

Processor-Specific ELF Supplement
for PA-RISC

Including HP and HP-UX Extensions

Version 1.43
October 6, 1997

This document is a supplement to the processor-independent definitions of ELF-32 and ELF-64. It
presents the machine-specific definitions for the PA-RISC architecture. It also contains the HP
vendor-specific and HP-UX environment-specific extensions to ELF that are specific to the PA-RISC
architecture.

NOTE: Although this document applies to ELF-32 and ELF-64, the HP-UX
operating system does not currently support ELF object files except for wide-mode
programs running on PA-RISC 2.0 machines. All programs written for PA-RISC
1.x machines, or for narrow mode on PA-RISC 2.0 must use the SOM format.

1. Overview of an ELF file

The standard ELF file organization is used for the PA-RISC architecture.

It is important to note that the choice of ELF-32 vs. ELF-64 may be made independently of the
programming model used by the program being compiled or linked. A 64-bit application may be
represented in an ELF-32 file as long as its sections and program segments are small enough to be
representable in the smaller format. For 64-bit applications in an ELF-32 file, 64-bit virtual addresses
are represented as an Elf32_Addr object by concatenating bits 63–62 with bits 29–0 of the 64-bit
address, omitting bits 61–30, which must be all zeroes. If any of the omitted bits are ones, the
program is too large, and it must be placed in an Elf-64 object file.

2. Data representation

The standard ELF-32 and ELF-64 data representations are used for the PA-RISC architecture.
 Processor-Specific ELF for PA-RISC, Version 1.43 1

File Header

3. File Header

The fields of the file header that have interpretations specific to PA-RISC are explained below.

e_ident Identifies the object file as an ELF file, and provides machine-dependent data. The
following table shows the values used for PA-RISC:

e_type Identifies the object file type. There are no processor-specific file types currently
defined for PA-RISC.

e_machine Identifies the target machine on which the object file is designed to run. For
PA-RISC, this field will have a value assigned by SCO. The following table shows
the value currently defined for PA-RISC.

New definitions will also be added for this field whenever an incompatible change
is made to the architecture or software conventions that would prevent successful
interoperability between old and new object files. For backward-compatible
extensions to the architecture or conventions, see the EF_PARISC_ARCH bits in
the e_flags field, defined below.

e_flags Flags describing the object file. The valid flags for PA-RISC object files are shown
in the following table.

If the EF_PARISC_EXT bit is set, a .PARISC.archext section must be present in the
object file. This section will contain at least one 32-bit word that identifies specific
product-specific extensions that are required by the object module. These bits are
allocated by HP, and are intended for use only by HP software.

Position Name Value Meaning

EI_CLASS ELFCLASS32 1 ELF-32 object file

ELFCLASS64 2 ELF-64 object file

EI_DATA ELFDATA2MSB 2 Object file data structures are big-
endian

Name Value Meaning

EM_PARISC 15 PA-RISC 1.0, 1.1, 2.0

Name Value Meaning

EF_PARISC_TRAPNIL 0x00010000 Trap nil pointer dereferences

EF_PARISC_EXT 0x00020000 Program uses arch. extensions

EF_PARISC_LSB 0x00040000 Program expects little-endian
mode

EF_PARISC_WIDE 0x00080000 Program expects wide mode

EF_PARISC_NO_KABP 0x00100000 Do not allow kernel-assisted
branch prediction

EF_PARISC_LAZYSWAP 0x00400000 Allow lazy swap for dynamically-
allocated program segments

EF_PARISC_ARCH 0x0000FFFF Architecture version
2 Processor-Specific ELF for PA-RISC, Version 1.43

Sections

The EF_PARISC_WIDE bit must be set for HP-UX, since the narrow-mode loader
does not support ELF object files. Narrow-mode programs must use the SOM
format on HP-UX.

The valid values for the architecture version, encoded in the lower 16 bits of the
flags, are shown in the following table.

The architecture version must be EFA_PARISC_2_0 for HP-UX, since ELF object
files are supported only for wide-mode programs running on PA-RISC 2.0.

The fields of the file header that have interpretations specific to HP-UX are explained below.

