill_wa_unk, $$fill_big)

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Dst for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$fill_unk_unk_long
$$fill_big_long
$$fill_wa_unk_long
$$fill_xx_long where xx = 1 to 32

DESCRIPTION:
380 HP PROPRIETARY

Version 3.0
Fill an area in an arbitrary data space with a specified character.

Special case routines:

$$fill_unk_unk_long -- alignment and length unknown at compile

$$fill_wa_unk_long -- word aligned fill but length unknown

$$fill_big_long -- fill covers more than 32 words

$$fill_xx_long -- alignment & length known at compile

INPUT REGISTERS:

 For all routines
arg0 == Fill => Fill character, expanded to full word

arg1 == Dst => Destination pointer

sr2 == DstSr=> Destination space register

 For $$fill_unk_unk, $$fill_wa_unk:
arg2 == Len => Length of fill (in bytes)

 For $$fill_big:
arg2 == Len => Byte length of fill + (Destination pointer mod 4)

OUTPUT REGISTERS:

arg0 = NOT changed

arg1 = updated to next byte

arg2 = undefined($$fill_unk_unk, $$fill_wa_unk, $$fill_big)

OTHER REGISTERS AFFECTED:

r1 = undefined ($$fill_unk_unk, $$fill_wa_unk, $$fill_big)

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Dst for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$mv_lr_na_unk
$$mv_lr_na_##where ## = 1 to 32
$$mv_lr_unk_unk
$$mv_lr_wa_unk
$$mv_lr_wa_big
$$mv_lr_wa_##where ## = 1 to 32
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 381

Mil l icode Library

than

f

s to

, oth-
DESCRIPTION:

Move data from one address to another address.

$$mv_lr_na_unk--source and target not aligned to same byte and length unknown

$$mv_lr_na_##--source and target not aligned to same byte entry point is one less
the number of initial words to be stored into

$$mv_lr_unk_unk--alignment and length unknown at compile

$$mv_lr_wa_unk--word aligned but length unknown

$$mv_lr_wa_big--word aligned with length more than 32 words

$$mv_lr_wa_##--word aligned and length known at compile entry point is number o
initial full words

INPUT REGISTERS:

For all routines:
r31 == return pc

sr0 == return space when called externally

For all routines except $$mv_lr_na_## and $$mv_lr_wa_##:
arg0 == Src => Source pointer

arg1 == Dst => Destination pointer

arg2 == Len => Length of move (in bytes)

For $$mv_lr_na_##:
arg0 == Src => Adjusted source pointer

arg1 == Dst => Destination pointer

arg2 == see discussion below

arg3 == see discussion below

ret1 == see discussion below

cr11 ==shift amount for aligning data

For $$mv_lr_wa_##:
arg0 == Src => Adjusted source pointer

arg1 == Dst => Destination pointer

arg2 == Even => First word to be moved; if word length is even

arg3 == Odd => First word to be moved; if word length is odd

ret1 == Temp2=> Length mod 4; if zero set to -1 (this is the residual number of byte
be moved)

OUTPUT REGISTERS:

arg0 =updated to next word aligned byte, when wa_big | wa_## | na_## undefined
erwise

arg1 = updated to point to next byte

arg2 = undefined
382 HP PROPRIETARY

Version 3.0

occur.

he
nce is

ored.

enta-

ts of
 by

e

us
arg3 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

ret1 = undefined

cr11 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Dst for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

This group of move routines have the following in common:

1- When target is less than source, data copy is correct even though overlap may

2- When target exceeds source by at least 8 bytes a ripple effect will occur within t
overlapped area. There is no guaranteed effect when overlap occurs and the differe
less than 8.

3- The target pointer is always updated to point to where the next byte would be st

4- Data outside of the source area will not be accessed. Thus an unexpected segm
tion violation will not occur when moving data stored near a page edge.

CALLING SEQUENCE FOR $$mv_lr_na_##

The compiler (or assembly language programmer) known the Length and alignmen
the source and target. Computing these at run time is a mistake which is corrected
calling $$mv_lr_unk_unk.

Using C notation, the following static computations would be performed to select th
proper code to emit by a compiler or macro assembler.

Given:

Length == the number of bytes to move.

Source == the pointer to the source area.

Target == the pointer to the target area.

Compute word relative byte positions:

SrcAlign=Source%4;

Trgalign=Target%4;

Compute index of routine to call (number of initial words to be stored at target min
one):

XX=(Length+TrgAlign)/4-1;
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 383

Mil l icode Library

nts

ld

la-
Adjust source pointer to word boundary:

Source -= SrcAlign;

Set shift amount register:

emit(“ldi (TrgAlign-Srcalign)*8,r1”)

emit(“mtsar r1”);

Emit instructions according to whether XX is odd and according to relative alignme
of the pointers:

if(XX+1 & 1)

 {

 if(SrcAlign>TrgAlign)

{ emit(“ LDW Source(dp),arg2”); Source+=4; }

emit(“ LDW Source(dp),arg3”); Source+=4;

 emit(“ VSHD arg2,arg3,r1”);

 emit(“ LDW Source(dp),arg2”); Source+=4;

 }

else

 {

 if(Srcalign>TrgAlign)

{ emit(“ LDW Source(dp),arg3”); Source+=4; }

 emit(“ LDW Source(dp),arg2”); Source+=4;

 emit(“ VSHD arg3,arg2,r1”);

 emit(“ LDW Source(dp),arg3”); Source+=4;

 }

emit(“ STBYS,B r1,Target(dp)”)

Adjust the target pointer

Target = Target - TrgAlign + 4;

Emit the call and set ret1 to the number of residual bytes:

emit(“ BLE $$lr_na_XX(sr4,r0)”)

emit(“ LDI (Length+TrgAlign)%4,ret1”)

In the event that both pointers have the same word relative byte, the compiler shou
handle the first partial word by a LDW followed by a STBYS and then call a word
aligned routine, e.g. $$lr_wa_XX. These routines will fail to copy correctly when re
tive byte positions are equal.

ROUTINE: $$mv_lr_na_unk_long
$$mv_lr_na_##_longwhere ## = 1 to 32
$$mv_lr_unk_unk_long
$$mv_lr_wa_unk_long
$$mv_lr_wa_big_long
$$mv_lr_wa_##_longwhere ## = 1 to 32

DESCRIPTION:

Move data from one address to another address in different spaces.
384 HP PROPRIETARY

Version 3.0

less

s to
$$mv_lr_na_unk_long: source and target not aligned to same byte and length
unknown

$$mv_lr_na_##_long: source and target not aligned to same byte entry point is one
than the number of initial words to be stored into

$$mv_lr_unk_unk_long: alignment and length unknown at compile

$$mv_lr_wa_unk_long: word aligned but length unknown

$$mv_lr_wa_big_long: word aligned with length more than 32 words

$$mv_lr_wa_##_long: word aligned and length known at compile entry point
is number of initial full words

INPUT REGISTERS:

For all routines:
r31 == return pc

sr0 == return space when called externally

sr1 == SrcSr =>space register for Source

sr2 == DstSr =>space register for Destination

For all routines except $$mv_lr_na_##_long and $$mv_lr_wa_##_long:
arg0 == Src => Source pointer

arg1 == Dst => Destination pointer

arg2 == Len => Length of move (in bytes)

For $$mv_lr_na_##_long:
arg0 == Src => Adjusted source pointer

arg1 == Dst => Destination pointer

arg2 == see discussion below

arg3 == see discussion below

ret1 == see discussion below

cr11 ==shift amount for aligning data

For $$mv_lr_wa_##_long:
arg0 == Src => Adjusted source pointer

arg1 == Dst => Destination pointer

arg2 == Even => First word to be moved; if word length is even

arg3 == Odd => First word to be moved; if word length is odd

ret1 == Temp2=> Length mod 4; if zero set to -1 (this is the residual number of byte
be moved)

OUTPUT REGISTERS:

arg0 =updated to next word aligned byte, when wa_big | wa_## | na_##

undefined, otherwise

arg1 = updated to point to next byte

arg2 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 385

Mil l icode Library

occur.

he
nce is

ored.

enta-

ts of
 by

e

us
arg3 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

ret1 = undefined

cr11 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: Dst for Len bytes

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

This group of move routines have the following in common:

1- When target is less than source, data copy is correct even though overlap may

2- When target exceeds source by at least 8 bytes a ripple effect will occur within t
overlapped area. There is no guaranteed effect when overlap occurs and the differe
less than 8.

3- The target pointer is always updated to point to where the next byte would be st

4- Data outside of the source area will not be accessed. Thus an unexpected segm
tion violation will not occur when moving data stored near a page edge.

CALLING SEQUENCE FOR $$mv_lr_na_##_long

The compiler (or assembly language programmer) known the Length and alignmen
the source and target. Computing these at run time is a mistake which is corrected
calling $$mv_lr_unk_unk_long.

Using C notation, the following static computations would be performedto select th
proper code to emit by a compiler or macro assembler.

Given:
Length == the number of bytes to move.

Source == the pointer to the source area.

Target == the pointer to the target area.

Compute word relative byte positions:

SrcAlign=Source%4;

Trgalign=Target%4;

Compute index of routine to call (number of initial words to be stored at target min
one):
386 HP PROPRIETARY

Version 3.0

nts

ld

en
XX=(Length+TrgAlign)/4-1;

Adjust source pointer to word boundary:

Source -= SrcAlign;

Set shift amount register:

emit(“ldi (Trgalign-SrcAlign)*8,r1”)

emit(“mtsar r1”);

Emit instructions according to whether XX is odd and according to relative alignme
of the pointers:

if(XX+1 & 1)

 {

 if(SrcAlign>TrgAlign)

{ emit(“ LDW Source(dp),arg2”); Source+=4; }

 emit(“ LDW Source(dp),arg3”); Source+=4;

 emit(“ VSHD arg2,arg3,r1”);

 emit(“ LDW Source(dp),arg2”); Source+=4;

 }

else

 {

 if(Srcalign>TrgAlign)

{ emit(“ LDW Source(dp),arg3”); Source+=4; }

 emit(“ LDW Source(dp),arg2”); Source+=4;

 emit(“ VSHD arg3,arg2,r1”);

 emit(“ LDW Source(dp),arg3”); Source+=4;

 }

emit(“ STBYS,B r1,Target(dp)”)

Adjust the target pointer

Target = Target - TrgAlign + 4;

Emit the call and set ret1 to the number of residual bytes:

emit(“ BLE $$lr_na_XX_long(sr4,r0)”)

emit(“ LDI (Length+TrgAlign)%4,ret1”)

In the event that both pointers have the same word relative byte, the compiler shou
handle the first partial word by a LDW followed by a STBYS and then call a word
aligned routine, e.g. $$lr_wa_XX_long. These routines will fail to copy correctly wh
relative byte positions are equal.

