

ELF-64 Object File Format

Including HP and HP-UX Extensions

Version 1.4
May 20, 1997

This document describes the current HP/Intel definition of the ELF-64 object file format. It is, for the
most part, a simple extension of the ELF-32 format as defined originally by AT&T, although some
fields have been rearranged to keep all fields naturally aligned without any internal padding in the
structures. It also contains the HP vendor-specific and HP-UX environment-specific extensions to
ELF.

Additional detail about the ELF-32 format may be obtained from any of the following sources:

❏ Unix System V Release 4 Programmer’s Guide: ANSI C and Programming Support Tools

❏ System V Application Binary Interface, Revised Edition

❏ System V Interface Definition, Third Edition

❏ Tool Interface Standards: Portable Formats Specification, Version 1.0

The processor-specific details of the ELF formats are covered in separate supplements. As much as
possible, processor-specific definitions apply equally to ELF-32 and ELF-64.

Many implementations of ELF also include symbolic debug information in the DWARF format. We
regard the choice of debug format as a separate issue, and do not include debug information in this
specification.

1. Overview of an ELF file

An ELF object file consists of the following parts:

❏ File header, which must appear at the beginning of the file.

❏ Section table, required for relocatable files, and optional for loadable files.

❏ Program header table, required for loadable files, and optional for relocatable files. This table
describes the loadable segments and other data structures required for loading a program or
dynamically-linked library in preparation for execution.

❏ Contents of the sections or segments, including loadable data, relocations, and string and
symbol tables.

Relocatable and loadable object files are illustrated in Figure 1. The contents of these parts are
described in the following sections.
 ELF-64 Object File Format, Version 1.4 1

Data representation

2. Data representation

The data structures described in this document are described in a machine-independent format, using
symbolic data types shown in the following table. For 64-bit processors, these data types have the
sizes and alignments shown.

The data structures are arranged so that fields are aligned on their natural boundaries and the size of
each structure is a multiple of the largest field in the structure without padding.

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Off 8 8 Unsigned file offset

Elf64_Half 2 2 Unsigned medium integer

Elf64_Word 4 4 Unsigned integer

Elf64_Sword 4 4 Signed integer

Elf64_Xword 8 8 Unsigned long integer

Elf64_Sxword 8 8 Signed long integer

unsigned char 1 1 Unsigned small integer

Figure 1. Structure of an ELF file

ELF Header

Section header table

Section 1

Section 2

. . .

Section n

Program header table
(optional)

ELF Header

Program header table

Segment 1

Segment 2

. . .

Section header table
(optional)

Relocatable File Loadable File
2 ELF-64 Object File Format, Version 1.4

File header

3. File header

The file header is located at the beginning of the file, and is used to locate the other parts of the file.
The structure is shown in Figure 2.

The fields in the ELF header have the following meanings:

e_ident These 16 bytes identify the file as an ELF object file, and provide information
about the data representation of the object file structures. The bytes of this array
that have defined meanings are detailed below. The remaining bytes are reserved
for future use, and should be set to zero. Each byte of the array is indexed
symbolically using the names in the following table:

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1

EI_MAG2 2

EI_MAG3 3

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_OSABI 7 OS/ABI identification

EI_ABIVERSION 8 ABI version

EI_PAD 9 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

typedef struct
{

unsigned char e_ident[16]; /* ELF identification */
Elf64_Half e_type; /* Object file type */
Elf64_Half e_machine; /* Machine type */
Elf64_Word e_version; /* Object file version */
Elf64_Addr e_entry; /* Entry point address */
Elf64_Off e_phoff; /* Program header offset */
Elf64_Off e_shoff; /* Section header offset */
Elf64_Word e_flags; /* Processor-specific flags */
Elf64_Half e_ehsize; /* ELF header size */
Elf64_Half e_phentsize; /* Size of program header entry */
Elf64_Half e_phnum; /* Number of program header entries */
Elf64_Half e_shentsize; /* Size of section header entry */
Elf64_Half e_shnum; /* Number of section header entries */
Elf64_Half e_shstrndx; /* Section name string table index */

} Elf64_Ehdr;

Figure 2. ELF-64 Header
 ELF-64 Object File Format, Version 1.4 3

File header

e_ident[EI_MAG0] through e_ident[EI_MAG3]
These bytes contain a “magic number,” identifying the file as an ELF object file.
They contain the characters ‘\x7f ’, ‘E’, ‘L’, and ‘F’, respectively.

e_ident[EI_CLASS] Identifies the class of the object file, or its capacity. The following table shows the
possible values:

This document describes the structures for ELFCLASS64.

The class of the ELF file is independent of the data model assumed by the object
code. The EI_CLASS field identifies the file format; a processor-specific flag in the
e_flags field, described below, may be used to identify the application’s data model
if the processory supports multiple models.

e_ident[EI_DATA] Specifies the data encoding of the object file data structures.