If the EF_PARISC_EXT bit is set in the e_flags field, a .PARISC.archext section must be present in the
object file. This section will contain at least one 32-bit word that identifies specific product-specific
extensions that are required by the object module. These bits are allocated by HP, and are intended
for use only by HP software. The bits currently defined are shown in the following table:

4. Sections

Section Indices

The following table shows the special section indices that are specific to the PA-RISC architecture and
the HP-UX operating system:

Name Value Meaning

EFA_PARISC_1_0 0x020B PA-RISC 1.0

EFA_PARISC_1_1 0x0210 PA-RISC 1.1

EFA_PARISC_2_0 0x0214 PA-RISC 2.0

Value Processor(s) Meaning

0000 0001 PA 7000 Quadword store instruction

0000 0002 PA 7100 Floating-point loads and stores to I/O space

0000 0004 PA 7000 Reciprocal square root instruction

0000 0008 PA 7000, 7100 FDC instruction includes graphics flushes

0000 0010 PA 7100LC, 8000 Halfword parallel add/subtract/average instructions

0000 0020 PA 7100LC, 8000 Halfword parallel shift-and-add instructions

0000 0040 PA 7100LC Byte-swapping stores

0000 0080 PA 7200, 8000 Data prefetch via load to GR 0

Name Value Meaning

SHN_PARISC_ANSI_COMMON 0xFF00 Indicates a symbol that has been declared as a
a tentative definition in an ANSI C
compilation

SHN_PARISC_HUGE_COMMON 0xFF01 Indicates a symbol that has been declared as a
common block using the huge memory model
 Processor-Specific ELF for PA-RISC, Version 1.43 3

Sections

Section Header Entries

The fields of the section header that have interpretations specific to PA-RISC are explained below.

sh_type Type of section. Section types specific to PA-RISC are shown in the following table.

sh_flags Section attributes. Attributes specific to PA-RISC are shown in the following
table.

sh_info Contains extra information about the section. The use of this field for section
types specific to PA-RISC is shown in the following table.

In addition to the standard section names described in the processor-independent document, the
following sections are defined for use on PA-RISC (the “S” flag stands for SHF_PARISC_SHORT):

Code sections will be named “.text” unless overridden by a pragma in the source code.

The names of the symbolic debug sections will be determined by each particular language system.

Name Value Meaning

SHT_PARISC_EXT 0x70000000 Section contains product-specific
extension bits

SHT_PARISC_UNWIND 0x70000001 Section contains unwind table entries

SHT_PARISC_DOC 0x70000002 Section contains debug information for
optimized code

SHT_PARISC_ANNOT 0x70000003 Section contains code annotations

Name Value Meaning

SHF_PARISC_SBP 0x80000000 Section contains code compiled for
static branch prediction

SHF_PARISC_HUGE 0x40000000 Section should be allocated far from
gp

SHF_PARISC_SHORT 0x20000000 Section should be near gp

Section Type sh_info

SHT_PARISC_UNWIND Section index of code section to which the unwind
table entries apply

Section Name Section Type Flags Use

.PARISC.archext SHT_PARISC_EXT none Product-specific extension bits

.PARISC.milli SHT_PROGBITS A, X Millicode

.PARISC.unwind SHT_PARISC_UNWIND A Unwind table

.PARISC.unwind_info SHT_PROGBITS A Stack unwind and exception
handling information

.sdata SHT_PROGBITS A, W, S Short initialized data

.sbss SHT_NOBITS A, W, S Short uninitialized data
4 Processor-Specific ELF for PA-RISC, Version 1.43

String tables

5. String tables

There are no processor-specific extensions to the string table format for the PA-RISC architecture.

6. Symbol Table

One processor-specific symbol type is defined for PA-RISC:

Millicode routines are identified separately from standard functions so that the linker can build
export stubs for standard functions but not for millicode routines.

7. Relocations

Because many PA-RISC instructions have small immediate fields, the longer form of relocation
(“Rela”) is always used for relocatable object files on PA-RISC.

r_offset Virtual address of reference.

ELF64_R_TYPE(r_info)
Contains the type of relocation. The relocation types specific to PA-RISC are
described below.

ELF64_R_SYM(r_info)
Contains the symbol table index of the symbol whose value should be used in the
relocation.

r_addend Constant to be added to symbol value during relocation. Note that the byte order
of the addend field is controlled by the e_ident[EI_DATA] field in the ELF header,
not by the application.