ENTRIES:$$ripw_tab0, $$ripw_tab1, $$ripw_tab2, $$ripw_tab3, $$ripw_tab4

$$ripw_tab0 is used for move while alphabetic.

$$ripw_tab1 is used for move while numeric.

$$ripw_tab2 is used for move while alphanumeric.

$$ripw_tab3 is used for move while alphabetic, upshifting.

$$ripw_tab4 is used for move while alphanumeric, upshifting.

INPUT REGISTERS: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 387

Mil l icode Library

Milli-
 code.

tatic
OUTPUT REGISTERS: NONE

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS: NONE

PERMISSIBLE CONTEXT:

These tables are NOT presently used by Millicode. They are being packaged with
code so that multiple copies of the tables won’t have to be dumped into generated
They are used by the UCODE operator Ripple While.

ROUTINE: $$slide_frame
INPUT REGISTERS:

arg0= New stack pointer.

OUTPUT REGISTERS:

None.

OTHER REGISTERS AFFECTED:

arg0=Undefined

arg1=Undefined

r1=Undefined

sp=Reduced.

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg0 - 16

arg0 - 4

PERMISSIBLE CONTEXT:

Unwindable. (uses Ada aux unwind scheme).

Does not create stack frame.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: None.

DESCRIPTION:

The routine will reduce the stack to the value specified in ARG0. The values of the s
link and previous sp will be copied back to the new stack area.

Note: This routine should be used in conjunction with $$slide_frame.

ROUTINE: $$rem2I
388 HP PROPRIETARY

Version 3.0
Divide a signed 64 bit dividend by a signed 64 bit divisor.

Produce a signed 64 bit remainder satisfying the division equality

where the quotient is obtained by truncation towards zero.

The sign of the remainder will be the same as the sign of the

dividend.

Trap on “divide by zero”.

INPUT REGISTERS:

arg0 == low word of dividend

arg1 == high word of dividend

arg2 ==low word of divisor

arg3 ==high word of divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of remainder

ret1 = low word of remainder

OTHER REGISTERS AFFECTED:

r1 = undefined

r21 =undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions: Divisor is zero.

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Does not create a stack frame.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines:NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 389

Mil l icode Library

ced.

vi-
This version uses the long division algorithm taught in most advanced elementary
schools before the invention of calculators. In binary, the quess for the next digit
becomes trivial. The inner loop takes 6 or 7 instructions for each quotient bit produ

The algorithm terminates when the proper number of quotient bits areproduced.

Changes to this routine will probably coincide with changes to other other 64 bit di
sion-related routines: $$divo2I, $$div2I, $$div2U, $$remo2I, $$rem2U

See $$remo2I (including its revision log) for further discussion.

CHANGES FROM $$remo2I:

Removed check for division of [80000000,0] by [-1,-1]

dvdl isn’t needed after being copied to rl; this frees up a register

which can be used in place of r3, and so nothing needs to be saved

on the stack. This could be done in $$remo2I, too.

ROUTINE: $$rem2U

Divide an unsigned 64 bit dividend by an unsigned 64 bit divisor.

Produce an unsigned 64 bit remainder satisfying the division equality

where the quotient is obtained by truncation towards zero.

Trap on “divide by zero”.

INPUT REGISTERS:

arg0 == low word of dividend

arg1 == high word of dividend

arg2 ==low word of divisor

arg3 ==high word of divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of remainder

ret1 = low word of remainder

OTHER REGISTERS AFFECTED:

r1 = undefined

r21 =undefined

r22 =undefined
390 HP PROPRIETARY

Version 3.0

 of
SIDE EFFECTS:

Causes a trap under the following conditions: Divisor is zero.

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Does not create a stack frame.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines:NONE

This version uses the long division algorithm taught in most advanced

elementary schools before the invention of calculators.

In binary, the guess for the next digit becomes trivial.

The inner loop takes 6 or 7 instructions for each quotient bit produced

in the usual case, or 8 or 9 instructions under certain circumstances

when an alternate inner loop must be used instead.

The algorithm terminates when the proper number of quotient bits are

produced.

Changes to this routine will probably coincide with changes to other

other 64 bit division-related routines: $$divo2I, $$div2I, $$div2U,

$$remo2I, $$rem2I

See $$remo2I (including its revision log) for further discussion.

CHANGES FROM $$remo2I:

Removed check for division of [80000000,0] by [-1,-1]

Removed sign computations; this freed up the register previously

used for dvdu (which had been preserved to keep track of the sign).

Removed special-case alignment behavior when dividend is [80000000,0];

added code to handle dividend greater than or equal to [80000000,0],

which uses the register previously used for dvdu.

ROUTINE: $$remI
DESCRIPTION:

$$remI returns the remainder of the division of two signed 32-bit integers. The sign
the remainder is the same as the sign of the dividend.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 391

Mil l icode Library

ivi-
an-
-bit
the
INPUT REGISTERS:

arg0 == dividend

arg1 == divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = destroyed

arg1 = destroyed

ret1 = remainder

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: DIVIDE BY ZERO

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$remJ
DESCRIPTION:

Remainder for signed 16-bit binary integers. $$remJ returns the remainder of the d
sion of two signed integers. Dividend and divisor are 32-bit quantities but are guar
teed by the caller to be in the range (-2**15)..(2**15-1). The remainder will be a 32
binary integer in the range (-2**15+1)..(2**15-1). The sign of the remainder will be
same as the sign of the dividend.

INPUT REGISTERS:

arg0 == dividend

arg1 == divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:
392 HP PROPRIETARY

Version 3.0

r

arg0 = destroyed

arg1 = destroyed

ret1 = remainder

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

DIVIDE BY ZERO (traps with ADDITO,= 0,25,0)

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$remU
Single precision divide for remainder with unsigned binary integers. The remainde
must be dividend-(dividend/divisor)*divisor. Divide by zero is trapped.

INPUT REGISTERS:

arg0 ==dividend

arg1 == divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

ret1 = remainder

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: DIVIDE BY ZERO

Changes memory at the following places: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 393

Mil l icode Library

ion
. The
PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$remo2I
Divide a signed 64 bit dividend by a signed 64 bit divisor. Produce a signed 64 bit
remainder satisfying the division equality where the quotient is obtained by truncat
towards zero. The sign of the remainder will be the same as the sign of the dividend
traps are “divide by zero” and “overflow”

INPUT REGISTERS:

arg0 == low word of dividend

arg1 == high word of dividend

arg2 ==low word of divisor

arg3 ==high word of divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 =high word of remainder

ret1 = low word of remainder

OTHER REGISTERS AFFECTED:

r1 = undefined

r21 =undefined

r22 =undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

Divisor is zero.

Overflow when dvnd = 0x80000000,0 and dvsr = -1,-1.

Changes memory at the following places: NONE
394 HP PROPRIETARY

Version 3.0

ide

ve,
been

r, the

n of
ow.
PERMISSIBLE CONTEXT:

Suitable for internal or external millicode.

Assumes the special millicode register conventions.

Unwindable.

Does not create a stack frame.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines:NONE

This version uses the long division algorithm taught in most advanced elementary
schools before the invention of calculators.

In binary, the guess for the next digit becomes trivial.

The inner loop takes 6 or 7 instructions for each quotient bit produced.

The algorithm terminates when the proper number of quotient bits are produced.

Changes to this routine will probably coincide with changes to the 64 bit signed div
routine.

CHANGES:

Changed routine to use r3 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable, r19 has
replaced with r3.

dvdl and LoopCtr have disjoint lifetimes; b allowing them to share the same registe
need for r3 to be saved and restored is eliminated.

ROUTINE: $$remoI
DESCRIPTION:

$$remoI returns the remainder of the division of two signed 32-bit integers. The sig
the remainder is the same as the sign of the dividend. A trap is generated on overfl

INPUT REGISTERS:

arg0 == dividend

arg1 == divisor

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = destroyed

arg1 = destroyed

ret1 = remainder

OTHER REGISTERS AFFECTED:

r1 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 395

Mil l icode Library
SIDE EFFECTS:

Causes a trap under the following conditions: OVERFLOW

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable

Does not create a stack frame

Is usable for internal or external microcode

DISCUSSION:

Calls other millicode routines via r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$ripple
Move unaligned byte string to unaligned location.

Ripple occurs as if a left to right byte at a time move were done. Thus when Tar-
get=Source+delta, delta bytes will be repeated.

INPUT REGISTERS:

arg0 ==pointer to source byte string

arg1 ==pointer to destination location (unaligned)

arg2 ==number of bytes to move

NOP when negative.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places:

arg2 bytes at location given by arg1

PERMISSIBLE CONTEXT:

Unwindable. (well close anyway)

Suitable for internal or external millicode.

Makes a stack frame for saving registers.
396 HP PROPRIETARY

Version 3.0

crip-

 to rip-
DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Branches to other millicode routines:

$$move_byte

$$fill_byte

$$fill3

$$fill4

Several proc’s are declared to gain multiple unwind descriptors.

This is the best we can do right now without region specification in the unwind des
tors.

ROUTINE: $$ripple_long
Long pointers version.

Move unaligned byte string to unaligned location.

Ripple occurs as if a left to right byte at a time move were done. Thus when Tar-
get=Source+delta, delta bytes will be repeated.

This version has been corrected to compare space register values before deciding
ple.

INPUT REGISTERS:

arg0 ==pointer to source byte string

arg1 ==pointer to destination location (unaligned)

arg2 ==number of bytes to move

NOP when negative.

r31 == return pc

sr0 == return space when called externally

sr1 ==space register part of source pointer

sr2 ==space register part of target pointer

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

sr1 =unchanged

sr2 =unchanged

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 397

Mil l icode Library

s for
he

n) to
tring

ith
‘stack

nter
ter

’, or

tes

ate
le.
Changes memory at the following places:

arg2 bytes at location given by sr2:arg1

PERMISSIBLE CONTEXT:

Unwindable. (well close anyway)

Suitable for internal or external millicode.

Makes a stack frame for saving registers.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

Branches to other millicode routines:

$$move_byte_long

$$fill_byte_long

$$fill3_long

$$fill4_long

This routine really requires multiple unwind descriptors.

Due to a SLLIC incapacity, there is but one.

ROUTINE: $$scmp2_and_fill_tran

Compare two strings. The goal(s) is/are to determine the equality of the two string
their total extant, or failing that determine if the shorter is equal to the after ‘filling’ t
shorter to alignment before the compare.