For the convenience of code that examines ELF object files at run time (e.g., the
dynamic loader), it is intended that the data encoding of the object file will match
that of the running program. For environments that support both byte orders, a
processor-specific flag in the e_flags field, described below, may be used to identify
the application’s operating mode.

e_ident[EI_VERSION]
Identifies the version of the object file format. Currently, this field has the value
EV_CURRENT, which is defined with the value 1.

e_ident[EI_OSABI] Identifies the operating system and ABI for which the object is prepared. Some
fields in other ELF structures have flags and values that have environment-
specific meanings; the interpretation of those fields is determined by the value of
this field. The following table shows the currently-defined values for this field:

This document includes extensions for the HP-UX operating system. All material
labeled as an HP or HP-UX extension is applicable only to object files marked with
ELFOSABI_HPUX in this field.

e_ident[EI_ABIVERSION]
Identifies the version of the ABI for which the object is prepared. This field is used
to distinguish among incompatible versions of an ABI. The interpretation of this
version number is dependent on the ABI identified by the EI_OSABI field.

Name Value Meaning

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

Name Value Meaning

ELFDATA2LSB 1 Object file data structures are little-endian

ELFDATA2MSB 2 Object file data structures are big-endian

Name Value Meaning

ELFOSABI_SYSV 0 System V ABI

ELFOSABI_HPUX 1 HP-UX operating system

ELFOSABI_STANDALONE 255 Standalone (embedded) application
4 ELF-64 Object File Format, Version 1.4

File header

For applications conforming to the System V ABI, third edition, this field should
contain 0.

Applications conforming to the HP-UX ABI defined for HP-UX Release 11.0
should have the value 1 in this field. A value of 0 in this field indicates that no
version is specified, and no compatibility checking should be applied to the object
module.

e_type Identifies the object file type. The processor-independent values for this field are
shown in the following table.

One object file type is specific to the HP-UX operating environment. It is shown in
the following table.

e_machine Identifies the target architecture. These values are defined in the processor-
specific supplements.

e_version Identifies the version of the object file format. Currently, this field has the value
EV_CURRENT, which is defined with the value 1.

e_entry The virtual address of the program entry point. If there is no entry point, this field
contains zero.

e_phoff The file offset, in bytes, of the program header table.

e_shoff The file offset, in bytes, of the section header table.

e_flags Processor-specific flags.

e_ehsize Size, in bytes, of the ELF header.

e_phentsize Size, in bytes, of a program header table entry.

e_phnum Number of entries in the program header table.

e_shentsize Size, in bytes, of a section header table entry.

e_shnum Number of entries in the section header table.

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable object file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOOS 0xFE00 Defines a range of object file types that is
reserved for environment-specific useET_HIOS 0xFEFF

ET_LOPROC 0xFF00 Defines a range of object file types that is
reserved for processor-specific useET_HIPROC 0xFFFF

Name Value Meaning

ET_HP_IFILE 0xFE00 Intermediate object code
 ELF-64 Object File Format, Version 1.4 5

Sections

e_shstrndx Section header table index of the section containing the section name string table.
If there is no section name string table, this field has the value SHN_UNDEF.

4. Sections

Sections contain all the information in an ELF file, except for the ELF header, program header table,
and section header table. Sections are identified by an index into the section header table.

Section indices

Section index 0, and indices in the range 0xFF00–0xFFFF are reserved for special purposes. The
following special indices are currently defined:

The first entry in the section header table (with an index of 0) is reserved, and must contain all zeroes.

One special section index is specific to the HP-UX operating environment. It is shown in the following
table.

Name Value Meaning

SHN_UNDEF 0 Used to mark an undefined or meaningless section
reference

SHN_LOPROC 0xFF00 Defines a range of section indices that is reserved for
processor-specific useSHN_HIPROC 0xFF1F

SHN_LOOS 0xFF20 Defines a range of section indices that is reserved for
environment-specific useSHN_HIOS 0xFF3F

SHN_ABS 0xFFF1 Indicates that the corresponding reference is an
absolute value

SHN_COMMON 0xFFF2 Indicates a symbol that has been declared as a common
block (Fortran COMMON or C tentative declaration)

Name Value Meaning

SHN_TLS_COMMON 0xFF20 Indicates a symbol that has been declared as a common
block in thread-local storage (Fortran COMMON or C
tentative declaration)
6 ELF-64 Object File Format, Version 1.4

Sections

Section header entries

The structure of a section header is shown in Figure 3.

sh_name Offset, in bytes, to the section name, relative to the start of the section name
string table.

sh_type Identifies the section type. The processor-independent values for this field are
shown in the following table.