The relocation types defined for 32-bit (narrow mode) applications on PA-RISC are shown in the table
below. Note that HP-UX does not support the ELF object file format for narrow-mode applications. All
mnemonics have the prefix “R_PARISC_”. Instruction formats are shown with a reference to the
format number as defined in the PA-RISC 2.0 Architecture and Instruction Set Reference Manual.

Name Value Meaning

STT_PARISC_MILLI 13 Identifies the entry point of a
millicode routine.

Name Value
Instruction
Formats Expression

NONE 0 none none

DIR32 1 32-bit word symbol + addend

DIR21L 2 Long Immediate (7) LR(symbol, addend)

DIR17R 3 Branch External (19) RR(symbol, addend)

DIR17F 4 Branch External (19) symbol + addend

DIR14R 6 Load/Store (1) RR(symbol, addend)

PCREL21L 10 Long Immediate (7) L(symbol – PC – 8 + addend)

PCREL17R 11 Branch External (19) R(symbol – PC – 8 + addend)
 Processor-Specific ELF for PA-RISC, Version 1.43 5

Relocations

PCREL17F 12 Branch (20) symbol – PC – 8 + addend

PCREL17C 13 Branch (20) symbol – PC – 8 + addend

PCREL14R 14 Load/Store (1) R(symbol – PC – 8 + addend)

DPREL21L 18 Long Immediate (7) LR(symbol – GP, addend)

DPREL14WR 19 Load/Store Mod. Comp. (2) RR(symbol – GP, addend)

DPREL14DR 20 Load/Store Doubleword (3) RR(symbol – GP, addend)

DPREL14R 22 Load/Store (1) RR(symbol – GP, addend)

DLTREL21L 26 Long Immediate (7) LR(symbol – GP, addend)

DLTREL14R 30 Load/Store (1) RR(symbol – GP, addend)

DLTIND21L 34 Long Immediate (7) L(ltoff(symbol + addend))

DLTIND14R 38 Load/Store (1) R(ltoff(symbol + addend))

DLTIND14F 39 Load/Store (1) ltoff(symbol + addend)

SETBASE 40 none no relocation; base := symbol

SECREL32 41 32-bit word symbol – SECT + addend

BASEREL21L 42 Long Immediate (7) LR(symbol – base, addend)

BASEREL17R 43 Branch External (19) RR(symbol – base, addend)

BASEREL14R 46 Load/Store (1) RR(symbol – base, addend)

SEGBASE 48 none no relocation; SB := symbol

SEGREL32 49 32-bit word symbol – SB + addend

PLTOFF21L 50 Long Immediate (7) LR(pltoff(symbol), addend)

PLTOFF14R 54 Load/Store (1) RR(pltoff(symbol), addend)

PLTOFF14F 55 Load/Store (1) pltoff(symbol) + addend

PLABEL32 65 32-bit word fptr(symbol)

PCREL22C 73 Branch & Link (21) symbol – PC – 8 + addend

PCREL22F 74 Branch & Link (21) symbol – PC – 8 + addend

PCREL14WR 75 Load/Store Mod. Comp. (2) R(symbol – PC – 8 + addend)

PCREL14DR 76 Load/Store Doubleword (3) R(symbol – PC – 8 + addend)

DIR14WR 83 Load/Store Mod. Comp. (2) RR(symbol, addend)

DIR14DR 84 Load/Store Doubleword (3) RR(symbol, addend)

DLTREL14WR 91 Load/Store Mod. Comp. (2) RR(symbol – GP, addend)

DLTREL14DR 92 Load/Store Doubleword (3) RR(symbol – GP, addend)

DLTIND14WR 99 Load/Store Mod. Comp. (2) R(ltoff(symbol + addend))

DLTIND14DR 100 Load/Store Doubleword (3) R(ltoff(symbol + addend))

BASEREL14WR 107 Load/Store Mod. Comp. (2) RR(symbol – base, addend)

BASEREL14DR 108 Load/Store Doubleword (3) RR(symbol – base, addend)

PLTOFF14WR 115 Load/Store Mod. Comp. (2) RR(pltoff(symbol), addend)

PLTOFF14DR 116 Load/Store Doubleword (3) RR(pltoff(symbol), addend)

Name Value
Instruction
Formats Expression
6 Processor-Specific ELF for PA-RISC, Version 1.43

Relocations

The range of relocation types from 128 through 255 is reserved for environment-specific use.