If string lengths are equal an initial ‘non-stack frame’ procedure branches (no retur
scmp_byte(_tran) with strings compared to each other, its ret1 == -1/0/+1 for left s
</=/> right string respectively.

 If the string lengths are unequal, a branch and link (return) to scmp_byte(_tran) w
the two strings and the length set to the shortest length is performed by a second
frame’ procedure with ret1 returned from scmp_byte(_tran) as above.

If the strings are unequal in value, exit with ret1 = +1/-1 , as above from
scmp_byte(_tran). Further string comparison is not productive.

Else, a branch with no return is made to scmp_fill(_tran) with the longer length poi
incremented by the shorter length becoming the string to be compared to the shor
string as the ‘fill value’ to be compared against for a length equal to short.

This comparison determines if the trailing bytes of the long string are ‘fill characters
in this case, the same as the short strings ‘leading’ bytes. The return from
scmp_fill(_tran), ret1, will then be -1/0/+1, depending on the longer string’s trailer by
being </=/> than the ‘fill characters’, the shortstring.

The ‘tran’, translation variant of the above will simply use a supplied table to transl
the strings before any compare is performed. Table is a user supplied 256-byte tab
398 HP PROPRIETARY

Version 3.0
INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

r22 == pointer to table in callers space.

r21 ==fill value (same character repeated)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 =undefined

ret1 =-1 when left string < right string

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Builds a stack frame for saving r31,sr0, four temp values.

Utilizes special millicode register conventions.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp2_byte_tran

$$scmp2_fill_tran

Branches to other millicode routines:

$$scmp2_byte_tran

$$scmp2_fill_tran

Calls other millicode routines: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 399

Mil l icode Library

d

ROUTINE: $$scmp2_byte_tran
Compare two strings (left to right), after byte-by_byte translation thru caller-supplie
256-byte max. table in caller address space.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==pointer to right string

arg2 == pointer to table in user literal space.

arg3 ==length in bytes of both strings

NOP when <=0

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

r19 = undefined(Not anymore. Used r5 instead.)

r20 = undefined

r21 = undefined

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Creates a stack frame for saving r3,r4.

Utilizes special millicode register convention.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE
400 HP PROPRIETARY

Version 3.0

ve,
een

able
lt of
Calls other millicode routines: NONE

CHANGES:

Changed routine to use r5 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable,r19 has b
replaced with r5.

ROUTINE: $$scmp2_fill_tran
Compares a string to a fill character, after string byte-by-byte translated thru table. T
is caller-supplied 256-byte max. table in caller address space. Returns in ret1 resu
compare. New named (*2*) version to use callsave regs . Stack frame used for r3.

INPUT REGISTERS:

arg0 ==pointer to string

arg1 ==fill value (same character repeated)

arg2 == pointer to table in caller address space.

arg3 ==length in bytes of the string

NOP when negative

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 =-1 when string < replicated fill char

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

r22 = undefined

r21 = undefined

r20 = undefined

r19 = undefined

r3 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 401

Mil l icode Library

ve,
been

ller-
th of
e

PERMISSIBLE CONTEXT:

Unwindable.

Creates a stack frame for saving r3.

Utilizes the special millicode register convention.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

CHANGES:

Changed routine to use r3 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable, r19 has
replaced with r3.

ROUTINE: $$scmp2_pasc_tran

Compare two strings in the pascal manner, after a byte-by-byte translation thru ca
supplied 256-byte max table in caller address space. If both are equal for the leng
the shorter, the longer is greater. New named (*2*) version for direct use of callsav
regs. Stack frame used for r31,sr0 in millicode call and return.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

arg4 == pointer to table in caller space.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 =undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:
402 HP PROPRIETARY

Version 3.0

s for
e

n) to
tring

h the
k

nter
ter

’, or

tes

ate
r1 = undefined

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Creates a stack frame for saving r31,sr0.

Utilizes special millicode register convention.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp2_byte_tran

Calls other millicode routines:

$$scmp2_byte_tran

ROUTINE: $$scmp_and_fill
Compare two strings. The goal(s) is/are to determine the equality of the two string
their total extant, or failingthat determine if the shorter is equal to the after ‘filling’ th
shorter to alignment before the compare.

If string lengths are equal an initial ‘non-stack frame’ procedure branches (no retur
scmp_byte(_tran) with strings compared to each other, its ret1 == -1/0/+1 for left s
</=/> right string respectively.

If the string lengths are unequal, a branch and link (return) to scmp_byte(_tran) wit
two strings and the length set to the shortest length is performed by a second ‘stac
frame’ procedurewith ret1 returned from scmp_byte(_tran) as above.

If the strings are unequal in value, exit with ret1 = +1/-1 , as above from
scmp_byte(_tran). Further string comparison is not productive.

Else, a branch with no return is made to scmp_fill(_tran) with the longer length poi
incremented by the shorter length becoming the string to be compared to the shor
string as the ‘fill value’ to be compared against for a length equal to short.

This comparison determines if the trailing bytes of the long string are ‘fill characters
in this case, the same as the short strings ‘leading’ bytes. The return from
scmp_fill(_tran), ret1, will then be -1/0/+1, depending on the longer string’s trailer by
being </=/> than the ‘fill characters’, the shortstring.

The ‘tran’, translation variant of the above will simply use a supplied table to transl
the strings before any compare is performed.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 403

Mil l icode Library
INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

ret1 ==fill value (same character repeated)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 =undefined

ret1 =-1 when left string < right string

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp_byte

$$scmp_fill

Branches to other millicode routines:

$$scmp_byte

$$scmp_fill

Calls other millicode routines: NONE

ROUTINE: $$scmp_and_fill_long
404 HP PROPRIETARY

Version 3.0

s for
he

n) to
tring

h the
k

nter
ter
par-

ase,
 will
 ‘fill

ate
Compare two strings. The goal(s) is/are to determine the equality of the two string
their total extant, or failing that determine if the shorter is equal to the after ‘filling’ t
shorter to alignment before the compare.

 If string lengths are equal an initial ‘non-stack frame’ procedure branches (no retur
scmp_byte(_tran) with strings compared to each other, its ret1 == -1/0/+1 for left s
</=/> right string respectively.

If the string lengths are unequal, a branch and link (return) to scmp_byte(_tran) wit
two strings and the length set to the shortest length is performed by a second ‘stac
frame’ procedure with ret1 returned from scmp_byte(_tran) as above.

If the strings are unequal in value, exit with ret1 = +1/-1 , as above from
scmp_byte(_tran). Further string comparison is not productive.

Else, a branch with no return is made to scmp_fill(_tran) with the longer length poi
incremented by the shorter length becoming the string to be compared to the shor
string as the ‘fill value’ to be compared against for a length equal to short. This com
ison determines if the trailing bytes of the long string are ‘fill characters’, or in this c
the same as the short strings ‘leading’ bytes. The return from scmp_fill(_tran), ret1,
then be -1/0/+1, depending on the longer string’s trailer bytes being </=/> than the
characters’, the shortstring.

The ‘tran’, translation variant of the above will simply use a supplied table to transl
the strings before any compare is performed.

This is the long pointer version, using sr1 and sr2.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

ret1 ==fill value (same character repeated)

r31 == return pc

sr0 == return space when called externally

sr1 == space register for left string

sr2 == space register for right string

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 =undefined

ret1 =-1 when left string < right string
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 405

Mil l icode Library

s for
he

n) to
tring

h the
k

 no

alue’

’, or
 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp_byte_long

$$scmp_fill_long

Branches to other millicode routines:

$$scmp_byte_long

$$scmp_fill_long

Calls other millicode routines: NONE

ROUTINE: $$scmp_and_fill_tran

Compare two strings. The goal(s) is/are to determine the equality of the two string
their total extant, or failing that determine if the shorter is equal to the after ‘filling’ t
shorter to alignment before the compare.

If string lengths are equal an initial ‘non-stack frame’ procedure branches (no retur
scmp_byte(_tran) with strings compared to each other, its ret1 == -1/0/+1 for left s
</=/> right string respectively.

If the string lengths are unequal, a branch and link (return) to scmp_byte(_tran) wit
two strings and the length set to the shortest length is performed by a second ‘stac
frame’ procedure with ret1 returned from scmp_byte(_tran) as above.

If the strings are unequal in value, exit with ret1 = +1/-1 , as above from
scmp_byte(_tran). Further string comparison is not productive. Else, a branch with
return is made to scmp_fill(_tran) with the longer length pointer incremented by the
shorter length becoming the string to be compared to the shorter string as the ‘fill v
to be compared against for a length equal to short.

This comparison determines if the trailing bytes of the long string are ‘fill characters
in this case, the same as the short strings ‘leading’ bytes. The return from
406 HP PROPRIETARY

Version 3.0

tes

ate
le.
scmp_fill(_tran), ret1, will then be -1/0/+1, depending on the longer string’s trailer by
being </=/> than the ‘fill characters’, the short string.

The ‘tran’, translation variant of the above will simply use a supplied table to transl
the strings before any compare is performed. Table is a user supplied 256-byte tab

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

r22 == pointer to table in callers space.

r21 ==fill value (same character repeated)

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 =undefined

ret1 =-1 when left string < right string

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Builds a stack frame for saving r22,r21,r31,sr0, three temp values.

Utilizes special millicode register conventions.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp_byte_tran
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 407

Mil l icode Library
$$scmp_fill_tran

Branches to other millicode routines:

$$scmp_byte_tran

$$scmp_fill_tran

Calls other millicode routines: NONE

ROUTINE: $$scmp_byte
Compare two strings (left to right).

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==pointer to right string

arg2 ==length in bytes of both strings

NOP when <=0

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$scmp_byte_long
Compare two strings (left to right). This is long version.
408 HP PROPRIETARY

Version 3.0
INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==pointer to right string

arg2 ==length in bytes of both strings

NOP when <=0

r31 == return pc

sr0 == return space when called externally

sr1 == space register for left string pointer

sr2 == space register for right string pointer

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode

.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$scmp_byte_tran
Compare two strings (left to right), after byte-by_byte translation

thru caller-supplied 256-byte max. table in caller address space.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==pointer to right string

arg2 == pointer to table in user literal space.

arg3 ==length in bytes of both strings
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 409

Mil l icode Library
NOP when <=0

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Creates a stack frame for saving r22,r21,r20,r19,r3,r4.

Utilizes special millicode register convention.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

CHANGES:

Changed routine to use r5 instead of r19. r19 cannot be used freely

like a caller save, because it is now a PIC/SHLIB register. To make

this routine unwindable, r19 has been replaced with r5.

ROUTINE: $$scmp_fill
Compares a string to a fill character.