Name Value Meaning

SHT_NULL 0 Marks an unused section header

SHT_PROGBITS 1 Contains information defined by
the program

SHT_SYMTAB 2 Contains a linker symbol table

SHT_STRTAB 3 Contains a string table

SHT_RELA 4 Contains “Rela” type relocation
entries

SHT_HASH 5 Contains a symbol hash table

SHT_DYNAMIC 6 Contains dynamic linking tables

SHT_NOTE 7 Contains note information

SHT_NOBITS 8 Contains uninitialized space; does
not occupy any space in the file

SHT_REL 9 Contains “Rel” type relocation
entries

SHT_SHLIB 10 Reserved

SHT_DYNSYM 11 Contains a dynamic loader symbol
table

SHT_LOOS 0x60000000 Defines a range of section types
that is reserved for environment-
specific use

SHT_HIOS 0x6FFFFFFF

Figure 3. ELF-64 Section Header

typedef struct
{

Elf64_Word sh_name; /* Section name */
Elf64_Word sh_type; /* Section type */
Elf64_Xword sh_flags; /* Section attributes */
Elf64_Addr sh_addr; /* Virtual address in memory */
Elf64_Off sh_offset; /* Offset in file */
Elf64_Xword sh_size; /* Size of section */
Elf64_Word sh_link; /* Link to other section */
Elf64_Word sh_info; /* Miscellaneous information */
Elf64_Xword sh_addralign; /* Address alignment boundary */
Elf64_Xword sh_entsize; /* Size of entries, if section has table */

} Elf64_Shdr;
 ELF-64 Object File Format, Version 1.4 7

Sections
The section types specific to the HP-UX operating environment are shown in the
following table.

sh_flags Identifies the attributes of the section. The processor-independent values for these
flags are shown in the following table.

Section attributes specific to the HP-UX operating environment are shown in the
following table.

sh_addr Virtual address of the beginning of the section in memory. If the section is not
allocated to the memory image of the program, this field should be zero.

sh_offset Offset, in bytes, of the beginning of the section contents in the file.

SHT_LOPROC 0x70000000 Defines a range of section types
that is reserved for processor-
specific use

SHT_HIPROC 0x7FFFFFFF

Name Value Meaning

SHT_HP_OVLBITS 0x60000000 Contains information defined by
the program that should overlay
other instances of the same section

SHT_HP_DLKM 0x60000001 Contains information for
dynamically-loaded kernel
modules

SHT_HP_COMDAT 0x60000002 Contains a directory of sections
that may be duplicated in other
object files

Name Value Meaning

SHF_WRITE 0x1 Section contains writable data

SHF_ALLOC 0x2 Section is allocated in memory
image of program

SHF_EXECINSTR 0x4 Section contains executable
instructions

SHF_MASKOS 0x0F000000 These bits are reserved for
environment-specific use

SHF_MASKPROC 0xF0000000 These bits are reserved for
processor-specific use

Name Value Meaning

SHF_HP_TLS 0x01000000 Section contains thread-local
storage

SHF_HP_NEAR_SHARED 0x02000000 Section contains near-shared data

SHF_HP_FAR_SHARED 0x04000000 Section contains far-shared data

SHF_HP_COMDAT 0x08000000 Section is a member of a comdat
group

Name Value Meaning
8 ELF-64 Object File Format, Version 1.4

Sections
sh_size Size, in bytes, of the section. Except for SHT_NOBITS sections, this is the amount
of space occupied in the file.

sh_link Contains the section index of an associated section. This field is used for several
purposes, depending on the type of section, as explained in the following table.

sh_info Contains extra information about the section. This field is used for several
purposes, depending on the type of section, as explained in the following table.

For SHT_HP_COMDAT and SHT_HP_OVLBITS sections, this field contains
selection and merge criteria for the section. See “Comdat section groups” and
“Overlay sections” below.

sh_addralign Alignment required. This field must be a power of two.

sh_entsize For sections that contain fixed-size entries, this field contains the size, in bytes, of
each entry. Otherwise, this field contains zero.

Standard sections

The standard sections used for program code and data are shown in the following table. In the flags
column, “A” stands for SHF_ALLOC, “W” for SHF_WRITE, and “X” for SHF_EXECINSTR.

Section Type Associated Section

SHT_DYNAMIC String table used by entries in this section

SHT_HASH Symbol table to which the hash table applies

SHT_REL
SHT_RELA

Symbol table referenced by relocations

SHT_SYMTAB
SHT_DYNSYM

String table used by entries in this section

Other SHN_UNDEF

Section Type sh_info

SHT_REL
SHT_RELA

Section index of section to which the relocations apply

SHT_SYMTAB
SHT_DYNSYM

Index of first non-local symbol (i.e., number of local
symbols)

Other 0

Section Name Section Type Flags Use

.bss SHT_NOBITS A, W Uninitialized data

.data SHT_PROGBITS A, W Initialized data

.interp SHT_PROGBITS [A] Program interpreter path name

.rodata SHT_PROGBITS A Read-only data (constants and literals)

.text SHT_PROGBITS A, X Executable code
 ELF-64 Object File Format, Version 1.4 9

Sections
Sections that are specific to the HP-UX operating system are shown in the following table. In the
“Flags” column, “T” stands for SHF_HP_TLS, “NS” for SHF_HP_NEAR_SHARED, and “FS” for
SHF_HP_FAR_SHARED.

The standard sections used for other object file information are shown in the following table.