The relocation types defined for 64-bit (wide mode) applications on PA-RISC 2.0 are shown in the
following table. Many relocations are defined for both sets of applications; these share the same
number (some mnemonics differ, but the definitions are identical when two mnemonics share the
same value). All mnemonics have the prefix “R_PARISC_”. Instruction formats are shown with a
reference to the format number as defined in the PA-RISC 2.0 Architecture and Instruction Set
Reference Manual.

LORESERVE 128

HIRESERVE 255

Name Value
Instruction
Formats Expression

NONE 0 none none

DIR32 1 32-bit word symbol + addend

DIR21L 2 Long Immediate (7) LR(symbol, addend)

DIR17R 3 Branch External (19) RR(symbol, addend)

DIR17F 4 Branch External (19) symbol + addend

DIR14R 6 Load/Store (1) RR(symbol, addend)

PCREL32 9 32-bit word symbol – PC – 8 + addend

PCREL21L 10 Long Immediate (7) L(symbol – PC – 8 + addend)

PCREL17R 11 Branch External (19) R(symbol – PC – 8 + addend)

PCREL17F 12 Branch (20) symbol – PC – 8 + addend

PCREL14R 14 Load/Store (1) R(symbol – PC – 8 + addend)

GPREL21L 26 Long Immediate (7) LR(symbol – GP, addend)

GPREL14R 30 Load/Store (1) RR(symbol – GP, addend)

LTOFF21L 34 Long Immediate (7) L(ltoff(symbol + addend))

LTOFF14R 38 Load/Store (1) R(ltoff(symbol + addend))

SECREL32 41 32-bit word symbol – SECT + addend

SEGBASE 48 none no relocation; SB := symbol

SEGREL32 49 32-bit word symbol – SB + addend

PLTOFF21L 50 Long Immediate (7) LR(pltoff(symbol), addend)

PLTOFF14R 54 Load/Store (1) RR(pltoff(symbol), addend)

LTOFF_FPTR32 57 32-bit word ltoff(fptr(symbol+addend))

LTOFF_FPTR21L 58 Long Immediate (7) L(ltoff(fptr(symbol+addend)))

LTOFF_FPTR14R 62 Load/Store (1) R(ltoff(fptr(symbol+addend)))

FPTR64 64 64-bit doubleword fptr(symbol+addend)

PCREL64 72 64-bit doubleword symbol – PC – 8 + addend

PCREL22F 74 Branch & Link (21) symbol – PC – 8 + addend

PCREL14WR 75 Load/Store Mod. Comp. (2) R(symbol – PC – 8 + addend)

Name Value
Instruction
Formats Expression
 Processor-Specific ELF for PA-RISC, Version 1.43 7

Relocations

The range of relocation types from 128 through 255 is reserved for environment-specific use.

PCREL14DR 76 Load/Store Doubleword (3) R(symbol – PC – 8 + addend)

PCREL16F 77 Load/Store (1) symbol – PC – 8 + addend

PCREL16WF 78 Load/Store Mod. Comp. (2) symbol – PC – 8 + addend

PCREL16DF 79 Load/Store Doubleword (3) symbol – PC – 8 + addend

DIR64 80 64-bit doubleword symbol + addend

DIR14WR 83 Load/Store Mod. Comp. (2) RR(symbol, addend)

DIR14DR 84 Load/Store Doubleword (3) RR(symbol, addend)

DIR16F 85 Load/Store (1) symbol + addend

DIR16WF 86 Load/Store Mod. Comp. (2) symbol + addend

DIR16DF 87 Load/Store Doubleword (3) symbol + addend

GPREL64 88 64-bit doubleword symbol – GP + addend

GPREL14WR 91 Load/Store Mod. Comp. (2) RR(symbol – GP, addend)

GPREL14DR 92 Load/Store Doubleword (3) RR(symbol – GP, addend)

GPREL16F 93 Load/Store (1) symbol – GP + addend

GPREL16WF 94 Load/Store Mod. Comp. (2) symbol – GP + addend

GPREL16DF 95 Load/Store Doubleword (3) symbol – GP + addend

LTOFF64 96 64-bit doubleword ltoff(symbol + addend)

LTOFF14WR 99 Load/Store Mod. Comp. (2) R(ltoff(symbol + addend))