INPUT REGISTERS:

arg0 ==pointer to string

arg1 ==fill value (same character repeated)

arg2 ==length in bytes of the string
410 HP PROPRIETARY

Version 3.0
NOP when negative

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

ret1 =-1 when string < replicated fill char

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$scmp_fill_long
Compares a string to a fill character. This is the long version.

INPUT REGISTERS:

arg0 ==pointer to string

arg1 ==fill value (same character repeated)

arg2 ==length in bytes of the string

NOP when negative

r31 == return pc

sr0 == return space when called externally

sr1 == space register for long pointer to string

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 411

Mil l icode Library

able
lt of
arg2 = undefined

ret1 =-1 when string < replicated fill char

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$scmp_fill_tran

Compares a string to a fill character, after string byte-by-byte translated thru table. T
is caller-supplied 256-byte max. table in caller address space. Returns in ret1 resu
compare.

INPUT REGISTERS:

arg0 ==pointer to string

arg1 ==fill value (same character repeated)

arg2 == pointer to table in caller address space.

arg3 ==length in bytes of the string

NOP when negative

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 = undefined

ret0 = undefined

ret1 =-1 when string < replicated fill char
412 HP PROPRIETARY

Version 3.0

ve,
een

r,
 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Creates a stack frame for saving r22,r21,r20,r19,r3.

Utilizes the special millicode register convention.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

CHANGES:

Changed routine to use r3 instead of r19. r19 cannot be used freely like a caller sa
because it is now a PIC/SHLIB register. To make this routine unwindable,r19 has b
replaced with r3.

ROUTINE: $$scmp_pasc
Compare two strings in thepascal manner. If both are equal for the length of the shorte
the longer is greater.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 413

Mil l icode Library

r,
arg3 =undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp_byte

Calls other millicode routines: NONE

ROUTINE: $$scmp_pasc_long

Compare two strings in thepascal manner. If both are equal for the length of the shorte
the longer is greater. This is the long version.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

r31 == return pc

sr0 == return space when called externally

sr1 == space register for left string long pointer

sr2 == space register for right string long pointer

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined
414 HP PROPRIETARY

Version 3.0

ller-
h of
arg3 =undefined

ret1 =-1 when left<right

 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Makes a stack frame for saving registers.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp_byte_long

Calls other millicode routines: NONE

ROUTINE: $$scmp_pasc_tran
Compare two strings in the pascal manner, after a byte-by-byte translation thru ca
supplied 256-byte max table in caller address space.If both are equal for the lengt
the shorter, the longer is greater.

INPUT REGISTERS:

arg0 ==pointer to left string

arg1 ==length in bytes of left string

zero assumed when negative

arg2 ==pointer to right string

arg3 ==length in bytes of right string

zero assumed when negative

arg4 == pointer to table in caller space.

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = undefined

arg1 = undefined

arg2 = undefined

arg3 =undefined

ret1 =-1 when left<right
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 415

Mil l icode Library

ft

ght
 0 when =

+1 when >

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Creates a stack frame for saving r31,sr0,r22 .

Utilizes special millicode register convention.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31:

$$scmp_byte_tran

Calls other millicode routines:

$$scmp_byte_tran

ROUTINE: $$wa_scmp_neq
Compare two word-aligned strings for equality or inequality.

INPUT REGISTERS:

arg0 ==word-aligned pointer to first byte of left string

arg1 ==word-aligned pointer to first byte of right string

arg2 ==length in bytes of both strings, assumed to be signed, >0

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = if strings are equal, pointer to the byte after the last byte compared in the le
string if strings are not equal, undefined

arg1 = if strings are equal, pointer to the byte after the last byte compared in the ri
string if strings are not equal, undefined

arg2 = undefined

ret1 =return value:

0 when the strings are equal

1 when the strings are not equal

OTHER REGISTERS AFFECTED:

arg3 = undefined
416 HP PROPRIETARY

Version 3.0

ft

ght
SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$wa_scmp_neq_long
Compare two word-aligned strings for equality or inequality.

This is the long version.

INPUT REGISTERS:

arg0 ==word-aligned pointer to first byte of left string

arg1 ==word-aligned pointer to first byte of right string

arg2 ==length in bytes of both strings, assumed to be signed, >0

r31 == return pc

sr0 == return space when called externally

sr1 == space register for left string pointer

sr2 == space register for right string pointer

OUTPUT REGISTERS:

arg0 = if strings are equal, pointer to the byte after the last byte compared in the le
string if strings are not equal, undefined

arg1 = if strings are equal, pointer to the byte after the last byte compared in the ri
string if strings are not equal, undefined

arg2 = undefined

ret1 =return value:

 0 when the strings are equal

 1 when the strings are not equal

OTHER REGISTERS AFFECTED:

arg3 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 417

Mil l icode Library

, for

 rou-
LT.

 that

 per-
ther
Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

ROUTINE: $$sh_func_adrs
INPUT REGISTERS:

arg0 ==The address of the PLT entry.

OUTPUT REGISTERS:

ret1 = The address of the function, read from the first word of the PLT entry

OTHER REGISTERS AFFECTED:

r22 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions: NONE

Changes memory at the following places: NONE

This routine will try to read the page where the address points to. If it cannot do so
any reason, then the input is word aligned and returne

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Assumes the special millicode register conventions.

DISCUSSION:

With the advent of shared libraries it is not possible for the linker to fixup the PLT
entries without serious run time overhead. Hence the code generators will call this
tine with a PLT address so that we can return the real function address from the P

This routine assumes that the caller has already checked the 30th bit to make sure
this is a real PLT address. (i.e not word aligned)

This routine is used currently by all ucode based compilers, and the C compiler, to
form function pointer comparisons ONLY. This routine should not be used for any o
reason.

Calls other millicode routines using r31:

NONE

ROUTINE: $$NC_slide_frame

INPUT REGISTERS:
418 HP PROPRIETARY

Version 3.0

ack

e pre-
ge.
arg0= Size in bytes to expand frame

arg1=Size in bytes of argument area + marker

OUTPUT REGISTERS:

ret1=Pointer to the newly allocated item.

OTHER REGISTERS AFFECTED:

Throughout routine,

r1 = Maintains copy of old SP

arg0=Undefined

arg1=Undefined

arg2=Undefined

r1=Undefined

sp=Extended

ret1=Pointer to newly allocated item

SIDE EFFECTS:

Causes a trap under the following conditions: NONE.

PERMISSIBLE CONTEXT:

Not Unwindable.

Creates an unconventional stack frame.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: None.

DESCRIPTION:

The routine will bump up the stack by the specified amount. It will NOT trap if the st
crosses the specified upper bound due to the addition.

If you would a trap to be generated, then use $$slide_frame. The static link and th
vious sp from the old frame marker area are copied into the new frame marker ima

ROUTINE: $$slide_frame

INPUT REGISTERS:

arg0= Size in bytes to expand frame

arg1=Stack upper bound

agr2=Size in bytes of argument area + marker

OUTPUT REGISTERS:

ret1=Pointer to the newly allocated item.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 419

Mil l icode Library

the

om

it.
OTHER REGISTERS AFFECTED:

Throughout routine,

r1 = Maintains copy of old SP

arg0=Undefined

arg1=Undefined

arg2=Undefined

r1=Undefined

sp=Extended

ret1=Pointer to newly allocated item

SIDE EFFECTS:

Causes a trap under the following conditions: Stack overflow.

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Not Unwindable. (uses aux unwind scheme)

Creates an unconventional stack frame.

Assumes the special millicode register conventions.

DISCUSSION:

Calls other millicode routines using r31: None.

DESCRIPTION:

The routine will bump up the stack by the specified amount. It will trap if the stack
crosses the specified upper bound due to the addition.

The static link and the previous sp from the old frame marker area are copied into
new frame marker image.

ENTRIES:$$tbl_G, $$tbl_DG, $$tbl_V, $$tbl_V2, $$tbl_V3, $$tbl_IG

$$tbl_G performs transformations for unpacked digits in the sign position to and fr
binary.

A binary index in the range -16+0 .. -16+9 maps to the negative unpacked sign dig

A binary index in the range 0 .. 9 maps to the positive unpacked sign digit.

A positive or unsigned unpacked sign digit maps to values “0” .. “9”.

A negative unpacked sign digit maps to values “0”+128 .. “9”+128.

Invalid values are not guaranteed to map into sensible values.

$$tbl_V converts unpacked sign digits to values in the range 6 .. 41.

Invalid values less than 128 are guaranteed to map to zero.

Valid values map to a value suitable for comparing two unpacked numbers.

Positive or unsigned digits monotonically map to values 32 .. 41.

Negative values, -9 .. -0, monotonically map to values 6 .. 15.

$$tbl_V2 is used to validate the sign digit of an unpacked decimal number.

There are 256 entries. Invalid characters map to 0.
420 HP PROPRIETARY

Version 3.0

f the

nes

nes.
Valid characters map to non-zero. (For convenience, they map to the ASCII value o
character itself.)

$$tbl_V3 is the same as $$tbl_V2, but has blank as a legal sign.

$$tbl_DG is used to convert between packed decimal and unpacked decimal.

Binary values 0 .. 9 map to unpacked +0 .. +9.

Binary values 10 .. 19 map to unpacked -0 .. -9.

Unpacked sign digits map to a two nibble packed value having the digit and sign in
packed format. Sign is preserved, even when unsigned.

Invalid values are not guaranteed to map to sensible values.

Warning: $$tbl_G and $$tblDG overlap!

$$tbl_IG is used to convert from binary to unpacked decimal.

Binary values 0-16 .. 9-16 map to unpacked -0 .. -9.

Binary values 0 .. 9 map to unpacked +0 .. +9.

The power of ten table starts at $$tbl_IG+12 and consists of word values.

Two tables are intermingled. The successive values are

-30, -10, -300, -100, .. -3000000000, -1000000000.

That is, the pairs (-3*10**i, -1*10**i) for i=1,..,9.

INPUT REGISTERS: NONE

OUTPUT REGISTERS: NONE

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS: NONE

PERMISSIBLE CONTEXT:

To be used only by millicode routines.

These tables are subject to change in order to effect changes in the millicode routi
calling them.

Furthermore, tables will be removed when no longer needed by the millicode routi

Users should only use tables at $$tbl_ASCII in the asciitbl module.

DISCUSSION:

Presently, the routines using the tables are --

$$tbl_G:$$gadd, $$gsub, $$gcvt_g_to_i

$$tbl_V:$$gcmp

$$tbl_V2:$$valg

$$tbl_V3:$$valg_lb

$$tbl_DG:$$dcvt_g_to_d

$$tbl_IG:$$gcvt_i_to_g, $$gcvt_i_to_g_reg
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 421

Mil l icode Library

t the
ROUTINE: $$valg, $$valg_lb

DESCRIPTION:

$$valg is a COBOL unpacked ASCII Decimal validation routine.

$$valg_lb is an RPG unpacked ASCII Decimal validation routine.