Comdat section groups

A comdat (short for “common data”) section group is a group of sections in an object file that may be
duplicated in one or more other object files. The linker is expected to keep one group and ignore all
others. A comdat group consists of one SHT_HP_COMDAT section and one or more member sections.
Global symbols defined relative to any ignored sections will be treated as unsatisfied symbols; local
symbols will be discarded.

The SHT_HP_COMDAT section serves as a directory of the member sections, which allows the linker
to associate the members of the group with one another, and with a key that identifies each group.
The name of the SHT_HP_COMDAT section serves as the key. Members of a comdat group are
ordinary sections, except that each member section must have the SHF_HP_COMDAT attribute set in
its section header entry.

Section Name Section Type Flags Use

.fini SHT_PROGBITS A, W Process termination code

.init SHT_PROGBITS A, W Process initialization code

.preinit SHT_PROGBITS A, W Process pre-initialization code

.tbss SHT_NOBITS A, W, T Uninitialized thread-local storage

.HP.nsdata SHT_PROGBITS A, W, NS Initialized near-shared data

.HP.nsbss SHT_NOBITS A, W, NS Uninitialized near-shared data

.HP.fsdata SHT_PROGBITS A, W, FS Initialized far-shared data

.HP.fsbss SHT_NOBITS A, W, FS Uninitialized far-shared data

Section Name Section Type Flags Use

.comment SHT_PROGBITS none Version control information

.dynamic SHT_DYNAMIC A[, W] Dynamic linking tables

.dynstr SHT_STRTAB A String table for .dynamic section

.dynsym SHT_DYNSYM A Symbol table for dynamic linking

.got SHT_PROGBITS mach. dep. Global offset table

.hash SHT_HASH A Symbol hash table

.note SHT_NOTE none Note section

.plt SHT_PROGBITS mach. dep. Procedure linkage table

.relname

.relaname
SHT_REL
SHT_RELA

[A] Relocations for section name

.shstrtab SHT_STRTAB none Section name string table

.strtab SHT_STRTAB none String table

.symtab SHT_SYMTAB [A] Linker symbol table
10 ELF-64 Object File Format, Version 1.4

Sections
The section header entry for the SHT_HP_COMDAT section must be constructed as follows:

sh_name Offset, in bytes, to the identifier for the comdat group, relative to the start of the
section name string table.

sh_type This field must contain the value SHT_HP_COMDAT.

sh_flags This field must be set to 0.

sh_addr This field is not used, and must be set to 0.

sh_offset Offset, in bytes, to the beginning of the directory, relative to the start of the file
header.

sh_size Size, in bytes, of the directory.

sh_link This field is not used, and must be set to 0.

sh_info The valid selection criteria for a comdat section are shown in the following table.

sh_addralign This field is not used, and must be set to 0.

sh_entsize Size, in bytes, of each entry in the directory. This value is currently 4 (the size of
an Elf64_Word).

The comdat group directory is an array of section indices. Each entry is an Elf64_Word object, whose
value is the section index of a member section of the comdat group.

Overlay sections

An overlay section contains data that is meant to overlay the contents of other sections with the same
section name. Each input section in an overlay is assigned the same starting address; the size of the
combined output section is the equal to the largest of the input sections in the overlay. The method for
combining the data from each input section is dependent on the selection criteria, described below.

The fields of an overlay section header entry have the same interpretation as those for an
SHT_PROGBITS section, with the following exception:

sh_info The valid selection criteria for an overlay section are shown in the following table.

When overlay sections use the SHI_HP_MERGE method of combining contents, the contents of each
input section are divided into one or more regions, each one of which is designated “opaque” or
“transparent.” A transparent region will not overwrite the corresponding region of any other section
in the same overlay. If part of the combined output section is covered by opaque regions from more
than one input section, the linker will select one of the opaque regions arbitrarily. Relocations for all
input sections may be processed; at a minimum, relocations corresponding to each selected opaque
region will be processed. It is the compiler’s responsibility to ensure that the application of multiple
relocations for the same location will not cause incorrect behavior.

Name Value Meaning

SHI_HP_PICKANY 1 Pick any one instance of this section group

Name Value Meaning

SHI_HP_MERGE 0 Merge all instances of this section together;
transparent regions within one section will not
overwrite opaque regions of another section
 ELF-64 Object File Format, Version 1.4 11

String tables
The contents of an overlay section with SHI_HP_MERGE selection are considered transparent by
default; opaque regions are designated by the use of special STT_HP_OPAQUE symbols, described in
Section 6. The section contents in the object file must include the transparent regions; these regions
should be filled with zeroes. The linker, however, will ignore the transparent regions, and read only
the opaque regions.

5. String tables

String table sections contain strings used for section names and symbol names. A string table is just
an array of bytes containing null-terminated strings. Section header table entries, and symbol table
entries refer to strings in a string table with an index relative to the beginning of the string table. The
first byte in a string table is defined to be null, so that the index 0 always refers to a null or non-
existent name.