LTOFF14DR 100 Load/Store Doubleword (3) R(ltoff(symbol + addend))

LTOFF16F 101 Load/Store (1) ltoff(symbol + addend)

LTOFF16WF 102 Load/Store Mod. Comp. (2) ltoff(symbol + addend)

LTOFF16DF 103 Load/Store Doubleword (3) ltoff(symbol + addend)

SECREL64 104 64-bit doubleword symbol – SECT + addend

SEGREL64 112 64-bit doubleword symbol – SB + addend

PLTOFF14WR 115 Load/Store Mod. Comp. (2) RR(pltoff(symbol), addend)

PLTOFF14DR 116 Load/Store Doubleword (3) RR(pltoff(symbol), addend)

PLTOFF16F 117 Load/Store (1) pltoff(symbol) + addend

PLTOFF16WF 118 Load/Store Mod. Comp. (2) pltoff(symbol) + addend

PLTOFF16DF 119 Load/Store Doubleword (3) pltoff(symbol) + addend

LTOFF_FPTR64 120 64-bit doubleword ltoff(fptr(symbol+addend))

LTOFF_FPTR14WR 123 Load/Store Mod. Comp. (2) R(ltoff(fptr(symbol+addend)))

LTOFF_FPTR14DR 124 Load/Store Doubleword (3) R(ltoff(fptr(symbol+addend)))

LTOFF_FPTR16F 125 Load/Store (1) ltoff(fptr(symbol+addend))

LTOFF_FPTR16WF 126 Load/Store Mod. Comp. (2) ltoff(fptr(symbol+addend))

LTOFF_FPTR16DF 127 Load/Store Doubleword (3) ltoff(fptr(symbol+addend))

LORESERVE 128

HIRESERVE 255

Name Value
Instruction
Formats Expression
8 Processor-Specific ELF for PA-RISC, Version 1.43

Relocations

The HP-specific relocation types defined for 64-bit applications on the PA-RISC architecture are
shown in the table below. All mnemonics have the prefix “R_PARISC_”.

The functions and special symbols used in the expression column are defined below:

GP The gp value for the current load module. This is used for computing a gp-relative
displacement. (In 32-bit programs, this is the value of the symbol __dp or __dlt,
depending on whether the module is PIC or not. In 64-bit programs, the gp value
is assigned by the linker.)

PC The address of the current instruction. This is used to compute a pc-relative
displacement.

SB Segment base address used for segment-relative relocations. Every segment-
relative relocation uses an implicit segment base, which is designated by the
nearest preceding SEGBASE relocation within the same relocation section.

SECT The address of the beginning of the (output) section containing the data item of
instruction being relocated.

L(), R(), LR(), RR() Field selector functions. These are described in Figure 1.

ltoff() For dlt-relative indirect references, the displacement is the gp-relative address of
the linkage table entry that holds the address of the given symbol. This offset is
represented in the tables by the function ltoff().

Name Value Data/Inst. Format Expression

COPY 128 data Dynamic relocations only; see text

IPLT 129 PLT

EPLT 130 PLT

TPREL32 153 32-bit word symbol – TP + addend

TPREL21L 154 Long Immediate (7) LR(symbol – TP, addend)

TPREL14R 158 Load/Store (1) RR(symbol – TP, addend)

LTOFF_TP21L 162 Long Immediate (7) L(ltoff(symbol – TP + addend))

LTOFF_TP14R 166 Load/Store (1) R(ltoff(symbol – TP + addend))

LTOFF_TP14F 167 Load/Store (1) ltoff(symbol – TP + addend)

TPREL64 216 64-bit word symbol – TP + addend

TPREL14WR 219 Load/Store Mod. Comp. (2) RR(symbol – TP, addend)

TPREL14DR 220 Load/Store Doubleword (3) RR(symbol – TP, addend)

TPREL16F 221 Load/Store (1) symbol – TP + addend

TPREL16WF 222 Load/Store Mod. Comp. (2) symbol – TP + addend

TPREL16DF 223 Load/Store Doubleword (3) symbol – TP + addend

LTOFF_TP64 224 64-bit doubleword ltoff(symbol – TP + addend)

LTOFF_TP14WR 227 Load/Store Mod. Comp. (2) R(ltoff(symbol – TP + addend))