It is passed a short pointer to a decimal string and a length. All digit positions are
checked for valid representations. Embedded blanks are not permitted.

$$valg_lb permits leading blanks; $$valg does not.

The sign position is checked by using the millicode table $$tbl_V2 ($$valg) or
$$tbl_V3 ($$valg_lb).

A trap occurs if a discrepancy is found. Otherwise, return occurs.

The trap handler expects the argument registers to have not been changed so tha
number can be optionally fixed.

DEFINITIONS:

Unpacked ASCII Decimal: (‘0’ -> ‘9’ == 0x30 -> 0x39)

The data format is ASCII decimal with the following conventions for the sign on the
right digit:

char hex value
space 20 +0 ($$valg_lb only)

0 30 +0

...

9 39 +9

A 41 +1

...

I 49 +9

J 4A -1

...

R 52 -9

{ 7B +0

} 7D -0

INPUT REGISTERS:

arg0 == short pointer to unpacked decimal string.

arg1 == length of string in bytes

r31 ==

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = will not change at any point during execution

arg1 = will not change at any point during execution

arg2 = undefined

arg3 = undefined
422 HP PROPRIETARY

Version 3.0

th.
ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

An invalid digit will cause a trap using either:

UADDCMT,NBC x,y,r0

UADDCMT,SBC x,y,r0

where x and y can be any register.

$$valg_lb considers leading blanks to be valid digits;

$$valg does not.

Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE

The validation of the digit in the sign position is dependent

upon the entries in $$tbl_V2 ($$valg) or $$tbl_V3 ($$valg_lb).

ROUTINE: $$get_version

Returns a pointer to a string holding the version of millicode.

The first word of the string is its length in bytes including the word holding the leng

The string is terminated with a null character.

INPUT REGISTERS:

r31 == return pc

sr0 == return space when called externally

OUTPUT REGISTERS:

ret0 =short pointer to the version string

OTHER REGISTERS AFFECTED: NONE

SIDE EFFECTS:

Causes a trap under the following conditions: NONE
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 423

Mil l icode Library
Changes memory at the following places: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

ROUTINE:d_val#_#
DESCRIPTION:

Packed decimal validation.

The following routines are provided:

 $$d_val general routine 15+3n cycles, aligned 0,2,3

 len >= 10 nibbles 17+3n cycles, aligned 1

 unknown len n = # words, whole or partial

 len >= 6, aligned ?

 $$d_valf same as $$d_val, but will fix an invalid sign

 $$d_val2 2 nibbles, all alignments 7 cycles

 $$d_val4_e 4 nibbles, aligned 0,2 9 cycles

 $$d_val4_1 4 nibbles, aligned 1 9 cycles

 $$d_val4_3 4 nibbles, aligned 3,? 11 cycles

 $$d_val6_0 6 nibbles, aligned 0 9 cycles

 $$d_val6_1 6 nibbles, aligned 1 9 cycles

 $$d_val6_2 6 nibbles, aligned 2 11 cycles

 $$d_val6_3 6 nibbles, aligned 3 11 cycles

 $$d_val8_0 8 nibbles, aligned 0 9 cycles

 $$d_val8_1 8 nibbles, aligned 1 11 cycles

 $$d_val8_2 8 nibbles, aligned 2 11 cycles

 $$d_val8_3 8 nibbles, aligned 3 11 cycles

 INPUT:

 SRC - pointer to most significant byte

 LEN - length (in nibbles); must be even and >0

 SRC and LEN must not be modified, since they are required by any trap handler.

 sr0,r31 - linkage pair for external millicode

 r31 - link for internal millicode

 OUTPUT:

 None.

 REGISTERS USED:

 src - current pointer position

unknown len n = # words, whole or partial

 len >= 6, aligned ?
424 HP PROPRIETARY

Version 3.0

 src
 $$d_valf same as $$d_val, but will fix an invalid sign

 $$d_val2 2 nibbles, all alignments 7 cycles

 $$d_val4_e 4 nibbles, aligned 0,2 9 cycles

 $$d_val4_1 4 nibbles, aligned 1 9 cycles

 $$d_val4_3 4 nibbles, aligned 3,? 11 cycles

 $$d_val6_0 6 nibbles, aligned 0 9 cycles

 $$d_val6_1 6 nibbles, aligned 1 9 cycles

 $$d_val6_2 6 nibbles, aligned 2 11 cycles

 $$d_val6_3 6 nibbles, aligned 3 11 cycles

 $$d_val8_0 8 nibbles, aligned 0 9 cycles

 $$d_val8_1 8 nibbles, aligned 1 11 cycles

 $$d_val8_2 8 nibbles, aligned 2 11 cycles

 $$d_val8_3 8 nibbles, aligned 3 11 cycles

 INPUT:

 SRC - pointer to most significant byte

 LEN - length (in nibbles); must be even and >0

 SRC and LEN must not be modified, since they are required by any trap handler.

 sr0,r31 - linkage pair for external millicode

 r31 - link for internal millicode

 OUTPUT:

 None.

 REGISTERS USED:

 src - current pointer position

 len - length remaining

 t1 - scratch register

 t2 - scratch register; never used until we are through with all uses of src, so t2 and
are equivalence.

 mask - word to test valid digits

 FRAME:

 No frame allocated.

INPUT REGISTERS:

arg0 == short pointer to packed source.

arg1 == length of string in nibbles.

sr0 == return space when called externally

OUTPUT REGISTERS:

arg0 = will not change at any point during execution

arg1 = will not change at any point during execution
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 425

Mil l icode Library

.

arg2 = undefined

arg3 = undefined

ret1 = undefined

OTHER REGISTERS AFFECTED:

r1 = undefined

SIDE EFFECTS:

Causes a trap under the following conditions:

An invalid digit or an invalid sign will cause a trap using :

UADDCMT,SDC x,y,r0

where x and y can be any register.

Note that $$d_valf will trap only on an invalid digit; an invalid sign will be fixed if all
digits are valid. The sign nibble will be changed if it is invalid and all digits are valid

All others: NONE

PERMISSIBLE CONTEXT:

Unwindable.

Does not create a stack frame.

Suitable for internal or external millicode.

DISCUSSION:

Calls other millicode routines using r31: NONE

Calls other millicode routines: NONE
426 HP PROPRIETARY

CHAPTER 11 Dynamic Linking
ject

o be

the
nd

ention,
he

e rou-

y

t.
11.1 Overview

Dynamic linking on HP-UX is done usingdynld (for the dynamic linker). The dynamic
linker supports dynamic linking and loading of object modules from relocatable ob
files (‘‘.o files’’) and relocatable libraries (‘‘.a files’’). It can be called to link and load
individual .o files, or to search and selectively load modules from libraries. It can als
used to unload a previously loaded module.

Dynamically-loaded modules are loaded into the calling process’ data space, and
text is not shared by any other process. The transfer of control between the code a
data space requires code sequences that are not part of the standard calling conv
and the dynamic linker automatically supplies the appropriate code sequences in t
form of stub routines.

11.2 External Interface

This section describes interface routines that are used by the dynamic linker. Thes
tines are also described in thedynld’s man page.

int dl_init_loader();

The dl_init_loader routine initializes the dynamic linker. It must be called before an
other routines are called. dl_init_loader will define the symbols which a program
requires to work with libc.a. Attempts to re-define these symbols will have no effec
See note below on loading /lib/milli.a and dl_dyncall.o

.

PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 427

Dynamic Linking

er
ded

ing
st
 code

u
 you

ntly
rior

tly
ted

sts for

efer-
point
f a
 The

 by
ero

ll is
ay be
int dl_define_symbol(char *name, long symbol_value);

The dl_define_symbol routine is used to make symbols known to the dynamic link
that are defined in the main program and are available for import by dynamically-loa
modules.
The following symbols should not be defined: all millicode routines (names beginn
with ‘‘$$’’), sigsetjmp, _sigsetjmp, siglongjmp, and _siglongjmp. These routines mu
be dynamically loaded from the C library so that they are in the same space as the
that calls them.
Beware of replacing definitions created by define_symbol if you load a library. If yo
make the initial define_symbols calls after you load the libraries you intend to load,
will avoid this problem.

int dl_declare_undefined_symbol(char *name);

The dl_declare_undefined_symbol routine adds a symbol name to the list of curre
undefined symbols. Its purpose is to prime the list with one or more initial symbols p
to invoking dl_search_library.

int dl_declare_common_symbol(char *name, int length);

The dl_declare_common_symbol routine adds a symbol name to the list of curren
undefined symbols. The symbol is recorded as a common request with an associa
length, and storage is allocated for it if the symbol remains undefined. Common
requests have the property that storage is allocated for the largest of several reque
the same symbol.

unsigned long dl_unintern_symbol(char *name);

The dl_unintern_symbol routine hides the definition of the named symbol and all r
ences to it. If the symbol is later defined, these hidden references will continue to
at the old definition. This routine can be used to implement "layered" definitions o
symbol as in dld shared libraries. If successful, a non-zero symbol ID is returned.
symbol ID can be used to lookup the value of the symbol with
dl_get_unintern_symbol_value. Upon failure, the symbol ID returned will be zero.

long dl_get_unintern_symbol_value(unsigned long symbol_id);

The dl_get_unintern_symbol_value is given the symbol ID of a symbol as returned
dl_unintern_symbol and returns the value of the symbol. Upon failure, a value of z
is returned.

int dl_set_unsat_handler(int (*handler) ());

The dl_set_unsat_handler routine defines a procedure to be called whenever a ca
attempted to a procedure that is undefined at the time of call. The unsat handler m
428 HP PROPRIETARY

Version 3.0

 R21
me.
LL

when-
dure is

d
e.
 unsat-

 when-
ed the

d
a
inter

. If
ded
n the
st of
a routine in the main program or a dynamically-loaded procedure. When invoked,
will be a pointer to the symbol, i.e. (char **) pointer to the pointer to the symbol na
As with all the _set_XX routines, the notification can be disabled by passing a NU
pointer to the _set_XX routine.

int dl_set_patch_callback(int (*proc) (char *filename));

The dl_set_patch_callback routine is passed a pointer to a procedure to be called
ever the data references of a module are about to be fixed up. The callback proce
passed the file name of the module.

int dl_set_selectv_callback(int (*proc)(char *file_name,
char*symbol_name));

The dl_set_selectv_callback routine is passed a pointer to a procedure to be calle
whenever a library module is selected for loading to satisfy an unsatisfied referenc
The callback procedure is passed the file name of the module and the name of the
isfied symbol.