6. Symbol table

The first symbol table entry is reserved and must be all zeroes. This index has a defined name:

The structure of a symbol table entry is shown in Figure 4.

st_name Offset, in bytes, to the symbol name, relative to the start of the symbol string
table. If this field contains zero, the symbol has no name.

st_info This field contains the symbol type and its binding attributes (that is, its scope).
The binding attributes are contained in the high-order four bits of the eight-bit
byte, and the symbol type is contained in the low-order four bits. The processor-
independent binding attributes are shown in the following table.

Name Value

STN_UNDEF 0

Name Value Meaning

STB_LOCAL 0 Not visible outside the object file

STB_GLOBAL 1 Global symbol, visible to all object files

STB_WEAK 2 Global scope, but with lower precedence than
global symbols

Figure 4. ELF-64 Symbol Table Entry

typedef struct
{

Elf64_Word st_name; /* Symbol name */
unsigned char st_info; /* Type and Binding attributes */
unsigned char st_other; /* Reserved */
Elf64_Half st_shndx; /* Section table index */
Elf64_Addr st_value; /* Symbol value */
Elf64_Xword st_size; /* Size of object (e.g., common) */

} Elf64_Sym;
12 ELF-64 Object File Format, Version 1.4

Symbol table
The processor-independent values for symbol type are shown in the following
table.

The following table shows the symbol type defined for the HP-UX operating
system.

An STT_FILE symbol must have STB_LOCAL binding, its section index must be
SHN_ABS, and it must precede all other local symbols for the file.

An STT_HP_OPAQUE symbol designates an opaque region within an overlay
section (see “Overlay sections” in Section 4). The symbol value and size are used to
identify the region. The symbol name is ignored; it may be null. The symbol should
have STB_LOCAL binding. An overlay section may have any number of opaque
symbols, and the regions designated by multiple symbols may overlap. All
STT_HP_OPAQUE symbols are discarded during a final link.

st_other Reserved for future use; must be zero.

st_shndx Section index of the section in which the symbol is “defined.” For undefined
symbols, this field contains SHN_UNDEF; for absolute symbols, it contains
SHN_ABS; and for common symbols, it contains SHN_COMMON.

st_value Contains the value of the symbol. This may be an absolute value or a relocatable
address.

STB_LOOS 10 Defines a range of binding attributes that is
reserved for environment-specific useSTB_HIOS 12

STB_LOPROC 13 Defines a range of binding attributes that is
reserved for processor-specific useSTB_HIPROC 15

Name Value Meaning

STT_NOTYPE 0 No type specified (e.g., an absolute symbol)

STT_OBJECT 1 Data object

STT_FUNC 2 Function entry point

STT_SECTION 3 Symbol is associated with a section

STT_FILE 4 Source file associated with the object file

STT_LOOS 10 Defines a range of symbol types that is reserved
for environment-specific useSTT_HIOS 12

STT_LOPROC 13 Defines a range of symbol types that is reserved
for processor-specific useSTT_HIPROC 15

Name Value Meaning

STT_HP_OPAQUE 11 Designates an opaque region within an overlay
section

STT_HP_STUB 12 Identifies the beginning of a contiguous region of
stubs.

Name Value Meaning
 ELF-64 Object File Format, Version 1.4 13

Relocations
In relocatable files, this field contains the alignment constraint for common
symbols, and a section-relative offset for defined relocatable symbols.

In executable and shared object files, this field contains a virtual address for
defined relocatable symbols.

st_size Size associated with the symbol. If a symbol does not have an associated size, or
the size is unknown, this field contains zero.

7. Relocations

The ELF format defines two standard relocation formats, “Rel” and “Rela.” The first form is shorter,
and obtains the addend part of the relocation from the original value of the word being relocated. The
second form provides an explicit field for a full-width addend. The structure of relocation entries is
shown in Figure 5.

r_offset Indicates the location at which the relocation should be applied. For a relocatable
file, this is the offset, in bytes, from the beginning of the section to the beginning of
the storage unit being relocated. For an executable or shared object, this is the
virtual address of the storage unit being relocated.

r_info Contains both a symbol table index and a relocation type. The symbol table index
identifies the symbol whose value should be used in the relocation. Relocation
types are processor specific. The symbol table index is obtained by applying the
ELF64_R_SYM macro to this field, and the relocation type is obtained by applying
the ELF64_R_TYPE macro to this field. The ELF64_R_INFO macro combines a
symbol table index and a relocation type to produce a value for this field. These
macros are defined as follows:

#define ELF64_R_SYM(i) ((i) >> 32)
#define ELF64_R_TYPE(i) ((i) & 0xf f f f f f f f L)
#define ELF64_R_INFO(s, t) (((s) << 32) + ((t) & 0xf f f f f f f f L))

r_addend Specifies a constant addend used to compute the value to be stored in the
relocated field.

Figure 5. ELF-64 Relocation Entries

typedef struct
{

Elf64_Addr r_offset; /* Address of reference */
Elf64_Xword r_info; /* Symbol index and type of relocation */

} Elf64_Rel;

typedef struct
{

Elf64_Addr r_offset; /* Address of reference */
Elf64_Xword r_info; /* Symbol index and type of relocation */
Elf64_Sxword r_addend; /* Constant part of expression */

} Elf64_Rela;
14 ELF-64 Object File Format, Version 1.4

Program header table
8. Program header table

In executable and shared object files, sections are grouped into segments for loading. The program
header table contains a list of entries describing each segment. The structure of the program header
table entry is shown in Figure 6.

p_type Identifies the type of segment. The processor-independent segment types are
shown in the following table.