LTOFF_TP14DR 228 Load/Store Doubleword (3) R(ltoff(symbol – TP + addend))

LTOFF_TP16F 229 Load/Store (1) ltoff(symbol – TP + addend)

LTOFF_TP16WF 230 Load/Store Mod. Comp. (2) ltoff(symbol – TP + addend)

LTOFF_TP16DF 231 Load/Store Doubleword (3) ltoff(symbol – TP + addend)
 Processor-Specific ELF for PA-RISC, Version 1.43 9

Relocations
fptr() Evaluates to the address of the “official” plabel descriptor for the given symbol.

pltoff() Requests the creation of a local procedure linkage table (PLT) entry for the given
symbol, and computes the gp-relative displacement of that PLT entry. The
dynamic loader will copy the “official” plabel descriptor into the PLT entry.

TP The link-time “value” of the thread pointer, for computing tp-relative offsets. The
link-time value of the thread pointer or of a thread-local symbol has no meaning
except in computing tp-relative offsets.

The IPLT, EPLT, and COPY relocations are used for dynamic relocations only, and are described in
Section 10.

All direct, dp/gp-relative, dlt-relative, and base-relative effective address calculations use the LR and
RR rounding modes. In these rounding modes, the left part is computed based on a rounded addend
instead of the actual addend. The addend is rounded to the nearest multiple of 8K (213) prior to
computing the effective address. The right part is computed as the difference between the full value of
the expression and the value used in the corresponding left-part relocation. Because the difference
between the original addend and the rounded addend can be no larger than ±4K, this result will
always fit in a signed 14- or 16-bit field. This permits several load and store instructions to reuse the
result of a single ADDIL or LDIL instruction, as long as the symbol index and the rounded value of the
addend are identical.

For pc-relative relocations, the standard L and R rounding modes are used. The expression is
computed based on the actual effective address.

The C language functions in Figure 1 define the operation of the LR, RR, L, and R functions.

unsigned long LR(unsigned long x, unsigned long addend)
{

return L(x + RND(addend));
}

unsigned long RR(unsigned long x, unsigned long addend)
{

return R(x + RND(addend)) + (addend – RND(addend));
}

unsigned long L(unsigned long x)
{

return (x & 0xf f f f f800);
}

unsigned long R(unsigned long x)
{

return (x & 0x0000007ff);
}

unsigned long RND(unsigned long x)
{

return ((x + 0x1000) & ~0x1ff f);
}

Figure 1. Rounding Operations
10 Processor-Specific ELF for PA-RISC, Version 1.43

Relocations
The relocations are numbered in a pattern for convenience in decoding them into expression types
and instruction formats. The following two tables show how these properties can be derived from the
relocation number. The first table identifies the instruction format, based on the low-order three bits
of the relocation type, and the bit in the 26 position.

The next table identifies the expression type, based on the result of dividing the relocation type by 8
(discarding the remainder). The basic expression type may be modified by L, R, LR, and RR field
selector functions, based on the instruction format.

Each instruction format implies how the bits are copied from the expression value to the instruction
being relocated. The formats and dispersal of these bits are illustrated in Figure 2. In the
illustrations, only the low-order 32 bits of the expression value are shown.

Instruction Format

x0xx xxxx x1xx xxxx

xxxx x000 None 64-bit doubleword

xxxx x001 32-bit word 32-bit word or Branch & Link (21)

xxxx x010 Long Immediate (7) Branch & Link (21)

xxxx x011 Branch External (19) Load/Store Mod. Comp. (2), 14-bit disp.

xxxx x100 Branch External (19) or Branch (20) Load/Store Doubleword (3), 14-bit disp.

xxxx x101 Branch (20) Load/Store (1), 16-bit disp.

xxxx x110 Load/Store (1), 14-bit disp. Load/Store Mod. Comp. (2), 16-bit disp.

xxxx x111 Load/Store (1), 14-bit disp. Load/Store Doubleword (3), 16-bit disp.