int dl_set_select_callback(int (*proc)(char *file_name));

The dl_set_select_callback routine is passed a pointer to a procedure to be called
ever a module from a library is about to be loaded. The callback procedure is pass
file name of the module being loaded.

int dl_set_symbol_callback(int (*proc)(char **symbol));

The dl_set_symbol_callback routine is passed a pointer to a procedure to be calle
whenever an address is assigned to a symbol. The callback procedure is passed
pointer to the symbol. If the symbol has an inbound relocation stub, the symbol po
points to the symbol which contains the stub.

int dl_load_file(char *filename, int load_debug, void **__head, char*
shlib_path);

int dl_load_module_from_memory (char *object, int load_debug,
void **__head, char *shlib_path);

int dl_search_library(char *filename, int load_debug, void **__head);

The dl_load_file routine loads a module from the named object file unconditionally
the file is a library, it loads every module unconditionally. Symbols defined in the loa
module are used to resolve currently undefined symbols, and undefined symbols i
loaded module are either resolved to previously defined symbols or added to the li
undefined symbols.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 429

Dynamic Linking

ot to
ress
 list of

 an

 not

the
e of

-

any
f
nde-
-

e
ym-
sym-
re are

ot
be

les

 and
dl_load_file, dl_load_module_from_memory and dl_search_library all have similar
calling sequences. The load_debug argument is a Boolean value which indicates
whether debug information present in the file is to be loaded into memory. See
dl_debug_info. NULL should be passed for head_address if C++ constructors are n
be searched for and called. If invocation of C++ constructors is desired, head_add
should be the address of the C++ symbol, __head. shlib_path is a colon separated
directories to be searched when locating the libraries upon which a shared library
depends. An empty entry indicates that the recorded path is to be used.
A shared library which his loaded is treated as one module by dynld as opposed to
archive library which is treated as a set of modules.
When a shared library is loaded or unloaded, the shared library initializer function is
invoked.
The dl_load_module_from_memory routine is identical to dl_load_file, except that
object module to be loaded is read from memory instead of from a file. The filenam
the module is set to "(mem)". See dl_load_file for a description of the other argu
ments.
The dl_search_library routine searches the named library and loads (individually)
modules that satisfy currently undefined symbols. As symbols are added, the list o
undefined symbols may grow, and the library is iteratively searched until no more u
fined symbols can be resolved. See dl_load_file for a description of the other argu
ments.

int dl_unload_file(char *filename);

The dl_unload_file routine unloads the module specified. All symbols defined in th
module are removed. If any symbol in the module was used to resolve undefined s
bols, those symbols will be added back to the list of undefined symbols. If a library
bol was used to resolve a symbol removed when the module was unloaded and the
no other references to that library symbol, the library symbol is also removed.
The module must have been loaded first before it can be unloaded. Libraries are n
unloaded (the library as a whole cannot be unloaded, but individual modules can
unloaded).

int dl_unload_module(char **module);

dl_unload_module is like dl_unload_file except that it is passed a module pointer
instead of a file path.

int dl_reset_all_data();

The dl_reset_all_data routine resets all initialized data in dynamically-loaded modu
to the original state, and clears all common blocks and bss sections to zero.

char **dl_lookup_module(char *filename)

The dl_lookup_module routine is given the filename by which a module was loaded
returns a pointer to the module. Upon failure, a NULL pointer is returned.
430 HP PROPRIETARY

Version 3.0

uld
uld

 is
se, it
 as
rn

d
.

ame-
the
hat it
bol
s is
 in.

mber
 for

ion of
char **dl_get_modules(char **module);

The dl_get_modules routine returns the next module in the module list. NULL sho
be passed in the first time to get the first module in the list. Subsequent calls sho
pass the previous return value.

char **dl_get_globals(char **module, char **symbol);

The dl_get_globals routine returns the next global symbol in the module. If NULL
passed as the module pointer, dl_get_globals will scan all global symbols; otherwi
will scan only the global symbols for the given module. NULL should be passed in
the symbol pointer for the first call. Subsequent calls should pass the previous retu
value.

char **dl_get_unsats(char **symbol);

The dl_get_unsats routine returns the next undefined symbol in the list of undefine
symbols. NULL should be passed in the first time to get the first undefined symbol
Subsequent calls should pass the previous return value.

long dl_get_symbol_value(char *name);

The dl_get_symbol_value routine returns the address of the named symbol. If the
named symbol is undefined, NULL is returned.

char *dl_get_symbol_name(long address, char **module, long *rem);

The dl_get_symbol_name routine returns a symbol name corresponding to a given
address, if the address is within any dynamically-loaded module. If the module par
ter is not NULL, the location that it points to is filled in with a pointer to the name of
module that contains the address. If the rem parameter is not NULL, the location t
points to is filled in with the difference between actual address of the returned sym
and the original address. The difference will always be positive. If the given addres
not within any module, NULL is returned and the last two parameters are not filled

char *dl_dloader_version();

The dl_dloader_version routine returns a character string containing the version nu
of the dynamic linker along with the operating system release and hardware series
which it was built. You should use a version of dynld.o which matches your system
release and hardware line to be sure that it defines the symbols used in your vers
libc.a. For example, HP-UX release 9.0 for an s700.

int dl_symbol_scope(char **symbol_ptr);
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 431

Dynamic Linking

clude/

e/

ce of
in the

satis-
rs for
the
.

ould
ly
 one

ll of

ared
e to-
l of

hich
The dl_symbol_scope routine returns the scope of the symbol as defined in /usr/in
syms.h.

int dl_symbol_type(char **symbol_ptr);

The dl_symbol_type routine returns the type of the symbol as defined in /usr/includ
syms.h.

int dl_debug_info(char **module, char *name, void **addr, int *length);

The dl_debug_info routine searches for the named subspace in the $DEBUG$ spa
the given module and returns the address of the relocated data for that subspace
pointer pointed to by addr and the length in the integer pointed to by length.
dl_debug_info will return an error if it is invoked for a shared library.

int dl_call_constructors();

The dl_call_constructors routine should be called if C++ code was loaded after un
fied references have been resolved. dl_call_constructors will invoke the constructo
static data structures which were defined in the C++ code loaded and will register
destructors to be called when the program terminates or when the file is unloaded

It is recommended that symbols which are to be used with dl_get_symbol_value sh
be declared external "C" so that the name will not be "mangled". Otherwise, the on
means of finding a symbol is to demangle all of the symbols in a module and if only
symbol demangles to the desired name, the symbol has been found.

A C++ program should use the method illustrated in /lib/dynld/example to export a
its symbols to dynld.

11.3 Internal Design and Algorithm

1- If the requested shared library has already been loaded, _load_file will return
DYNLD_DUPLICATE_LOAD.

2- Starting with the initial shared library specified, dynld will make a list of all of the
shared libraries to be loaded. For each library on the list, dynld will examine the sh
library list. If the specified file has not already been loaded and is not already in th
be-loaded list, it will be added to the list. As we form the “load graph” we read in al
the required information from the shared libraries involved.

3. The files in the list will be loaded in reverse order in an attempt to avoid unsats w
would cause us to process the fixups of a file again. Before each file is loaded, the
select_callback routine will be called.
432 HP PROPRIETARY

Version 3.0

alled
ned

opy
new

 be
est
r the

nd
ed
we

ords

he fix-

nces

 at
 han-

e
d last.

d by
to
4. After all the shared libraries have been loaded, patch_data_references will be c
for “dirty” modules - modules with direct references to symbols that have been defi
or re-defined.

Loading a single shared library:

0. Load up text and data from the library: Allocate space for the data area + bss. C
the data from the data space read in during the formation of the load graph to the
area, zero-fill the bss area.

1. For each symbol in the export table, the definition of the relevant version should
placed in the dynld symbol table. The “relevant version” is the version with the high
version number less than or equal to the version specified in the dependency list o
latest version if this is the initially requested shared library. For each symbol being
defined, call the symbol_callback routine.

2. Process the import list to initialize the DLT and PLT. We will ignore the lib_index a
simply use the global definition for the named symbol. This may cause some shar
libraries which require layers of definitions not to work. For each imported symbol
will create an SS_UNSAT/SS_EXTERN dynld symbol with the direct_ref bit set to
TRUE so that if the symbol definition is changed we will re-process the dreloc_rec
to pick up the new value.

3. Process the dreloc_records. Call the patch_callback routine before processing t
ups.

4. As with the existing load process, mark modules as dirty which have direct refere
to symbols defined in a shared library.

5. Fill in the fields of the shlib_unwind_info structure. Place the address in the DLT
offset 0. There is some odd entry in the import list which may require special case
dling for the entry - e.g. skip it.

6. As we process the shared libraries, create a list of the initializers At the end of th
process, call them in the order they were processed - the initial library is processe

7. Figure out what callbacks we should do or perhaps provide new callbacks.

8. We allocate a table of PLT entries for the ST_CODE symbols which are exporte
the library. The global symbol definition is a PLT symbol with symbol->plt pointing
the PLT entry allocated for the symbol.

The following three figures show the structure ofdynld.
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 433