Segment types that are specific to the HP-UX operating system are shown in the
following table.

Name Value Meaning

PT_NULL 0 Unused entry

PT_LOAD 1 Loadable segment

PT_DYNAMIC 2 Dynamic linking tables

PT_INTERP 3 Program interpreter path name

PT_NOTE 4 Note sections

PT_SHLIB 5 Reserved

PT_PHDR 6 Program header table

PT_LOOS 0x60000000 Defines a range of segment types
that is reserved for environment-
specific use

PT_HIOS 0x6FFFFFFF

PT_LOPROC 0x70000000 Defines a range of segment types
that is reserved for processor-specific
use

PT_HIPROC 0x7FFFFFFF

Name Value Meaning

PT_HP_TLS 0x60000000 Segment contains thread-local
storage

typedef struct
{

Elf64_Word p_type; /* Type of segment */
Elf64_Word p_flags; /* Segment attributes */
Elf64_Off p_offset; /* Offset in file */
Elf64_Addr p_vaddr; /* Virtual address in memory */
Elf64_Addr p_paddr; /* Reserved */
Elf64_Xword p_filesz; /* Size of segment in file */
Elf64_Xword p_memsz; /* Size of segment in memory */
Elf64_Xword p_align; /* Alignment of segment */

} Elf64_Phdr;

Figure 6. ELF-64 Program Header Table Entry
 ELF-64 Object File Format, Version 1.4 15

Program header table
p_flags Segment attributes. The processor-independent flags are shown in the following
table. The top eight bits are reserved for processor-specific use, and the next eight
bits are reserved for environment-specific use.

Segment attributes that are specific to the HP-UX operating system are shown in
the following table.

p_offset Offset, in bytes, of the segment from the beginning of the file.

PT_HP_CORE_NONE 0x60000001 Segment is part of a core file

PT_HP_CORE_VERSION 0x60000002

PT_HP_CORE_KERNEL 0x60000003

PT_HP_CORE_COMM 0x60000004

PT_HP_CORE_PROC 0x60000005

PT_HP_CORE_LOADABLE 0x60000006

PT_HP_CORE_STACK 0x60000007

PT_HP_CORE_SHM 0x60000008

PT_HP_CORE_MMF 0x60000009

PT_HP_PARALLEL 0x60000010 Segment contains parallel program
header

PT_HP_FASTBIND 0x60000011 Segment contains fastbind
information

Name Value Meaning

PF_X 0x1 Execute permission

PF_W 0x2 Write permission

PF_R 0x4 Read permission

PF_MASKOS 0x00FF0000 These flag bits are reserved for
environment-specific use

PF_MASKPROC 0xFF000000 These flag bits are reserved for
processor-specific use

Name Value Meaning

PF_HP_LAZYSWAP 0x00800000 Lazy-swap allocation allowed for this
segment

PF_HP_NEAR_SHARED 0x00400000 Segment should be allocated in near-
shared memory

PF_HP_FAR_SHARED 0x00200000 Segment should be allocated in far-
shared memory

PF_HP_PAGE_SIZE 0x00100000 Segment should be mapped with
page size specified in p_align field

PF_HP_MODIFY 0x00080000 Segment contains writable data that
is expected to be modified

PF_HP_CODE 0x00040000 Segment contains executable code

Name Value Meaning
16 ELF-64 Object File Format, Version 1.4

Note sections
p_vaddr Virtual address of the segment in memory.

p_paddr Reserved for systems with physical addressing.

p_filesz Size, in bytes, of the file image of the segment.

p_memsz Size, in bytes, of the memory image of the segment.

p_align Alignment constraint for the segment. Must be a power of two. The values of
p_offset and p_vaddr must be congruent modulo the alignment.

9. Note sections

Sections of type SHT_NOTE and segments of type PT_NOTE are used by compilers and other tools to
mark an object file with special information that has special meaning to a particular tool set. These
sections and segments contain any number of note entries, each of which is an array of 8-byte words
in the byte order defined in the ELF file header. The format of a note entry is shown in Figure 7.

namesz and name
The first word in the entry, namesz, identifies the length, in bytes, of a name
identifying the entry’s owner or originator. The name field contains a null-
terminated string, with padding as necessary to ensure 8-byte alignment for the
descriptor field. The length does not include the terminating null or the padding.
By convention, each vendor should use its own name in this field.

descsz and desc The second word in the entry, descsz, identifies the length of the note descriptor.
The desc field contains the contents of the note, followed by padding as necessary
to ensure 8-byte alignment for the next note entry. The format and interpretation
of the note contents are determined solely by the name and type fields, and are
unspecified by the ELF standard.

type The third word contains a number that determines, along with the originator’s
name, the interpretation of the note contents. Each originator controls its own
types.