Type/8 Basic Expression Type

0 or 10 symbol + addend

1 or 9 symbol – PC + addend

2 symbol – GP + addend (32-bit non-PIC)

3 or 11 symbol – GP + addend

4 or 12 ltoff(symbol + addend)

5 or 13 symbol – SECT + addend (SECREL32, SECREL64)
symbol – base + addend (all others)

6 or 14 symbol – SB + addend (SEGREL32, SEGREL64)
pltoff(symbol) + addend (all others)

7 or 15 ltoff(fptr(symbol))

8 fptr(symbol)
 Processor-Specific ELF for PA-RISC, Version 1.43 11

Relocations
Figure 2. Instruction Formats

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Long Immediate (7)

Branch External (19), Branch (20)

Load/Stores (1), 14-bit displacement

Branch & Link (21)

Load/Store Word Modify Complement (2), 14-bit displacement

Load/Store Word Modify Complement (2), 16-bit displacement

Load/Store Doubleword (3), 14-bit displacement

Load/Store Doubleword (3), 16-bit displacement

Load/Store (1), 16-bit displacement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b ab

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b c ab* c

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b 00 ab

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b c 00 acb*

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b 000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b c 000

ab

ab* c

a b c d e abcd e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b c 00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

a b c 00

d

d e

ab cd

ab c de

Expression value Instruction bits

b* =
b, if a = 0

~b, if a = 1{
12 Processor-Specific ELF for PA-RISC, Version 1.43

Program header table
8. Program header table

The following table shows the segment types that are specific to PA-RISC:

The following table shows the segment attributes that are specific to PA-RISC.

9. Note sections

There are no note section types defined specifically for PA-RISC.

10. Dynamic table

Initialization and termination functions are specified using the .init and .fini sections, with the
DT_INITARRAY, DT_FINIARRAY, DT_INITARRAYSZ, and DT_FINIARRAYSZ dynamic table entries. The
dynamic table entries define the base address and length of the .init and .fini sections, which each
contain an array of function pointers. When a module is first loaded (at startup for the main program),
each function in the .init list is called in sequence. These initializers are invoked for DLLs before those
for the main program. Similarly, the functions in the .fini list are called when a module is unloaded.
HP-UX does not support the DT_INIT and DT_FINI dynamic table entries.

The DT_PLTGOT dynamic table entry is used to specify the global pointer (gp) value for the load
module. The d_ptr field contains a link-time virtual address that must be relocated by the dynamic
loader. The relocated value is used as the gp value for all functions in the load module.

Dynamic relocations use the “Rel” relocation format, where the addend is obtained from the word
being relocated. The following relocations may be used as dynamic relocations: NONE, DIR32, DIR64,
and FPTR64.

The following HP-specific and HP-UX-specific relocations may also be used as dynamic relocations:
TPREL64, IPLT, EPLT, and COPY.

The IPLT relocation refers to a procedure linkage table (PLT) entry that must be initialized with a
copy of the function descriptor for the given symbol. The linker creates these dynamic relocations for
the PLT entry that is created on behalf of a PLTOFF relocation.

The EPLT relocation refers to an function descriptor for a function entry point. The linker creates a
function descriptor for each exported functions and for each non-exported function that has been
referenced by an fptr() operation. A function descriptor is 16 bytes in length. The dynamic loader must
relocate the first 8-byte doubleword with the address of the function entry point, and the second
doubleword with the gp value for the current load module.

Name Value Meaning

PT_PARISC_ARCHEXT 0x70000000 Segment contains .PARISC.archext section, as described
in Section 3. If this program header table entry is
present, it must precede all entries of type PT_LOAD or
PT_INTERP.

PT_PARISC_UNWIND 0x70000001 Segment contains the .unwind section.

Name Value Meaning

PF_PARISC_SBP 0x08000000 Segment contains code compiled for static branch
prediction
 Processor-Specific ELF for PA-RISC, Version 1.43 13

Hash table
The COPY relocation is used for data defined in a DLL that must be copied into this load module’s
data segment. The symbol referenced by this relocation specifies a symbol that should be defined both
in this load module and in a DLL. At execution time, the dynamic loader copies the data associated
with the symbol from the DLL to the location specified by the offset field of the relocation.

11. Hash table

There are no processor-specific extensions to the hash table for the PA-RISC architecture.
14 Processor-Specific ELF for PA-RISC, Version 1.43

	1.�� Overview of an ELF file
	2.�� Data representation
	3.�� File Header
	4.�� Sections
	Section Indices
	Section Header Entries

	5.�� String tables
	6.�� Symbol Table
	7.�� Relocations
	8.�� Program header table
	9.�� Note sections
	10.�� Dynamic table
	11.�� Hash table