Dynamic Linking
434 HP PROPRIETARY

Version 3.0
Global Variables

first_module
struct module_header

next_module
symbols

struct module_header

next_module
symbols

cur_module

last_module

symtab

extra_syms

Array of symbols in a module

struct symbol_record

next
same
stub
module

Array of pointers to symbols

(size HASHSIZE)

struct extra_symbol_segment

next
free_ptr
free_size

buffer

struct symbol_record

free area
stubs

struct extra_symbol_segment

Dynld Data Structures, Top Level

array of 1 word entries

pointer to data or
for an unused entry,
the index of the next
free entry, -1 if last

dynld_dlt

dlt_free_idx
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 435

Dynamic Linking
Dynld Data Structures - Symbol Record

struct symbol_record

(ss_universal or

ss_unsat scope)

next
same
stub
module
subspace

(entry in symtab)

struct symbol_record

(ss_universal or

ss_unsat scope)

struct symbol_record

(ss_external scope)

next
same
stub
module
subspace

struct symbol_record
(scope ss_external,
outbound stub)

next
stub
symbol_value

actual stub code
in stub area of
extra_syms or

symbol_type =
st_stub

module
subspace

in memory allocated
for a subspace

struct symbol_record
(scope ss_universal
for an inbound stub)

struct symbol_record

(ss_external scope)
436 HP PROPRIETARY

Version 3.0
PA-RISC RUN-TIME ARCHITECTURE DOCUMENT 437

Dynamic Linking
Dynld Data Structures - Modules, Spaces and Subspaces

struct module_header

next_module

space_strings
sym_strings

spaces

symbols

fixups
relocated_data

subspaces

space allocated for
space strings

space allocated for
symbol strings

space allocated for
fixups

array of struct
space_record

array of struct
symbol_record
(see other
diagrams)

array of struct_subspace_record

struct subspace_record

space (index of space)
original_data
relocated_data
fixup_start (offset into

module fixups)
fixup_len

struct space_record

space allocated for
original data from

object file

space allocated for
relocated data of the

space allocated for
relocated data of
subspace 0

module
438 HP PROPRIETARY

CHAPTER 1 Introduction 3
1.1 Target Audiences 3

1.2 Overview of the PA-
RISC Runtime Architec-
ture Document 4

CHAPTER 2 Common Cod-
ing
Conventions 5

2.1 Memory Model 5
2.1.1 Text Segment 5
2.1.2 Initialized and Unitial-

ized Data
Segments 5

2.1.3 Shared Memory 6
2.1.4 Subspaces 6

2.2 Register Usage 6
2.2.1 Data Pointer (GR

27) 6
2.2.2 Linkage Table Regis-

ter (GR 19) 6
2.2.3 Stack Pointer (GR

30) 7
2.2.4 Space Registers 7
2.2.5 User-Readable Con-

trol Registers (CR
26 and CR 27) 7

2.2.6 General Registers
Summary 7

2.3 External Naming
Conventions 8

2.4 Conventions for Access-
ing Data 9
2.4.1 Static Variables 9
2.4.2 C-Style

Common 10
2.4.3 Fortran-Style

Common 10
2.4.4 COBOL-Style

Common 10
2.4.5 Pascal Outer Block

Globals 10
2.4.6 Constants and

Literals 10
2.4.7 Automatic

Variables 10
2.4.8 Position-

Independence 11

2.5 Conventions for Calling
Procedures 11
2.5.1 Stack Frame Layout

and Marker 11
2.5.2 Stack frame after

dynamic memory

allocation 15
2.5.3 Parameter Passing

and Return
Values 17

2.5.4 Type Checking and
Floating-Point
Parameter
Relocation 23

2.5.5 Standard Procedure
Calls 27

2.5.6 Indirect Procedure
Calls 30

2.5.7 Millicode Procedure
Calls 32

2.6 Program Startup 33

CHAPTER 3 Relocatable
Object Files 37

3.1 Object File Header 39

3.2 Compilation Unit
Records 46

3.3 Space Dictionary 47

3.4 Subspace
Dictionary 51

3.5 String Areas 57

3.6 Fixup Requests 57
3.6.1 Fixup Rounding

Modes 58
3.6.2 Interpretation of

rounding mode and
field selector 59

3.6.3 Examples of applying
the rounding
mode 61

3.6.4 Apply Fixups on
instructions 62

3.6.5 List of fixup
requests 62

3.6.6 Fixup opcodes,
lengths and
parameters 69

3.6.7 Parameter Reloca-
tion Bits (rbits1,
rbits2) 72

3.7 Symbol Table 73

CHAPTER 4 Relocatable
Libraries 89

4.1 Archive Header 90

4.2 Library Symbol Table
Header Record 92

4.3 Library Symbol Table

Format 96
4.3.1 Symbol

Directory 97
4.3.2 SOM Directory 105
4.3.3 Free Space

List 106

CHAPTER 5 Executable
Files 109

5.1 Object File
Header 109

5.2 Auxiliary Headers 109
5.2.1 Loader Auxiliary

Headers 112
5.2.2 Other Auxiliary

Headers 113

5.3 Symbol Table 116

5.4 Stack Unwind
Table 116

5.5 Recover Table 116

5.6 Auxiliary Unwind
Table 116

CHAPTER 6 HP-UX
Specifics 117

6.1 HP-UX Auxiliary
Header 117

6.2 Program Startup 119
6.2.1 Sample Assembly

Listing of crt0
code 120

6.3 Shared Libraries 125
6.3.1 Shared Library Mem-

ory Model 125
6.3.2 Linkage Table 125

Data Linkage Table 126
Procedure Linkage Table 126

6.3.3 The DL Header and
Other Tables 127

6.3.4 Version Auxiliary
Header 131

6.3.5 Import List 131
6.3.6 Export Table 132
6.3.7 Export Table

Extension 134
6.3.8 Shared Library

List 135
6.3.9 Module Table 136
6.3.10Shared Library

Unwind Info 138

6.3.11String Table 139
6.3.12Dynamic Relocation

Records 139
6.3.13Loading Shared

Libraries 142
Loading Libraries 142
Dynamic Library Path Support 142

6.3.14 Intra-library Version
Control 143

6.3.15Library-Level
Versioning 144

Building libraries 145
Pre-10.0 Applications 146
Migrating to Library-Level Versioning 146

6.3.16 Import and Export
Stubs 146

6.4 System Calls 147

CHAPTER 7 MPE/iX
Specifics 149

7.1 MPE Program Auxil-
iary Header 149

7.2 MPE SOM Auxiliary
Header 154

7.3 Initialization
Pointers 156

7.4 Loader Fixups 159

7.5 Program Startup 161

7.5 Executable
Libraries 164
7.5.1 External Reference

Table 165
7.5.2 Import and Export

Stubs 167

CHAPTER 8 Symbolic Debug
Information 16
9

8.1 The Debug Information
Organization 169

8.2 Compilation Unit
Headers 171
8.2.1 Basic typedef and

structure
definitions 171

8.2.2 XDB Header struc-
ture definition: 173

8.3 Name and Type
Tables 173
8.3.1 File-class ("File")

DNTT Entries 174
8.3.2 Code-class ("Scop-

ing") DNTT
Entries 175

8.3.3 Storage-class
("Name") DNTT
Entries 185

8.3.4 Type-class ("Type")
DNTT Entries 190

8.3.5 General ("overall")
DNTT Entry
Format 207

8.4 Static Analysis
Information 210
8.4.1 XREF Table (XT)

Entry Format 210
8.4.2 Static Analysis Sup-

port DNTT
Entries 212

8.5 Source Line Table 213
8.5.1 SLT Entry

Format 213
8.5.2 SLT Types and Data

Structure 214

8.6 Value Table (VT) 216

8.7 Ordering of Table
Entries 216

8.8 Postprocessing 217

8.9 Debug Format Changes
for Debugging of Opti-
mized Code
(DOC) 221
8.9.1 Debug Format

Changes 221
8.9.2 Object File Format

Details 222
8.9.3 Building the Line

Tables 223
8.9.4 Debug Format

Changes 225
8.9.5 Line Number Table

Definition 227
8.9.6 Range

Table(RANGE) 230
8.9.7 View/modify globals

and arguments
when safe 230

CHAPTER 9 Stack Unwind
Library 233

9.1 Overview 233

9.2 Requirements for Stack

Unwinding 234
9.2.1 Unwinding Across

an Interrupt
Marker 235

9.2.2 Unwinding from
Stubs on HP-
UX 235

9.2.3 Unwinding from
Millicode 235

9.2.4 Instances in Which
Unwinding May
Fail 236

9.2.5 Callee-Saves Regis-
ter Spill 236

9.2.6 Sample entry and
exit code 236

9.3 Role of Stubs in
Unwinding 237
9.3.1 The Stub Unwind

Types 238
9.3.2 Unwinding from

Parameter Reloca-
tion Stub 239

9.4 External Interface 241
9.4.1 The Unwind

Descriptor 241
9.4.2 Unwind Utility

Routines 245
9.4.3 Unwind Examples:

Using
U_get_previous_fra
me 250

9.5 Setjmp and longjmp
jmp_buf 257

9.6 Process Context 258
9.6.1 Ada Exception

handling 258
9.6.2 C++ Exception

handling 273

CHAPTER 10 Millicode
Library 275

10.1 Content of the Millicode
Library 275

10.2 Library Routines
Interfaces 289

CHAPTER 11 Dynamic
Linking 427

11.1 Overview 427

11.2 External Interface 427

11.3 Internal Design and

Algorithm 432

	
	The 32-bit PA-RISC Run- time Architecture Document...
	The Run-time Architecture Team

	CHAPTER 1 Introduction
	1.1 Target Audiences
	1.2 Overview of the PA-RISC Runtime Architecture D...
	CHAPTER 2 Common Coding Conventions
	2.1 Memory Model
	2.1.1 Text Segment
	2.1.2 Initialized and Unitialized Data Segments
	2.1.3 Shared Memory
	2.1.4 Subspaces

	2.2 Register Usage
	2.2.1 Data Pointer (GR 27)
	2.2.2 Linkage Table Register (GR 19)
	2.2.3 Stack Pointer (GR 30)
	2.2.4 Space Registers
	TABLE 1 Space Register Usage

	2.2.5 User-Readable Control Registers (CR 26 and C...
	2.2.6 General Registers Summary
	TABLE 2 General Register Usage

	2.3 External Naming Conventions
	2.4 Conventions for Accessing Data
	2.4.1 Static Variables
	2.4.2 C-Style Common
	2.4.3 Fortran-Style Common
	2.4.4 COBOL-Style Common
	2.4.5 Pascal Outer Block Globals
	2.4.6 Constants and Literals
	2.4.7 Automatic Variables
	2.4.8 Position-Independence

	2.5 Conventions for Calling Procedures
	2.5.1 Stack Frame Layout and Marker

	Formal Arguments

	Figure 2-1: General Stack Layout
	TABLE 3 Elements of Single Stack Frame Necessary f...
	2.5.2 Stack frame after dynamic memory allocation
	2.5.3 Parameter Passing and Return Values

	Figure 2-2: Register Partitioning
	Figure 2-3: Floating-Point Registers
	TABLE 4 Parameter Data Types and Sizes.
	TABLE 5 Argument Register Use
	2.5.4 Type Checking and Floating-Point Parameter R...
	TABLE 6 Return Values.

	Figure 2-4: Layout of Symbol Definition Record
	Figure 2-5: Parameter Relocation Stub.
	2.5.5 Standard Procedure Calls

	Figure 2-6: Flow of an External Procedure Call
	2.5.6 Indirect Procedure Calls

	Figure 2-7: Procedure Label Layout
	2.5.7 Millicode Procedure Calls
	2.6 Program Startup
	TABLE 7 Symbols Defined By crt0.o
	TABLE 8 Register Definition at Process Initializat...