Figure 7. Format of a Note Section

namesz

descsz

type

name

desc
 ELF-64 Object File Format, Version 1.4 17

Dynamic table
HP compilers define several note section types. Each note section is identified by the name “HP” and
one of the types shown in the following table. In all cases, the note descriptor contains a null-
terminated string.

10. Dynamic table

Dynamically-bound object files will have a PT_DYNAMIC program header entry. This program header
entry refers to a segment containing the .dynamic section, whose contents are an array of Elf64_Dyn
structures. The dynamic structure is shown in Figure 8.

d_tag Identifies the type of dynamic table entry. The type determines the interpretation
of the d_un union. The processor-independent dynamic table entry types are
shown in the following table. Other values, in the range 0x7000 0000–
0x7FFF FFFF, may be defined as processor-specific types.

Name Value Contents

NOTE_HP_COMPILER 1 Compiler identification string

NOTE_HP_COPYRIGHT 2 Copyright string

NOTE_HP_VERSION 3 Version string

Name Value d_un Meaning

DT_NULL 0 ignored Marks the end of the
dynamic array

DT_NEEDED 1 d_val The string table offset of the
name of a needed library.

DT_PLTRELSZ 2 d_val Total size, in bytes, of the
relocation entries associated
with the procedure linkage
table.

DT_PLTGOT 3 d_ptr Contains an address
associated with the linkage
table. The specific meaning of
this field is processor-
dependent.

typedef struct
{

Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;

extern Elf64_Dyn _DYNAMIC[];

Figure 8. Dynamic Table Structure
18 ELF-64 Object File Format, Version 1.4

Dynamic table
DT_HASH 4 d_ptr Address of the symbol hash
table, described below.

DT_STRTAB 5 d_ptr Address of the dynamic
string table.

DT_SYMTAB 6 d_ptr Address of the dynamic
symbol table.

DT_RELA 7 d_ptr Address of a relocation table
with Elf64_Rela entries.

DT_RELASZ 8 d_val Total size, in bytes, of the
DT_RELA relocation table.

DT_RELAENT 9 d_val Size, in bytes, of each
DT_RELA relocation entry.

DT_STRSZ 10 d_val Total size, in bytes, of the
string table.

DT_SYMENT 11 d_val Size, in bytes, of each symbol
table entry.

DT_INIT 12 d_ptr Address of the initialization
function.

DT_FINI 13 d_ptr Address of the termination
function.

DT_SONAME 14 d_val The string table offset of the
name of this shared object.

DT_RPATH 15 d_val The string table offset of a
shared library search path
string.

DT_SYMBOLIC 16 ignored The presence of this dynamic
table entry modifies the
symbol resolution algorithm
for references within the
library. Symbols defined
within the library are used to
resolve references before the
dynamic linker searches the
usual search path.

DT_REL 17 d_ptr Address of a relocation table
with Elf64_Rel entries.

DT_RELSZ 18 d_val Total size, in bytes, of the
DT_REL relocation table.

DT_RELENT 19 d_val Size, in bytes, of each
DT_REL relocation entry.

DT_PLTREL 20 d_val Type of relocation entry used
for the procedure linkage
table. The d_val member
contains either DT_REL or
DT_RELA.

DT_DEBUG 21 d_ptr Reserved for debugger use.

Name Value d_un Meaning
 ELF-64 Object File Format, Version 1.4 19

Dynamic table
The following table shows the dynamic table entries that are specific to the HP-
UX operating system:

DT_TEXTREL 22 ignored The presence of this dynamic
table entry signals that the
relocation table contains
relocations for a non-writable
segment.

DT_JMPREL 23 d_ptr Address of the relocations
associated with the
procedure linkage table.

DT_BIND_NOW 24 ignored The presence of this dynamic
table entry signals that the
dynamic loader should
process all relocations for
this object before
transferring control to the
program.

DT_INIT_ARRAY 25 d_ptr Pointer to an array of
pointers to initialization
functions.

DT_FINI_ARRAY 26 d_ptr Pointer to an array of
pointers to termination
functions.

DT_INIT_ARRAYSZ 27 d_val Size, in bytes, of the array of
initialization functions.

DT_FINI_ARRAYSZ 28 d_val Size, in bytes, of the array of
termination functions.

DT_LOOS 0x60000000 Defines a range of dynamic
table tags that are reserved
for environment-specific use.

DT_HIOS 0x6FFFFFFF

DT_LOPROC 0x70000000 Defines a range of dynamic
table tags that are reserved
for processor-specific use.

DT_HIPROC 0x7FFFFFFF

Name Value d_un Meaning

DT_HP_LOAD_MAP 0x60000000 d_ptr Address of a location in the
module’s data segment where
the dynamic linker can store
the address of its load map,
for use in cross-module
callbacks.

DT_HP_DLD_FLAGS 0x60000001 d_val Flags for use with the
debugger. These are
described in a separate table
below.