	CHAPTER 3 Relocatable Object Files

	Figure 3-8: Block Diagram of the SOM
	Header Record

	TABLE 9 ����Record Layout of a SOM
	3.1 Object File Header

	Figure 3-9: Definition of SOM Header Fields (Conti...
	TABLE 10 Magic Number Values
	3.2 Compilation Unit Records

	Figure 3-10: Definition of Compilation Unit Dictio...
	3.3 Space Dictionary

	Figure 3-11: Space Dictionary Record Definition
	3.4 Subspace Dictionary

	Figure 3-12: Subspace Dictionary Record Definition...
	TABLE 11 Subspace Access Control Bits
	TABLE 12 Quadrant Values
	3.5 String Areas
	3.6 Fixup Requests
	3.6.1 Fixup Rounding Modes
	TABLE 13 R and L-Class Fixups

	3.6.2 Interpretation of rounding mode and field se...
	3.6.3 Examples of applying the rounding mode
	3.6.4 Apply Fixups on instructions
	1. Calculate the effective address. This depends o...
	2. Apply the field selector. This can be implied b...
	3. Apply the resulting value to the target instruc...

	3.6.5 List of fixup requests
	TABLE 14 Fixup Requests

	3.6.6 Fixup opcodes, lengths and parameters
	TABLE 15 Fixup Request Opcodes and Parameters

	3.6.7 Parameter Relocation Bits (rbits1, rbits2)

	3.7 Symbol Table

	Figure 3-13: Symbol Dictionary Record Definition
	Figure 3-14: Structure of a Dictionary Entry
	Symbol Record
	TABLE 16 symbol_type Definition
	TABLE 17 Valid symbol_scope Values
	TABLE 18 Valid symbol_value Mnemonics
	Symbol Dictionary Extension Record
	Symbol Dictionary Extension Record Fields
	Argument Descriptor
	Argument Descriptor Fields

	Figure 3-16: Argument Descriptor Definition
	CHAPTER 4 Relocatable Libraries

	Figure 4-17: General Layout of a Relocatable Libra...
	4.1 Archive Header

	Figure 4-18: Definition of Archive Header Record
	4.2 Library Symbol Table Header Record

	Figure 4-19: LST Header Definition
	4.3 Library Symbol Table Format
	LST Header Record

	Figure 4-20: Block Diagram of a Relocatable Librar...
	4.3.1 Symbol Directory
	Hash
	Table

	Figure 4-21: Block Diagram of Symbol Directory
	Figure 4-22: hash_key Format (symbol length > 1 by...
	Figure 4-23: hash_key Format (symbol length = 1 by...
	The lst_symbol_record structure

	Figure 4-24: LST Symbol Record Definition
	4.3.2 SOM Directory
	SOM Directory

	Figure 4-25: Structure of the SOM directory
	4.3.3 Free Space List

	Figure 4-26: FREE_LINK Format
	CHAPTER 5 Executable Files
	5.1 Object File Header
	5.2 Auxiliary Headers

	Figure 5-27: Definition of the Auxiliary Header
	TABLE 19 Auxiliary Header Types
	5.2.1 Loader Auxiliary Headers

	Figure 5-28: Definition of the Auxiliary Header
	5.2.2 Other Auxiliary Headers
	a. Linker footprint

	Figure 5-29: Definition of the Linker Footprint Au...
	b. Debugger_footprint

	Figure 5-30: Definition of the Debugger Footprint ...
	c. Version String Auxiliary Header

	Figure 5-31: Definition of the Version String Auxi...
	5.3 Symbol Table
	5.4 Stack Unwind Table
	5.5 Recover Table
	5.6 Auxiliary Unwind Table

	CHAPTER 6 HP-UX Specifics
	6.1 HP-UX Auxiliary Header
	6.2 Program Startup
	6.2.1 Sample Assembly Listing of crt0 code

	6.3 Shared Libraries
	6.3.1 Shared Library Memory Model
	6.3.2 Linkage Table
	6.3.2.1 Data Linkage Table
	6.3.2.2 Procedure Linkage Table

	6.3.3 The DL Header and Other Tables
	6.3.4 Version Auxiliary Header
	6.3.5 Import List
	6.3.6 Export Table
	6.3.7 Export Table Extension
	6.3.8 Shared Library List
	6.3.9 Module Table
	6.3.10 Shared Library Unwind Info
	6.3.11 String Table
	6.3.12 Dynamic Relocation Records
	6.3.13 Loading Shared Libraries
	6.3.13.1 Loading Libraries
	6.3.13.2 Dynamic Library Path Support

	6.3.14 Intra-library Version Control
	6.3.15 Library-Level Versioning
	6.3.15.1 Building libraries
	6.3.15.2 Pre-10.0 Applications
	6.3.15.3 Migrating to Library-Level Versioning

	6.3.16 Import and Export Stubs

	6.4 System Calls
	CHAPTER 7 MPE/iX Specifics
	7.1 MPE Program Auxiliary Header

	Figure 7-37: Definition of MPE Program Auxiliary H...
	TABLE 20 Capability Word Format
	TABLE 21 Priority Bits
	7.2 MPE SOM Auxiliary Header

	Figure 7-38: Definition of MPE SOM Auxiliary Heade...
	7.3 Initialization Pointers

	Figure 7-39: Definition of Initialization Pointer ...
	TABLE 22 Subspace Access Control Bits
	7.4 Loader Fixups

	Figure 7-40: Definition of Loader Fixups
	TABLE 23 Loader Fixup Types
	TABLE 24 Constant Values
	7.5 Program Startup

	Figure 7-4: Example Implementation of NRT0
	7.5 Executable Libraries

	Figure 7-5: General XL Layout
	7.5.1 External Reference Table

	Figure 7-6: XRT Layout
	Figure 7-7: XRT Sub-Table Layout
	Figure 7-8: XRT Entry Layout
	7.5.2 Import and Export Stubs

	CHAPTER 8 Symbolic Debug Information
	8.1 The Debug Information Organization
	TABLE 25 Debug Table

	8.2 Compilation Unit Headers
	8.2.1 Basic typedef and structure definitions
	8.2.2 XDB Header structure definition:

	8.3 Name and Type Tables
	8.3.1 File-class ("File") DNTT Entries

	Definitions
	Rules
	1. One DNTT_SRCFILE and SLT_SRC must be emitted at...
	2. One DNTT_SRCFILE/SLT_SRC pair is always emitted...
	3. One DNTT_SRCFILE/SLT_SRC pair must be emitted f...
	8.3.2 Code-class ("Scoping") DNTT Entries
	8.3.3 Storage-class ("Name") DNTT Entries
	8.3.4 Type-class ("Type") DNTT Entries
	8.3.5 General ("overall") DNTT Entry Format
	8.4 Static Analysis Information
	8.4.1 XREF Table (XT) Entry Format
	8.4.2 Static Analysis Support DNTT Entries

	8.5 Source Line Table
	8.5.1 SLT Entry Format
	8.5.2 SLT Types and Data Structure

	8.6 Value Table (VT)
	8.7 Ordering of Table Entries
	8.8 Postprocessing
	8.9 Debug Format Changes for Debugging of Optimize...
	8.9.1 Debug Format Changes
	8.9.2 Object File Format Details
	8.9.3 Building the Line Tables
	8.9.4 Debug Format Changes
	8.9.5 Line Number Table Definition
	8.9.6 Range Table(RANGE)
	8.9.7 View/modify globals and arguments when safe

	CHAPTER 9 Stack Unwind Library
	9.1 Overview
	9.2 Requirements for Stack Unwinding
	9.2.1 Unwinding Across an Interrupt Marker
	9.2.2 Unwinding from Stubs on HP-UX
	9.2.3 Unwinding from Millicode
	9.2.4 Instances in Which Unwinding May Fail
	9.2.5 Callee-Saves Register Spill
	9.2.6 Sample entry and exit code

	9.3 Role of Stubs in Unwinding
	9.3.1 The Stub Unwind Types
	9.3.2 Unwinding from Parameter Relocation Stub

	9.4 External Interface
	9.4.1 The Unwind Descriptor
	1. Cannot_unwind (bit 0): One (1) if this region d...
	2. Millicode (bit 1): One if this region is a mill...
	3. Millicode_save_sr0 (bit 2): One if this (millic...
	4. Region_description (bits 3-4): Describes the co...
	5. Entry_SR (bit 6): One if the sole entry-save sp...
	6. Entry_FR (bit 7-10): The number of entry-save f...
	7. Entry_GR (bit 11-15): The number of entry-save ...
	8. Args_stored (bit 16): One if this region’s prol...
	9. Variable_Frame (bit 17): Indicates that this re...
	10. Separate_Package_Body (bit 18): Indicates the ...
	11. Frame_Extension_Millicode (bit 19): Indicates ...
	12. Stack_Overflow_Check (bit 20): Indicates the a...
	13. Two_Instruction_SP_Increment (bit 21): Indicat...
	14. sr4export (bit 22): Indicates hand written sr4...
	15. cxx_info (bit 23): This bit is used to indicat...
	16. cxx_try_catch (bit 24): This bit is used to in...
	17. sched_entry_seq (bit 25): This bit indicates o...
	18. Save_SP (bit 27): One if the entry value of SP...
	19. Save_RP (bit 28): For non-millicode, one if th...
	20. Save_MRP_in_frame (bit 29): One if the entry v...
	21. Save_r19 (bit 30): One if gr19 is saved for sh...
	22. Cleanup_defined (bit 31): The interpretation o...
	23. MPE_XL_interrupt_marker (bit 32): One if the f...
	24. HP_UX_interrupt_marker (bit 33): One if the fr...
	25. Large_frame_r3 (bit 34): One if gr3 is changed...
	26. alloca_frame (bit 35): This bit is set if allo...
	27. Total_frame_size (bit 37-63): The amount of sp...

	9.4.2 Unwind Utility Routines
	9.4.3 Unwind Examples: Using U_get_previous_frame

	9.5 Setjmp and longjmp jmp_buf
	9.6 Process Context
	9.6.1 Ada Exception handling
	9.6.2 C++ Exception handling
	1. Transfer of Control

	2. Exception Identification
	3. Object Cleanup
	4. Storage Management

	CHAPTER 10 Millicode Library
	10.1 Content of the Millicode Library
	TABLE 26. Content of the millicode library

	10.2 Library Routines Interfaces
	CHAPTER 11 Dynamic Linking
	11.1 Overview
	11.2 External Interface
	11.3 Internal Design and Algorithm

	CHAPTER 1 Introduction�3
	CHAPTER 2 Common Coding Conventions�5
	CHAPTER 3 Relocatable Object Files�37
	CHAPTER 4 Relocatable Libraries�89
	CHAPTER 5 Executable Files�109
	CHAPTER 6 HP-UX Specifics�117
	CHAPTER 7 MPE/iX Specifics�149
	CHAPTER 8 Symbolic Debug Information�16 9
	CHAPTER 9 Stack Unwind Library�233
	CHAPTER 10 Millicode Library�275
	CHAPTER 11 Dynamic Linking�427