Name Value d_un Meaning
20 ELF-64 Object File Format, Version 1.4

Dynamic table
String table offsets are relative to the beginning of the table identified by the
DT_STRTAB entry. All strings in the string table must be null-terminated.

d_val This union member is used to represent integer values.

d_ptr This union member is used to represent program virtual addresses. These
addresses are link-time virtual addresses, and must be relocated to match the
object file’s actual load address. This relocation must be done implicitly; there are
no dynamic relocations for these entries.

The flags that can be specified with the DT_HP_DLD_FLAGS entry are shown in the following table:

DT_HP_DLD_HOOK 0x60000002 d_ptr Address of a function pointer
that refers to a callback
routine that the dynamic
linker should call when
modules are loaded and
unloaded.

DT_HP_UX10_INIT 0x60000003 d_val Address of the HP-UX 10.x-
compatible initializer list

DT_HP_UX10_INITSZ 0x60000004 d_val Size, in bytes, of the HP-UX
10.x-compatible initializer
list

DT_HP_PREINIT 0x60000005 d_val Address of the .preinit section

DT_HP_PREINITSZ 0x60000006 d_val Total size, in bytes, of the
.preinit section

DT_HP_NEEDED 0x60000007 d_val The string table offset of the
name of a needed library
(HP-UX 10.x compatibility)

DT_HP_TIME_STAMP 0x60000008 d_val Time stamp for fastbind
information

DT_HP_CHECKSUM 0x60000009 d_val Checksum for fastbind
information

Name Value Meaning

DT_HP_DEBUG_PRIVATE 0x00000001 Specifies that all DLLs should be mapped
with their text segments in private memory.

DT_HP_DEBUG_CALLBACK 0x00000002 Specifies that a callback routine should be
invoked for all load and unload events. The
callback routine is identified by the
DT_HP_DLD_HOOK entry.

DT_HP_DEBUG_CALLBACK_BOR 0x00000004 Specifies that a callback routine should be
invoked for all bind-on-reference events. The
callback routine is identified by the
DT_HP_DLD_HOOK entry.

DT_HP_NO_ENVVAR 0x00000008 Specifies that no environment variable should
be used in the search for any DLL in the
process. If this is set, only the embedded
RPATH values and default directory locations
will be used.

Name Value d_un Meaning
 ELF-64 Object File Format, Version 1.4 21

Hash table
11. Hash table

The dynamic symbol table can be accessed efficiently through the use of a hash table. The hash table
is part of a loaded program segment, typically in the .hash section, and is pointed to by the DT_HASH
entry in the dynamic table. The hash table is an array of Elf64_Word objects, organized as shown in
Figure 9.

The bucket array forms the hash table itself. The number of entries in the hash table is given by the
first word, nbucket, and may be chosen arbitrarily.

The entries in the chain array parallel the symbol table—there is one entry in the chain table for each
symbol in the symbol table, so nchain should equal the number of symbol table entries.

DT_HP_BIND_NOW 0x00000010 Specifies that all external references from this
load module should be bound immediately

DT_HP_BIND_NONFATAL 0x00000020 Unresolved references should be treated as
warnings

DT_HP_BIND_VERBOSE 0x00000040 Dynamic loader will print binding
information

DT_HP_BIND_RESTRICTED 0x00000080 Deferred bindings will be restricted to those
libraries that were available when this load
module was loaded

DT_HP_BIND_SYMBOLIC 0x00000100 External references should be bound
internally if possible

DT_HP_BIND_RPATH_FIRST 0x00000200 The list of libraries designated by the
embedded RPATH values should be searched
prior to those specified by a run-time
environment variable

DT_HP_BIND_DEPTH_FIRST 0x00000400 External references should be resolved with a
depth-first search instead of a breadth-first
search

Name Value Meaning

nbucket

nchain

bucket[0]

. . .

bucket[nbucket–1]
chain[0]

. . .

chain[nchain–1]

Figure 9. Symbol Hash Table
22 ELF-64 Object File Format, Version 1.4

Hash table
Symbols in the symbol table are organized into hash chains, one chain per bucket. A hash function,
shown in Figure 10, computes a hash value x for a given symbol name. The value of bucket[x %
nbucket] is the symbol table index for the first symbol on the hash chain. The index next symbol on the
hash chain is given by the entry in the chain array with the same index. The hash chain can be
followed until a chain array entry equal to STN_UNDEF is found, marking the end of the chain.

unsigned long
elf64_hash(const unsigned char *name)
{

unsigned long h = 0, g;

while (*name) {
h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h ^= g >> 24;
h &= 0x0f f f f f f f ;

}
return h;

}

Figure 10. Hash Function
 ELF-64 Object File Format, Version 1.4 23

Hash table
24 ELF-64 Object File Format, Version 1.4

	1.�� Overview of an ELF file
	2.�� Data representation
	3.�� File header
	4.�� Sections
	Section indices
	Section header entries
	Standard sections
	Comdat section groups
	Overlay sections

	5.�� String tables
	6.�� Symbol table
	7.�� Relocations
	8.�� Program header table
	9.�� Note sections
	10.�� Dynamic table
	11.�� Hash table

